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2 We have upgraded our Computational Analysis of Novel Drug Opportunities (CANDO)
3 platform for shotgun drug repurposing to include ligand-based, data fusion, and decision tree
+ pipelines. The first version of CANDO implemented a structure-based pipeline that mod-
s eled interactions between compounds and proteins on a large scale, generating compound-
s proteome interaction signatures used to infer similarity of drug behavior; the new pipelines
7 accomplish this by incorporating molecular fingerprints and the Tanimoto coefficient. We
g obtain improved benchmarking performance with the new pipelines across all three evalua-
o tion metrics used: average indication accuracy, pairwise accuracy, and coverage. The best
0 performing pipeline achieves an average indication accuracy of 19.0% at the topl0 cutoff,
u compared to 11.7% for v1, and 2.2% for a random control. Our results demonstrate that the
2 CANDO drug recovery accuracy is substantially improved by integrating multiple pipelines,
13 thereby enhancing our ability to generate putative therapeutic repurposing candidates, and

14 increasing drug discovery efficiency.
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s Introduction

1t Drug repurposing

v Bringing a new drug to the market may costs hundreds of millions of dollars and takes years
15 of work.! Drug repurposing is the process of discovering a new use for an existing drug.??
19 This process may take advantage of existing data on safety and pharmacokinetic properties
2 from previous trials and clinical use to reduce costs and time associated with traditional drug
2 discovery. Classic examples of drug repurposing include sildenafil (Viagra) and thalidomide,
2 which initially were developed to treat chest pain and morning sickness, but were repurposed
»  to treat erectile dysfunction and erythema nodosum leprosum respectively. 45 Drugs which
2 have already been repurposed once are being researched for even more novel uses. For exam-
s ple, raloxifene was originally indicated for prevention of osteoporosis and was subsequently
2 approved for risk reduction in the development of breast cancer.® More recently, raloxifene

79¢ These examples of

27 has been suggested as a possible treatment for Ebola virus disease
2 putative and/or successful drug repurposing underlies the diverse mechanisms through which
2 a single compound may treat a variety of disease types.!%!! High throughput, target-based,
s and phenotypic screening of compounds can be used to generate putative candidates for re-
s purposing.'? For example, potential treatments for Zika virus infection were identified using

» a phenotypic screen.

13 Computational drug discovery and repurposing

u  Finding new drugs or new uses for existing drugs computationally takes advantage of the
5 growing amount of data generated from wet lab experiments accessible on the Internet,
3 increased computational power, and higher fidelity of computational models to reality. Ap-
;7 proaches to computational drug discovery and repurposing have been classified as structure-
5 based or ligand-based.'*16 In structure-based methods, the structure of a target macro-

s molecule, usually a protein, is used to identify small compounds that modulate its behavior.
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s The structure may have been determined via x-ray diffraction or Nuclear Magnetic Res-
a onance (NMR), or modeled using template-free (de novo) or template-based (homology)
2 modeling. ' Molecular docking and/or rational drug design is then used to identify lig-
5 ands that specifically fit into a protein groove or active site.?%:?! In ligand-based methods, the
s focus is on the compound, and similarity between representations is used to assess whether
s a compound modulates the activity of a target or treat a disease like a known drug. Exam-
w ples of ligand-based drug design include 2D and 3D similarity searching,?? pharmacophore
« modeling,? and quantitative structure activity relationships (QSAR).

48 Data fusion is a technique in the field of cheminformatics for combining intermolecular
w0 similarity data from different sources or methods.?*2% Compounds are ranked relative to
so each other based on the similarity scores. Multiple rankings of compounds produced by
i different methods of detecting similarity may be combined into a single ranking.?* Ideally,
s disparate sources or types of data may yield orthogonality or complementarity in results,
53 1i.e., different top compounds are captured and reported as putative therapeutics for different
s« Teasons.?"?® For example, Tan et al. obtained an increased recall rate in a virtual screening
55 experiment using ligand-based two dimensional fingerprint data fused with structure-based
ss molecular docking energies.? Ligand- and structure-based methods have been combined
sz for use in virtual screening pipelines and platforms, with successes reported in the use of
s sequential, parallel, and hybrid techniques for data integration.?® Data fusion has been also
5o been used to devise weighting schemes for correct dosing."

60 Newer computational techniques for drug discovery and repurposing gaining in promi-
s nence go beyond the structure and ligand-based categorization. The Connectivity Map is
e a ‘reference collection of gene-expression profiles from cultured human cells treated with
s bioactive small molecules”,?' i.e., a tool to identify changes in gene expression due to a
s« compound or a disease. If a compound causes changes in gene expression level opposite to a
s disease (for instance, a disease causes up-regulation of the expression of a set of genes, and

s the compound causes down-regulation of the same set of genes), then that compound is con-
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& sidered to be therapeutically useful in the treatment of that disease.3! Peyvandipour et al.
¢ combined an updated version of the Connectivity Map with knowledge of drug-disease gene
s networks, measuring the perturbation effect of drugs on whole systems. Using this model,
7 they predicted novel treatments for idiopathic pulmonary fibrosis, non-small cell lung can-
7 cer, prostate cancer, and breast cancer, while simultaneously improving the recall rate of
72 known drug-disease associations.? Machine learning based approaches have also been used
73 to cluster drugs or diseases and predicting new drug activity and usage.3*3"Methods for

38,39

72 finding novel uses of drugs based on analysis of biomedical literature, electronic health

37,40

75 records, and biological networks*!*? have also been reported.

7 Drug similarity

77 Implementations of drug discovery and drug repurposing sometimes rely on the principle of
7 similar molecules having similar properties.*** In drug design, repurposing, or screening,
70 similar compounds are generally assumed to have similar molecular targets. In structure-
s based drug discovery, if two potential molecular targets are identified as similar, then a
s compound that modulates one target is inferred to modulate the other. In ligand-based
&2 methods, similar compounds are inferred to analogously modulate the behavior of the same
g3 target(s). In our computational shotgun drug repurposing experiments, we extend the sim-
s ilarity property principle to examining interactions on a proteomic scale. Compounds with
&s similar proteomic interaction signatures are hypothesized to be effective for the same indi-

s cation(s).

&7 Shotgun drug repurposing with CANDO

ss The goal of the Computational Analysis of Novel Drug Opportunities (CANDO) platform
g9 for shotgun drug discovery and repurposing is to screen every human use compound/drug
o against every indication/disease.?**® The tenets of CANDO include docking with dynamics,

o1 multitargeting, and shotgun repurposing, which have been developed over the last decade
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2 and a half.495! The first version of CANDO (v1) applied a bioinformatic docking protocol
s on large libraries of compound and protein structures. The multitargeting nature of drugs®?
o is captured by inferring their similarity on a proteomic scale after calculating interactions
s between all compounds and all proteins in the corresponding libraries.®4%46 This is key, as in-
o dications can be multifactorial in nature, involving disparate or intertwined pathways.?3? -6
o Similar compounds, as determined by the root mean square deviation (RMSD) of their pro-
e teomic interaction signatures, are hypothesized to behave similarly, i.e., compounds which
o are ranked highly (most similar compound-proteome interaction signatures) to a drug with
1o an approved indication are hypothesized to be repurposable drugs/compounds for that indi-
1w cation. Benchmarking is accomplished by examining the ranks of other approved drugs for
102 the same indication. %46

103 There exist other approaches to determine compound similarity without the need for
s docking calculations. Different representations of molecules capture different chemical, phys-
s ical, or functional aspects of a compound. Two or three dimensional molecular fingerprints
s are used in the field of cheminformatics to describe compounds.®” In these models, the phys-
w7 ical arrangement of atoms in a compound is captured as a binary vector where each entry of
w08 a vector indicates the presence or absence of a specific molecular feature.** A distance (sim-
o ilarity) metric between these vectors can be measured, using metrics such as the Tanimoto
no coefficient, a widely used metric in medicinal chemistry and ligand-based virtual screen-
i ing. 4458760 This is analogous to the structure-based methods used to construct interaction
2 signatures in v1 and the RMSD measure used to calculate similarity.

113 In this study, we extend CANDO to include ligand-based drug repurposing by creating
us new pipelines based on identifying compound similarity based on their molecular finger-
us prints, as well as data fusion pipelines that combine the protein-centric and protein-agnostic
us approaches. The new ligand-based pipelines in CANDO are based on molecular fingerprint

17 similarity calculations using the Research Development Kit (RDKit),% and are not meant

us as an exhaustive exploration of all possible CANDO pipelines that can be built using all the
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uo fingerprint descriptions available from RDKit. Instead, we constructed pipelines using well
120 studied molecular fingerprints®? to evaluate feasibility and compare and contrast benchmark-
21 ing performance. Using the standard CANDO benchmarking procedure (see “Methods”),
122 several of the pipelines described here yielded better performance than those previously
123 obtained using v1 by itself.

124 Combination of other pipelines using data fusion as well as a decision tree approach be-
15 tween vl and the best performing ligand-based approach (“ECFP4”) yielded better bench-
s marking performance than using either pipeline by itself, allowing for increased accuracy
127 while retaining the mechanistic and precision medicine opportunities afforded by the protein-
s centric approach of v1. Higher benchmarking accuracies are indicative of higher drug repur-
129 posing potential, increased confidence in our predictions, a decreased number of compounds
1o which must be tested in wet lab experiments and clinical trials to obtain true hits, and thus

1 less time and cost required to find a new use for an old drug.

» Methods

133 Figure 1 illustrates the different pipelines evaluated in this study, which are described in

134 detail below.

15 The CANDO platform and the version 1 (v1) pipeline

36 A detailed description of the CANDO platform, including the v1 pipeline used for assigning
157 drugs to indications, as well as its benchmarking performance, is available elsewhere. 44763
s Briefly, in vl we predicted interactions between 46784 protein structures and 3733 small
1o molecules that mapped to 2030 indications. We obtained the molecular structures of the
1o 3733 small molecules in our putative drug library from the Food and Drug Administra-

1w tion (FDA), NCATS Chemical Genomics Center, and PubChem.% Solved x-ray diffraction

12 structures of proteins were obtained from the Protein Data Bank® and modeled protein
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s structures were generated using I-TASSER.!® Approved drug-indication associations were
s obtained from the Comparative Toxicogenomics Database (CTD)% and mapped to the
s CANDO drug library, resulting in 2030 indications with at least one approved/associated
us compound. Protein-compound interaction scores were calculated using a bio- and chem-
w7 informatic docking protocol consisting of ligand binding site identification for all proteins
us in our structure library, followed by similarity measurement between known ligands in the
o identified binding sites and all 3733 compounds in our putative drug library.4® A compound
10 is characterized as an “interaction signature” of length 46784, where each entry is an inter-
151 action score between 0 - 2, indicating the strength of a predicted protein interaction (zero
152 signifying no interaction). Each compound is then compared to every other compound by
153 calculating the root mean square deviation (RMSD) between the corresponding interaction
15« signatures, generating a compound-compound (or drug-compound) similarity matrix. Each
155 compound is ranked relative to every other compound in order of increasing similarity and

155 benchmarking performed.

157 Ligand-based pipelines

155, The CANDO platform for shotgun drug repurposing is not dependent on any particular
159 method for determining compound similarity, such as the protein-centric one used in vl.
1o Here, we consider the utility of ligand-based pipelines by constructing two dimensional
11 molecular fingerprints of the 3733 compounds in the CANDO putative drug library using the
12 open-source cheminformatics software RDKit Python API®® and performing an all-against-
13 all comparison using the Tanimoto coefficient. Once the features of a molecule have been
1« quantized into a vector, the Tanimoto coefficient is a score of how many bits two vectors have
165 in common divided by the number of bits by which they differ, i.e., |[A N B|/|AU B|, where
165 A and B represent compounds in binary vector form, and |A| is the length of the vector.

167 For efficiency and accuracy, we described our putative drug library using well studied

e 2D molecular fingerprints.4* Specifically, we used Morgan fingerprints,®” otherwise known
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Figure 1: Flow diagram of the CANDO platform pipelines used for shotgun drug
repurposing. The v1 structure-based pipeline is the original protein-centric approach based
on a bioinformatic docking protocol used to construct compound-proteome interaction sig-
natures. The ligand-based pipelines are based on molecular fingerprint representations of
compounds. The data fusion pipelines consist of a combination these two types of pipelines
after calculating compound-compound similarity, and the decision tree pipeline is devised
based on the performance of individual structure- and ligand-based pipelines (see Methods).
All pipelines, except the decision tree pipeline, generate a compound-compound similarity
matrix that is sorted and ranked. These rankings are used to generate putative repurposable
drug candidates and evaluate benchmarking performance. The figure illustrates the utility
of implementing, as well as comparing and contrasting, multiple (types of) pipelines in the
CANDO platform for shotgun drug repurposing.

160 as Extended Connectivity Fingerprints (ECFP, a circular fingerprint), one Functional Class
170 Fingerprint (FCFP, a functional class fingerprint®), and fingerprints from RDKit (RDK, a
i linear fingerprint). Circular fingerprints are bit vector representations of compounds encod-

2 ing the presence of molecular substructures constructed outward from all starting positions

J

173 (all atoms) in a radial fashion; functional class fingerprints are binary vectors which encode
s the presence of predefined “functional” features of a compound; and linear fingerprints en-

s code the presence of molecular substructures built in a linear fashion from all possible staring


https://doi.org/10.1101/591123
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/591123; this version posted March 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

176 points (all atoms). %

177 All fingerprints are additionally described by the length of the molecular substructure
s (“radius” or “diameter” depending on the type and implementation) captured. For in-
9 stance, ECFP4 is a fingerprint created using ECFP with diameter four. Specific ligand-
1o based pipelines in CANDO are identified according to the molecular fingerprint used, i.e.,
1 “ECFP4” refers to the CANDO pipeline where compounds are represented using the ECFP4
12 molecular fingerprint.

183 Hert et al. found the optimal results for quantifying relationships between drug classes
1« was achieved using ECFP4 fingerprints with similarities calculated using the Tanimoto coeffi-
s cient. % We extended this to ligand-based drug repurposing using vectors of 2048 bits instead
s of the 1024 used in.?® We calculated the Tanimoto coefficient between the fingerprints of all
17 possible pairs of the 3733 compounds in our library, and used this to populate a compound-
188 compound similarity matrix, just as we did with the v1 pipeline, allowing us to sort and
189 rank all compounds relative to each other. Fingerprints could not be created for twelve of
wo the 3733 compounds in our putative drug library, which were generally large compounds
11 with metal chelation or long polymers. We then evaluated benchmarking performance of the

12 ligand-based pipelines as described further below.

113 Data fusion pipelines

14 We combined rankings from the v1 pipeline with the new molecular fingerprint rankings using
105 one of the following criteria: lower of two rankings (MIN), higher of two rankings (MAX),
s sum of two rankings (SUM), average of two rankings (AVG). This is known as “rank-based
107 data fusion”.% We also combined the compound-compound similarity scores from v1 and
s the ligand-based pipelines using the multiplication of raw similarity scores (MUL), a type of
10 “kernel-based data fusion”.% After multiplying the similarity scores from two pipelines, the
20 compounds are sorted and ranked based on the newly calculated scores. As in vl and the

201 ligand-based pipelines, the compound-compound rankings from these data fusion pipelines
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202 is then subjected to benchmarking.

203 Decision tree pipeline

24 A goal of CANDO is to make predictions of which compounds are likely to be efficacious
205  against any particular indication. A second is to use analytics to identify causal relationships
206 that predict indication etiology. From the benchmarking, we can determine a prior: the
207 pipeline that has the best performance for a particular indication, which are then used to
208 generate putative drug candidates for that indication. We constructed a new meta pipeline
200 that makes a decision as to optimal performance on a per indication basis. We made this
20 decision using the topl0 average indication accuracy metric (described below), from two
2 choices, v1 and the best performing ligand-based pipeline, namely ECFP4 (see Results). We
212 used this to create a merged set of data which was then benchmarked. For example, the
a3 vl pipeline yields a topl0 average indication accuracy of 25% for type 2 diabetes, whereas
24 ECFP4 yields a topl0 accuracy of 35%. In the combined decision tree pipeline, we choose
25 to use ECFP4 for the prediction of repurposing candidates for type 2 diabetes, and for the
26 calculation of all benchmarking performance metrics at all cutoffs. We extended this method
a7 of choosing the pipeline (between vl and ECFP4) with higher topl0 average indication
218 accuracy to all indications. This aligns with the logic that a clinician or researcher using
290 CANDO can choose the pipeline with the highest accuracy for a particular indication, which

20 s reflected in the benchmarking performance of this combined pipeline.

21 Benchmarking pipelines in the CANDO platform

22 Three measures are used to perform the leave-one-out benchmarking of the CANDO platform
23 pipelines: average indication accuracy, pairwise accuracy, and coverage. Average indication
24 accuracy (%) evaluates the likelihood of capturing at least one drug mapped to the same
25 indication within a particular cutoff from the list of compounds ranked in order of similarity,

226 which is averaged over the 1439 indications with at least two approved drugs and expressed

10
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27 as a percent. Mathematically, this is expressed as ¢/d x 100, where ¢ is the number of times
28 at least one other drug approved for the same indication was captured within a cutoff and d
29 is the total number of drugs approved for that indication. The top10, top25, topl% (top37),
230 toph0, and topl00 cutoffs are used, signifying the top ranking 10-100 similar compounds.
an In other words, the indication accuracy represents the recovery rate of known drugs for
22 a particular indication, which is then averaged across all 1439 indications with at least
2 two approved drugs. Pairwise accuracy (%) is the weighted average of the per indication
2 accuracies based on the number of compounds approved for a given indication. Coverage is

235 the number of indications with non-zero accuracy expressed as a percent.

26 Controls

237 'The performance of a given pipeline is evaluated relative to a random control, which is the
238 result that we would expect by chance. The original random control data for v1 was generated
230 by repeated creation of random compound-proteome interaction matrices by sampling from
20 the distribution of values present in the vl matrix. The benchmarking performance for
21 these random control matrices was calculated as described above and in.%6:% However, the
22 new ligand centric pipeline is protein agnostic, and the data fusion ones consist of protein
a3 agnostic components. Therefore, we constructed a compound-compound matrix of uniformly
24 random similarity scores to use as controls in this study, i.e., the similarity between any two
25 compounds was assigned a random value between 0 and 1. We sorted and ranked every
26 compound relative to every other compound using this this random compound-compound

27 similarity matrix, and evaluated benchmarking performance as described above.

11
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« Results

29 Benchmarking performance of the different pipelines

20 The new pipelines (Figure 1) generally outperform v1 for all three metrics used to evalu-
»1  ate benchmarking performance: average indication accuracy, pairwise accuracy, and coverage
»  (Figure 2). The MUL:v1,ECFP4 data fusion pipeline, created by multiplying the compound-
253 compound similarity scores (RMSD of interaction signatures) from v1 with the Tanimoto
s coefficient measured between the compounds described using the ECFP4 molecular finger-
5 print, yields the overall best performance relative to vl and the ones based on fingerprint
6 comparisons. Specifically, we obtained the highest top10, top25, and top50 average indi-
7 cation accuracies of 17.3%, 23.8%, and 29.6% using this data fusion pipeline. The highest
s topl% (or top37) and topl00 average indication accuracies of 26.8% and 36.7% were ob-
0 tained using the pipeline based on the ECFP4 molecular fingerprints. Most of the molecular
x0 fingerprint pipelines outperform the original v1 pipeline with the exception of ECFPO, a
261 fingerprint based on simple atom count quantization (Figure 2).

262 The decision tree meta pipeline, built by combining other pipelines based on the cor-
%3 responding topl0 average indication accuracies, yields accuracies of 19.0%, 25.7%, 28.3%,
24 31.4%, and 39.1% at the five cutoffs used. In contrast, the best performing control generated
25 from uniformly random compound-compound similarity data obtains average indication ac-
6 curacies of 2.2% at the topl0 cutoff, the most stringent one used to benchmark the CANDO
27 platform (Figure 2).

268 In terms of pairwise accuracy (%), which is the weighted average of the per indication
20 accuracies based on the number of compounds approved for a given indication (see Methods),
o0 ECFP4 outperforms all other pipelines, including the decision tree, with accuracies of 28.5%,
o 38.9%, 43.8%, 47.9%, and 58.8% at the five cutoffs.

o2 The coverage metric evaluates the fraction (or percentage) of the 1439 indications with

a3 two approved drugs for which there is at least one instance of a successful recapture or

12
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Figure 2: Benchmarking performance of different CANDO platform pipelines.
The average indication accuracy (top), pairwise accuracy (middle), and coverage (bottom)
for each pipeline are shown at different cutoffs. The value for the topl0 cutoff is denoted
by dark purple, top25 by light purple, topl% (or top37) by yellow, top50 by green, and
top100 by light blue. The individual pipeline with the best performance at each each cutoff
is denoted by a red dot. The meta decision tree pipeline was built combining two pipelines,
vl and ECFP4, using the topl0 average indication accuracy and so has the highest top10
accuracy and coverage, but is excluded by the “Best at cutoff” marker. The pipelines in
all plots are sorted according to increasing topl0 average indication accuracy, the most
stringent criteria used in our benchmarking. The MUL:v1,ECFP4 pipeline yields the overall
best performance relative to the other individual structure- and ligand-based pipelines. The
pipeline based on the ECFP4 molecular fingerprint produces the highest top1% and top100
average indication accuracies (top). When assessing pairwise accuracy (middle), ECFP4
is the best performing individual pipeline. The coverage (bottom) plot is a percentage of
the 1439 indications for which a pipeline produces a non-zero indication accuracy. The
data fusion pipelines of MUL:v1,ECFP4 and MIN:v1, RDK6 have the highest coverage at
the topb0 and top25 cutoffs, the ECFP4 at the topl0 and top50 cutoffs, and RDK6 at the
top100 cutoff. Overall, the pipelines using molecular fingerprints have promise and potential
for shotgun drug repurposing by themselves, but the data fusion and decision tree pipelines
that combine structure-based and ligand-based approaches achieve the best performance
while retaining the benefits of both types of approaches.

o recovery of the known drug within a particular cutoff. The ECFP4 pipeline has the highest
o5 topl0 and topl% coverage of 45.9% and 54.2%, the MIN:v1,RDKG6 yields the highest top25

13
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a6 coverage of 52.3%, the MUL:v1,ECFP4 has the highest coverage at the top50 cutoff of 56.9%,
o7 and RDKG6 the highest at the top100 cutoff of 62.8%. In contrast, the decision tree pipeline,
28 built in part to increase coverage, has a topl0 coverage of 49.8%. This means that for almost
270 half of all the 1439 indications, we capture a drug associated with that indication within the

20 topl0 cutoff (Figure 2).

251 Distribution of indication accuracies between the two types of pipelines

22 To compare and contrast the behavior of the structure-based and ligand-based pipelines,
23 we calculated histograms of the average indication accuracies and counts of the highest per
2 indication accuracies at each cutoff for two pipelines (vl and ECFP4), excluding indications
s for which a 0% average indication accuracy is obtained. Figure 3 shows that the ECFP4
26 pipeline has more indications with higher accuracies than v1 (the yellow histogram is shifted
27 to the right of the purple histogram). The Kolmogorov—Smirnov statistical test p-values
28 shown in the corresponding left hand side graph of Figure 3 indicate that the distributions
280 of the vl and ECFP4 accuracies are drawn from different samples in a statistically significant
20 manner. The Venn diagrams of the 1439 indications in CANDO with more than one approved
201 drug shows that v1 obtains a higher top10 accuracy for 150 indications, while ECFP4 obtains
22 a higher top10 accuracy for 445, and 122 indications have the same non-zero top10 accuracy
203 for both pipelines. As the cutoff increases, more indications have higher accuracies using
20 the ECFP4 pipeline relative to v1, while the number of indications with the same accuracy
205 increases relatively. The orthogonality in the histograms and Venn diagrams indicate that
206 both types of pipelines appear necessary for maximum coverage and accuracy across all the
27 indications. Figure 3 also suggests that additional pipelines and/or improvement in existing
28 pipelines is necessary to recover drugs for &~ 500 indications that are not covered by either

200 pipeline at the highest cutoff.
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Figure 3: Comparison and overlap of indication accuracy distributions for two
CANDO platform pipelines at different cutoffs. The left hand side shows the his-
tograms of the counts of indications with a particular average indication accuracy (or ac-
curacy distributions) for two pipelines, v1 (purple) and ECFP4 (yellow). Indications where
both pipelines perform equally well are indicated by brown. For example, at the top10 cut-
off, there are approximately 200 indications which achieve an average accuracy between 10
and 20% using the v1 pipeline but just over 100 using ECFP4. At all cutoffs, a greater
number of indications with higher accuracies is observed for the ECFP4 pipeline (increase in
yellow along the horizontal axis). The p-value, derived from the Kolmogorov-Smirnov test
statistic applied to the two distributions at each cutoff, indicates that they are significantly
different. On the right hand side of the figure are Venn diagrams of the set of indications
with higher accuracies at each cutoff (excluding indications with 0% accuracy). For exam-
ple, at the topl0 cutoff, there are 150 indications for which the v1 pipeline yields higher
average indication accuracies, 445 for which the ECFP4 pipeline is higher, and 122 with the
same performance. The ECFP4 pipeline performs better than v1 for more indications at all
cutoffs, but both pipelines appear to be necessary to achieve the best performance across all
indications for shotgun drug repurposing.

w0 Putative drug candidate generation and validation

s The top ranking putative drug candidates generated by the v1 pipeline for eight indications,

w2 tuberculosis, malaria, hepatitis B, hepatitis C, systemic lupus erythematosus, type 2 diabetes
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53 mellitus, and Alzheimer’s disease, are available from Figure 3 and Supplementary Material
50 of a previous publication.*® The top candidates were chosen based on a concurrence score
55 which is “the number of occurrences of particular compounds in each set of top 25 predictions
s generated for all of the drugs approved for a particular indication”.*> Using this concurrence
s07  score measure, we generated the top candidate drugs to treat the same indications with
ss  the ECFP4 molecular fingerprint and the MUL:v1, ECFP4 data fusion pipelines. We then
300 searched the biomedical literature using PubMed and Google Scholar for published studies
si0  corroborating these top candidates.

311 Both of the new pipelines predict colistin (polymyxin E) as a treatment for tuberculosis,
sz which has been studied as a potentiator of anti-tuberculosis drugs.™ Minocycline was a top
a3 result from both pipelines for malaria, which has been shown to protect against certain types
2 and complications. ™t However, the CDC recommends using doxycycline and not minocycline
ss - as malaria prophylaxis. ™ Additionally, for malaria, both new pipelines list tigecycline among
a6 the top ranked candidates, which has shown antimalarial activity in preclinical studies. "
317 All three pipelines recommend known antivirals for hepatitis B. For hepatitis C, all
sis three pipelines list didanosine in the top ranked candidates. Unfortunately, concurrent use
a0 of didanosine and traditional hepatitis treatments may induce dangerous consequences for
20 the patient,” illustrating the need for careful expert curation of top candidates generated
s by the CANDO platform. For Alzheimer’s disease, one of the highest scoring compounds
32 from the MUL:v1,ECFP4 pipeline was dextromethorphan. In 2015, a study was published
s showing dextromethorphan hydrobromide—quinidine sulfate was well tolerated in patients
24 with Alzheimer’s disease and had clinically relevant efficacy in treating patients, as mea-
»s sured via agitation.”™ These examples indicate new putative drug candidate generation by
»s the CANDO platform with these integrated pipelines is likely to work as well, if not bet-
a7 ter, relative to the prospective validation studies previously done using vl or its compo-
2s  nents. 397780 The full list of drug candidates for the above indications based on the concur-

»9  rence score using the newer pipelines are given in the Supporting Information and available
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;0 at http://protinfo.org/cando/results/fingerprinting_cando. Putative drug candi-
s date predictions for all 2030 indications in the platform using the v1 pipeline are available

sz at http://protinfo.org/cando/data/raw/matrix/.

= 1Discussion

s Interpretation of results

;5 Higher benchmarking accuracies are expected to result in better drug repurposing predic-
a6 tions. The top ranked similar compounds to the known drugs for a particular indication
;37 using the pipeline with the best benchmarking performance is expected to produce hits and
1 leads with the highest likelihood of success when validated in downstream preclinical and
139 clinical studies. The decreased need to test a large number of compounds with the new
uo  pipelines, along with greater confidence in the computational models of drug-indication as-
s sociations, realizes the goal of drug repurposing: making drug discovery more efficient by
w2 reducing the labor, time, and risk in finding new uses for existing therapeutics.

343 Using the new pipelines based on molecular fingerprinting and data fusion with v1 (Fig-
s ure 1), we obtain better benchmarking performance than using v1 by itself (Figure 2). Our
us  cutoffs for calculating performance metrics are chosen based on collaborations with wet lab
us experimentalists willing to test the top candidates generated by our CANDO platform for
a7 particular indications. In practice, when working with preclinical and clinical collaborators,
us  we currently employ the decision tree approach of selecting the pipeline with the highest
s accuracy for a specific indication and the desired cutoff. For example, if a collaborator is ca-
0 pable of validating ten candidates for Precursor B-Cell Lymphoblastic Leukemia-Lymphoma
31 (MeSH identifier D015452), which is one of the 150 where the benchmarking performance
32 18 better using the v1 pipeline relative to ECFP4, then we would use the former pipeline to
13 generate the top ten putative drug candidates for this indication.

354 The new integrated pipelines also yield a higher number of indications covered relative to
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15 V1, i.e., more indications with a non-zero accuracy, demonstrating their generalized utility
36 for shotgun drug repurposing. Indication-specific validation studies may rely on the pipeline
57 with highest accuracy for that indication, but CANDO platform development in shotgun drug
18 repurposing requires that the coverage also increase in addition to the average indication and
0 pairwise accuracy. The best performing random control achieves a top10 average indication
30 accuracy of 2.2%, and the random control based on random sampling from the distribution
31 the vl compound-protein interaction matrix values yielded a topl0 accuracy of 0.2%.4%+46
2 ' These random control accuracies are at least an order of magnitude lower than the accuracies
13 obtained using the newer pipelines, and align with expected hit rates in high throughput
s screening.®! All pipelines yield better performance when compared to the random control
35 (Figure 2), and the differences between the performances of the different pipelines and that
w6 Of the control signify the value added by our chosen approaches. The orthogonality in the

sz histograms and Venn diagrams of Figure 3 indicate that both types of pipelines appear

e necessary for maximum coverage and accuracy across all the indications.

0 Limitations and future work

s We have added new pipelines based on ligand-based fingerprint comparisons to the CANDO
s platform (Figure 1) that increase benchmarking performance relative to the original vl
w2 protein-centric pipeline (Figure 2). We are further enhancing CANDO by improving the per-
w3 formance of existing pipelines via parameter optimization,®? exploration of different docking
s approaches to generate the compound-proteome interaction signatures,® adding new orthog-

6.

w5 onal pipelines based on compound-pathway signatures,% implementing more sophisticated

s data fusion and machine learning approaches, and by continued dissection of the features
sz responsible for pipeline performance and behavior, 46:47-63
378 Notwithstanding the relative benchmarking performance of the existing CANDO plat-

;o form pipelines, the structure-based virtual screening or protein docking pipelines are not

;0 without their merits. The protein-centric approach enables mechanistic understanding of
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;1 drug action by modeling compound-protein interactions at the atomic level. Additionally,
32 the protein-centric approach readily lends itself to problems in precision medicine/drug re-
;3 purposing: Incorporating genetic changes, and modeling amino acid mutations due to non-
;s synonymous nucleotide polymorphisms in protein structures, will result in altered compound-
;s protein interaction scores, allowing us to tailor drug repurposing candidates to an individual
1 genome/proteome. The protein-centric approach facilitates consideration of polypharmacy,
;7 where the cumulative effects of multiple drugs on protein targets can be evaluated by the
s analysis and integration of the corresponding drug-proteome interaction signatures, which
;0 can then be used to generate putative drug cocktails and combination therapy candidates.
s0 The protein-centric pipeline may also be used to generate putative drug candidates for indi-
31 cations without any approved drugs, but where the target protein or proteome is known.®
302 We are continuing to enhance the virtual screening pipelines to model reality more ac-
33 curately, with the goal of increasing compound-proteome signature comparison accuracy.
54 For instance, we are exploring the use different molecular docking programs, such as CAN-
35 DOCK®® and AutoDock Vina,® to populate the compound-proteome interaction signa-
36 tures. An updated version of the v1 pipeline, v1.5, with parameters optimized for scoring
57 compound-proteome interactions, yields benchmarking performance that is 10% higher rela-
s tively at the top10 cutoff (12.8% for v1.5 versus 11.7% for v1).%2 By combining the improved
30 protein centric and protein agnostic pipelines using data fusion, we obtain the best perfor-
w0 mance and retain the benefits of both types of approaches, while minimizing the weaknesses
w1 of any single approach.

402 The higher benchmarking performance obtained by the ligand-based pipelines may in
w3 part be due to the nature of drug discovery and development, which is biased in favor
ws  of already effective compounds in an effort to break into a new market or retain market
ws dominance by generating new intellectual property. New drugs are often derivatives of
w6 existing ones with small changes.®"® Repurposing based on molecular fingerprint similarity

w7 will be highly enriched for these “me too” compounds,®® given that the approach to shotgun
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ws drug repurposing in the CANDO platform is currently based on detecting drug-compound
a0 similarities.

410 Our benchmarking performance metrics are biased toward reporting particular pipelines
a1 as better when they capture what is already known/approved, and not novel repurposing
a2 candidates which will work to treat or cure an indication in reality. Barring large scale
a3 preclinical validation of putative drug candidates, it remains a reproducible and a meaningful
s measure in our studies. 447

a1 Our goal in this study was to assess the value of adding fingerprinting and data fusion
a6 pipelines to the existing protein-centric pipelines in the CANDO platform, and not an ex-
a7 haustive enumeration, comparison, and fusion of ligand- and structure-based approaches for
a5 identifying drug associations.®® More sophisticated fingerprint representations encode the
a0 structures of compounds differently and capture unique features particularly of relevance
20 to drug discovery and repurposing. Future work will extend our analyses to include ad-
a1 ditional fingerprints that can be created using RDKit, including the Long Extended and
a2 Feature Connectivity Fingerprints (LECFP and LFCFP, respectively). Longer fingerprints
23 have been shown to better describe a compound with less redundancy, leading to increased
w24 accuracy in virtual screening.

425 Features and categories of indications, proteins, and compounds all influence the drug
w6 repurposing accuracy of CANDO. We are continuing to undertake thorough experiments
w27 exploring the roles of particular features responsible for benchmarking performance. 464763
w28 Incorporating machine learning to understand how compound-proteome interaction signa-
a0 tures influence performance will help us find the most parsimonious molecular descriptors
s for compounds. Drugs may have targets beyond proteins, including DNA and RNA.%192
a1 To better model how a compound interacts with all potential targets, we are integrating
12 compound-nucleic acid interaction modeling into CANDO. Finally, we are working with col-

a3 laborators to validate the predictions from the various pipelines in preclinical and clinical

s studies, which represents the ultimate test of the CANDO platform.
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= Conclusions

s CANDO is a computational platform for shotgun drug discovery and repurposing. We imple-
s mented new ligand-based and data fusion pipelines in the CANDO platform, and obtained
a3 substantial improvement in benchmarking performance using a combination of protein-
a0 centric and protein-agnostic methods. These improved results indicate greater confidence
wo in drug repurposing predictions made by us using CANDO and demonstrate the value of
a1 considering different, orthogonal, types of approaches for calculating compound-compound
a2 similarities. Our integrated approach moves us closer to developing an accurate, robust,
w3 and reliable computational drug repurposing platform, and using it to understand how small
aa  molecules interact with each other and with larger macromolecules in their corresponding

ss  environments.
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