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Abstract

The relationship between the brain’s structural wiring and the functional patterns of neural activity is of
fundamental interest in computational neuroscience. We propose a linear, hierarchical graph spectral
model of brain activity at mesoscopic and macroscopic scales that accurately predicts spatial and spectral
features of neural oscillations across the brain. This novel model yields an elegant closed-form solution of
the structure-function problem specified by the graph Laplacian spectrum of the structural connectome
with simple, universal rules of dynamics specified by few unknown parameters. This parsimony stands in
contrast to conventional complex numerical simulations of coupled non-linear lumped neural mass models
(NMM). The model was highly successful in reproducing empirical spatial and spectral patterns of activity
measured by scalp magneto-encephalography (MEG) after source localization, in contrast to NMM. The
model may represent an important step towards understanding the fundamental relationship between
network topology and the macroscopic whole-brain dynamics.
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Introduction

The Structure-Function Problem in Neuroscience

It is considered paradigmatic in neuroscience that the brain’s structure at various spatial scales is critical
for determining its function. In particular, the relationship between the brain’s structural wiring and the
functional patterns of neural activity is of fundamental interest in computational neuroscience. Brain
structure and function at the scale of macroscopic networks, i.e. amongst identifiable GM regions and their
long-range connections through WM fiber bundles, can be adequately measured using current non-invasive
measurement techniques. Fiber architecture can be measured from diffusion tensor imaging (DTI)
followed by tractography algorithms 12. Similarly, brain function manifested in neural oscillations can be
measured non-invasively using magnetoencephalography (MEG) and reconstructed across whole-brain
networks. Does structure constrain functional activity patterns that arise on the macroscopic network or
graph, whose nodes represent gray matter regions, and whose edges have weights given by the structural
connectivity (SC) of white matter fibers between them? We address this critical open problem here, as the

structural and functional networks estimated at various scales are not trivially predictable from each other
3

Although numerical models of single neurons and local microscopic neuronal assemblies, ranging from
simple integrate-and-fire neurons to detailed multi-compartment and multi-channel models 4-8 have been
proposed, it is unclear if these models can explain structure-function coupling at meso- or macroscopic
scales. At one extreme, the Blue Brain Project 910 seeks to model in detail all 101! neurons and all their
connections in the brain. Indeed spiking models linked up via specified synaptic connectivity and spike
timing dependent plasticity rules were found to produce regionally and spectrally organized self-sustaining
dynamics, as well as wave-like propagation similar to real fMRI data 11. However, it is unclear whether such
efforts will succeed in providing interpretable models at whole-brain scale 12.

Therefore the traditional computational neuroscience paradigm at the microscopic scale does not easily
extend to whole-brain macroscopic phenomena, as large neuronal ensembles exhibit emergent properties
that can be unrelated to individual neuronal behavior 13-18, and are instead largely governed by long-range
connectivity 19-22, At this scale, graph theory involving network statistics can phenomenologically capture
structure-function relationships 23-25, but do not explicitly embody any details about neural physiology 1415.
Strong correlations are known between functional and structural connections at this scale 31826-31 and
important graph properties are shared by both SC and FC networks, such as small worldness, power-law
degree distribution, hierarchy, modularity, and highly connected hubs 2432,

A more detailed accounting of the structure-function relationship requires that we move beyond statistical
descriptions to mathematical ones, informed by computational models of neural activity. Numerical
simulations are available of mean field 173334 and neural mass 2235 approximations of the dynamics of
neuronal assemblies. By coupling many such neural mass models (NMMs) using anatomic connectivity
information, it is possible to generate via large-scale stochastic simulations a rough picture of how the
network modulates local activity at the global scale to allow the emergence of coherent functional networks
22, However, simulations are unable to give an analytical (i.e. closed form) encapsulation of brain dynamics
and present an interpretational challenge in that behavior is only deducible indirectly from thousands of
trial runs of time-consuming simulations. Consequently, the essential minimal rules of organization and
dynamics of the brain remain unknown. Furthermore, due to their nonlinear and stochastic nature, model
parameter inference is ill-posed, computationally demanding and manifest with inherent identifiability
issues 36,

How then do stereotyped spatiotemporal patterns emerge from the structural substrate of the brain? How
will diseases perturb brain structure, thereby impacting its function? While stochastic simulations are
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powerful and useful tools, they provide limited neuroscientific insight, interpretability and predictive
power, especially for the practical task of inferring macroscopic functional connectivity from long-range
anatomic connectivity. Therefore, there is a need for more direct models of structural network-induced
neural activity patterns - a task for which existing numerical modeling approaches, whether for single
neurons, local assemblies, coupled neural masses or graph theory, are not ideally suited.

A hierarchical, analytic, low-dimensional and linear spectral graph theoretic model of brain
oscillations

Here we present a new linear graph model capable of reproducing empirical macroscopic spatial and
spectral properties of neural activity. We are interested specifically in the transfer function induced by the
macroscopic structural connectome, rather than in the behavior of local neural masses. Therefore we seek
an explicit formulation of the frequency spectra induced by the graph, using the eigen-decomposition of the
structural graph Laplacian, borrowing heavily from spectral graph theory used in diverse contexts
including clustering, classification, and machine learning 37-40. This theory conceptualizes brain oscillations
as a linear superposition of eigenmodes. These eigen-relationships arise naturally from a biophysical
abstraction of fine-scaled and complex brain activity into a simple linear model of how mutual dynamic
influences or perturbations can spread within the underlying structural brain network, a notion that was
advocated previously 184142, We had previously reported that the brain network Laplacian can be
decomposed into its constituent “eigenmodes”, which play an important role in both healthy brain function
1830,43-45 and pathophysiology of disease 4346-48, We showed that such a spectral graph theoretic model is
capable of reproducing spatial patterns of functional connectivity in the BOLD fMRI regime 39, whereby FC
and SC share eigenvectors and their eigenvalues are exponentially related. Just a few Laplacian eigenmodes
could reconstruct entire FC matrices, and significantly outperform the far more complex and time-
consuming generative neural mass model of 335 on the same empirical data.

Unlike prior work however, we show here that a graph-spectral decomposition is possible at much higher
frequencies as well, ignoring all non-linearities that are operating at the local (node) level. Like previous
NMMs, we lump neural populations at each brain region into neural masses, but unlike them we use a
linearized (but frequency-rich) local model - see Figure 1A. The macroscopic connectome imposes a linear
and deterministic modulation of these local signals, which can be captured by a network transfer function.
The sequestration of local oscillatory dynamics from the macroscopic network in this way enables the
characterization of whole brain dynamics deterministically in closed form in Fourier domain, via the eigen-
basis expansion of the network Laplacian.

We applied this model to real connectivity data and validated it against measured source-reconstructed
MEG recordings in healthy subjects. The model closely matches empirical spatial and spectral MEG
patterns. In particular, the model displays a prominent alpha peak, and, intriguingly, the eigenmodes
corresponding to the alpha oscillations have the same posterior-dominant spatial distribution that is
repeatedly seen in eyes-closed alpha power distributions. To our knowledge, this is the first network-based
explanation of how the alpha power is distributed over the brain, and indeed of the entire spatio-spectral
patterning of brain rhythms measurable on MEG.

Results

Closed form solution of steady state spectra

The steady state spectral response induced by the connectome at angular frequency w, can be expressed as
a summation over the eigenmodes u;(w) and eigenvalues 4;(w) of the graph Laplacian £(w):
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T; is a time constant, F,(w) is a gamma-shaped neural response function, and H;y¢q;(w) is linearized
lumped local spectral response (derivation can be found in Methods). The spectral-domain output X (w)
and input P(w) are vector-valued variables. This steady state model of brain activity includes only 7 global
model parameters.

Graph Laplacian eigenmodes mediate a diversity of frequency responses

First we demonstrate the spectra produced by graph eigenmodes as per our theory. Each eigenmode
produces a frequency response based on its frequency-dependent eigenvalue (Figure 1D,E). Small
eigenvalues undergo a larger shift due to frequency, while the large ones stay more stable and tightly
clustered around the nominal eigenvalue (i.e. at w = 0) (see Figure 1C). Figure 1D shows the transit in the
complex plane of a single eigenmode’s frequency response, starting at low frequencies in the bottom right
quadrant, and moving to the upper left quadrant at high frequencies. The magnitude, given by distance
from origin, suggests that most eigenmodes have two prominent lobes, roughly corresponding to alpha and
beta rhythms, respectively. In contrast, the lowest few eigenmodes start off far from the origin, indicative of
a low-pass response. The magnitude of these complex-valued curves shown in figure 1E reinforces these
impressions, with clear alpha and beta peaks, as well as slower rhythms of the lowest eigenmodes.

The spatial patterns of the first 4 eigenmodes of L(w), evaluated at the alpha peak of 8 Hz, are shown in
Figure 1F. The first eigenmode u; is essentially a sensorimotor network which, due to its lack of an alpha
peak (see panel E), does not contribute to the spatial patterning of theoretical alpha power. The
eigenmodes u, — u, give strong alpha frequency responses, and in turn are strongly distributed spatially in
posterior areas but also include other regions and prominently resemble many elements of the default
mode network and the so-called structural core of the human connectome (See also Figure 5). While
uq — uy are highly consistent and reproducible, higher modes are increasingly sensitive to axonal velocity
and frequency (not shown here).

Since the model relies on connectome topology, we demonstrate in Figure 2 that different connectivity
matrices produce different frequency responses: A) the individual’s structural connectivity matrix, B) HCP
average template connectivity matrix, C) uniform connectivity matrix of ones, and D) a randomly generated
matrix. All modeled power spectra show a broad alpha peak at around 10 Hz and a narrower beta peak at
around 20 Hz. This is expected, since these general spectral properties are governed by the local linearized
neural mass model. The alpha peak is predominantly contained in the low eigenmodes, up to eigen-index
10 or so. Although the alpha and beta peaks are innately present under default parameters in Figure 1, once
we optimize parameters, the peaks become stronger. However, it is important to note that different
eigenmodes accommodate a diversity of frequency responses; for instance the lowest eigenmodes show a
low-frequency response with no alpha peak whatsoever. In the frequency responses from biologically
realistic individual and HCP template connectomes, there is a diversity of spectral responses amongst
eigenmodes that is lacking in the response produced by the unrealistic uniform and randomized matrices.
Since graph topology appears so critical to the power spectrum it induces, we explored whether and how
sparsity of random graphs mediates spectral power (Figure 2D-F). At incrementally increasing sparsity
levels, the diversity of spectral responses of different eigenmodes increases and approaches that of realistic
connectomes. Therefore, graph eigenmodes induce unique and diverse frequency responses that depend
strikingly on the topology of the graph.
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Network eigenmodes exhibit strong spatial patterning in their frequency responses, even with identical
local oscillations (Figure 3). We evaluated the model spectral response using the subject-specific
cindwidual matrices of 4 representative subjects (Figure 3A-D). The model power spectra strikingly
resembles empirical MEG spectra, correctly displaying both the alpha and beta peaks on average, and
similar regional variability as in real data.

Regional averages of empirical and modeled power spectra of the entire group after full parameter
optimization over individual subjects using the proposed simulated annealing algorithm are shown in
figure 3E. The model closely replicates the observed power spectrum equally well with both ¢ndvidual
(green) and Ct¢™Plate (plye). Thus, in most cases we can safely replace the subject-specific connectome
with the template connectome. In contrast, when non-optimized default parameters were used (black), it
resulted in a bad fit, especially at high frequencies, suggesting that individualized parameter optimization is
essential to produce realistic spectra. The Wilson-Cowan neural mass model 3449 using our in-house
MATLAB implementation 36, was generally able to produce characteristic alpha and beta frequency peaks
(vellow) but does not resemble empirical wideband spectra. Note that no regionally-varying NMM
parameters were used in order to achieve a proper comparison with our model, but both models were
optimized with the same simulated annealing algorithm. Nevertheless, these data confirm our intuition that
the average spectral power signal can be produced by almost any neural model, whereas its regional
variations around the canonical spectrum are presently being modeled via the connectome. Finally, no
model is capable of reproducing higher frequencies in the higher beta and gamma range seen in MEG, since
by design and by biophysical intuition these frequencies arise from local neural assemblies rather than
from modulation by macroscopic networks.

Parameter optimization via simulated annealing

The simulated annealing optimization algorithm provided a set of optimized parameters {z,,T;, T¢, Gei
Jii» @, v}: (see supplementary Table 1). Figure 4A shows violin plots of the optimized values, indicating
that the range is adequate for parameter exploration. The time constants 7,, 7; showed tight clustering but
the rest of the parameters showed high variability across subjects. The optimal parameters are in a
biologically plausible range, similar to values reported in numerous neural mass models. The annealing
algorithm aimed to maximize the Pearson’s correlation between MEG and modeled spectra (“Spectral
correlation”). The convergence plots shown in Figure 4B, one curve for each subject, indicates substantial
improvement from default choice as optimization proceeds. The distribution of optimized spectral
correlations is shown in 4C-F. Panel C shows the correlation distribution after grid search, while D shows
the distribution after annealing, which clearly gives better R values. Panel E shows annealing using not
individual connectomes but the template HCP one. As stated earlier, there is no discernible difference in
performance due to this replacement. Panel F shows the performance using identical parameters for all
subjects - as expected it performs less well compared to the individually optimized model, which gives a
unimodal distribution of Pearson’s R centered around R = 0.83,p < 107°.

Graph spectral model recapitulates the spatial distribution of MEG power

Next we establish that the model can correctly reproduce region-specific spectra, even though it uses
identical local oscillations. We integrated the spectral area in the range 8-12 Hz for alpha and 13-25 Hz for
beta, of each brain region separately. We define “spatial correlation” (as compared to spectral correlation
above) as Pearson’s R between the regional distribution of empirical MEG and model-predicted power
within a given frequency band. In this paper we focus exclusively on the alpha and beta bands.

Specific eigenmodes capture spatial distributions of alpha and beta band activity. We plotted the
spatial correlation achieved by each eigenmode against empirical MEG regional alpha and beta power,
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averaged over all subjects in Figure 5A. In Supplementary Figure 1 we show these spatial correlation
curves for all 36 subjects. Only a small number of eigen-modes are tuned to each power band; alpha is
generally better captured by low eigenmodes while beta by middle eigenmodes. A scatter plot of all
eigenmodes’ alpha and beta power spatial correlation is shown in panel B, suggesting that when an
eigenmode is correlated to alpha power, it is roughly anti-correlated to beta power. This correlation-of-
correlations is highly significantly negative (r=-0.255, p<0.0001). While on average, individual eigenmodes
are not highly predictive of alpha or beta, in individual subjects they have much higher R values up to 0.5.
Figure 5C,D show the spatial pattern of the most spatially correlated eigenmode for alpha (#3) and beta
(#33) respectively. These selected eigenmodes have the expected posterior distribution for alpha and are
widespread for beta. Panel E shows a histogram of the correlation between the alpha band and beta band
spatial correlations. It can be seen that across all subjects’ alpha and beta band spatial correlation curves
for the eigenmodes are in turn anti-correlated. Panel F shows histograms of the spatial correlations across
subjects of the eigenmode with maximal spatial correlation with empirical alpha (green) and the same
eigenmode’s spatial correlation with empirical beta (blue). Again, we can see a clear anti-correlation.
Together, these results confirm that graph eigenmodes might be tuned to specific frequencies, and their
spatial patterns might govern the spatial presentation of different brain rhythms.

Figure 6 depicts the spatial distribution of alpha band power (8-12 Hz) over the entire brain, and Figure 7
shows spatial distribution of beta power (13 - 25 Hz), for a representative subject. Regions are color coded
by regional power scaled by mean power over all regions. A different “glass brain” rendering is shown in
Supplementary Figures 2,3. Alpha power distribution. The alpha power was best modeled by a
combination of the 10 best-matching eigenmodes (R = 0.53). The posterior and occipital dominance of
alpha power is clearly observed predicted alpha distribution, with strong effect size in temporal, occipital
and medial posterior areas. However, the model predicts some lateral frontal involvement that is not
observed in real data. The two strongest eigenmodes that contribute to the summed model (bottom two
rows) also show very similar spatial organization. Beta power distribution. Empirical beta power (Figure
7 top) is spread throughout the cortex, especially frontal and premotor cortex. A combination of five best
matching eigenmodes produced the best model match to the source localized pattern (R = 0.57). The two
best-matching eigenmodes have Pearson’s correlation coefficients of 0.42 and 0.41.

Alternate non-linear model. The Wilson-Cowan neural mass model did not succeed in correctly
predicting the spatial patterns of alpha or beta power - see Supplementary Figure 4. This could be
because in our implementation we enforced uniform local parameters with no regional variability.
However, this is the appropriate comparison, since our proposed model also does not require regionally-
varying parameters.

Peak model performance over sorted, selected eigenmodes. Since only a few eigenmodes appear to
contribute substantially, we hypothesized that spatial correlations could be improved by selecting a subset
of eigenmodes. Therefore we developed a sorting strategy whereby we first rank the eigenmodes in
descending order of spatial correlation for a given subject and given frequency band. Then we perform
summation over only these eigenmodes according to Eq (10), each time incrementally adding a new
eigenmode to the sum. The spatial correlation of these “sorted-summed” eigenmodes against empirical
MEG data are plotted in Figure 8A,B as a function of increasing number of eigenmodes. Figure 8A gives the
spatial correlation curves for alpha band and 8B for beta band; one curve for each subject. The thick solid
curves represent the average over all subjects. The spatial correlation initially increases as we add more
well-fitting eigenmodes, but peaks around 10 for alpha and 5 eigenmodes for beta power, and begins
declining thereafter. Addition of the remaining eigenmodes only serves to reduce the spatial correlation.
This behavior is observed in almost all subjects we studied.
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The distribution of peak spatial correlations, using optimized parameters and individual connectomes of all
subjects is plotted in panel C, as well as two alternatives: a) NMM and b) graph model with 1000 instances
of 80% sparse randomly generated connectomes, and optimized parameters. The proposed model gives
very strong spatial correlation in alpha band (r distribution centered at 0.6), and NMM gives very poor
correlation (r centered at 0). Interestingly, the random connectomes also appear to have some ability to
capture these spatial patterns (r centered at 0.35), perhaps due to the implicit search within the random
eigenmodes of the best-matching ones, which on average will give at least a few eigenmodes that look like
MEG power purely by chance. Panel D shows analogous results for beta band spatial power correlations.
Again our model does the best (r distribution centered at 0.5), but its comparative performance against
alternate approaches is not as striking as in alpha.

Collectively, we conclude that the graph model is able to fit both the spectral and spatial features of
empirical source localized MEG data, and that the optimal fits performed on individual subjects occurs at
widely varying subject-specific parameter choices.

Discussion

The proposed linear graph spectral model of neural oscillatory activity is a step towards understanding the
fundamental relationship between network topology and the macroscopic whole-brain dynamics. The
objective is not just to model brain activity phenomenologically, but to analytically derive the mesoscopic
laws that drive macroscopic dynamics. This novel model of the structure-function relationship has the
following key distinguishing features: 1) Hierarchical: the model’s complexity depends on the level of
hierarchy being modeled: complex, non-linear and chaotic dynamics can be accommodated at the local
level, but linear graph model is sufficient at the macro-scale. 2) Graph-based: Macroscopic dynamics is
mainly governed by the connectome, hence linear approximations allow the steady-state frequency
response to be specified by the graph Laplacian eigen-decomposition, borrowing heavily from spectral
graph theory 37-40. 3) Analytic: The model is available in closed form, without the need for numerical
simulations. 4) Low-dimensional: Simple, global and universal rules specified with very few parameters, all
global and apply at every node, are able to achieve sufficiently complex dynamics. The model is incredibly
easy to evaluate, taking no more than a few seconds per brain. We proposed a simulated annealing
algorithm to infer model parameters directly from a subject’'s MEG data. The optimized model matches
observed MEG data quite well. No time-consuming simulations of coupled neural masses or chaotic
oscillators were needed; indeed, the latter greatly underperformed our model. We report several novel
findings with potentially important implications, discussed below.

Recapitulating regional power spectra at all frequencies

Our main result is the robust demonstration of the model on 36 subjects’ MEG data. The representative
examples shown in Figures 3,6-8 indicate that the graph model recapitulates the observed source localized
MEG power spectra for the 68 parcellated brain regions, correctly reproducing the prominent alpha and
beta peaks. For each region, the model is also correctly able to predict the full bandwidth power spectra,
including the 1/w fall-off over the entire frequency range of interest.

Revealing sources of heterogeneity in brain activity patterns
The match between model and data is strongest when the model uses empirical macroscopic connectomes

obtained from healthy subjects’ diffusion weighted MRI scans, followed by tractography. The use of “null”
connectomes - uniform connectivity of ones and randomized connectivity matrix, respectively, did far
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worse than actual human connectomes (Figure 8), supporting the fact that the latter is the key mediator of
real brain activity. The match was not significantly different when using a template HCP connectome versus
the individual subject’s own connectomes (Figures 3E, 4C,D), suggesting that, for the purpose of capturing
the gross topography of brain activity, it is sufficient to use a template connectome, and disregard
individual variability.

However, this does not mean that the model is incapable of capturing individual variability: indeed, we
designed a comprehensive parameter fitting algorithm using simulated annealing minimization on
individual subjects’ MEG data of a suitably defined cost function based on Pearson R statistic as a way to
capture all relevant spectral features. Using this fitting procedure, we were able to obtain the range of
optimally-fitted parameters across the entire study cohort. As shown in Figure 4A, the range is broad in
most cases, implying that there is significant inter-subject variability of model parameters, even if a
template connectome is used for all. We tested the possibility that a group-averaged parameter set might
also succeed in matching real data on individuals. But as shown in Figure 3E, this was found to be a poor
choice, supporting the key role of individual variability of model parameters (but not variability in the
connectome).

Macroscopic brain rhythms are governed by the connectome

A predominant view assumes that different brain rhythms are produced by groups of neurons with similar
characteristic frequencies, which might synchronize and act as “pacemakers.” How could this view explain
why alpha and beta power are spatially stereotyped across subjects, and why the alpha signal is especially
prominent in posterior areas? Although practically any computer model of cortical activity can be tuned,
with suitable parameter choice, to oscillate at alpha frequency, e.g. 5162022355051 none of them are able to
parsimoniously recapitulate the posterior origin of alpha. Thus the prominence of posterior alpha might be
explained by the hypothesized existence of alpha generators in posterior areas. Indeed, most oscillator
models of local dynamics are capable of producing these rhythms at any desired frequency 53552-54, and
therefore it is common to tweak their parameters to reproduce alpha rhythm. Local networks of simulated
multicompartmental neurons can produce oscillations in the range 8-20 Hz 5, and, in a non-linear
continuum theory, peaks at various frequencies in the range 2-16Hz were obtained depending on the
parameters 53. Specifically, the role of thalamus as pacemaker has motivated thalamocortical models 11.16
that are capable of resonances in various ranges. Neural field models of the thalamocortical loop 16 can also
predict slow-wave and spindle oscillations in sleep, and alpha, beta, and higher-frequency oscillations in
the waking state. In these thalamocortical models, the posterior alpha can arise by postulating a differential
effect in weights of the posterior versus anterior thalamic projections, e.g. 51. Ultimately, hypotheses
requiring local rhythm generators suffer from lack of parsimony and specificity: a separate pacemaker
must be postulated for each spectral peak at just the right location 55.

An alternative view emerges from our results that macroscopic brain rhythms are governed by the
structural connectome. Even with global model parameters, using the exact same local cortical dynamics
captured by the local transfer function H;,.4;(w), driven by identically distributed random noise P(w), we
are capable of predicting prominent spectral (Figure 3) and spatial (Figures 6,7) patterning that is quite
realistic. This is especially true in the lower frequency range: indeed the model correctly predicts not just
the frequency spectra in alpha and beta ranges, but also their spatial patterns - i.e. posterior alpha and
distributed but roughly frontal beta. Although this is not definitive proof, it raises the intriguing possibility
that the macroscopic spatial distribution of the spectra of brain signals does not require spatial
heterogeneity of local signal sources, nor regionally variable parameters. Rather, it implies that the most
prominent patterning of brain activity (especially alpha) may be governed by the topology of the macroscopic
network rather than by local, regionally-varying drivers. Nevertheless, a deeper exploration is required of
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the topography of the dominant eigenmodes of our linear model, in order to understand the spatial
gradients postulated previously 1651

Emergence of linearity from chaotic brain dynamics

The non-linear and chaotic dynamics of brain signals may at first appear to preclude deterministic or
analytic modeling of any kind. Yet, vast swathes of neuroscientific terrain are surprisingly deterministic,
reproducible and conserved across individuals and even species. Brain rhythms generally fall within
identical frequency bands and spatial maps 41632, Based on the hypothesis that the emergent behavior of
long-range interactions can be independent of detailed local dynamics of individual neurons 13-18, and may
be largely governed by long-range connectivity 19-22, we have reported here a minimal linear model of how
the brain connectome serves as a spatial-spectral filter that modulates the underlying non-linear signals
emanating from local circuits. Nevertheless, we recognize the limitations of a linear model and its inability
to capture inherent non-linearities across all levels in the system.

Other limitations and extensions

The model currently examines resting-state activity, but future extensions will include prediction of
functional connectivity, task-induced modulations of neural oscillations and causal modeling of external
stimuli, e.g. transcranial magnetic and direct current stimulation. The current implementation does not
incorporate complex local dynamics, but future work will explore using non-white internal noise and
chaotic dynamics for local assemblies. This may allow us to examine higher gamma frequencies. Although
our model incorporates latency information derived from path distances, we plan to explore path-specific
propagation velocities derived from white matter microstructural metrics such as axon diameter
distributions and myelin thickness. Future work will also examine the specific topographic features of the
structural connectome that may best describe canonical neural activity spectra. Finally, we plan to examine
the ability of the model to predict time-varying structure-function relationships.

Potential applications

Mathematical encapsulation of the structure-function relationship can potentiate novel approaches for
mapping and monitoring brain diseases such as autism, schizophrenia, epilepsy and dementia, since early
functional changes are more readily and sensitively measured using fMRI and MEG, compared to structural
changes. Because of the complementary sensitivity, temporal and spatial resolutions of diffusion MRI, MEG,
EEG and fMRI, combining these modalities may be able to reveal fine spatiotemporal structures of neuronal
activity that would otherwise remain undetected if using only one modality. Current efforts at fusing
multimodalities are interpretive, phenomenological or statistical, with limited cognizance of underlying
neuronal processes. Thus, the ability of the presented model to quantitatively and parsimoniously capture
the structure-function relationship may be key to achieving true multi-modality integration.

Online Methods
Spectral graph model development

Notation. In our notation, vectors and matrices are represented by boldface, and scalars by normal font.
We denote frequency of a signal, in Hertz, by symbol f, and the corresponding angular frequency as
w = 2nf. The connectivity matrix is denoted by C = {cjk}, consisting of connectivity strength ¢;; between
any two pair of regions j, k.
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Canonical rate model over a graph. We use a canonical rate model to describe neural activity across two
hierarchical levels - local cortical levels and long-range mesoscopic levels. At each level of the hierarchy of
brain circuits, we hypothesize a simple linear rate model of recurrent reverberatory activity given by

dxei(® 1

1
fesi(t) * xe/i(t) + — feo (L) * Z Cjkxe/i(t - T}]k) + pei(t) €Y)
dt Teyi Teyi

ok

where x,/;(t) is the mean signal of the excitatory/inhibitory populations and p,;(t) is internal noise
source reflecting local cortical column computations or input. The transit of signals, from pre-synaptic
membranes, through dendritic arbors and axonal projections, is sought to be captured into ensemble

average neural impulse response functions f,(t) = Tiexp (— Ti) and f;(t) = %exp (- TL) respectively. We

disregard the non-linearity of the neural response, hence the output at the terminal to a presynaptic input
u(t) is the simple convolution x,.(t) = fe(t) *u(t). The neural responses f/(t) are Gamma-shaped
responses (Figure 1B) parameterized by time constants 7,,; that here represent the end result of both
synaptic membrane capacitance and the distribution of dendritic/axonal delays introduced by the
arborization. NMMs typically use a single classical exponential decay term for membrane capacitance only,
since NMMs model highly local cell assemblies where multisynaptic connections are infrequent and axonal
and dendritic transport delays are usually incorporated explicitly via connectivity weights and delays. Since
our lumped model was designed for relatively large cortical regions, we employ the Gamma-shaped f, ; to
correctly capture not just classical membrane capacitance but also the expected diversity of dendritic

transport delays. The dynamics of the entire assembly modeled via a self-decaying term 7, ; % X —foi(t) *

x(t), typically used in most rate or NMM models, but the difference here is that we chose to apply
convolution with neural response f, ; (t) within the decay process. We believe this is necessary to ensure
that the dynamics of the population cannot participate in the internal recurrent dynamics of the region
until the signal has passed through one instance of the neuronal response. Since this neural response is
meant to capture a distribution of local circuit delays, its time constants 7, ; are purposefully far longer (up
to 20ms) than expected from membrane capacitance alone. Studies of cortical lag times using paired
electrode recordings between primary and higher cortices demonstrate this. A short visual stimulus causes
a neural response in the ferret V1 within 20ms post-stimulus, in the primary barrel field within 16-36ms,
and the entire visual cortex becomes engaged 48-70ms after stimulus 6. Brief deflection of a single barrel
whisker in the mouse evokes a somatotopically mapped cortical depolarization that remains localized to its
C2 barrel column only for a few milliseconds, thence rapidly spreading to a large part of sensorimotor
cortex within tens of milliseconds, a mechanism considered essential for the integration of sensory
information 5657. Interestingly, the evoked response curve in S1 from the 56 study had a prominent Gamma
shape. Of note, the duration of S1 response (~50ms) was considerably longer than the time to first sensory
response in C2 (7.2ms) 56. Interestingly, feedback projections from higher to lower areas take ~50ms,
hence have a much slower apparent propagation velocity (0.15-0.25m/s) than what would be predicted by
axonal conduction alone (1-3m/s) 6.

Individual neural elements are connected to each other via connection strengths c;. Let the cortico-cortical
fiber conduction speed be v, which here is assumed to be a global constant independent of the pathway
under question. For a given pathway connecting regions j and k of length dj;, the conduction delay of a
signal propagating from region j to region k will be given by 7¥;; = d;;/v. Hence signals from neighboring
elements also participate in the same recurrent dynamics, giving the 2nd term of Eq (1). Equation (1) will
serve as our canonical rate model, and will be reproduced at all levels of the hierarchy, and only the
connectivity strengths will vary depending on the level of hierarchy we are modeling, as explained below.
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Local neural assemblies. The local connectivities c},‘jcal are assumed to be all-to-all, giving a complete
graph. Further, the axonal delays 7j;, associated with purely local connections were already incorporated in
the lumped impulse responses fe/;(t). Hence we assert:

local _ v o_ :
Cj = Ce/is Tk = 0,vj k

From spectral graph theory, a complete graph has all equal eigenvalues which allows the local network to
be lumped into gain constants, and the summation removed. Indeed, rewriting x,/;(t) as the mean signal of

all the excitatory/inhibitory cells and setting the gains g,, = 1 — c,N, and g;; = 1 — ¢;N; we get

dxe/i(t) _ geeyii
dt Te/i

fei(t) * xe/i () + peyi(t). (2)

1/T§/i

( P we take the Fourier transform
jw+1 Te/i

Given the Fourier Transform pairs % O jw, fei(t) © Fepi(w) =

of Eq(1) and obtain the local assembly’s frequency spectrum:
YGeeyii

-1
Xeji(w) = (jw += P Fe/t(w)> P,i(w) ©))

Writing this in terms of transfer functions X,(w) = H,(w)P,(w), X;(w) = H;(w)P;(w) we get the lumped
local system illustrated in Figure 1A. Finally, we must also account for signals that alternate between the
two populations, which is given by the transfer function
Hei(w) = He(a))Hi(w)/(l + geiHe(w)Hi((‘)))
We fix g.. = 1 without loss of generality, and let the other terms g;;, g.; be model parameters to be fitted.
Finally, the total cortical transfer function is the sum
Hypear(w) = He(w) + Hi(w) + Hei(w) (4)

and X;pcq1(@) = Hjpeqi(w)P(w) represents all neural activity in this region, whether from excitatory or
inhibitory cells. The canonical local activity is therefore defined by the Fourier transform pair: x;,q;(t)

< Xlocal(a))-

Macroscopic scale: signal evolution on the entire graph

We use the same canonical network dynamics as Eq (1), but now the inter-regional connectivity cjy is non-
zero and given by the structural connectome. Similarly, axonal conductance delays are determined by fiber
length and conductance speed 7j;, = v/djy. Further, the external driving signals at each node is the local

neural activity x;,.q;(t) defined above rather than a noise process p(t). In the interest of parsimony we set

each node of the macroscopic graph to have the same internal power spectrum X;,.4; (w) - i.e. all regions

are experiencing the same transfer function, driven by identically distributed (but of course not identical)

noise. At this scale, activity measured at graph nodes is no longer excitatory or inhibitory, but mixed, and

the corticocortical connections are all between long, pyramidal excitatory-only cells. Thus for the k-th node
dx(t 1 a

Cli(t( ) = - ;fe(t) * xk(t) + G fe(t) * 2 Cjkxj(t - T]!]k) + xlocal,k(t)

T

J
Here we have introduced a global coupling constant , similar to most connectivity-coupled neural mass

models, that seeks to control the relative weight given to long-range afferents compared to local signals. We
have also introduced a new time constant, 7;, which is an excitatory time constant and it may be the same
as the previously used constantz,. However, we allow the possibility that the long-range projection
neurons might display a different capacitance and morphology compared to local circuits, hence we have
introduced t; (subscript G is for “graph” or “global”).

Stacking all equations from all nodes and using vector valued signals x(t) = {x,(t)}, we can write
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d 1
fz(tt) =-——fOxx(®)+ L L) * clx(t = )} + Xioear(®) (5)
G G

T
where the braces {-} represent all elements of a matrix indexed by j, k.
We wish to evaluate the frequency spectrum of the above. In Fourier space, delays become phases; hence

we use the transform pairs %ijX(w) and x(t — 1) @ e /"X (w). Therefore, define a “complex

connectivity matrix” at any given angular frequency w as C*(w) = {C]-k exp(—ja) T”jk)}. Then define a
normalized complex connectivity matrix at frequency w as

C(w) = diag (J%Tg) C*(w) diag (

Taking the Fourier transform of Eq (5), we get

1
,/deg) ®)

(ij(w) + %Fe (w) (I - aC(w))X(w)> = Hipeqi(@)P(w) (7

where we assumed identically distributed noise signals driving both the excitatory and inhibitory local
populations at each node, such that P, x(w) = P; x(w) = Pg(w) at the k-th node. We then collected all
nodes’ driving inputs in the vector P(w) = {Py(w), Vk}.

Defining the complex Laplacian matrix
L(w)=I—-aC(w)

where I is the identity matrix of size NxN, and the degree vector deg is defined as degy = X;cj. This
complex Laplacian will be evaluated via the eigen-decomposition

L(w) = U(0)A()U ()" (8)
where A(w) = diag([A1(w), ..., Ay(w)]) is a diagonal matrix consisting of the eigenvalues of the complex
Laplacian matrix of the connectivity graph €(w), at the angular frequency w.
Hence

-1
X(w) = (jw1+%Fe(w)L'(w)> Hjpeqr(w)P(w) 9

In order to solve this we invoke the eigen-decomposition of £L(w), and that U(w)U(w)® = I.1t can then be
shown easily that

H
Xy = Y @)y @@ o)
P o+ (@) ()

This then is the steady state frequency response of the whole brain dynamics. In steady state, we assume
that each cortical region is driven by internal noise that spans all frequencies, i.e. white noise. Hence we
assume that the driving function p(t) is an uncorrelared Gaussian noise process, such that P(w) = I, where
I is a vector of ones. This asserts identical cortical responses at each brain region.

Equation (10) encapsulates the entire model, and it is deterministic and admits a closed form solution, once
the graph Laplacian eigenspectrum is known. There are very few model parameters, seven in total: q,
Te, Tir Tgy Uy Giir Jei» Which are all global and apply at every node. Note that the entire model is based on a
single equation of graph dynamics, Eq (1), which is repeatedly applied to each level of the hierarchy. Here
we used two levels: a mesoscopic level where connectivity is all-to-all, and a macroscopic level, where
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connectivity is measured from fiber architecture. In theory, this template could be refined into finer levels,
where neural responses become increasingly non-linear, and connectivity becomes sparser and structured.

Experimental Procedures and Model Comparisons

Alternative benchmark model for comparison. In order to put the proposed model in context, we also
implemented for comparison a Wilson-Cowan neural mass model 17343649 with similar dimensionality.
Although NMMs like this can and have been implemented with regionally varying local parameters, here
we enforced uniform, regionally non-varying local parameters, meaning all parcellated brain regions
shared the same local and global parameters. This is a fair comparison since the proposed model is also
regionally non-varying. The purpose of this exercise is to ascertain whether a non-regional NMM can also
predict spatial power variations purely as a consequence of network transmission, like the proposed
model, using the same model optimization procedure (see below). This NMM incorporates a transmission
velocity parameter that introduces a delay based on fiber tract lengths extracted from diffusion MRI, but,
unlike our model, does not seek to explicitly evaluate a frequency response based on these delays.

Study cohort. We acquired MEG, anatomical MRI, and diffusion MRI for 36 healthy adult subjects (23 Male,
13 female; 26 left-handed, 10 right-handed; mean age 21.75 years (range: 7-51 years). All study procedures
were approved by the institutional review board at the University of California at San Francisco (UCSF) and
are in accordance with the ethics standards of the Helsinki Declaration of 1975 as revised in 2008.

MRL A 3 Tesla TIM Trio MR scanner (Siemens, Erlangen, Germany) was used to perform MRI using a 32-
channel phased-array radiofrequency head coil. High-resolution MRI of each subject’s brain was collected
using an axial 3D magnetization prepared rapid-acquisition gradient-echo (MPRAGE) T1-weighted
sequence (echo time [TE] = 1.64 ms, repetition time [TR] = 2530 ms, TI = 1200 ms, flip angle of 7 degrees)
with a 256-mm field of view (FOV), and 160 1.0-mm contiguous partitions at a 256x256 matrix. Whole-
brain diffusion weighted images were collected at b = 1000s/mm? with 30 directions using 2-mm voxel
resolution in-plane and through-plane.

Magneto-encephalography (MEG) data. MEG recordings were acquired at UCSF using a 275-channel CTF
Omega 2000 whole-head MEG system from VSM MedTech (Coquitlam, BC, Canada). All subjects were
instructed to keep their eyes closed for five minutes while their MEGs were recorded at a sampling
frequency of 1200 Hz.

Data Processing

Region parcellation. The T1-weighted images were parcellated into 68 cortical regions and 18 subcortical
regions using the using the Desikan-Killiany atlas available in the FreeSurfer software 58. To do this, the
subject specific T1-weighted images were back-projected to the atlas using affine registration, as described
in our previous studies 1859

Structural Connectivity Networks. We constructed different structural connectivity networks with the
same Desikan-Killiany parcellations to access the capabilities of our proposed model. Firstly, we obtained
openly available diffusion MRI data from the MGH-USC Human Connectome Project to create an average
template connectome. As in our previous studies 1859, subject specific structural connectivity was computed
on diffusion MRI data: Bedpostx was used to determine the orientation of brain fibers in conjunction with
FLIRT, as implemented in the FSL software 60. In order to determine the elements of the adjacency matrix,
we performed tractography using probtrackx2. We initiated 4000 streamlines from each seed voxel
corresponding to a cortical or subcortical gray matter structure and tracked how many of these streamlines
reached a target gray matter structure. The weighted connection between the two structures c; ;, was
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defined as the number of streamlines initiated by voxels in region i that reach any voxel within region j,
streamlines

normalized by the sum of the source and target region volumes (¢;; = ot ). This normalization
prevents large brain regions from having high connectivity simply due to having initiated or received many
streamlines. Afterwards, connection strengths are averaged between both directions (c; j and ¢;;) to form
undirected edges. It is common in neuroimaging literature to threshold connectivity to remove weakly
connected edges, as this can greatly influence the implied topology of the graph. In our work, we chose not
to apply further thresholding, as unlike conventional graph theoretic metrics, linear models of spread and
consequently network eigenmodes are relatively insensitive to implied topology induced by presence (or
lack) of weak nonzero connections. However, to determine the geographic location of an edge, the top 95%
of non-zero voxels by streamline count were computed for both edge directions. The consensus edge was
defined as the union between both post-threshold sets.

MEG processing and source reconstruction. MEG recordings were down-sampled from 1200 Hz to 600
Hz, then digitally filtered to remove DC offset and any other noisy artifact outside of the 1 to 160 Hz
bandpass range. Since MEG data are in sensor space, meaning they represent the signal observable from
electrodes placed on the scalp, this data needs to be “inverted” in order to infer the neuronal activity that
has generated the observed signal by solving the so-called inverse problem. Several effective methods exist
for performing source localization 61-63. Here we eschew the common technique of solving for a small
number of discrete dipole sources which is not fully appropriate in the context of inferring resting state
activity, since the latter is neither spatially sparse not localized. Instead, we used adaptive spatial filtering
algorithms from the NUTMEG software tool written in house 64 in MATLAB (The MathWorks, Inc., Natick,
Massachusetts, United States). To prepare for source localization, all MEG sensor locations were co-
registered to each subject’s anatomical MRI scans. The lead field (forward model) for each subject was
calculated in NUTMEG using a multiple local-spheres head model (three-orientation lead field) and an 8
mm voxel grid which generated more than 5000 dipole sources, all sources were normalized to have a
norm of 1. Finally, the MEG recordings were projected into source space using a beamformer spatial filter.
Source estimates tend to have a bias towards superficial currents and the estimates are more error-prone
when we approach subcortical regions, therefore, only the sources belonging to the 68 cortical regions
were selected to be averaged around the centroid. Specifically, all dipole sources were labeled based on the
Desikan-Killiany parcellations, then sources within a 20 mm radial distance to the centroid of each brain
region were extracted, the average time course of each region’s extracted sources served as empirical
resting-state data for our proposed model.

Model Optimization using Simulated Annealing

We defined goodness of fit (GOF) as the Pearson correlation between empirical source localized MEG
power spectra and simulated model power spectra, averaged over all 68 regions of a subject’s brain. The
proposed model has very few (seven) global parameters compared to neural mass models, and is available
in closed-form. However GOF is still non-convex, with multiple possible local minima. To improve the odds
that we capture the global minimum, we chose to implement the probabilistic approach of simulated
annealing 65. The algorithm samples a set of parameters within a set of boundaries by generating an initial
trial solution and choosing the next solution from the current point by a probability distribution with a
scale depending on the current “temperature” parameter. While the algorithm always accepts new trial
points that map to cost-function values lower than the previous cost-function evaluations, it will also accept
solutions that have cost-function evaluations greater than the previous one to move out of local minima.

. oo A . .
The acceptance probability function is 1/(1 + m), where T is the current temperature and A is the

difference of the new minus old cost-function evaluations.
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The initial parameter values and boundary constraints for each parameter are given in Table 1:

Initial Value Lower/Upper Boundary
Time constants {z,, 7;, 75} 12, 3, and 6 ms, respectively [5ms, 20ms]
Gains {g.;, 9ii} 4 and 1 respectively [0.5, 5]
Transmission velocity v 5m/s [5m/s, 20 m/s]
Alpha o 1 [0.1,1]

All simulated annealing runs were allowed to iterate over the parameter space for a maximum of N, x3000
iterations, where N, is the number of parameters in the model.

As a comparison, we performed the same optimization procedure to a regionally non-varying Wilson-
Cowan neural mass model 3449, We have recently reported a similar simulated annealing optimization
procedure on this model 36.
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Figure 1: Approximating a non-linear simulation model of local neural assemblies with a

linear model. A: Conventional neural models typically instantiate a large assembly of excitatory
and inhibitory neurons, which are modeled as fully connected internally. External inputs and
outputs are gated through the excitatory neurons only, and inhibitory neurons are considered
strictly local. The proposed linear model condenses these local assemblies into lumped linear
systems f,(t) and f;(t), Gamma-shaped functions having time constants 7, and t; - see panel B.
The recurrent architecture of the two pools within a local area is captured by the gain terms
Jee» Jiir» Geir indicating the loops created by recurrents within excitatory, inhibitory and cross-
populations. C: The frequency-dependent behavior of the eigenvalue-spectrum of the complex
Laplacian £L(w). Each dot represents the absolute value of each eigenvalue A(w), plotted against
the eigenvector index; its color represents the frequency w - low (blue) to high (yellow). Small
eigenvalues show a larger shift due to frequency compared to large ones. D: Frequency response
of each eigenmode plotted on the complex plane with default model parameters. Each curve
represents the transit in the complex plane of a single eigenmode’s frequency response, starting
at low frequencies in the bottom right quadrant, and moving characteristically to the upper left
quadrant at high frequencies. The magnitude of the response, given by the distance from the
origin, suggests that most eigenmodes have two prominent lobes, roughly corresponding to
alpha and beta rhythms, respectively. In contrast, the lowest few eigenmodes start off far from
the origin, indicative of a low-pass response. E: Magnitude of the frequency response of each
eigenmode reinforces these impressions more clearly. F: The spatial patterns of the top 5
eigenmodes of L(w), evaluated at the alpha frequency, 10 Hz. The first 4 eigenmodes u; — u,,
give strong alpha frequency responses, and in turn are strongly distributed spatially in posterior
areas. Also see Figure 5. But they also include other regions and prominently resemble many
elements of the default mode network and the structural core of the human connectome,
especially us. u, resembles the sensorimotor network. These low eigenmodes are highly
consistent and reproducible, but higher ones increasingly depend on the axonal velocity and
frequency, and are not shown here.
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Figure 2: Spectral graph model predictions of MEG spectra for one representative subject.
Top - Observed MEG power spectrum for each of the 68 parcellated brain regions. Average
spectra for each brain region are shown in yellow, and the average spectrum across all brain
regions is shown in red. The subsequent rows show each eigenmode's spectral magnitude
response with model parameters optimized to match the observed spectrum (z, = 0.0073, t; =
0.0085, t; = 0.0061, g,; = 2.9469 g;; = 4.4865,v = 18.3071 and @ = 0.4639). A: Model using
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subject's individual structural connectivity matrix. B: Model using a template structural
connectivity matrix obtained by averaging structural connectivity from 80 HCP subjects. C: Model
using uniform connectivity matrix of ones. D: Model using randomized connectivity matrix with
no sparsity. E: Model using randomized connectivity matrix with 75% sparsity. F: Model using
randomized connectivity matrix with 95% sparsity. In all cases the connectome modulates the
spectral response in delta-beta range, leaving the higher gamma frequencies unchanged. In
general, mainly the low eigenmodes (u; — u,() appear to modulate the frequency response in
any significant manner, and may be considered responsible for the diversity of spectra observed
in the model.
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Figure 3: Spectral graph model correctly captures MEG spectra across subjects. A-D: The
observed spectra and spectral graph model’s simulated spectra for four representative subjects.
Red and yellow curves illustrate source localized average spectra and region-wise spectra
respectively, while black and cyan curves illustrate modeled average spectra and region-wise
spectra respectively. E: The average observed spectrum for all 36 subjects is shown in red. The
average simulated spectral graph model’'s power spectra produced by (green) optimized
parameters with each individual subject’s connectome, (blue) optimized parameters with
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template connectome from HCP dataset, and (black) average optimized parameters applied to
each individual subject’s connectome are shown as comparisons. Additionally, the neural mass
model’s average simulated power spectra with each subject’s optimized global parameters and
HCP template connectome is shown in pink.
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Figure 4: Model optimization via simulated annealing. A: Distribution of optimized model
parameter values for all 36 subjects. The simulated annealing algorithm performed model
optimization for the set of parameters {t,, 7;, T, Jei» Jii» @ v} on all subjects. The optimized
values for each parameter are shown in violin plots with each dot representing one subject.
Performance of optimization procedure. B: Spectral Pearson correlation between model and
source localized MEG spectra at each iteration of simulated annealing. Each curve shows the
spectral correlation achieved by the model optimized for a single subject, averaged over all
regions. Each accepted iteration increased the mean correlation values until the algorithm
converged to a set of optimized parameters. Individually-optimized mean spectral correlation
values for all 36 subjects with individual connectomes using grid search (C) gives inferior
performance compared with simulated annealing (D). Performance of D is similar to that
achieved using the template HCP connectome (E), but higher than using identical parameters for
all subjects (F) - here the mean of all subjects’ optimized parameters was used. In almost all
subjects, the optimal spectral fit shown in D is highly significant (average R = 0.83,p < 1076).
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Figure 5: Specific eigenmodes capture spatial distributions of alpha and beta band activity.
Here “spatial correlation” is defined as Pearson’s R statistic of the correlation between the
regional distribution of empirical MEG and model-predicted power within a given frequency
band. A: Spatial correlation was computed for each eigenmode for all subjects in the alpha and
beta bands, and the average spatial correlation for the eigenmodes are shown. B: When a given
eigenmode is correlated to alpha power, it is roughly anti-correlated to beta power. To
demonstrate this further, a scatter plot of all eigenmodes’ alpha and beta power spatial
correlation is shown. The r-statistic (r = -0.255, p<0.0001) of this correlation-of-correlations is
highly significantly negative. C and D show the cortical surface renderings of the spatial pattern
of the most spatially correlated eigenmode for alpha (#3) and beta (#33) respectively (indicated
by * in panel A). E: Per subject, the histogram of the correlation between the alpha band and beta
band spatial correlation curves. It can be seen that for most subjects alpha and beta band spatial
correlation curves for the eigenmodes are in turn anti-correlated. F: Green histogram shows the
distribution of spatial correlation achieved by the maximally correlated eigenmode with each
subject’s observed data in the alpha band. The blue histogram shows the spatial correlation
achieved by the same eigenmodes with data in the beta band. This suggests that the eigenmode
that is maximally correlated with alpha spatial pattern is in turn uncorrelated with the beta
spatial pattern.
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Figure 6: Spatial distribution of the alpha band power across regions. The spatial
distribution of alpha band power is shown in cortical surface renderings, from top to bottom: the
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observed MEG pattern; the model pattern with 10 eigenmodes; the best matching eigenmode

generated by eigenmode 14 only; the second best matching eigenmode generated by eigenmode
19 only.
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Figure 7: Spatial distribution of beta band power across regions. The spatial distribution of
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beta band power are shown in cortical surface renderings, from top to bottom: the observed MEG
pattern; the model pattern with 5 eigenmodes; the best matching eigenmode generated by
eigenmode 13 only; the second best matching eigenmode generated by eigenmode 22 only.
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Figure 8: Spatial correlation between model and observed data for all subjects. The
eigenmodes decomposed from individual connectomes are sorted by descending eigen values,
and the spectral graph model’s alpha and beta spatial correlation as these eigenmodes are
cumulatively added together are shown in A and B respectively, the thin cyan and blue lines are
subject specific spatial correlations, while the thick black and red line are average of all subjects.
The distribution of simulated alpha and beta band maximum spatial correlation for all subjects
are shown in C and D, the green curve is produced by the spectral graph model with individual
connectomes and optimized parameters, the black curve is produced by the spectral graph model
with 1000 instances of 80% sparse randomly generated connectomes and optimized parameters,
and the pink curve is produced by the neural mass model with individual connectomes and
optimized global parameters. The NMM gives very poor prediction of the spatial pattern of alpha
power (r distribution centered at 0). The random connectomes also appear to have some ability
to capture these spatial patterns (r distribution centered at 0.35). This may be understood as a
consequence of the implicit search within the random eigenmodes of the best-matching ones,
which on average will give at least a few eigenmodes that look like MEG power purely by chance.
The model evolved on the human connectome does the best in all cases, but markedly better in
alpha compared to beta band.
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Supplementary Figure 1: Alpha and beta band spatial correlation for 36 subjects. Every
subject’s individual eigenmode’s alpha and beta spatial correlation are shown together before
sorting and cumulative summing.
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Supplementary Figure 2: Alpha spatial distribution for subject 2. The spatial distribution of
alpha band power in a “glass brain” rendering, from top to bottom: A: the observed MEG pattern;
B: the model pattern with 3 eigenmodes; C: the best matching eigenmode generated by
eigenmode 12 only; D: the second best matching eigenmode generated by eigenmode 2 only.
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Supplementary Figure 3: Beta spatial distribution for subject 2. The spatial distribution of
beta band power in a “glass brain” rendering, from top to bottom: A: the observed MEG pattern;
B: the model pattern with 4 eigenmodes; C: the best matching eigenmode generated by
eigenmode 41 only; D: the second best matching eigenmode generated by eigenmode 39 only.
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Supplementary Figure 4: Alpha and beta band spatial power distribution for subject 2
predicted by the Wilson-Cowan neural mass model. The spatial distributions are shown in
cortical surface renderings: alpha power (top) and beta power (bottom). The empirical MEG
spatial patterns of this subject were shown in Figures 6 and 7 of the main Results section. Clearly,
this NMM is unable to capture the spatial patterns of alpha and beta, using identical local model
parameters. Better results were reported in numerous prior studies of NMMs, but those allow
locally-varying model parameters fine-tuned to match local band power.
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