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Summary 

The complexity of patterning during organ-wide stem cell migration and differentiation can be 

challenging to interpret quantitatively. Here, we track neural crest (NC) and ectodermal placode-

derived progenitor movements in vivo, for hundreds of cells, implement unbiased algorithmic 

approaches to extract biologically meaningful information, and discover cell-cell and lineage-lineage 

coordination between progenitors that form olfactory sensory neurons (OSNs) during zebrafish 

embryogenesis. Our approach discriminates between NC- and placode-derived contributions and 

segregates ingressing NC cells into two previously unidentified subtypes termed ‘trend’ and 

‘dispersed’ lineages. Our analyses indicate that NC and placodal progenitor migration and 

intercalation are coordinated by at least two types of collective behavior: spatiotemporal exclusion and 

elastic tethering, akin to a push-pull mechanism. A stochastic equilibrium model accurately represents 

the interactions of NC and placode-derived lineages. Our approach provides insights into the 
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coordination of dual-origin lineages during vertebrate olfactory neurogenesis and offers an algorithmic 

toolkit for probing multicellular coordination in vivo. 
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Introduction 

The multicellular dynamics of progenitor cell migration and differentiation are challenging to 

understand in vivo, particularly in densely packed organs such as the vertebrate olfactory epithelium 

(OE) where the system-level coordination of continuous, rapid neurogenesis remains poorly 

understood. Elucidating this process via phenotypic mapping at a multicellular and multilineage level 

is challenging, as disruptions to neurogenesis can cause system-wide phenotypes that, in turn, lead to 

secondary effects on tissue composition and/or organization. These primary and secondary effects 

can be difficult to separate out, in part due to a paucity of systems-level information on causal 

mechanisms across space and time. Recent advances in high-resolution imaging techniques, coupled 

with quantitative analysis, have the potential to provide a new window into in vivo interactions and 

causality during stem cell migration and differentiation. 

 

The neural crest (NC) is a highly migratory stem cell population that traverses long distances to give 

rise to a variety of derivatives at multiple embryonic destinations (Dupin et al., 2018; Hall, 2018; Kuo 

and Erickson, 2010). A large body of work has described four broad categories of neural crest stem 

cells (NCCs) arranged along the anterior-posterior axis: cranial, cardiac/vagal, trunk, and sacral. 

Differences between these categories have been well-studied (Dupin et al., 2018; Hall, 2018; Kuo and 

Erickson, 2010), but little is known about behavioral variation within each category. Of note, 

pioneering work demonstrated that most, but not all, avian trunk NCCs synchronize cell cycle phase 

during emigration from the neural tube (Burstyn-Cohen and Kalcheim, 2002) and more recent findings 

showed significant differences in mitotic activity between subgroups of migrating cranial NCCs in 

chick embryos (Ridenour et al., 2014). While these cell cycle variations hint at a broader and complex 

underlying heterogeneity within at least some NC categories, the dynamic migratory behavior of 

subgroups remains unclear. 
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The most anteriorly-located NC population, the cranial NC, differentitates into many cell types that 

include cartilage, bone, neurons, and glia (Gallik et al., 2017; Rogers and Nie, 2018). Ectodermal 

thickenings termed placodes, meanwhile, give rise to major components of a number of sensory 

organs, including most of the OE (Baker and Bronner-Fraser, 2001; Maier et al., 2014; Moody and 

LaMantia, 2015). In zebrafish, the OE houses two major types of olfactory sensory neurons, ciliated 

and microvillous, with ciliated sensory neurons derived from the olfactory placode (Hansen and 

Zielinski, 2005; Hansen, 1993). The origins of microvillous sensory neurons, however, remain 

controversial. Our previous work showed that cranial NCCs migrate into the zebrafish OE to form the 

vast majority of microvillous sensory neurons (Saxena et al., 2013), while fate-mapping work from 

other groups across multiple species yielded both supportive (Forni et al., 2011; Katoh et al., 2011; 

Schott et al., 2018) and contradictory (Aguillon et al., 2018) findings, due, in part, to different 

assumptions about progenitor cell domains. Additionally, recent work suggests that neural plate 

border cells have greater than expected plasticity, with no clear demarcation between future placodal 

or NC cells (Roellig et al., 2017), adding further ambiguity to the debate. A shift in analysis away from 

spatial origin-based fate-mapping towards a holistic, multicellular categorization of differential 

behavioral characteristics may better illuminate these unique progenitor cell types and their 

descendants, but doing so requires both high-resolution data and unbiased quantitative methodology 

to tease out subtle cellular behaviors.  

 

Traditional techniques such as confocal microscopy have limited utility for in vivo imaging due to 

difficult trade-offs between spatial resolution, temporal resolution, and phototoxicity, as well as 

resolution-based limitations on the accuracy and precision of automated data analysis. Therefore, to 

address the complexity of olfactory neurogenesis in vivo, we made use of lattice light-sheet 

microscopy (LLS; (Chen et al., 2014)), which balances exquisite temporal resolution with high lateral 

and axial spatial resolution without detectable phototoxicity or detrimental effects on growth. We 

imaged across time points that included continuous presumptive NC and placodal progenitor cell 
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migration, intercalation, and differentiation in the developing zebrafish OE. LLS’s subcellular 

resolution allowed us to identify and track multiple cell lineages and opened up the potential to 

quantitate developmental processes that had been previously described only qualitatively. To 

overcome the challenges posed by large, complex datasets without introducing experimental bias 

inherent in the manual filtering of subsets of data, we developed unbiased modeling and analysis 

techniques that were inspired by the dynamic perspective on statistics found in econometrics for 

several decades (Granger, 1969). With this toolkit, we were able to capture high-density, multicellular 

dynamic patterning, i.e. motion over time, rather than the static patterning revealed by traditional fixing 

and staining protocols.  

 

Previous quantitative analysis of olfactory neurogenesis has offered novel explanations of observed 

patterns of cell states and cell numbers based on a model of negative feedback dynamics within cell 

lineages (Lo et al., 2009). This study suggested plausible contributions to the stability of the OE by 

constructing a parametric model able to reproduce observed biological patterns and highlighted the 

importance of lineage-based analysis. Here, we endeavor to further understand lineage-dependent 

contributions to the OE by building models directly from empirical in vivo data that can then be 

statistically tested. Our approach preserves biological complexity by collecting and analyzing in vivo 

data at subcellular resolution that directly showcases the multicellular dynamics of progenitor cell 

migration during olfactory neurogenesis. We applied algorithmic pattern classification to high-

resolution imaging data and, using cell lineage-based (lineal) trajectories, were able to effectively 

discriminate between progenitor cell types in vivo. Histogram and descriptive statistics suggested that 

lineal displacements are normally distributed. Adopting an interdisciplinary approach, we applied 

methods from financial portfolio theory to conduct a volatility analysis, which revealed that lineal 

displacements had a tendency to return to a trend value and identified two previously unrecognized 

subtypes of ingressing NCCs. These subtypes exhibited distinct behavioral characteristics in 

comparison to each other and to placode-derived cells, providing further fate-mapping independent 
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evidence of an NC contribution to the OE. We next deployed the econometric method Wiener-

Granger causality (WGC) (Granger, 1969), which provided statistical evidence that the tendency of 

displacements to return to a trend value could be modeled using a linear model. Finally, we compared 

the relative displacements of lineages with respect to one another to the well-studied problem of 

modeling stochastic deviation of asset price differentials about an equilibrium price spread (Johansen, 

1991) and found strong statistical evidence that specific pairs of lineages are governed by a dynamic 

stochastic equilibrium. In doing so, we uncovered unexpected roles for specific cell lineages in guiding 

olfactory neurogenesis. 

 

Results 

High-resolution Tracking of Multicellular Dynamics During Olfactory Neurogenesis 

The formation and morphogenesis of the OE, differentiation of olfactory sensory neurons, and 

outgrowth of their axonal projections to the olfactory bulb are carefully orchestrated developmental 

processes. We used LLS imaging to view these events at subcellular resolution. Figure 1A 

demonstrates laser scanning confocal and LLS images of the OE in live dual-transgenic zebrafish 

embryos displayed at the same resolution for comparison, with NC-derived microvillous neurons 

(Saxena et al., 2013) in green (Tg(-4.9Sox10:eGFP) (Carney et al., 2006; Wada et al., 2005)), 

referred to here as Sox10:eGFP, and proneuronal and neuronal nuclei in red (Tg(-8.4neurog1:nRFP) 

(Blader et al., 2003)), referred to here as Ngn1:nRFP. We applied LLS’s superior resolution in both 

space and time to follow the formation of the two main types of olfactory sensory neurons as they 

intercalated into the developing OE: microvillous (green, Tg(TRPC24.5k:gap-Venus)) and ciliated 

(red, Tg(OMP2k:lyn-mRFP)) (Sato et al., 2005) (Figure 1B, Video S1). Time-lapse sequences of up to 

16 hours with temporal resolution of two to three minutes (2’-3’) (Figure 1B) exhibited no detectable 

phototoxicity or developmental delays during embryogenesis.  
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LLS’s robust spatiotemporal resolution facilitated automated tracking of dense multicellular migration; 

Figure 1C-D” shows the migration tracks (Figure 1C’, D’) of several hundred Ngn1:nRFP-positive 

proneuronal or neuronal nuclei (Figure 1C, D) from 24 - 30 hours post-fertilization (hpf), with a subset 

sorted by displacement length (Figure 1C”, D”). During this time frame, we observed two broad 

categories of migratory behavior: 1) At the apical surface of the OE where neurons take residence, 

Sox10:eGFP-negative, placode-derived progenitor cells migrated relatively short distances (Figure 

1C”, D”, purple); 2) Subsets of Sox10:eGFP-positive NCCs in the nasal cavity adjacent to the OE 

undertook longer migration paths (Figure 1C”, D”, blue, green, red) and ingressed into the OE to 

intercalate with placode-derived neurons. We next identified the spatial coordinates of every 

Ngn1:nRFP-expressing nucleus at 3’ time intervals in a dataset in which NC ingression into the OE at 

24-29.5 hpf was clearly visible (Video S2) and constructed vectors for the direction and magnitude of 

each cell’s displacement. As cells divided and differentiated, we followed and annotated all observed 

cell lineages and constructed average lineal vectors for Sox10:eGFP-positive (NC) and Sox10:eGFP-

negative (placodal) progenitors (Figure 2A). We limited our subsequent analysis to 63 NC-derived 

cells and 112 placode-derived cells that were clearly identified and grouped into 12 lineages and 20 

lineages, respectively. 

 

Algorithmic Training Using Lineal Tracks Yields Accurate Classification of Cell Types and 

Origins 

We first analyzed cellular displacements on all three embryonic axes: anteroposterior, dorsoventral, 

and lateromedial. We observed no spatial bias in the starting position of ingressing NCCs, and a 

principal components analysis indicated that 70%,16%, and 14% of the net displacement for NC-

derived cells occurred along the anteroposterior, dorsoventral, and lateromedial axes, respectively, as 

compared to 40%, 23%, and 37% for placode-derived cells. These results are consistent with the 

visually-established, predominantly anteroposterior motion of the cranial NC at these developmental 

stages (Saxena et al., 2013) and the more broadly distributed displacements of placodal derivatives. 
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We next asked whether quantitative characteristics of Ngn1:nRFP-positive cells’ motion could reliably 

distinguish between NC- and placode-derived cell populations independent of fluorescent marker 

specificity. Starting with our total Ngn1:nRFP-positive, dual-origin cell population, we manually 

selected the subset of cells that was Sox10:eGFP-positive and used these data to train an algorithmic 

cell classifier based on several combinations of cellular trajectory statistics (see Methods for details). 

However, every combination implemented correctly classified only 50% or less of cells (data not 

shown), a threshold not sufficient to be analytically useful. Therefore, we next attempted training with 

lineage trajectory statistics and found a dramatic improvement in classification. Our most robust 

automated classifier, based on anteroposterior net displacement, anteroposterior velocity, and 

dorsoventral net displacement, correctly categorized 87.5% (28/32) of lineages (both NC and placode) 

when benchmarked against our fluorescent-marker based identities. Thus, lineage-based tracks 

proved highly informative for the purposes of identifying NC or placode derivation based solely on 

spatiotemporal movement characteristics. 

 

Volatility Analysis Reveals Dynamically Distinct Subtypes of Neural Crest-Derived Lineages 

NCCs differentiate into a large number of cell types, and in the OE and surrounding nasal cavity, they 

give rise to sensory neurons and cartilage precursors, respectively (Dale and Topczewski, 2011; 

Saxena et al., 2013). Little is known about how and when the specification of these cell types occurs, 

but slight differences in cell positions and/or microenvironments could potentially influence NC 

behavior. Therefore, we performed a volatility analysis to test whether NC-derived lineages 

demonstrated heterogeneity in their behavior, wherein volatility is a measure of the dispersion of a 

displacement time series centered on a displacement trend value rather than the mean displacement. 

We constructed a novel approach to calculate volatility without making assumptions about the myriad 

molecular mechanisms or spatiotemporal distribution of signals that cells could be responding to and 

focused this analysis on a 90’ time span of data (24-25.5 hpf) when ingression of NCCs into the OE 

was rapid, frequent, and clearly visible. We defined displacement trends for each of the 12 NC-
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derived lineages as the net displacement over this 90’ window, calculated the volatility of the 

displacements around these trends, then calculated the volatility of each lineage with respect to the 

trends of other lineages (66 total pairings of trends with lineages), and devised a volatility score 

normalized to lie between -1 and 1, with negative scores representing greater adherence to a trend 

and positive scores representing a greater deviance, i.e. ‘dispersed’ behavior (Figure 2B-C). In order 

to rule out the possibility that a specific time window could present artifactual volatility, we calculated 

volatility scores over 10 overlapping time windows (Figure 2B). Strikingly, NC-derived lineages 

segregated into two distinct clusters (Figure 2C): a ‘trend’ cluster with low volatility (lineages 1-5) and 

an average normalized score over all time windows of -0.42; and a ‘dispersed’ cluster with high 

volatility (lineages 8-12) and an average normalized score over all time windows of 0.37. Lineages 6 

and 7 had intermediate volatility scores and could not be classified based on clustering alone.  

 

Further analysis of the two clusters revealed remarkably distinct properties of motion, with trend 

lineages exhibiting a far lower velocity than did dispersed lineages. Including these parameters 

allowed us to classify lineages 6 and 7 in the trend and dispersed clusters, respectively. The velocities 

for lineages 1-6 (trend) yielded an average value of 50.14+/-25.61 µm/min whereas those of lineages 

7-12 (dispersed) yielded a significantly different average value of 104.45 +/- 92.95 µm/min (p<0.02). 

Both the trend and dispersed populations exhibited oscillating variation in their velocities, and the 

dispersed cluster exhibited rapid speed fluctuations (as reflected in its wide standard deviation) that 

were not seen in the trend cluster (Figure 2D). In sum, the initial volatility analysis coupled with 

subsequent analyses of motion has illuminated previously unidentified subtypes of NCCs that ingress 

into the developing OE. 

 

Spatial Exclusion Exists Between Placode-Derived and Dispersed Neural Crest-Derived 

Lineages 

In addition to marked differences in volatility and rate of movement, we also identified differential 
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spatial characteristics for trend and dispersed NC lineages. Over the full time-course of our dataset, 

dispersed lineages were spatially clustered around the lumen of the OE (Figure 3A-D; Video S3), 

whereas trend lineages were anteriorly concentrated and diffused across the dorsoventral and 

lateromedial axes (Figure S1; Video S4). Intriguingly, dispersed lineages, in contrast to trend lineages, 

presented no spatiotemporal overlap with placode-derived lineages, i.e. the full analyzed time frame 

of migration had zero intersecting dispersed and placode-derived trajectories across both space and 

time (Figure 3A-D; contrast with trend lineages in Figure S1; Videos S3 and S4). These spatial 

exclusion data and the volatility analysis above, taken together, provide the first identification of two 

distinct subtypes of cranial NC-derived lineages and describe their unique behaviors and migration 

patterns during olfactory neurogenesis. 

 

Causal Analysis of Cellular and Lineal Trajectories Indicates Directed Information Between 

Lineage Types 

Moving beyond observational analysis, we wanted to determine if our novel identification of lineage 

subtypes and their quantitative characteristics would allow for unbiased predictions of behaviors and 

interactions. We first tested individual cell tracks for WGC, which provides statistical evidence of 

information-theoretic predictive relations between time series (Granger, 1969). In brief, a statistically 

significant finding of WGC between trajectories X and Y suggests that a prediction of Y’s position 

based on Y’s past values is improved by including X’s past values. As a whole, our WGC results for 

individual cell trajectories exhibited levels of statistical significance that spanned many orders of 

magnitude (Figure 4A), which made them difficult to interpret. Of interest, however, were specific 

trajectories with the most statistically significant WGC (p<0.001) that, upon visual comparison, were 

found to demonstrate similar patterns of motion in all four dimensions (Figure 4B). These results 

pointed to a limited but promising utility for WGC analysis on its own, but the ubiquity of statistically 

significant (p<0.05) WGC relations suggested that a more refined approach was needed in order to 

efficiently discern pattern relations between a large number of trajectories.  
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Given the previously described improvement in algorithmic discrimination between NC- and placode-

derived identities when shifting from cellular to lineage trajectories, we considered WGC relations 

between lineages (Figure 4C). This approach greatly reduced the fraction of WGC relations of 

statistical significance exceeding 95%. Restricting our attention to these statistically significant 

relations and taking advantage of the directed character of WGC relations (if time series X 

significantly predicts time series Y, time series Y need not predict Y), we calculated the asymmetry of 

WGC relations (Figure 4D) along the anteroposterior, dorsoventral, and lateromedial axes. These 

calculations provide an overview of the relative balance of predictive information flow along each 

analyzed axis. NC-derived dispersed lineages exhibited greater predictive information flow in relation 

to placode lineages at a ratio of 13:9; NC-derived trend lineages exhibited lesser predictive 

information flow in relation to dispersed lineages at a ratio of 6:7; NC-derived trend lineages exhibited 

predictive relation flow in relation to placode lineages at a ratio of 7:6. These findings suggest that the 

mechanisms responsible for the observed predictive relations of lineal motion may act in asymmetric 

ways on the different types of lineages and/or that the distinct properties of lineages generate 

asymmetric correlations from uniform mechanisms. 

 

Cointegration Reveals a Dynamic Stochastic Equilibrium of Lineal Displacements 

We next endeavored to fit the statistical dependencies revealed by WGC to a dynamical model that 

could help explain the coordinated migration and rearrangement of NC- and placode-derived cells. 

Given the sinusoidal patterning of lineal speeds (Figure S2A) and normal distributions of lineal 

displacements (Figure S2B), we applied cointegration, a variant of WGC analysis that statistically 

tests a model of dynamical equilibration based on a harmonic oscillator mechanism subject to 

normally-distributed perturbations. The finding of cointegration between two stochastic time series can 

be understood on analogy to ‘elastic tethering’: the time series will vary over time, but differences 

between cointegrated series tend to equilibrate around a mean separation distance, as if they are 

elastically tethered.  
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Since principal components analysis had indicated that NC migration during olfactory development is 

primarily anterior-posterior, we performed a cointegration test on the anterior-posterior component of 

cellular motion. We calculated cointegration relations between three types of trajectories: 1) non-

migrating, cartilage-fated NC cell trajectories in the nasal cavity as a negative control (n=10, Figure 

5A, ‘Stationary NC Cells (Control)’); 2) migrating placode- or NC-derived cell trajectories (n=66, Figure 

5A, ‘Placode and Mig. NCCs’); 3) placode- or NC-derived lineage trajectories (n=32, Figure 5A, 

‘Placode and Mig. NC Lineages’). Importantly, there was no statistically significant cointegration of 

non-migrating, cartilage-fated NCCs in the nasal cavity with respect to the other trajectories (Figure 

5A), as would be expected for this stationary control group of cells. We also found an absence of 

cointegration relations for migrating lineages in the nearby but separate olfactory bulb (data not 

shown), suggesting that our test is not producing non-specific cointegration. We next looked at 

individual cell trajectories and observed almost no statistically significant cointegration of time series 

(Figure 5A). Lineage trajectories, on the other hand, evidenced 49 pairs of lineages with statistically 

significant cointegration (p<0.05; Figure 5A, B). These results suggest that the mechanisms 

responsible for elastic tethering act with lineal specificity. Intriguingly, the cointegration relations 

exhibited by the previously identified trend and dispersed NC-derived lineages were highly distinct 

(Figure 5B, C). Trend lineages did not reach the threshold of 95% statistical significance for 

cointegration among themselves and were not significantly cointegrated with respect to dispersed and 

placode lineages. By contrast, multiple dispersed lineages were significantly cointegrated with each 

other and with placode lineages (Figure 5B, C).  

 

Based on our elastic tethering model, we calculated an elasticity coefficient for each lineage 

representing how deviations from the equilibrium separation between lineages are corrected. Taking 

into account the calculated distance between lineages at each time point, these elasticity coefficients 

enabled us to estimate the force exerted by statistically significant tethers on each individual lineage. 

These approximations were used to generate cumulative work estimates associated with the directed 
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movement of NC-derived lineages, producing values ranging from 0 to 40 units proportional to μJ 

(Figure 5D). A significant (p<0.0001) distinction between trend and dispersed NC lineages emerged, 

with trend lineages demonstrating a minimal accumulation of work (mean at final time point = -1.7 +/- 

1.2 units proportional to μJ) and dispersed lineages demonstrating a progressive accumulation of 

work (mean at final time point = 25.7 +/- 6.4 units proportional to μJ). These findings are consistent 

with our visual observations of steadily progressing ingression of NC lineages into the OE along the 

anteroposterior axis (Video S2). 

 

Discussion 

Here, we used high-spatiotemporal resolution imaging to view migratory behaviors of distinct cell 

populations in the zebrafish OE at a level of detail not previously possible, which in turn allowed us to 

accurately identify and track the movements of individual cells and their resulting cell lineages. Our 

analyses, which did not require in silico modeling but rather were built directly off of in vivo 

observations, yielded previously unknown patterns of progenitor multicellular movements, the 

categorization of newly identified subtypes of NCCs, and the identification of causal relationships 

between specific cells and lineages. Previous studies employing advanced imaging modalities have 

most often taken advantage of superior resolution to draw qualitative conclusions (Wang et al., 2014) 

or study quantitative phenotypes that were previously not discernible using lower-resolution modalities 

(Aguet et al., 2016). Our approach differs in that we have used the superior resolution of LLS to 

directly input into and enable statistical testing of a dynamical model.  

 

Pursuant to this goal, we employed multiple quantitative approaches that were inspired, in large part, 

by longstanding innovations in the study of econometrics and financial theory. One approach, WGC, 

has been previously applied to better understand nervous system function and activity (Bressler and 

Seth, 2011) but not, to our knowledge, to study nervous system development. Our multipronged 

strategy included algorithmic cell and lineage type discrimination based on statistical pattern 
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classification, mean-variance volatility analysis, WGC, and cointegration, cumulatively yielding new 

insights into progenitor cell dynamics during olfactory neurogenesis. These analyses produced 

several noteworthy quantitative findings: dynamical information is concentrated in lineal positions and 

velocities rather than in individual cell data; there are two dynamically distinct subtypes of ingressing 

NCCs; the predictive relations between the placode lineages and the two types of NCC lineages are 

quantitatively non-equivalent; and there is strong statistical evidence that NC ingression stochastically 

equilibrates about a mean trend of motion.  

 

The improvement in performance of our automated cell classifier, WGC analysis, and cointegration 

tests upon using lineage data suggests that cell lineage behavior is more informative than individual 

cellular data of in vivo multicellular behavior during olfactory development. This supposition is 

consistent with the idea that the quantitative fingerprint of any single cell-level mechanism is likely to 

be obscured by factors such as the heterogeneity of cellular microenvironments and spatial variability 

in individual cells’ responsiveness to signals. Thus, the aggregate measurements provided by lineage 

analysis can illuminate collective cell dynamics more robustly than can individual cell measurements, 

analogous to how econometrics can illuminate aggregate economic quantities.  

 

The two new subgroups of cranial NC that we identified, trend and dispersed, behave differently with 

respect to placode-derived cells as evidenced by spatial exclusion, causal relations, and 

cointegration/elastic tethering analyses. The curious observation of spatiotemporal exclusion between 

dispersed and placode-derived trajectories (in contrast to that between trend- and placode-derived 

trajectories) suggests an additional level of complexity in the coordination of NC ingression and 

placode rearrangement. Our observations of statistically significant cointegration relations between 

time series of lineal motion provide strong statistical support for the claim that NC ingression exhibits 

a dynamic stochastic equilibration (elastic tethering) around a trend of motion and offer indirect, fate-

mapping independent evidence of an NC contribution to OSNs. 
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Given the stochastic nature of embryonic development, single-cell comparisons in vivo are difficult to 

make, whereas comparative multicellular behavior, analogous to viewing a large wave rather than a 

single ripple, can move forward our understanding of system-wide biology. The results presented 

here, obtained via unbiased mathematical analyses, reveal a highly dynamic interplay among different 

progenitor cell types during the formation of the olfactory system. This multilineage coordination and 

causality had remained undetected using traditional methodologies, and our findings of dynamical 

distinctions between ingressing NC lineages and of new behavioral phenomena were made possible 

by converting high-spatiotemporal resolution imaging into numerical values that were fed into complex 

algorithms deployed to advance an understanding of system-wide in vivo data. Moving forward, this 

general approach offers an algorithmic toolkit for probing multicellular coordination and, if applied to 

genetic perturbations, may help elucidate causal mechanisms in vivo via the discrimination of subtle 

spatiotemporal phenotypes. 
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Figure 1 

 

Figure 1. Imaging and tracking of progenitor cells and neurons in the developing zebrafish 

olfactory epithelium.  

(A) Representative examples of confocal and LLS imaging of the olfactory epithelium in live zebrafish 

embryos; cytoplasmic Tg(-4.9Sox10:eGFP) (green) marks cells with an NC origin and nuclear Tg(-

8.4neurog1:nRFP) (red) marks neuronal fate specification. (B) LLS imaging of the developing 

olfactory epithelium over 16 hours yields visibly normal development of microvillous 

(Tg(TRPC24.5k:gap-Venus), green) and ciliated (Tg(OMP2k:lyn-mRFP), red) olfactory sensory 

neurons and their axonal projections to the olfactory bulb. (C-D”) Anterior (C-C”) and dorsal (D-D”) 

views of a Tg(-8.4neurog1:nRFP) dataset marking neuronal progenitors and neurons in the olfactory 

epithelium and bulb. (C’, D’) Migration tracks (grey) for all Tg(-8.4neurog1:nRFP)-positive cells at 24-

30 hpf.; a subset of tracks are color-coded by displacement length in (C”, D”), with warmer colors 

representing longer displacements of putative NCCs. Scale bar: 10 μm. 
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Figure 2 

 

Figure 2. Volatility analysis of neural crest lineages with respect to average displacements 

identified two subpopulations of neural crest cells with differential migratory behavior. 

(A) Diagram outlining the trajectories of cells vs lineages. Individual cells were categorized into 

lineages using Imaris software’s ‘ImarisTrackLineage’ functionality. Lineal distributions were 

constructed from individual time series by averaging the positions of all cells from each lineage at 
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each time point. (B) Volatility scores for each NC lineage, calculated for 10 consecutive 60’ time 

windows, shifted by 3’ increments, at 24-25.5 hpf. Average lineal positions for every pair of NC 

lineages (12 lineages, 66 pairs) were calculated. The volatility score (square root of mean squared 

displacement from pairwise trend) was calculated for each lineage. Volatility clustering appears robust 

to time-window shifting. (C) Sum of volatility scored values for each NC lineage demonstrating a 

distinctive bias towards negative scored values, indicating low volatility, for trend lineages and a 

distinctive bias towards positive scored values, indicating high volatility, for dispersed lineages. (D) 

Average speed of the two clusters of neural crest lineages demonstrating the significantly lower 

average speed of trend lineages compared to dispersed lineages.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

https://3.basecamp.com/3681125/blobs/08c69fee-1d0a-11e8-b216-a0369f6beb07/download/LLSpaper_trajectories_v4-04-04.jpg
https://3.basecamp.com/3681125/blobs/08c69fee-1d0a-11e8-b216-a0369f6beb07/download/LLSpaper_trajectories_v4-04-04.jpg
https://3.basecamp.com/3681125/blobs/08c69fee-1d0a-11e8-b216-a0369f6beb07/download/LLSpaper_trajectories_v4-04-04.jpg


20 
 

Figure 3 

 

 

Figure 3. Spatial Exclusion of Dispersed Neural Crest Lineages and Placode Lineages.  

(A, C) Lateral views of the olfactory epithelium showing trajectories of individual dispersed NC (blue) 

and placodal (white) lineages at 24-29.5 hpf. (B, D) 90 degree rotations of views shown in (A, C). 

Dispersed NC and placode trajectories do not overlap during the full 5.5 hours time span examined, 

whereas trend trajectories (Figure S1) do. Orientation arrows: A, anterior; P, posterior; D, dorsal; V, 

ventral; L, lateral. Scale bars: 15 µm. 
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Figure 4 

 

Figure 4. WGC Analysis Facilitates Selection of Qualitatively Similar Cell Tracks and Provides 

Evidence of Direction of Predictive Information Flow Between Lineages. 

(A) Heat map indicating WGC relations between 250 cellular trajectories analyzed pairwise at 24-25.5 

hpf, color-coded by level of statistical significance. (B) Selected cell tracks related by WGC causality 

at >99% statistical significance; asterisk indicates the WGC ‘predictively causal’ track, while the other 

tracks are ‘effectors’ with similar spatiotemporal migration profiles. (C) Heatmap indicating WGC 

relations between all analyzed lineal trajectories in dataset at 24-25.5 hpf, color-coded by level of 

statistical significance. (D) Apparent directed flow of predictive information as quantitatively evidenced 
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by the heatmap in (C). Predictive information from trend and dispersed lineages to placode lineages is 

not symmetric; instead, more predictive information flows from the neural crest lineages to the 

placode as compared to the reverse flow. Orientation arrows: A, anterior; P, posterior; D, dorsal; V, 

ventral. Scale bar: 10 µm. 
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Figure 5 

 

Figure 5. Cointegration enables quantitative identification of patterns of statistical dependency 

between lineal trajectories.  

(A) Heat map of the outcome of cointegration tests. Red/black coloring corresponds to higher/lower 

values of the F-statistic generated by the cointegration test, color-coded by statistical significance. 

Rows and columns represent trajectories at 24-25.5 hpf for Stationary NC cells (Control; all null) in the 

nasal cavity; placode and migratory NC cells; or placode and migratory NC lineages. The top right 

region of (A) is expanded in (B) to demonstrate the F-statistic for each pair of analyzed lineages 
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segregated by lineage type. (C) Trend NC lineages are not cointegrated at >95% with any NC 

lineages and are cointegrated at >95% with 2 placode lineages, whereas dispersed NC lineages are 

cointegrated with 4 dispersed NC lineages and 13 placode lineages at >95%. Additionally, placode 

lineages are cointegrated at >95% with 15 placode lineages. (D) Cumulative work (in units 

proportional to micro-joules) for each NC lineage done along the anterior-posterior axis by the sum of 

all the elastic tethers implied by the cointegration relations over 72’. Trend NC lineages demonstrate a 

minimal accumulation of work (mean across all trend lineages at final time point = -1.7 +/- 1.2 ∝μJ, p = 

0.05), whereas dispersed NC lineages demonstrate a progressive accumulation of work (mean across 

all dispersed lineages at final time point = 25.7 +/- 6.4 ∝μJ, p = 0.05). Cointegration half-life analysis 

confirms that trend and dispersed NC lineages exhibit differential migratory behavior. 
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Supplementary Material: 

 

Figure S1. Related to Figure 3. Trend Neural Crest and Placode Lineages. 

(A) Lateral view of the olfactory epithelium showing trajectories of individual trend neural crest (red) 

and placode (white) lineages at 24-29.5 hpf. (B) 90 degree rotation of view shown in (A). Trend 

trajectories are not uniform in terms of spatiotemporal overlap with respect to placode trajectories. 

Orientation arrows: A, anterior; P, posterior; D, dorsal; V, ventral; L, lateral. Scale bars: 15 µm. 
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Figure S2. Related to Figure 4. Wiener-Granger Causal Analysis and Descriptive Statistics. 

(A) Speed of a representative pair of correlated lineages over time indicating harmonic oscillation. 

Average speed of an NC lineage (green, speed on the left y axis) and a placode lineage (orange, 

speed on the right y axis). These lineages are termed ‘correlated’ because they were related by 

Wiener-Granger causality at a high level of statistical significance (p<0.001). (B) Lineage 

displacement histogram presenting the distribution of averaged 3’ displacements over a 300’ window 

of observation (24.5-29.5 hpf) for NC (green) and placode (orange) lineages. Displacement vectors for 

each lineage have been sorted by bins of 40 μm. Negative values are anterior, positive values are 

posterior. The majority of values in the 0-40 µm bin for placodes is concentrated near a zero 

displacement, consistent with a relatively unbiased stochastic mechanism. 
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Video S1. Related to Figure 1. Example of lattice light-sheet imaging of neural crest ingression 

into the olfactory epithelium. 

Four different views are shown at nearly isotropic resolution of ~6.6 hours of olfactory development 

with 3’ time points. Tg(OMP2k:lyn-mRFP marks ciliated OSNs and Tg(TRPC24.5k:gap-Venus) marks 

microvillous OSNs. 

 

Video S2. Related to Figures 2-5. Algorithmically generated tracks of neural crest- and 

placode-derived cells during development of the olfactory epithelium. 

Cellular nuclei, marked by Tg(-8.4neurog1:nRFP), were used to determine positions of cells and 

tracks representing each cell’s motion. Shown and analyzed is a duration of 24-29.5 hpf. 

 

Video S3. Related to Figure 3. 

Cellular trajectories of placode-derived cells (white) and NC-derived cells (blue) from lineages 

categorized in the volatility analysis as dispersed. Note the distinctive lack of overlap between 

placode- and NC-derived trajectories. Shown and analyzed is a duration of 24-29.5 hpf. 

 

Video S4. Related to Figure S1. 

Cellular trajectories of placode-derived cells (white) and NC-derived cells (red) from lineages 

categorized in the volatility analysis as trend. Contrast with Video S3; unlike dispersed trajectories, 

trend trajectories do overlap with placode-derived trajectories. Shown and analyzed is a duration of 

24-29.5 hpf. 
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Supplemental Table 1 

Supplemental Table 1: Analytical Inventory 

Technique Purpose Utility Requirements Findings 

Exploratory Data 
Analysis  

Illuminate statistical 
features of 
displacement data. 

Inform model 
selection choice 
based through 
evidence indicating 
useful quantitative 
treatment of 
variables. 

Acceptable 
optimization of 
trade-off between 
accuracy and 
precision. 

Displacements are 
normally distributed, 
and speed variation is 
correlated between 
the neural crest and 
placode. 

Algorithmic 
Pattern 
Classification 

Assessment of 
extent to which 
computational 
statistical analysis 
of data can support 
a qualitative 
discrimination. 

Provides support 
for the quantitative 
treatment of 
variables supported 
by exploratory data 
analysis. 

Informed choice of 
a statistical pattern 
classification 
method. 

Algorithmic 
discrimination 
between neural crest 
and placode cell 
identities performed 
much better with 
lineal than cellular 
data. 

Volatility 
Analysis 

Similar to standard 
deviation, except 
centered around a 
trend displacement. 

Provides evidence 
of the dispersal of a 
set of sample 
displacements 
around a trend of 
motion. 

Roughly normally 
distributed samples. 

Neural crest-derived 
lineages clustered 
into two distinct 
groups, one highly 
volatile and one 
comparatively non-
volatile. 

Wiener-Granger 
Causal Analysis 

Detection of 
predictive relations 
between 
trajectories. 

Provides indirect 
evidence of 
mechanism 
coordinating 
motions of cells. 

Linear dynamical 
mechanism of 
coordination. 

Asymmetric relations 
of predictive 
information 
dependence between 
placode, NC ‘trend’ 
and NC ‘dispersed’ 
clusters of lineages. 

Cointegration 
Test 

Dynamically 
equilibrating vector 
error-correction 
model. 

Provides evidence 
of the extent to 
which a pair of time 
series exhibit a 
pair-wise 
relationship that is 
subject to 
dynamical 
equilibration. 

Frequently sampled 
measurements. 

The motion of neural 
crest- and placode-
derived lineages 
appears coordinated 
such that an average 
separation is 
maintained. 
Stochastic shocks are 
corrected as if by a 
spring mechanism. 
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Methods 

Zebrafish 

Animals were treated and cared for in accordance with the National Institutes of Health Guide for the 

Care and Use of Laboratory animals and under the protocols of the Institutional Animal Care and Use 

Committee of HHMI Janelia Farm. Embryos were grown, staged, selected for transgenic markers, and 

treated to inhibit pigmentation as previously described(Kimmel et al., 1995; Rajan et al., 2018). 

Transgenic lines used were: Tg (-4.9sox10:eGFP) (Wada et al., 2005) = Sox10:eGFP; Tg(-

8.4neurog1:nRFP) (Blader et al., 2003)= Ngn1:nRFP; Tg(OMP2k:lyn-nRFP)/rw035 (Sato et al., 2005); 

Tg(TRPC24.5k:gap- Venus)/rw037 (Sato et al., 2005). Zebrafish matings yielded compound 

heterozygote embryos for experiments. 

 

Live Imaging  

Imaging preparation for confocal time-lapse imaging was done as previously described(Rajan et al., 

2018). Imaging preparation for LLS imaging was done as previously described (Chen et al., 2014), 

with the following modifications: Embryos were embedded in 0.3% low-melting agarose (Sigma-

Aldrich A4018) prepared in 30% Danieau solution with standard working concentrations of tricaine 

anesthetic and N-phenylthiourea (to prevent pigmentation) and suspended in 30% Danieau 

maintained at 28.5°C. Prior to and during experimentation, embryo staging was carefully monitored. 

Imaged embryos were compared to embryos embedded in .3% agarose but not imaged and to 

embryos that had remained in egg water. No discernable developmental delay or evidence of 

phototoxicity was observed in the olfactory organs of imaged embryos as compared to control groups 

(data not shown). Even in extreme cases of longer time-lapse imaging such as that shown here 

(Figure 1B) after 16 hours of continuous imaging with 3’ time points, only a slight truncation of the 

posterior tail region of the embryo was observed and was likely due to our mounting methodology that 

placed greater constraint upon that region as opposed to the anterior region of interest. Shorter time-
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lapses did not yield this truncation. Several hours after returning imaged embryos to egg water, 

imaged and control embryos were indistinguishable from each other and grew normally. 

 

Data Conversion and Analysis 

Cell movements were tracked in Imaris Software (Bitplane, Inc.) using the Spots function. Raw tiff files 

were either analyzed directly or first registered and deconvoluted to correct for drift and background, 

respectively. Drift correction was implemented using Imaris 8.2.1. Tracking of cell trajectories and 

determination of lineal relationships was implemented using Imaris 8.3.1 through the 

‘ImarisTrackLineage’ functionality. This construction of trajectories resulted in 250 cellular trajectories 

(63 NC-derived, 112 placode-derived, and 75 in the olfactory bulb) and 32 lineal trajectories in the OE 

(12 NC-derived and 20 placode-derived). There are two possible interpretations of individual lineage 

tracing results (Figure 2A). Lineages can be interpreted as traces of cell divisions or as spatial 

clustering of cell tracks that were within the lineage tracing algorithm’s threshold for lineal 

categorization. Either determination is compatible with our subsequent analysis of the dynamical 

patterning of cell migration and rearrangement. For effectively tracked cell divisions, our results 

provide evidence of lineally-specific dynamical patterning; otherwise, the results provide evidence of 

spatially-specific dynamical patterning. 

 

Analysis Methodology 

Supplemental Table 1 provides a summary of employed econometric and finance-theoretic 

quantitative analysis methodology, including each technique’s purpose, utility, data requirements, and 

findings. The following sections discuss each method in detail. 

 

Principal Components Analysis and Histograms 

A principal components analysis (PCA) generates a representation of the data in new coordinates, 

which are linear combinations of the original coordinates. These coordinates are uncorrelated and 
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sequentially account for as much variance in the data as possible. We performed PCA on cellular (63 

NC-derived and 112 placode-derived) and lineal (12 NC-derived and 20 placode-derived) trajectories 

using Matlab. Histograms of cellular and lineal distributions of displacement were constructed using R. 

Lineal distributions were constructed from individual time series by averaging the positions of all 

descendants of cells in existence at the beginning of imaging. Analyses of the distribution of cellular 

and lineal displacements along the three axes suggested that cellular trajectory data was less 

analytically revealing than lineal data (a Kolmogorov-Smirnov test, used to test for normality of a 

distribution, indicated normality of lineal, as opposed to cellular, displacement distributions; data not 

shown).  

 

Automated Cell Lineage Categorization 

A maximum a posteriori pattern classifier was constructed based on training data associated with the 

175 cellular and 32 lineal trajectories in the OE, with lineages manually identified as either NC- or 

placode-derived based on fluorescent markers. The classifier categorized lineages based on 

minimizing the Mahalanobis distance between measurements of N types to N-dimensional Gaussian 

distributions fit to each category based on training data. The categories considered were velocity and 

acceleration on each anatomical axis, start to finish distance and displacement, mean squared 

displacement, and coefficient of variation of velocity and acceleration. These calculations were 

implemented in Matlab. Optimal performance was attained when anteroposterior axial net 

displacement, anteroposterior axial average velocity, and dorsoventral axial average velocity were 

used as the measurement types. 

 

Wiener-Granger causality, Cointegration, and Volatility 

Average lineal positions and velocities were calculated using Matlab scripts. Since we sought to 

statistically assay causal relations between cellular trajectories, we deployed a particular type of 

Wiener-Granger causality (WGC) test. Informally, WGC is said to exist between time series X and Y 



32 
 

when an estimator predicts future values of X better when it is given the past values of X and the past 

values of Y than when it is given the past values of X alone. This mathematizes the intuitions that 

causes should precede effects and that knowledge of causal variables improves retrodictability of 

effectors (Granger, 1969). A significant difficulty in interpreting the results of WGC analysis in general 

is the problem of spurious correlation, i.e. it is possible for artefactual structures in data to lead to 

apparently statistically significant findings of WG causality despite the absence of an actual 

mechanism relating the structures. To rule out spurious correlations, we focused on a restricted 

version of WGC analysis by employing statistical tests of cointegration. Cointegration tests were 

deemed appropriate given the approximate normality of lineal anteroposterior displacement 

distributions. This was determined through construction of histograms with bin width of 40 μm (Figure 

S3B). The normality of this distribution indicated the plausibility of a model based on a stochastic 

ordinary differential equation model that couples a deterministic process to a stochastic process. In 

the case of cointegration, the deterministic process is the vector error-correction function acting on 

anteroposterior displacements, while the stochastic process is the source of random perturbations to 

the equilibrium trend. More formally, wide-sense stationary time series of order N for which a (wide-

sense) stationary linear combination exists of order strictly less than N are termed cointegrated. 

Informally, time series are cointegrated when their fluctuations are consistent with the action of either 

a common trend or an equilibrating, spring-like mechanism acting on both of them to maintain a 

common separation or “spread” (this result is known as Wold’s Theorem, (Wold, 1954)).  

 

Cointegration relations were computed between 34 time series representing the average position of a 

given cell lineage (12 epithelium-directed NC; 2 bulb-directed NC; 20 epithelial placode), 10 individual 

cell trajectories of non-migrating NCCs in the cavity, and 66 individual motile cell trajectories (20 

epithelium-directed NC; 4 bulb-directed NC; 42 epithelial placode; not all of the 175 cellular 

trajectories in the OE were subject to cointegration analysis because some did not have continuous 

data during the time window of analysis or exhibited tracking errors that were qualitatively discernible). 
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Cointegration relations were analyzed using Johansen’s statistical test (Johansen, 1991) as 

implemented in the freely available R package urca (maintained by Bernhard Pfaff). Heat maps were 

constructed in MatLab. 

 

Volatility was deployed as a statistical measure of the dispersion of displacements about a 

displacement trend. The calculation is identical to a standard deviation calculation, except the 

residuals are computed with respect to the displacement trend rather than the displacement mean. 

Volatility was calculated using Matlab scripts. 

 

Cumulative Work Calculation 

The urca package provided half-life estimates for each pairwise cointegration relation. These half-lives 

were converted into spring coefficients associated with the interpretation of cointegration as a first-

order linear equilibrating mechanism subject to stochastic perturbations. The first-order models were 

treated as representations of hypothetical elastic tethers acting on lineal trajectories, with the average 

separation between pairs of lineages interpreted as the equilibrium separation associated with the 

elastic tether. We restricted our attention to placode-NC lineage pairs, since these appeared highly 

statistically significant and indicated a previously undescribed modality of interaction between two 

subpopulations. The anterior-posterior displacement of each NC lineage was treated as an oriented 

distance. The dot product of this oriented distance and the force associated with separation from 

equilibrium for each pairing of a given NC lineage with each placode lineage was calculated, and the 

total was interpreted as a proxy for the net biophysical work done by the hypothetical elastic tether. 
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