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Abstract:  Adaptive  behavior  in  even  the  simplest  decision-making  tasks  requires

predicting  future  events  in  an  environment  that  is  generally  nonstationary.   As  an

inductive  problem,  this  prediction  requires  a  commitment  to  the  statistical  process

underlying  environmental  change.   This  challenge  can  be  formalized  in  a  Bayesian

framework as a question of choosing a generative model for the task dynamics.  Previous

learning  models  assume,  implicitly  or  explicitly,  that  nonstationarity  follows  either  a

continuous diffusion process or a discrete changepoint process.  Each approach is slow to

adapt when its assumptions are violated.  A new mixture of Bayesian experts framework

proposes separable brain systems approximating inference under different assumptions

regarding the statistical structure of the environment.  This model explains data from a

laboratory foraging task,  in  which rats  experienced a change in reward contingencies

after pharmacological disruption of dorsolateral (DLS) or dorsomedial striatum (DMS).

The data and model suggest DLS learns under a diffusion prior whereas DMS learns

under  a  changepoint  prior.   The  combination  of  these  two  systems  offers  a  new

explanation for how the brain handles inference in an uncertain environment.

One Sentence Summary:  Adaptive foraging behavior  can be explained by separable

brain  systems  approximating  Bayesian  inference  under  different  assumptions  about

dynamics of the environment.
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Main Text:  Everyday life constantly forces humans and other animals to predict

future states of our environment,  often based on limited data.   For example,  animals

foraging for food must choose among different locations in order to achieve the highest

ratio  of energetic gain to cost.   This decision entails  a  form of induction,  using past

experience to infer the probability of finding food at each possible location.

Bayesian inference provides a normative framework for predicting future events

from past experience.   Most applications of Bayesian inference test  hypotheses about

latent  variables  in  the  environment,  which  are  probabilistically  related  to  observable

outcomes.  In the case of foraging, this process can provide a posterior probability that

food will be available at each location, given the currently available data from past visits.

Bayesian models of cognition have been successful in recent years at explaining human

reasoning and decision-making as optimal inference in a variety of complex cognitive

tasks,  including  language  processing  and  acquisition  (1),  word  learning  (2),  concept

learning (3), causal inference (4), and deductive reasoning (5).

However,  Bayesian  inference  by  itself  is  not  a  complete  solution  to  inductive

problems.  The general problem of induction is that it is logically impossible to make

predictions without  committing to  some a priori,  experience-independent  assumptions

about how the world works (6, 7).  For any inductive algorithm, there exist environments

in  which  it  will  fail  catastrophically  (8,  9).  Therefore,  making approximately  correct

assumptions about which processes generate the observable data is critical for successful

prediction.  In the context of Bayesian inference, the classical problem of induction is

formalized as a problem of selecting the right hypothesis space and prior distribution, or

equivalently  a  generative  model.   A generative  model  is  a  specification  of  latent

3

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/591818doi: bioRxiv preprint 

https://doi.org/10.1101/591818
http://creativecommons.org/licenses/by-nc/4.0/


(unobservable)  random  variables  together  with  assumptions  about  their  probabilistic

causal relationships to the observable data.  Most Bayesian models of cognition impute

rich generative models to the minds of subjects without addressing the hard question of

how the brain selects them over other alternatives (10, 11).

Recent  research  offers  two proposals  for  how the  brain  deals  with  uncertainty

about the latent causal structure in the environment.  One approach argues that Bayesian

optimality  is  unattainable  outside  of  “small  worlds”  where  the  space  of  possible

generating  processes  is  constrained  (12),  and  that  instead  the  brain  relies  on  simple

algorithms that  are  robust  to  this  type  of  uncertainty  (13).  A second approach uses

hierarchical  inference  over  many  layers  of  representations,  with  extremely  abstract

processes at the top layers that can generate a wide variety of different structures at the

lower layers (14, 15).  

We propose a third possibility, in the tradition of multiple-systems or mixture-of-

experts  models  of  learning  (16,  17),  in  which  different  brain  systems  approximate

Bayesian  inference  with  respect  to  different  generative  models.   A  computational

advantage of this mixture of Bayesian experts (MBE) architecture, relative to the second

possibility just mentioned, is that the assumptions made by each system might be fairly

simple and amenable to efficient  approximate implementation.  Under  this  division of

labor, the brain could effectively hedge its bets and succeed in tasks that obey different

types of dynamics.

We apply the MBE framework to the foraging domain, where a primary challenge

for making effective predictions comes from nonstationarity of resource availability at

each location.   We consider two simple assumptions the brain might make about  the

4

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/591818doi: bioRxiv preprint 

https://doi.org/10.1101/591818
http://creativecommons.org/licenses/by-nc/4.0/


temporal  structure  of  this  nonstationarity,  both  of  which  are  suggested  by  previous

models of learning and by neurophysiological data.   First,  reward probability at  each

location could be generated by a diffusion process, characterized by continuous stochastic

change over time, following a variant of Brownian motion (Figure 1A).  Second, reward

probability at each location could be generated by a  changepoint process, characterized

by a step function with periods of stationarity interrupted by abrupt jumps (Figure 1B).

Bayesian inference under these two assumptions produces qualitatively different patterns

of behavior, with each outperforming the other when its assumptions are met (Figure 1C).

Both  diffusion  and  changepoint  processes  are  arguably  common  in  foraging

environments and other natural learning tasks.  Whether food is available at a location

may be affected by random visits from many other foraging individuals, or other small

perturbations, producing diffusion dynamics.  On the other hand, climate changes or other

large discrete events may cause sudden changes in the availability of food, producing

changepoint  dynamics.   Economic  models  of  prices  in  financial  markets  have  also

converged  on  these  two  classes  of  stochastic  processes  as  important  for  modeling

nonstationarity (18).  

Two broad classes of models for human and animal learning correspond closely to

inference  under  the  assumptions  of  diffusion  and  changepoint  environments.   First,

models  founded  on  correcting  prediction  error,  including  classical  models  of  human

probability  learning  (19)  and  animal  conditioning  (20),  as  well  as  the  modern

computational framework of reinforcement learning (21), implicitly assume continuous

random drift  in environment  parameters and thus approximate optimal  inference with

respect to a diffusion process.  Second, recently developed models of sequential effects in
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learning (22, 23) and of learning in artificial changepoint tasks (24, 25) are explicitly cast

as Bayesian inference assuming a changepoint process.  Algorithmically, these models

can be implemented by particle filters that maintain hypotheses about the current state of

the  environment,  with  hypotheses  (particles)  being  abandoned  when  they  are  too

inconsistent with new observations (24).  Thus these models are also similar to older

hypothesis-testing models such as win-stay lose-shift (26). 

Existing  behavioral  neuroscience  data  suggest  the  brain  may  have  developed

separable  systems  supporting  these  two  approaches  to  learning  in  nonstationary

environments, each involving a distinct subregion of dorsal striatum (27-29). The first of

these regions, dorsolateral striatum (DLS), is interconnected with motor cortices and is

thought to gradually learn the probability of reward associated with different response

alternatives through reinforcement learning (30, 40).  The second region, dorsomedial

striatum  (DMS),  is  interconnected  with  prefrontal  cortical  (PFC)  areas  involved  in

working memory.  Computational models of the interaction of these two regions suggest

DMS  gates  the  updating  of  working  memory  representations  in  PFC  (31),  thus

implementing the type of discrete hypothesis updating needed for changepoint detection

(24).   We  therefore  hypothesized  that  the  dorsal  striatum  participates  in  an

implementation of the MBE architecture proposed above, with the DLS approximating

Bayesian  inference  under  the  assumption  of  diffusion  dynamics  and  the  DMS

approximating Bayesian inference assuming changepoint dynamics.

We  formalized  this  proposal  as  an  idealized  computational  model  comprising

separate systems performing these two forms of Bayesian inference (see Supplementary

Material).  Each system maintains estimates of the current reward probability for every
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available action, and action selection is guided by these estimates.  We predicted that

when DMS functioning is  impaired,  behavior will  be well  described by the diffusion

model alone (i.e., by inference assuming a diffusion process in the environment), and that

when DLS functioning is impaired, behavior will be well described by the changepoint

model alone.  In an intact subject, we predicted both systems to contribute to behavior.  In

this case we assume normative integration of the predictions from the two subsystems,

which entails  a  hierarchical  model  in  which each subsystem’s  prediction  is  weighted

according to how well it has predicted recent outcomes (formally, likelihood-weighted

averaging  with  a  recency  bias;  see  Figure  1D  and  Supplementary  Material).   This

integration  would  allow  the  brain  to  infer  the  relative  prevalence  of  each  type  of

dynamics in a given context and to act accordingly.

Results
We applied our framework to data from a recently published study indicating that

DLS and DMS play distinct roles in adaptation to changes in reward contingency (27).  In

this experiment, rats were trained to press two levers for reward on a concurrent variable-

interval  (VI)  schedule,  in  a  laboratory  analog  of  foraging  environments.  The  VI

scheduled was defined such that, after each time a reward was received from pressing a

lever, that lever was nonrewarding for a variable amount of time, drawn from a uniform

distribution ranging from 0 to T seconds.  In phase 1 of the experiment, rats were trained

on the same set of contingencies for 6 consecutive sessions.  During this training, one

lever followed a more favorable schedule than the other (T = 20 s vs. 80 s).  One day after

the last training session, either the zeta inhibitory peptide (ZIP) or saline was infused into

either the DMS or the DLS.  Previous research suggests that ZIP infusion should erase
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any task-relevant memory from the infused region, by inhibiting the putative memory-

maintenance protein kinase C isozyme protein kinase Mζ (PKMζ) (32).  

Two  days  after  the  infusion,  the  rats  were  tested  on  their  adaptation  to  a

contingency  change  (phase  2).   The  lever  that  had  been  associated  with  the  more

favorable schedule was now associated with the less favorable schedule, and vice versa.

The results of the experiment showed that if ZIP was infused into the DMS, rats adapted

to the contingency shift more slowly than did the saline controls.  On the other hand, if

ZIP was infused into the DLS, rats adapted to the contingency shift more rapidly than did

the controls (Figure 2A).  

We hypothesized that these differences in the rats’ rates of adaptation are the result

of the ZIP-DMS group behaving more in accordance with diffusion-based inference, and

the ZIP-DLS group behaving more in accordance with changepoint-based inference (cf.

Figure 1C).  Specifically, microinfusions of ZIP into either dorsal striatal region should

cause  that  region  to  “forget”  how  to  support  reward  prediction  in  this  task  (27).

According  to  the  model,  the  poor  predictive  performance  of  this  system  causes  its

predictions  to  be  effectively  ignored  due  to  the  likelihood-weighted  averaging in  the

MBE framework. Thus behavior is dominated by the predictions of the other (intact)

system. 

To test this explanation, we fit each of three models to the complete sequence of

lever presses of each individual rat from phases 1 and 2 (see Supplementary Material for

details).  The full model assumed that both diffusion- and changepoint-based inference

systems were operational throughout the experiment, with their predictions combined by

likelihood-weighted averaging to determine behavior.  The diffusion model assumed both
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systems were intact and influencing behavior in phase 1, but that behavior in phase 2 was

controlled by the diffusion system alone (to simulate the effects of microinfusion to the

DMS).  Likewise, the changepoint model assumed both systems were intact in phase 1,

but that behavior in phase 2 was controlled by the changepoint system alone (to simulate

the effects of microinfusion to the DLS).  Although the models differed only in phase 2, it

was important to simulate them on both phases so that the prior distributions at the start

of phase 2 were determined by the animal’s experience during phase 1.

As predicted, the ZIP-DLS group was fit best by the changepoint model, the ZIP-

DMS group was fit best by the diffusion model, and the control groups were fit best by

the full model (Table 1 & Figure 2B).  Data and model predictions for example subjects

in each group are shown in Figure 2C. 

Conclusions
Any computational process for learning, or for predicting future outcomes from

past experience, will only be successful insofar as it matches the statistical structure of

the environment in which it is implemented.  Bayesian formulations of learning make this

dependence explicit, but it is just as true for models specified directly at an algorithmic

level.  The question of how the brain develops or selects hypotheses about the structure of

the  environment  has  received  much  less  attention  than  question  of  how  learning

progresses given those hypotheses.  Here we have proposed the brain follows a divide-

and-conquer  strategy,  as  formalized in  the MBE framework,  in  which different  brain

systems approximate optimal inference with respect to different generative models.  The

assumptions of each system might be quite simple, as with the diffusion and changepoint

dynamics for action-reward contingencies in the foraging model described here.  
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It is interesting to note that, at a fine temporal scale, neither component of the

present model matches the actual structure of the task environment in the experiment

modeled  here.   The  uniform distribution  used  in  the  VI  schedule  causes  the  reward

probability for each action to increase linearly as a function of time since the last reward,

a dependence not captured by either the diffusion or the changepoint submodel. Previous

analysis of behavior in concurrent VI tasks indicates that animals are not sensitive to this

type of local  timing information (33),  thus supporting the assumptions  of our model.

These  observations  highlight  the  fact  that  probabilistic  rational  models  of  human  or

animal  behavior  need  not  be  founded  on  the  actual  statistical  structure  of  a  task

environment, but might be more fruitfully applied to what the brain (or a subsystem)

believes that structure to be.

The  hierarchical  portion  of  the  present  model  may  also  explain  previous  data

showing  that  rats  adapt  to  experimenter-induced  changepoints  more  quickly  if  past

changepoints were encountered frequently than if reward contingencies were constant for

several training sessions (25).  According to the model, past changepoints increase the

predictive  performance of  the  changepoint-inference  system relative  to  the  diffusion-

inference  system,  so  that  more  weight  is  given  to  the  former  system in  subsequent

decision-making.

Part  of  the  value  of  this  framework  lies  in  the  linkage  of  computational,

algorithmic,  and  implementational  explanations  (34).   Specifically,  it  offers  a

computational-level perspective on the differential roles of different brain systems, in that

they  carry  out  algorithms  that  approximate  distinct  optimization  tasks  defined  by

alternative environmental assumptions.  This perspective may also offer insight into other
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multiple-systems theories that postulate separation between an explicit, rule-based system

and a more flexible implicit system (16).  The explicit system can be cast as embodying

an expectation of rule-like structure in the world, in that meaningful stimulus distinctions

are aligned with perceptual dimensions and that categories or natural kinds are defined by

conjunctions or disjunctions of criteria on these dimensions.  The implicit system expects

the world to be carved up more arbitrarily, which can explain why that system is more

flexible but generally learns more slowly (35).

The present view can be contrasted with other theories in which different brain

systems have identical computational goals but differ in their algorithmic approximations

to those goals.  Daw et al. (36) propose one such theory, cast in a reinforcement learning

framework, in which both systems estimate values of actions assuming the environment

is  a  Markov decision process (37),  but one system derives estimates  using temporal-

difference learning and the other uses model-based lookahead.  The difference between

computational- and algorithmic-level competition between systems also has implications

for optimal integration of their predictions.  In Daw et al.'s model, the two systems make

predictions under the same assumptions but using different approximations, and thus the

predictions are optimally combined according to which approximation is more certain

(precision-weighted averaging). In the present model, the systems make predictions under

different assumptions (diffusion vs. changepoint dynamics), and thus they are weighted

according to which assumption is better supported by recent data (likelihood-weighted

averaging).

We have purposely cast the modeling here at a computational level, to highlight

how differences in computational goals (i.e., optimal inference with respect to different
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generative models) can explain differential functioning of different brain systems.  This

does not imply an assumption that the brain performs exact inference.  An important step

for  further  work  will  be  to  implement  and  test  algorithmic  approximations  of  this

idealized  model.   The  diffusion  subsystem  should  be  well  approximated  by  a

reinforcement learning model that maintains a value estimate for each action (rather than

a full posterior distribution) and updates that estimate toward the outcome observed each

time that action is chosen (38).  The changepoint system might be approximated by a

PFC-gating model (31, 39), in which the PFC holds multiple hypotheses about the current

reward  probability  for  each  action,  and  the  DMS maintains  or  abandons  hypotheses

depending on their  agreement with observed outcomes.   A complete understanding of

how  the  brain  learns  in  nonstationary  environments  must  include  such  algorithmic

explanations.   Nevertheless,  the  computational-level  analysis  offered  here  provides  a

powerful means for studying the functional organization of neural systems for learning.
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Figure 1: 

Figure 1: Mixture of Bayesian experts (MBE) framework as applied to a nonstationary 

binary reward task (see Supplementary Material for details).  A. Sample trajectory of 

reinforcement rates in a diffusion environment, and causal graphical model of diffusion 

process (l: reward log-odds, r: reward, i: time index, σ: diffusion rate, N: normal 

distribution).  B. Sample trajectory of reinforcement rates in a changepoint environment, 
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and causal graphical model of changepoint process (c: changepoint indicator variable, 

η: reward probability, δ: Dirac delta).  C. Optimal inference based on diffusion and 

changepoint models with simulated data from a jump diffusion process.  Binary reward 

values were sampled on each time step from a Bernoulli distribution determined by the 

reward rate at that time.  Curves for the changepoint and diffusion models show the 

posterior estimate of the reward rate at each time step, conditioned on the reward history 

prior to that step.  The changepoint model adapts more rapidly to the changepoint, 

whereas the diffusion model better tracks the more continuous changes in reinforcement 

rate.  D. Schematic illustration of full model, which combines predictions from both 

subsystems. 
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Figure 2: 
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Figure 2: Behavioral data from Ref. 27 and model predictions.  A. Population averages of

behavioral data (Gaussian filtered). Vertical line at time 0 separates phases of the 

experiment, when infusions were administered and the target lever switched from being 

less to more rewarding. Animals that received ZIP infusions in the DLS adapted more 

rapidly than animals with control infusions, and animals with DMS infusions adapted 

more slowly.  B. Population averages of behavioral data (same as in A) and averaged 

model predictions for the three groups.  DMS group is best fit by the diffusion model, 

DLS group by the changepoint model, and control groups by the full model.  C. Same as 

B but for a single animal from each group.
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Table 1: 

Group
Model ZIP-DMS ZIP-DLS Control

Diffusion
17757.
82

22365.3
8

39437.8
8

Changepoint
17788.8
7

22315.
57

39511.2
2

Full
17782.9
7

22458.2
3

39328.
86

Table 1: AIC values of model fits, summed over subjects in each group.  The ZIP­DLS 
group was fit best by the changepoint model, the ZIP­DMS group was fit best by the 
diffusion model, and the control groups were fit best by the full model. 
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Supplementary Methods

The models all assume the rat chooses which lever to press based on estimates of each lever’s

current probability of producing a reward. These probabilities are estimated separately for

each lever, by Bayesian inference from the outcomes of past presses of that lever.

Let (ti) be the sequence of times t at which the rat presses either lever, ri be the lever

pressed at time ti (L for left or R for right), and xi an indicator of whether a reward was

received (1 or 0). When selecting a response at time tn, the value of each lever is estimated

as that lever’s current reward probability, conditioned on the history of the task:

QL = E [xn|rn = L,hn−1]

QR = E [xn|rn = R,hn−1] (1)

where hn−1 = (ri, xi)i<n is the history prior to tn.

The action is then selected according to a standard softmax rule (Luce, 1959; Sutton &

Barto, 1998):

Pr [rn = L] =
eφQ

L+b

eQL+b + eQR−b

Pr [rn = R] =
eφQ

R−b

eQL+b + eQR−b . (2)

The inverse-temperature parameter, φ, controls the degree of exploration or stochasticity

in behavior. The bias parameter, b, captures variability in individual subjects’ enduring

preferences between levers.

The models thus predict which lever the rat will press (rn), conditioned on when the

rat makes a response (tn). Additional models were evaluated that predict response timing

in addition to response selection, by incorporating a null response (N) in Equation 2 with

constant value QN = u (a free parameter), and evaluating model predictions at all time

points (i.e., every 1 s) rather than only at times the rat pressed a lever. These models

produced poor fits, because of fluctuations in overall rate of responding that appeared to be

independent of the reward sequence.

The models described next differed in how Equation 1 was evaluated, corresponding to

different generative models for the temporal dynamics of reward probability.
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Diffusion Model

The diffusion model assumes a generative model in which the reward probability for each

lever evolves according to a diffusion process. More precisely, let lLi and lRi be the log-odds

of the reward probabilities for the two levers at time ti, so that for each lever X (where X

stands for L or R),

xi|ri = X ∼ Bernoulli

(
1

1 + exp (−lXi )

)
. (3)

Then lLi and lRi are taken to be governed by independent Wiener diffusion processes with

diffusion rate σ2. Thus for each lever, the distribution of lXi conditioned on lXi−1 is a Gaussian

with mean lXi−1 and variance proportional to the elapsed time, ti − ti−1:

lXi |lXi−1 ∼ N
(
lXi−1, σ

2 (ti − ti−1)
)
. (4)

Representing the dynamics in terms of log-odds is convenient because it keeps the probability

in the range [0, 1]. The model could equivalently be written as a non-homogenous diffusion

process in the reward probability.

For both levers, the prior distribution on lXn (i.e., before xn is observed), is given by

applying the diffusion dynamics to the posterior on lXn−1:

p
(
lXn |hn−1

)
=

ˆ
p
(
lXn |lXn−1

)
p
(
lXn−1|hn−1

)
dlXn−1

=
1√

2πσ2 (tn − tn−1)

ˆ
exp

(
−
(
lXn − lXn−1

)2

2σ2 (tn − tn−1)

)
p
(
lXn−1|hn−1

)
dlXn−1. (5)

The expected reward value of each lever is obtained from this prior, as

E [xn|rn = X,hn−1] =

ˆ
E
[
xn|rn = X, lXn

]
p
(
lXn |hn−1

)
dlXn

=

ˆ
1

1 + exp (−lXn )
p
(
lXn |hn−1

)
dlXn . (6)

The posterior distributions on lLn and lRn after rn and xn have been determined are obtained

from Bayes’ rule. If rn = L, then the posteriors are given by

p
(
lLn |hn

)
∝ 1

1 + exp (−lLn (2xn − 1))
p
(
lLn |hn−1

)
p
(
lRn |hn

)
= p

(
lRn |hn−1

)
. (7)

If rn = R then Equation 7 is reversed, in that lRn is updated and lLn is not.
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Iterating Equations 5 through 7 enables derivation of model predictions at all choice

points. The free parameters of the diffusion model are the inverse temperature (φ), the

response bias (b), and the diffusion rate (σ).

Changepoint Model

The changepoint model assumes a generative model in which the reward probability for

each lever evolves according to a changepoint process. Changepoints are assumed to be

independent for the two levers, each generated by a Poisson process with rate parameter λ.

Between changepoints for a lever, the reward probability for that lever is constant.

Denote the reward probabilities for the two levers at time ti by ηLi and ηRi , so that for

each lever X,

xi|ri = X ∼ Bernoulli
(
ηXi
)
. (8)

Let cLi and cRi indicate whether one or more changepoints occur between times ti−1 and ti

(for the left and right levers, respectively). The Poisson assumption implies that for each

lever,

Pr
[
cXi = 1

]
= 1− e−λ(ti−ti−1). (9)

For each lever, the distribution of ηXi conditioned on cXi and ηXi−1 is given by

ηXi |cXi = 0, ηXi−1 ∼ δ
(
ηXi−1

)
ηXi |cXi = 1, ηXi−1 ∼ Beta (α, β) , (10)

where δ is the Dirac delta function, and α and β are free repameters defining the distribution

of η following a changepoint (taken to be a beta distribution).

The expected reward value of each lever X is equal to the mean of the prior distribution

for ηX :

E [xn|rn = X,hn−1] = E
[
ηXn |hn−1

]
. (11)

The prior distributions for ηL and ηR can be calculated by defining sLn and sRn as the number

of total lever presses since the last changepoint on each lever, prior to tn (1):

sXn = n−max
{
i ≤ n : cXi = 1

}
. (12)
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By convention we define cX1 = 1, so that the maximal value of sXn is n− 1.

Conditioned on sXn , the prior distribution for ηXn is given by Bayesian inference over the

last sXn outcomes, with Beta (α, β) as the prior:

ηXn |sXn ,hn−1 ∼ Beta

α +
n−1∑

i=n−sXn

rXi xi, β +
n−1∑

i=n−sXn

rXi (1− xi)

 . (13)

Here rXi equals 1 if ri = X and 0 otherwise. The sums represent the numbers of rewarded

and nonrewarded presses of lever X out of the last sXn total lever presses (if sXn = 0 then

these sums are taken to be empty).

The prior distribution for sXn is obtained from the posterior on sXn−1 by shifting the values

by 1 and applying the probability of an intervening changepoint:

Pr
[
sXn = k|hn−1

]
=

e
−λ(tn−tn−1) Pr

[
sXn−1 = k − 1|hn−1

]
k > 0

1− e−λ(tn−tn−1) k = 0.
(14)

The posterior distribution for sXn can be obtained from Bayes’ rule. If rn = X, then the

posterior for sXn is given by

Pr
[
sXn = k|hn

]
∝ Pr

[
sXn = k|hn−1

]
· Pr

[
xn|sXn = k, rn = X,hn−1

]
, (15)

where the likelihood is obtained using Equation 13:

Pr
[
xn = 1|sXn = k, rn = X,hn−1

]
= E

[
ηXn |sXn = k,hn−1

]
=

α +
∑n−1

i=n−k r
X
i xi

α + β +
∑n−1

i=n−k r
X
i

. (16)

The posterior for the unpressed lever is identical to its prior. That is, if rn 6= X, then

Pr
[
sXn = k|hn−1

]
= Pr

[
sXn = k|hn

]
. (17)

Iterating Equations 14, 15, and 17 enables calculation of the prior distributions for sLn

and sRn at all choice points. The expected reward value of each lever X can be obtained by

summing this prior for sXn :

E [xn|rn = X,hn−1] =
n−1∑
k=0

E
[
ηXn |sXn = k,hn−1

]
· Pr

[
sXn = k|hn−1

]
. (18)

The free parameters of the changepoint model are the inverse temperature (φ), the re-

sponse bias (b), the changepoint rate (λ), and the parameters of the reward-probability

distribution following a changepoint (α and β).
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Full Model

The full model evaluates Equation 1 by combining the predictions of the diffusion and

changepoint models. The combination is Bayesian except for a recency bias in evaluating

the likelihood of each subsystem. Specifically, the subsystems’ predictions are weighted

according to

E [xn|rn,hn−1] =
exp

(
ldiff
n−1

)
Ediff [xn|rn,hn−1] + exp

(
lcp
n−1

)
Ecp [xn|rn,hn−1]

exp
(
ldiff
n−1

)
+ exp

(
lcp
n−1

) , (19)

where Ediff and Ecp are the expectations of the two subsystems, taken from Equations 6

and 18.

The mixture weights are obtained from a running average of each subsystem’s log-

likelihood of the results of past lever presses:

ldiff
n = γldiff

n−1 + (1− γ) log (Prdiff [xn|rn,hn−1])

lcp
n = γlcp

n−1 + (1− γ) log (Prcp [xn|rn,hn−1]) . (20)

The γ parameter controls the rate of decay of the influence of past events. When γ = 1,

ldiff
n and lcp

n are the exact log-likelihoods of the rat’s full experience in the task, and the

model becomes an exact hierarchical Bayesian model. When γ < 1, the model assumes

that recent performance is more important in determining how much each subsystem should

drive behavior. Equation 20 produces exponential decay, which approximately matches

the optimal decay profile under both diffusion and changepoint dynamics (2). Thus the

hierarchical model is agnostic about the form of nonstationarity in the relative performance

of the two subsystems.

The free parameters of the hierarchical model are the parameters of the diffusion and

changepoint models (φ, b, σ, λ, α, β) and the decay rate (γ).

Model Evaluation

Models were simulated on each rat’s data from phases 1 and 2 combined. Three different

models were fit to the individual data of each subject: the full model, a model in which

only the diffusion model contributed to action selection in phase 2, and a model in which
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only the changepoint model contributed to action selection in phase 2. In phase 1, all three

models derived reward expectations from Equation 19. In phase 2, the full model continued

to use Equation 19, the diffusion model used Equation 6, and the changepoint model used

Equation 18.

We evaluated the fit of each model by calculating its log-likelihood, that is, the sum of the

log of the probabilities the model assigned to each lever press from Equation 2. Models were

evaluated only in their predictions for which lever the rat pressed, conditioned on when each

press occurred. That is, we attempted to fit the time course of each rat’s relative preference

between the two levers, setting aside variation in overall response rate. Video data indicated

that distractions and other activities (e.g., grooming) modulated the rats’ engagement in

the task in a manner the models should not be expected to capture. Therefore, at each

time the rat pressed a lever, the model was queried for its current response probability for

pressing left versus right.

For simulating the diffusion model, the ranges of lL and lR were discretized into 401

bins each. The iterative prior and posterior distributions were calculated on this discretized

representation. Simulation of the changepoint model was based on maintaining the complete

distributions of sL and sR.
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