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We have upgraded our Computational Analysis of Novel Drug Opportunities (CANDO)2

platform for shotgun drug repurposing to include ligand-based, data fusion, and decision tree3

pipelines. The first version of CANDO implemented a structure-based pipeline that mod-4

eled interactions between compounds and proteins on a large scale, generating compound-5

proteome interaction signatures used to infer similarity of drug behavior; the new pipelines6

accomplish this by incorporating molecular fingerprints and the Tanimoto coefficient. We7

obtain improved benchmarking performance with the new pipelines across all three evalua-8

tion metrics used: average indication accuracy, pairwise accuracy, and coverage. The best9

performing pipeline achieves an average indication accuracy of 19.0% at the top10 cutoff,10

compared to 11.7% for v1, and 2.2% for a random control. Our results demonstrate that the11

CANDO drug recovery accuracy is substantially improved by integrating multiple pipelines,12

thereby enhancing our ability to generate putative therapeutic repurposing candidates, and13

increasing drug discovery efficiency.14
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Introduction15

Drug repurposing16

Bringing a new drug to the market may costs hundreds of millions of dollars and takes years17

of work.1 Drug repurposing is the process of discovering a new use for an existing drug.2,318

This process may take advantage of existing data on safety and pharmacokinetic properties19

from previous trials and clinical use to reduce costs and time associated with traditional drug20

discovery. Classic examples of drug repurposing include sildenafil (Viagra) and thalidomide,21

which initially were developed to treat chest pain and morning sickness, but were repurposed22

to treat erectile dysfunction and erythema nodosum leprosum respectively.2,4,5 Drugs which23

have already been repurposed once are being researched for even more novel uses. For exam-24

ple, raloxifene was originally indicated for prevention of osteoporosis and was subsequently25

approved for risk reduction in the development of breast cancer.6 More recently, raloxifene26

has been suggested as a possible treatment for Ebola virus disease7–9‘. These examples of27

putative and/or successful drug repurposing underlies the diverse mechanisms through which28

a single compound may treat a variety of disease types.10,11 High throughput, target-based,29

and phenotypic screening of compounds can be used to generate putative candidates for re-30

purposing.12 For example, potential treatments for Zika virus infection were identified using31

a phenotypic screen.1332

Computational drug discovery and repurposing33

Finding new drugs or new uses for existing drugs computationally takes advantage of the34

growing amount of data generated from wet lab experiments accessible on the Internet,35

increased computational power, and higher fidelity of computational models to reality. Ap-36

proaches to computational drug discovery and repurposing have been classified as structure-37

based or ligand-based.14–16 In structure-based methods, the structure of a target macro-38

molecule, usually a protein, is used to identify small compounds that modulate its behavior.39
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The structure may have been determined via x-ray diffraction or Nuclear Magnetic Res-40

onance (NMR), or modeled using template-free (de novo) or template-based (homology)41

modeling.17–19 Molecular docking and/or rational drug design is then used to identify lig-42

ands that specifically fit into a protein groove or active site.20,21 In ligand-based methods, the43

focus is on the compound, and similarity between representations is used to assess whether44

a compound modulates the activity of a target or treat a disease like a known drug. Exam-45

ples of ligand-based drug design include 2D and 3D similarity searching,22 pharmacophore46

modeling,23 and quantitative structure activity relationships (QSAR).1447

Data fusion is a technique in the field of cheminformatics for combining intermolecular48

similarity data from different sources or methods.24–26 Compounds are ranked relative to49

each other based on the similarity scores. Multiple rankings of compounds produced by50

different methods of detecting similarity may be combined into a single ranking.24 Ideally,51

disparate sources or types of data may yield orthogonality or complementarity in results,52

i.e., different top compounds are captured and reported as putative therapeutics for different53

reasons.27,28 For example, Tan et al. obtained an increased recall rate in a virtual screening54

experiment using ligand-based two dimensional fingerprint data fused with structure-based55

molecular docking energies.29 Ligand- and structure-based methods have been combined56

for use in virtual screening pipelines and platforms, with successes reported in the use of57

sequential, parallel, and hybrid techniques for data integration.28 Data fusion has been also58

been used to devise weighting schemes for correct dosing.3059

Newer computational techniques for drug discovery and repurposing gaining in promi-60

nence go beyond the structure and ligand-based categorization. The Connectivity Map is61

a “reference collection of gene-expression profiles from cultured human cells treated with62

bioactive small molecules”,31 i.e., a tool to identify changes in gene expression due to a63

compound or a disease. If a compound causes changes in gene expression level opposite to a64

disease (for instance, a disease causes up-regulation of the expression of a set of genes, and65

the compound causes down-regulation of the same set of genes), then that compound is con-66
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sidered to be therapeutically useful in the treatment of that disease.31 Peyvandipour et al.67

combined an updated version of the Connectivity Map with knowledge of drug-disease gene68

networks, measuring the perturbation effect of drugs on whole systems. Using this model,69

they predicted novel treatments for idiopathic pulmonary fibrosis, non-small cell lung can-70

cer, prostate cancer, and breast cancer, while simultaneously improving the recall rate of71

known drug-disease associations.32 Machine learning based approaches have also been used72

to cluster drugs or diseases and predicting new drug activity and usage.33–37Methods for73

finding novel uses of drugs based on analysis of biomedical literature,38,39 electronic health74

records,37,40 and biological networks41,42 have also been reported.75

Drug similarity76

Implementations of drug discovery and drug repurposing sometimes rely on the principle of77

similar molecules having similar properties.43,44 In drug design, repurposing, or screening,78

similar compounds are generally assumed to have similar molecular targets. In structure-79

based drug discovery, if two potential molecular targets are identified as similar, then a80

compound that modulates one target is inferred to modulate the other. In ligand-based81

methods, similar compounds are inferred to analogously modulate the behavior of the same82

target(s). In our computational shotgun drug repurposing experiments, we extend the sim-83

ilarity property principle to examining interactions on a proteomic scale. Compounds with84

similar proteomic interaction signatures are hypothesized to be effective for the same indi-85

cation(s).86

Shotgun drug repurposing with CANDO87

The goal of the Computational Analysis of Novel Drug Opportunities (CANDO) platform88

for shotgun drug discovery and repurposing is to screen every human use compound/drug89

against every indication/disease.45–48 The tenets of CANDO include docking with dynamics,90

multitargeting, and shotgun repurposing, which have been developed over the last decade91
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and a half.49–51 The first version of CANDO (v1) applied a bioinformatic docking protocol92

on large libraries of compound and protein structures. The multitargeting nature of drugs5293

is captured by inferring their similarity on a proteomic scale after calculating interactions94

between all compounds and all proteins in the corresponding libraries.8,45,46 This is key, as in-95

dications can be multifactorial in nature, involving disparate or intertwined pathways.53? –56
96

Similar compounds, as determined by the root mean square deviation (RMSD) of their pro-97

teomic interaction signatures, are hypothesized to behave similarly, i.e., compounds which98

are ranked highly (most similar compound-proteome interaction signatures) to a drug with99

an approved indication are hypothesized to be repurposable drugs/compounds for that indi-100

cation. Benchmarking is accomplished by examining the ranks of other approved drugs for101

the same indication.45,46102

There exist other approaches to determine compound similarity without the need for103

docking calculations. Different representations of molecules capture different chemical, phys-104

ical, or functional aspects of a compound. Two or three dimensional molecular fingerprints105

are used in the field of cheminformatics to describe compounds.57 In these models, the phys-106

ical arrangement of atoms in a compound is captured as a binary vector where each entry of107

a vector indicates the presence or absence of a specific molecular feature.44 A distance (sim-108

ilarity) metric between these vectors can be measured, using metrics such as the Tanimoto109

coefficient, a widely used metric in medicinal chemistry and ligand-based virtual screen-110

ing.44,58–60 This is analogous to the structure-based methods used to construct interaction111

signatures in v1 and the RMSD measure used to calculate similarity.112

In this study, we extend CANDO to include ligand-based drug repurposing by creating113

new pipelines based on identifying compound similarity based on their molecular finger-114

prints, as well as data fusion pipelines that combine the protein-centric and protein-agnostic115

approaches. The new ligand-based pipelines in CANDO are based on molecular fingerprint116

similarity calculations using the Research Development Kit (RDKit),61 and are not meant117

as an exhaustive exploration of all possible CANDO pipelines that can be built using all the118
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fingerprint descriptions available from RDKit. Instead, we constructed pipelines using well119

studied molecular fingerprints62 to evaluate feasibility and compare and contrast benchmark-120

ing performance. Using the standard CANDO benchmarking procedure (see “Methods”),121

several of the pipelines described here yielded better performance than those previously122

obtained using v1 by itself.123

Combination of other pipelines using data fusion as well as a decision tree approach be-124

tween v1 and the best performing ligand-based approach (“ECFP4”) yielded better bench-125

marking performance than using either pipeline by itself, allowing for increased accuracy126

while retaining the mechanistic and precision medicine opportunities afforded by the protein-127

centric approach of v1. Higher benchmarking accuracies are indicative of higher drug repur-128

posing potential, increased confidence in our predictions, a decreased number of compounds129

which must be tested in wet lab experiments and clinical trials to obtain true hits, and thus130

less time and cost required to find a new use for an old drug.131

Methods132

Figure 1 illustrates the different pipelines evaluated in this study, which are described in133

detail below.134

The CANDO platform and the version 1 (v1) pipeline135

A detailed description of the CANDO platform, including the v1 pipeline used for assigning136

drugs to indications, as well as its benchmarking performance, is available elsewhere.45–47,63137

Briefly, in v1 we predicted interactions between 46784 protein structures and 3733 small138

molecules that mapped to 2030 indications. We obtained the molecular structures of the139

3733 small molecules in our putative drug library from the Food and Drug Administra-140

tion (FDA), NCATS Chemical Genomics Center, and PubChem.64 Solved x-ray diffraction141

structures of proteins were obtained from the Protein Data Bank65 and modeled protein142
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structures were generated using I-TASSER.19 Approved drug-indication associations were143

obtained from the Comparative Toxicogenomics Database (CTD)66 and mapped to the144

CANDO drug library, resulting in 2030 indications with at least one approved/associated145

compound. Protein-compound interaction scores were calculated using a bio- and chem-146

informatic docking protocol consisting of ligand binding site identification for all proteins147

in our structure library, followed by similarity measurement between known ligands in the148

identified binding sites and all 3733 compounds in our putative drug library.46 A compound149

is characterized as an “interaction signature” of length 46784, where each entry is an inter-150

action score between 0 - 2, indicating the strength of a predicted protein interaction (zero151

signifying no interaction). Each compound is then compared to every other compound by152

calculating the root mean square deviation (RMSD) between the corresponding interaction153

signatures, generating a compound-compound (or drug-compound) similarity matrix. Each154

compound is ranked relative to every other compound in order of increasing similarity and155

benchmarking performed.156

Ligand-based pipelines157

The CANDO platform for shotgun drug repurposing is not dependent on any particular158

method for determining compound similarity, such as the protein-centric one used in v1.159

Here, we consider the utility of ligand-based pipelines by constructing two dimensional160

molecular fingerprints of the 3733 compounds in the CANDO putative drug library using the161

open-source cheminformatics software RDKit Python API30 and performing an all-against-162

all comparison using the Tanimoto coefficient. Once the features of a molecule have been163

quantized into a vector, the Tanimoto coefficient is a score of how many bits two vectors have164

in common divided by the number of bits by which they differ, i.e., |A ∩B|/|A ∪B|, where165

A and B represent compounds in binary vector form, and |A| is the length of the vector.166

For efficiency and accuracy, we described our putative drug library using well studied167

2D molecular fingerprints.44 Specifically, we used Morgan fingerprints,67 otherwise known168
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Figure 1: Flow diagram of the CANDO platform pipelines used for shotgun drug
repurposing. The v1 structure-based pipeline is the original protein-centric approach based
on a bioinformatic docking protocol used to construct compound-proteome interaction sig-
natures. The ligand-based pipelines are based on molecular fingerprint representations of
compounds. The data fusion pipelines consist of a combination these two types of pipelines
after calculating compound-compound similarity, and the decision tree pipeline is devised
based on the performance of individual structure- and ligand-based pipelines (see Methods).
All pipelines, except the decision tree pipeline, generate a compound-compound similarity
matrix that is sorted and ranked. These rankings are used to generate putative repurposable
drug candidates and evaluate benchmarking performance. The figure illustrates the utility
of implementing, as well as comparing and contrasting, multiple (types of) pipelines in the
CANDO platform for shotgun drug repurposing.

as Extended Connectivity Fingerprints (ECFP, a circular fingerprint), one Functional Class169

Fingerprint (FCFP, a functional class fingerprint68), and fingerprints from RDKit (RDK, a170

linear fingerprint). Circular fingerprints are bit vector representations of compounds encod-171

ing the presence of molecular substructures constructed outward from all starting positions172

(all atoms) in a radial fashion; functional class fingerprints are binary vectors which encode173

the presence of predefined “functional” features of a compound; and linear fingerprints en-174

code the presence of molecular substructures built in a linear fashion from all possible staring175
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points (all atoms).62176

All fingerprints are additionally described by the length of the molecular substructure177

(“radius” or “diameter” depending on the type and implementation) captured. For in-178

stance, ECFP4 is a fingerprint created using ECFP with diameter four. Specific ligand-179

based pipelines in CANDO are identified according to the molecular fingerprint used, i.e.,180

“ECFP4” refers to the CANDO pipeline where compounds are represented using the ECFP4181

molecular fingerprint.182

Hert et al. found the optimal results for quantifying relationships between drug classes183

was achieved using ECFP4 fingerprints with similarities calculated using the Tanimoto coeffi-184

cient.59 We extended this to ligand-based drug repurposing using vectors of 2048 bits instead185

of the 1024 used in.59 We calculated the Tanimoto coefficient between the fingerprints of all186

possible pairs of the 3733 compounds in our library, and used this to populate a compound-187

compound similarity matrix, just as we did with the v1 pipeline, allowing us to sort and188

rank all compounds relative to each other. Fingerprints could not be created for twelve of189

the 3733 compounds in our putative drug library, which were generally large compounds190

with metal chelation or long polymers. We then evaluated benchmarking performance of the191

ligand-based pipelines as described further below.192

Data fusion pipelines193

We combined rankings from the v1 pipeline with the new molecular fingerprint rankings using194

one of the following criteria: lower of two rankings (MIN), higher of two rankings (MAX),195

sum of two rankings (SUM), average of two rankings (AVG). This is known as “rank-based196

data fusion”.69 We also combined the compound-compound similarity scores from v1 and197

the ligand-based pipelines using the multiplication of raw similarity scores (MUL), a type of198

“kernel-based data fusion”.69 After multiplying the similarity scores from two pipelines, the199

compounds are sorted and ranked based on the newly calculated scores. As in v1 and the200

ligand-based pipelines, the compound-compound rankings from these data fusion pipelines201
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is then subjected to benchmarking.202

Decision tree pipeline203

A goal of CANDO is to make predictions of which compounds are likely to be efficacious204

against any particular indication. A second is to use analytics to identify causal relationships205

that predict indication etiology. From the benchmarking, we can determine a priori the206

pipeline that has the best performance for a particular indication, which are then used to207

generate putative drug candidates for that indication. We constructed a new meta pipeline208

that makes a decision as to optimal performance on a per indication basis. We made this209

decision using the top10 average indication accuracy metric (described below), from two210

choices, v1 and the best performing ligand-based pipeline, namely ECFP4 (see Results). We211

used this to create a merged set of data which was then benchmarked. For example, the212

v1 pipeline yields a top10 average indication accuracy of 25% for type 2 diabetes, whereas213

ECFP4 yields a top10 accuracy of 35%. In the combined decision tree pipeline, we choose214

to use ECFP4 for the prediction of repurposing candidates for type 2 diabetes, and for the215

calculation of all benchmarking performance metrics at all cutoffs. We extended this method216

of choosing the pipeline (between v1 and ECFP4) with higher top10 average indication217

accuracy to all indications. This aligns with the logic that a clinician or researcher using218

CANDO can choose the pipeline with the highest accuracy for a particular indication, which219

is reflected in the benchmarking performance of this combined pipeline.220

Benchmarking pipelines in the CANDO platform221

Three measures are used to perform the leave-one-out benchmarking of the CANDO platform222

pipelines: average indication accuracy, pairwise accuracy, and coverage. Average indication223

accuracy (%) evaluates the likelihood of capturing at least one drug mapped to the same224

indication within a particular cutoff from the list of compounds ranked in order of similarity,225

which is averaged over the 1439 indications with at least two approved drugs and expressed226
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as a percent. Mathematically, this is expressed as c/d× 100, where c is the number of times227

at least one other drug approved for the same indication was captured within a cutoff and d228

is the total number of drugs approved for that indication. The top10, top25, top1% (top37),229

top50, and top100 cutoffs are used, signifying the top ranking 10-100 similar compounds.230

In other words, the indication accuracy represents the recovery rate of known drugs for231

a particular indication, which is then averaged across all 1439 indications with at least232

two approved drugs. Pairwise accuracy (%) is the weighted average of the per indication233

accuracies based on the number of compounds approved for a given indication. Coverage is234

the number of indications with non-zero accuracy expressed as a percent.235

Controls236

The performance of a given pipeline is evaluated relative to a random control, which is the237

result that we would expect by chance. The original random control data for v1 was generated238

by repeated creation of random compound-proteome interaction matrices by sampling from239

the distribution of values present in the v1 matrix. The benchmarking performance for240

these random control matrices was calculated as described above and in.46,63 However, the241

new ligand centric pipeline is protein agnostic, and the data fusion ones consist of protein242

agnostic components. Therefore, we constructed a compound-compound matrix of uniformly243

random similarity scores to use as controls in this study, i.e., the similarity between any two244

compounds was assigned a random value between 0 and 1. We sorted and ranked every245

compound relative to every other compound using this this random compound-compound246

similarity matrix, and evaluated benchmarking performance as described above.247
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Results248

Benchmarking performance of the different pipelines249

The new pipelines (Figure 1) generally outperform v1 for all three metrics used to evalu-250

ate benchmarking performance: average indication accuracy, pairwise accuracy, and coverage251

(Figure 2). The MUL:v1,ECFP4 data fusion pipeline, created by multiplying the compound-252

compound similarity scores (RMSD of interaction signatures) from v1 with the Tanimoto253

coefficient measured between the compounds described using the ECFP4 molecular finger-254

print, yields the overall best performance relative to v1 and the ones based on fingerprint255

comparisons. Specifically, we obtained the highest top10, top25, and top50 average indi-256

cation accuracies of 17.3%, 23.8%, and 29.6% using this data fusion pipeline. The highest257

top1% (or top37) and top100 average indication accuracies of 26.8% and 36.7% were ob-258

tained using the pipeline based on the ECFP4 molecular fingerprints. Most of the molecular259

fingerprint pipelines outperform the original v1 pipeline with the exception of ECFP0, a260

fingerprint based on simple atom count quantization (Figure 2).261

The decision tree meta pipeline, built by combining other pipelines based on the cor-262

responding top10 average indication accuracies, yields accuracies of 19.0%, 25.7%, 28.3%,263

31.4%, and 39.1% at the five cutoffs used. In contrast, the best performing control generated264

from uniformly random compound-compound similarity data obtains average indication ac-265

curacies of 2.2% at the top10 cutoff, the most stringent one used to benchmark the CANDO266

platform (Figure 2).267

In terms of pairwise accuracy (%), which is the weighted average of the per indication268

accuracies based on the number of compounds approved for a given indication (see Methods),269

ECFP4 outperforms all other pipelines, including the decision tree, with accuracies of 28.5%,270

38.9%, 43.8%, 47.9%, and 58.8% at the five cutoffs.271

The coverage metric evaluates the fraction (or percentage) of the 1439 indications with272

two approved drugs for which there is at least one instance of a successful recapture or273
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Figure 2: Benchmarking performance of different CANDO platform pipelines.
The average indication accuracy (top), pairwise accuracy (middle), and coverage (bottom)
for each pipeline are shown at different cutoffs. The value for the top10 cutoff is denoted
by dark purple, top25 by light purple, top1% (or top37) by yellow, top50 by green, and
top100 by light blue. The individual pipeline with the best performance at each each cutoff
is denoted by a red dot. The meta decision tree pipeline was built combining two pipelines,
v1 and ECFP4, using the top10 average indication accuracy and so has the highest top10
accuracy and coverage, but is excluded by the “Best at cutoff” marker. The pipelines in
all plots are sorted according to increasing top10 average indication accuracy, the most
stringent criteria used in our benchmarking. The MUL:v1,ECFP4 pipeline yields the overall
best performance relative to the other individual structure- and ligand-based pipelines. The
pipeline based on the ECFP4 molecular fingerprint produces the highest top1% and top100
average indication accuracies (top). When assessing pairwise accuracy (middle), ECFP4
is the best performing individual pipeline. The coverage (bottom) plot is a percentage of
the 1439 indications for which a pipeline produces a non-zero indication accuracy. The
data fusion pipelines of MUL:v1,ECFP4 and MIN:v1,RDK6 have the highest coverage at
the top50 and top25 cutoffs, the ECFP4 at the top10 and top50 cutoffs, and RDK6 at the
top100 cutoff. Overall, the pipelines using molecular fingerprints have promise and potential
for shotgun drug repurposing by themselves, but the data fusion and decision tree pipelines
that combine structure-based and ligand-based approaches achieve the best performance
while retaining the benefits of both types of approaches.

recovery of the known drug within a particular cutoff. The ECFP4 pipeline has the highest274

top10 and top1% coverage of 45.9% and 54.2%, the MIN:v1,RDK6 yields the highest top25275
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coverage of 52.3%, the MUL:v1,ECFP4 has the highest coverage at the top50 cutoff of 56.9%,276

and RDK6 the highest at the top100 cutoff of 62.8%. In contrast, the decision tree pipeline,277

built in part to increase coverage, has a top10 coverage of 49.8%. This means that for almost278

half of all the 1439 indications, we capture a drug associated with that indication within the279

top10 cutoff (Figure 2).280

Distribution of indication accuracies between the two types of pipelines281

To compare and contrast the behavior of the structure-based and ligand-based pipelines,282

we calculated histograms of the average indication accuracies and counts of the highest per283

indication accuracies at each cutoff for two pipelines (v1 and ECFP4), excluding indications284

for which a 0% average indication accuracy is obtained. Figure 3 shows that the ECFP4285

pipeline has more indications with higher accuracies than v1 (the yellow histogram is shifted286

to the right of the purple histogram). The Kolmogorov–Smirnov statistical test p-values287

shown in the corresponding left hand side graph of Figure 3 indicate that the distributions288

of the v1 and ECFP4 accuracies are drawn from different samples in a statistically significant289

manner. The Venn diagrams of the 1439 indications in CANDO with more than one approved290

drug shows that v1 obtains a higher top10 accuracy for 150 indications, while ECFP4 obtains291

a higher top10 accuracy for 445, and 122 indications have the same non-zero top10 accuracy292

for both pipelines. As the cutoff increases, more indications have higher accuracies using293

the ECFP4 pipeline relative to v1, while the number of indications with the same accuracy294

increases relatively. The orthogonality in the histograms and Venn diagrams indicate that295

both types of pipelines appear necessary for maximum coverage and accuracy across all the296

indications. Figure 3 also suggests that additional pipelines and/or improvement in existing297

pipelines is necessary to recover drugs for ≈ 500 indications that are not covered by either298

pipeline at the highest cutoff.299
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Figure 3: Comparison and overlap of indication accuracy distributions for two
CANDO platform pipelines at different cutoffs. The left hand side shows the his-
tograms of the counts of indications with a particular average indication accuracy (or ac-
curacy distributions) for two pipelines, v1 (purple) and ECFP4 (yellow). Indications where
both pipelines perform equally well are indicated by brown. For example, at the top10 cut-
off, there are approximately 200 indications which achieve an average accuracy between 10
and 20% using the v1 pipeline but just over 100 using ECFP4. At all cutoffs, a greater
number of indications with higher accuracies is observed for the ECFP4 pipeline (increase in
yellow along the horizontal axis). The p-value, derived from the Kolmogorov-Smirnov test
statistic applied to the two distributions at each cutoff, indicates that they are significantly
different. On the right hand side of the figure are Venn diagrams of the set of indications
with higher accuracies at each cutoff (excluding indications with 0% accuracy). For exam-
ple, at the top10 cutoff, there are 150 indications for which the v1 pipeline yields higher
average indication accuracies, 445 for which the ECFP4 pipeline is higher, and 122 with the
same performance. The ECFP4 pipeline performs better than v1 for more indications at all
cutoffs, but both pipelines appear to be necessary to achieve the best performance across all
indications for shotgun drug repurposing.

Putative drug candidate generation and validation300

The top ranking putative drug candidates generated by the v1 pipeline for eight indications,301

tuberculosis, malaria, hepatitis B, hepatitis C, systemic lupus erythematosus, type 2 diabetes302
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mellitus, and Alzheimer’s disease, are available from Figure 3 and Supplementary Material303

of a previous publication.45 The top candidates were chosen based on a concurrence score304

which is “the number of occurrences of particular compounds in each set of top 25 predictions305

generated for all of the drugs approved for a particular indication”.45 Using this concurrence306

score measure, we generated the top candidate drugs to treat the same indications with307

the ECFP4 molecular fingerprint and the MUL:v1,ECFP4 data fusion pipelines. We then308

searched the biomedical literature using PubMed and Google Scholar for published studies309

corroborating these top candidates.310

Both of the new pipelines predict colistin (polymyxin E) as a treatment for tuberculosis,311

which has been studied as a potentiator of anti-tuberculosis drugs.70 Minocycline was a top312

result from both pipelines for malaria, which has been shown to protect against certain types313

and complications.71 However, the CDC recommends using doxycycline and not minocycline314

as malaria prophylaxis.72 Additionally, for malaria, both new pipelines list tigecycline among315

the top ranked candidates, which has shown antimalarial activity in preclinical studies.73,74316

All three pipelines recommend known antivirals for hepatitis B. For hepatitis C, all317

three pipelines list didanosine in the top ranked candidates. Unfortunately, concurrent use318

of didanosine and traditional hepatitis treatments may induce dangerous consequences for319

the patient,75 illustrating the need for careful expert curation of top candidates generated320

by the CANDO platform. For Alzheimer’s disease, one of the highest scoring compounds321

from the MUL:v1,ECFP4 pipeline was dextromethorphan. In 2015, a study was published322

showing dextromethorphan hydrobromide–quinidine sulfate was well tolerated in patients323

with Alzheimer’s disease and had clinically relevant efficacy in treating patients, as mea-324

sured via agitation.76 These examples indicate new putative drug candidate generation by325

the CANDO platform with these integrated pipelines is likely to work as well, if not bet-326

ter, relative to the prospective validation studies previously done using v1 or its compo-327

nents.8,50,77–80 The full list of drug candidates for the above indications based on the concur-328

rence score using the newer pipelines are given in the Supporting Information and available329
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at http://protinfo.org/cando/results/fingerprinting_cando. Putative drug candi-330

date predictions for all 2030 indications in the platform using the v1 pipeline are available331

at http://protinfo.org/cando/data/raw/matrix/.332

Discussion333

Interpretation of results334

Higher benchmarking accuracies are expected to result in better drug repurposing predic-335

tions. The top ranked similar compounds to the known drugs for a particular indication336

using the pipeline with the best benchmarking performance is expected to produce hits and337

leads with the highest likelihood of success when validated in downstream preclinical and338

clinical studies. The decreased need to test a large number of compounds with the new339

pipelines, along with greater confidence in the computational models of drug-indication as-340

sociations, realizes the goal of drug repurposing: making drug discovery more efficient by341

reducing the labor, time, and risk in finding new uses for existing therapeutics.342

Using the new pipelines based on molecular fingerprinting and data fusion with v1 (Fig-343

ure 1), we obtain better benchmarking performance than using v1 by itself (Figure 2). Our344

cutoffs for calculating performance metrics are chosen based on collaborations with wet lab345

experimentalists willing to test the top candidates generated by our CANDO platform for346

particular indications. In practice, when working with preclinical and clinical collaborators,347

we currently employ the decision tree approach of selecting the pipeline with the highest348

accuracy for a specific indication and the desired cutoff. For example, if a collaborator is ca-349

pable of validating ten candidates for Precursor B-Cell Lymphoblastic Leukemia-Lymphoma350

(MeSH identifier D015452), which is one of the 150 where the benchmarking performance351

is better using the v1 pipeline relative to ECFP4, then we would use the former pipeline to352

generate the top ten putative drug candidates for this indication.353

The new integrated pipelines also yield a higher number of indications covered relative to354
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v1, i.e., more indications with a non-zero accuracy, demonstrating their generalized utility355

for shotgun drug repurposing. Indication-specific validation studies may rely on the pipeline356

with highest accuracy for that indication, but CANDO platform development in shotgun drug357

repurposing requires that the coverage also increase in addition to the average indication and358

pairwise accuracy. The best performing random control achieves a top10 average indication359

accuracy of 2.2%, and the random control based on random sampling from the distribution360

the v1 compound-protein interaction matrix values yielded a top10 accuracy of 0.2%.45,46361

These random control accuracies are at least an order of magnitude lower than the accuracies362

obtained using the newer pipelines, and align with expected hit rates in high throughput363

screening.81 All pipelines yield better performance when compared to the random control364

(Figure 2), and the differences between the performances of the different pipelines and that365

of the control signify the value added by our chosen approaches. The orthogonality in the366

histograms and Venn diagrams of Figure 3 indicate that both types of pipelines appear367

necessary for maximum coverage and accuracy across all the indications.368

Limitations and future work369

We have added new pipelines based on ligand-based fingerprint comparisons to the CANDO370

platform (Figure 1) that increase benchmarking performance relative to the original v1371

protein-centric pipeline (Figure 2). We are further enhancing CANDO by improving the per-372

formance of existing pipelines via parameter optimization,82 exploration of different docking373

approaches to generate the compound-proteome interaction signatures,83 adding new orthog-374

onal pipelines based on compound-pathway signatures,63 implementing more sophisticated375

data fusion and machine learning approaches, and by continued dissection of the features376

responsible for pipeline performance and behavior.46,47,63377

Notwithstanding the relative benchmarking performance of the existing CANDO plat-378

form pipelines, the structure-based virtual screening or protein docking pipelines are not379

without their merits. The protein-centric approach enables mechanistic understanding of380
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drug action by modeling compound-protein interactions at the atomic level. Additionally,381

the protein-centric approach readily lends itself to problems in precision medicine/drug re-382

purposing: Incorporating genetic changes, and modeling amino acid mutations due to non-383

synonymous nucleotide polymorphisms in protein structures, will result in altered compound-384

protein interaction scores, allowing us to tailor drug repurposing candidates to an individual385

genome/proteome. The protein-centric approach facilitates consideration of polypharmacy,386

where the cumulative effects of multiple drugs on protein targets can be evaluated by the387

analysis and integration of the corresponding drug-proteome interaction signatures, which388

can then be used to generate putative drug cocktails and combination therapy candidates.389

The protein-centric pipeline may also be used to generate putative drug candidates for indi-390

cations without any approved drugs, but where the target protein or proteome is known.8391

We are continuing to enhance the virtual screening pipelines to model reality more ac-392

curately, with the goal of increasing compound-proteome signature comparison accuracy.393

For instance, we are exploring the use different molecular docking programs, such as CAN-394

DOCK84,85 and AutoDock Vina,86 to populate the compound-proteome interaction signa-395

tures. An updated version of the v1 pipeline, v1.5, with parameters optimized for scoring396

compound-proteome interactions, yields benchmarking performance that is 10% higher rela-397

tively at the top10 cutoff (12.8% for v1.5 versus 11.7% for v1).82 By combining the improved398

protein centric and protein agnostic pipelines using data fusion, we obtain the best perfor-399

mance and retain the benefits of both types of approaches, while minimizing the weaknesses400

of any single approach.401

The higher benchmarking performance obtained by the ligand-based pipelines may in402

part be due to the nature of drug discovery and development, which is biased in favor403

of already effective compounds in an effort to break into a new market or retain market404

dominance by generating new intellectual property. New drugs are often derivatives of405

existing ones with small changes.87,88 Repurposing based on molecular fingerprint similarity406

will be highly enriched for these “me too” compounds,88 given that the approach to shotgun407
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drug repurposing in the CANDO platform is currently based on detecting drug-compound408

similarities.409

Our benchmarking performance metrics are biased toward reporting particular pipelines410

as better when they capture what is already known/approved, and not novel repurposing411

candidates which will work to treat or cure an indication in reality. Barring large scale412

preclinical validation of putative drug candidates, it remains a reproducible and a meaningful413

measure in our studies.45–47414

Our goal in this study was to assess the value of adding fingerprinting and data fusion415

pipelines to the existing protein-centric pipelines in the CANDO platform, and not an ex-416

haustive enumeration, comparison, and fusion of ligand- and structure-based approaches for417

identifying drug associations.89 More sophisticated fingerprint representations encode the418

structures of compounds differently and capture unique features particularly of relevance419

to drug discovery and repurposing. Future work will extend our analyses to include ad-420

ditional fingerprints that can be created using RDKit, including the Long Extended and421

Feature Connectivity Fingerprints (LECFP and LFCFP, respectively). Longer fingerprints422

have been shown to better describe a compound with less redundancy, leading to increased423

accuracy in virtual screening.90424

Features and categories of indications, proteins, and compounds all influence the drug425

repurposing accuracy of CANDO. We are continuing to undertake thorough experiments426

exploring the roles of particular features responsible for benchmarking performance.46,47,63427

Incorporating machine learning to understand how compound-proteome interaction signa-428

tures influence performance will help us find the most parsimonious molecular descriptors429

for compounds. Drugs may have targets beyond proteins, including DNA and RNA.91,92430

To better model how a compound interacts with all potential targets, we are integrating431

compound-nucleic acid interaction modeling into CANDO. Finally, we are working with col-432

laborators to validate the predictions from the various pipelines in preclinical and clinical433

studies, which represents the ultimate test of the CANDO platform.434
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Conclusions435

CANDO is a computational platform for shotgun drug discovery and repurposing. We imple-436

mented new ligand-based and data fusion pipelines in the CANDO platform, and obtained437

substantial improvement in benchmarking performance using a combination of protein-438

centric and protein-agnostic methods. These improved results indicate greater confidence439

in drug repurposing predictions made by us using CANDO and demonstrate the value of440

considering different, orthogonal, types of approaches for calculating compound-compound441

similarities. Our integrated approach moves us closer to developing an accurate, robust,442

and reliable computational drug repurposing platform, and using it to understand how small443

molecules interact with each other and with larger macromolecules in their corresponding444

environments.445
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