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Abstract 
HIV-1 Associated Neurocognitive Disorder (HAND) is commonly seen in HIV-infected patients. 
Viral proteins including Tat cause neuronal toxicity and is worsened by drugs of abuse. To uncover 
potential targets for anti-HAND therapy, we employed a literature mining system, MOLIERE. 
Here, we validated Dead Box RNA Helicase 3 (DDX3) as a target to treat HAND via a selective 
DDX3 inhibitor, RK-33. The combined neurotoxicity of Tat protein and cocaine was blocked by 
RK-33 in rat and mouse cortical cultures. Transcriptome analysis showed that Tat-activated 
transcripts include makers and regulators of microglial activation, and RK-33 blocked Tat-induced 
activation of these mRNAs. Elevated production of proinflammatory cytokines was also inhibited 
by RK-33. These findings show that DDX3 contributes to microglial activation triggered by Tat 
and cocaine, and DDX3 inhibition shows promise as a therapy for HAND. Moreover, DDX3 may 
contribute to the pathology of other neurodegenerative diseases with pathological activation of 
microglia.  
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Introduction:  
More than 36 million people worldwide are living with HIV infection and more than 1.2 million are 

in the USA based on World Health Organization (1). Neurological complications associated with 

HIV infection have long been known (2). With the introduction of highly active antiretroviral therapy 

(HAART), the life span of HIV-infected individuals has increased significantly to an average of 65 

years (3). The increased life expectancy of the HIV-positive population is increasing the burden 

of the neurological complications to these patients and society. HIV-Associated Neurocognitive 

Disorder (HAND), a very concerning HIV-associated dementia, is prevalent in up to half of the 

HIV-infected individuals and constitutes a growing health hazard in the aging population (4, 5). 

The risk of HAND and its associated neuropathology is higher among intravenous drug abusers 

(5, 6). The major drugs contributing to HIV pathogenesis are opiates and stimulants (cocaine and 

methamphetamine). Cocaine is the second most commonly abused drug in the US, and cocaine 

abuse in HIV-infected patients is associated with the worsening of HAND (7, 8).  

 During the early stage of infection, HIV enters the brain via trafficking of infected CD4+ 

cells and monocytes into the CNS (9). In the brain, HIV can infect macrophages, microglia, and 

astrocytes, with each of these as possible sites of persistence of latent HIV (10).  Though neurons 

are refractory to viral infection, progressive neuronal damage has been observed in HIV-infected 

patients (10, 11). Direct HIV-mediated neurotoxicity can be caused by viral proteins that interact 

with neurons resulting in neuronal damage or death  by multiple mechanisms, including disruption 

of calcium homeostasis, perturbation in glutamate and glycolytic pathways, inhibition of calcium 

and potassium channels, and others (10, 12, 13).  Among these viral proteins, HIV-encoded Trans 

Activator of Transcription (Tat) continues to be synthesized and secreted by HIV-infected cells 

even in patients in which HAART therapy successfully prevents viral production (14).  Tat uptake 

by uninfected cells results in both cytoplasmic and nuclear events promoting neuronal damage 

and death (15). The neurotoxicity of HIV and Tat is exacerbated by drugs of abuse, including 

opiates and cocaine. The combination of cocaine and Tat causes neurotoxicity that greatly 

exceeds that caused by cocaine or Tat alone (11, 16-19). Current HIV therapy options are focused 

on preventing entry of the virus into the brains of infected patients, but this therapy does not 

directly protect neurons and is not effective after entry has occurred. Thus, there is no approved 

therapy for the treatment of HAND and particularly for the combined neurological effects of HIV 

and drugs of abuse. Consequently, there is an urgent need to discover neuroprotective therapy 

that can alleviate HAND symptoms. 

 Artificial Intelligence (AI) – based discovery systems for biomedical literature analysis and 

hypothesis generation help researchers to navigate through the vast quantities of literature and 
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can rapidly reveal hidden connections in the literature network (20, 21). Machine learning 

approaches accelerate drug repositioning to discover new applications for existing compounds 

(22).  We recently developed a new AI-based literature mining system, MOLIERE which is 

different form many other literature-based analysis systems. The key difference is in the 

algorithmic pipeline and the amount of processed data. The MOLIERE do not filter the data 

extracted from the papers, whereas most other systems work with only highly filtered semantic 

objects (such as MESH terms or only genes). In addition to our own ranking methods, the 

algorithmic pipeline relies on several recently developed scalable machine learning methods that 

have not been adopted by other knowledge discovery systems such as low-dimensional 

representation manifold learning and scalable probabilistic topic modeling. (23, 24)  . In the 

present article, we performed MOLIERE analysis for possible links of human proteins with HAND 

in the biomedical literature.  This analysis revealed a previously unknown connection between 

HAND and Dead Box RNA Helicase 3 (DDX3) (25, 26).  DDX3 has not previously been associated 

with neurodegeneration related to HIV proteins, but was shown to be essential for translation of 

HIV proteins and the nuclear export of HIV RNA (27).  Our results show that a known inhibitor of 

DDX3 called RK-33, which was originally developed and tested for anti-cancer therapy (28, 29), 

protects primary cortical neurons from neurotoxicity and inhibits the combined Tat plus cocaine 

dependent activation of microglia. The results validate DDX3 inhibition as a potential target for 

HAND therapy.   

 

Results:  

Literature mining to uncover targets and small molecules to test for HAND therapy.   

To determine genes with yet-unknown implicit connections to HAND, we utilized MOLIERE, a 

system to automatically generate biomedical hypotheses (23).  The system build a multi-modal 

and multi-relational network of biomedical objects extracted from Medline and ULMS datasets 

from the National Center for Biotechnology Information .(NCBI). In the current analysis we queried 

the list of all human genes downloaded from HUGO (30) paired with HIV associated 

neurocognitive disorder. The generated hypotheses were ranked based on a number of 

techniques described in (24). The hypotheses ranking represent the level of association each 

gene has with HAND. The genes were categorized as “Trivial” (top 2.5% genes with exceptionally 

high ranking scores typical of well-explored prior connections clearly associated with HAND), 

“High Potential” (next 15% of genes), “Low Potential” (next 15% of genes) and “Random” (Fig 
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1A). To determine the availability of small molecule inhibitors for “High Potential” category gene 

products, the genes were queried through a protein-small molecule interaction database, 

BindingDB (31). About 180 proteins out of 4450 genes have at least one associated small 

molecule (Fig 1B, Supplemental Table 1). Next, the list of the genes was narrowed by the 

selection of small molecule inhibitors that have been tested in animals and did not manifest any 

significant systemic toxicity at therapeutic concentrations. The search of the literature revealed 

52 protein-small molecule pairs (Fig 1D, Supplemental Table 1). From the short list we selected 

RK-33, an inhibitor of Dead Box RNA Helicase 3 (DDX3) for experimental evaluation for the 

following reasons: RK-33 was shown to be a very selective inhibitor of DDX3 ATPase activity; the 

compound was active in vitro in nanomolar concentrations, and in micromolar concentrations in 

cell culture and animal models; and it was easily available commercially. Lastly, it had been 

extensively tested in rodents and did not show any systemic toxicity (28, 29).  Although DDX3 

had never been associated with HAND, it was shown to be important for HIV infection (27), 

specifically by exporting viral RNA from nucleus to cytoplasm (32).   

RK-33 protects neurons in primary cortical cultures from the combined neurotoxicity of 
HIV-Tat and cocaine.  

To test the hypothesis that inhibition of DDX3 has neuroprotective effects in a model of HAND, 

we used a well-established cell culture model of rodent primary cortical neurons co-treated with 

Tat and cocaine in previously established concentration ranges (33-37). In this system, the 

addition of Tat at a low (6 ng/ml) or high (60 ng/ml) concentration, or cocaine (10 µM or 25 µM) 

individually did not significantly induce the death of primary neurons during 72 h of treatment (Fig 

1C, D). However, pre-treatment with Tat for 48 h followed by the addition of cocaine for another 

24 h (Fig 2A, B) drastically increased neuronal death, as measured by activated Caspase 3/7 

signal and nuclear localization of ethidium bromide homodimer (Fig 1C, D). Strikingly, treatment 

with the DDX3 inhibitor RK-33 at 6 µM resulted in a 50%-80% reduction of neuronal death caused 

by Tat and cocaine co-treatment (Fig 1C, D). The initial 6 µM concentration of RK-33 selected 

was similar to that used previously (29). RK-33 protected rat neurons from Tat/cocaine toxicity in 

a dose dependent manner starting as low as 1 µM (Fig 1E), which was comparable with RK-33 

bioactivity observed in other cell-based assays (29, 38). Nearly identical qualitative results were 

observed with a mouse primary neuron cortical culture regarding Tat/cocaine damage and RK-33 

mediated protection from damage (Supplemental Figure S1). A notable quantitative difference 

was that rat primary neurons appear to be much more sensitive to cocaine relative to the mouse 

neurons, because a 10-fold lower cocaine dose was used to promote neuronal apoptosis in 
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combination with Tat. Hence, the results in both rat and mouse cortical cultures show that DDX3 

inhibition is neuroprotective against the combined insult of Tat and cocaine.  

 

RNA-seq transcriptomic profiling of RK-33 effects on Tat-treated cortical cultures.  

To explore the mechanism of RK-33 neuroprotection seen above, we performed RNA sequencing 

(RNA-seq) of the primary cortical cultures treated with Tat in the presence or absence of RK-33. 

We found differential expression of 547 genes in Tat-treated cultures compared to control 

(Adjusted FDR, P<0.05). Hierarchical clustering revealed that Tat-dependent upregulation of 211 

genes was inhibited by RK-33 (adjusted FDR P< 0.05 for 83 genes) (Fig 2A-B, Supplemental 

Figure S2, Supplemental Table 2). Strikingly, there was no statistically measurable effect on any 

gene expression changes caused by RK-33 treatment alone (Fig 2B, Supplemental Table S2). 

Pathway enrichment analysis of Tat-regulated genes shows that proinflammatory pathways, such 

as “Complement Cascade”, “Neutrophil Dysregulation” and “Cytokine Signaling” are significantly 

enriched, as noted by the comparisons between Tat vs control (Fig 2B, Supplemental Figure S3). 

In the major brain cell types (neurons, astrocytes, oligodendrocytes, epithelial and microglial 

cells), these pathways are known to be associated with activated microglia (39-41).  Notably, the 

expression of these same genes was suppressed by RK-33 treatment (Fig 2B, Supplemental 

Figure S3). Among this subset of genes upregulated by Tat alone and sensitive to RK-33 the 

following are worth noting: complement components C1qa, C1qc, C1qb; bona fide markers of 

microglial cells such as ionized calcium binding adaptor molecule 1 (Iba1 or AIf1), integrin 

Cd11a/b (Itgam), Ptprc (CD45); Colony-stimulating factor-1 (CSF-1) and granulocyte colony‐ 

stimulating factor (g-CSF) receptors, Csf1r and Csf3r, which are necessary for microglial survival 

and proliferation (42) (Fig 3D). Further, gene set enrichment analysis (GSEA) (43) with custom 

databases of genes enriched in brain cell subtypes as defined by RNA-seq Transcriptome and 

splicing databases of the cerebral cortex (44) shows significant enrichment of microglia-

associated genes in Tat-regulated and RK-33 sensitive, Tat – regulated genes (Fig 2D, 

Supplemental Figure S4).  

 Taken together, the results of the RNA-seq analysis demonstrates that, in agreement with 

a previous publication (45), Tat triggers the expression of genes associated with activated 

microglia. Moreover, this activation is inhibited by RK-33. These same genes found by RNA-seq 

to be regulated by HIV-Tat treatment are also found in the high-ranked genes subset of HAND-

associated genes from the MOLIERE analysis (p<0.0025), including Csf1r.  
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RK-33 inhibition of the activation of microglia by Tat or combined Tat and cocaine 
treatment.  

 The hallmarks of microglial activation are the rapid expansion of microglial cells and 

characteristic changes in cellular morphology (41, 46, 47). Microglial cells were analyzed by 

immunofluorescent staining of rat cortical cultures using antibodies against two established 

markers whose expression changes were seen in the RNA-seq data, namely Iba1 and CD11b/c 

(48, 49). Treatment with RK-33 alone did not affect the number of Iba1 positive cells. Treatment 

with either Tat (6 ng/ml) or cocaine (10 µM or 25 µM) increased slightly but not significantly the 

number of Iba1 positive cells, while the combined Tat and cocaine treatment caused a dramatic 

elevation of Iba1 positive cells (Fig 4A, B, compare light blue (minus RK-33) to dark blue (+RK-

33)). The number of Iba1 positive cells in Tat and cocaine co-treated cultures also treated with 

RK-33 were not significantly different from untreated controls (Fig 3A, B). These results were 

confirmed with CD11b/c, which is expressed in resting microglia and is greatly elevated upon 

activation (49, 50).  The results were similar to the analysis of Iba1. The combined treatment of 

Tat and cocaine significantly elevated the number of CD11b/c positive cells, and RK-33 treatment 

reduced the number of CD11b/c-positive cells that were elevated by Tat/cocaine back to basal 

untreated control levels (Fig 3C, D, compare light blue (minus RK-33) to dark blue (+RK-33)).  

 Pathological stimuli are known to trigger morphological remodeling of microglia. Ramified, 

quiescent microglial cells transition to an intermediate form with less arborization and large soma, 

followed by amoeboid morphology. The size of microglial cells is greatly increased in the transition 

(47, 51, 52). Here, the combined Tat and cocaine treatment led to amoeboid morphology of 

microglial cells detected by immunofluorescence of both CD11b/c and Iba1 (Fig 4A, Supplemental 

Figure 4A) and increased cell body area (Fig 4A, B). Treatment with RK-33 diminished the 

morphological and body changes induced by Tat/cocaine treatment (Fig 4A, B, compare light blue 

(minus RK-33) to dark blue (+RK-33)).  

    

The secretion of proinflammatory cytokines induced by HIV Tat and cocaine is inhibited 
by RK-33. 

The pathological effects of microglia activation are directly associated with the secretion of 

proinflammatory cytokines. Thus, to measure the level of cytokines we collected media of the 

cortical cultures treated with Tat, followed by addition of cocaine with or without RK-33. The level 

of eight cytokines (IL-6, TNF-alpha, MCP1-CCL2, IFN-γ, VEGF, IL-2, IL-4, IL-8) was determined 
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with the Luminex Multiplex assay. Tat treatment elevated the concentration of secreted IL-6, TNF-

alpha, and MCP1-CCL2, while RK-33 treatment abolished the elevation (Fig 4C, Supplemental 

Figure S4B). The concentrations of IFN-γ, VEGF, IL-2, IL-4, and IL-8 were not affected by the 

treatments (not shown). Surprisingly, Tat and cocaine co-treatment did not increase the level of 

cytokines relative to Tat-treated culture, which suggests that the detrimental effects of cocaine 

involve an additional mechanism.  

Discussion  

We recently reported the development of MOLIERE, an AI-based literature mining system to 

determine target genes and associated small molecules that are potentially useful for testing novel 

gene-disease connections.  Here, we applied MOLIERE to uncover novel targets for the treatment 

of HIV associated neurocognitive disorder. This usage of MOLIERE uncovered DDX3 and its 

specific inhibitor, RK-33, and we have experimentally verified this novel target as worthy of further 

investigation. To our knowledge, neither DDX3 nor RK-33 were previously linked to HAND or 

other neurodegenerative diseases. RK-33 was developed and tested as an antitumor drug, and 

importantly in this context, without any indication of systemic toxicity in mice with injections up to 

20 mg/kg for seven weeks (29).  

 The evaluation of RK-33 in a well-established culture model of HAND augmented with a 

drug of abuse showed dose-dependent inhibition of neuronal apoptosis induced by combined Tat 

and cocaine treatment with RK-33 concentrations as low as 1 µM. Further, RNA-seq analysis and 

measurement of secreted pro-inflammatory cytokines demonstrated that microglial activation 

induced by Tat and cocaine was suppressed by RK-33, thus providing a plausible mechanism for 

the neuroprotective effects downstream of DDX3 inhibition. The dual role of microglial cells in 

HAND pathogenesis as a brain reservoir for viral replication and source of secreted viral proteins, 

and as a modulator of the inflammatory response is well established (53, 54). Our analysis 

confirmed previous results showing an activation of microglia by Tat and a synergistic effect of 

cocaine (35, 54, 55), as measured by elevation in the number of Iba1 and CD11b/c positive cells 

in cortical cultures and the induction of morphological changes and enlargement of microglial 

cells.  

Collectively, these results are the first to connect DDX3 to the activation of microglia. 

Moreover, the DDX3 inhibitor RK-33 inhibits Tat/cocaine-dependent microglial activation, which 

both implicates DDX3 in this pathogenesis and also suggests it is a viable target for treatment of 

HAND and potentially other neurocognitive diseases in which activated microglia play a role. The 
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mechanism of DDX3-dependent regulation of microglia activation remains to be determined. 

However, recent results regarding the function of DDX3 in the regulation of a macrophage 

inflammatory response may shed light on DDX3 activity in neuroinflammation. HIV proteins 

activate the secretion of chemokines and cytokines by microglia cells through NF-κB, p38 and 

TGF-β pathways (56-59). The small GTPase Rac1 was shown to be a regulator activating 

morphological changes in microglia cells (60, 61). These pathways are well known to control the 

inflammatory response, cytokine secretion, and migration of macrophages. Importantly, it was 

recently shown that DDX3 directly regulates the translation of p38 MAPK, Rac1, STAT1 (TGF-

β) and TAK1, which play essential roles in NF-κB regulation (38). The direct role of DDX3 in 

regulating pro-inflammatory responses in the pathogenesis of bowel disease and Listeria infection 

were also recently observed (62, 63). Inhibition of DDX3 activity stalled the translation of target 

proteins (38, 64), resulting in a decrease of cytokine secretion and inhibition of macrophage 

migration and phagocytosis (38). It therefore appears plausible that DDX3-dependent 

translational control may be the mechanism that regulates microglial activation in 

neuroinflammatory pathways.  Experiments are ongoing to formally test this.  

  As mentioned previously, DDX3 has been proposed as a target for development of anti-

viral and anti-HIV therapy (65, 66) (67-70). This makes DDX3 a unique target, in which inhibition 

may affect both HIV-related neurotoxicity and the production of viral proteins by glial cells. 

However, the contribution of DDX3 to innate immunity has to be fully evaluated prior to clinical 

advancement of DDX3 inhibitors for HAND therapy (27, 71). Nonetheless, DDX3-specific 

inhibition as a target and RK-33 as a prototype molecule for the development of HAND therapy 

has been validated and should be investigated further. Moreover, given the importance of 

microglial activation in the pathology of other neurodegenerative diseases, DDX3 targeting could 

be applicable for the treatment of other neurodegenerative diseases.  

 

 

 

Materials and Methods 

MOLIERE Analysis  

The implementation and documentation are available at https://github.com/JSybrandt/MOLIERE. 

The repository also contains list of all software dependencies to packages to compute 
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approximate nearest neighbor graphs, low-dimensional embeddings, probabilistic topic modeling, 

phrase mining, and graph algorithms. The repository is organized in two major sub-projects, 

namely, build_network and run_query, each contains its own documentation.  Preinstallation 

dependencies include gcc 5.4 or greater, Python 3, Java 1.8, Scons, Google Test ,  and Mpich 

3.1.4. It is recommended to use parallel machines, as many components of the project are 

parallelized being too slow if executed in sequential mode. The input to the phase of building the 

knowledge network requires downloading full MEDLINE and UMLS. Building the network is also 

possible with partial MEDLINE if one wants to restrict the information domain in order to increase 

speed. Most algorithmic components require parameters that are provided with the code. When 

the knowledge network is constructed, the second phase consists of running queries using run 

query subproject. Running all queries, each of type gene-HAND, can be done in parallel, as all of 

them are independent. Each query will return the hypotheses in a form of topic model, i.e., a 

distribution of most representative keywords per learned topic, as well as a ranking score. In 

addition, the result of each single query can be visualized for further analysis using the 

visualization sub-project that can be found in the same repository. The visualization connects all 

learned topics in a network, where nodes correspond to topics, and edges represent mutual 

content connections. Clicking each node will bring up the most relevant to the corresponding 

paper topics as well as the most representative topical keywords. 

Here we describe the datasets used in knowledge network construction and querying MEDLINE, 

the NLM database of biomedical abstracts, releases public yearly baselines. We used the 2017 

baseline, published early that year, which was the most up-to-date at the time. This dataset 

consists of 26,759,399 documents; however, we found that certain short documents hinder 

hypothesis generation results. Therefore, we removed any document that is fewer than 20 words 

that also does not contain at least two “rare” words found in the bottom 85% most frequent words. 

The Unified Medical Language System (UMLS) consists of known medical entities, as well as 

their synonyms and relationships. This NLM dataset releases every six months, and we used the 

“2017AB” release, also the most recent available to us at the time of our experiments. This release 

consists of 3,639,525 entities. SemMedDB, another dataset produced by the NLM, which contains 

automatically extracted predicates from MEDLINE documents and keeps a six-month release 

schedule. We downloaded the December 31st, 2017 release consisting of 15,836,301 unique 

subject-verb-object statements, as well as corresponding UMLS types and MEDLINE identifiers. 

Lastly, the HUGO gene dataset collects human gene symbols.  Unlike the NLM sources, HUGO 

follows rolling updates and does not keep numbered versions. We leveraged the “complete HGNC 

dataset'' from January 19th, 2018, which contained 42,139 gene symbols. From this initial set, we 
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filtered out 1,248 symbols that could not be found in either our MEDLINE subset or our UMLS 

release, as our system has no known information on these gene symbols. BindingDB (31)  

publishes protein-ligand structures associated with gene symbols. This dataset additionally 

supplies rolling releases, which we accessed on January 8th, 2018. This dataset contains 

1,507,528 binding measurements, within which we identified 1,202 human gene symbols from 

HUGO (30) under the field "Entry Name of Target Chain.” For each gene, we recorded both the 

total number of dataset occurrences as well as the distinct names found under the field "Target 

Name Assigned by Curator or DataSource.” 

 

RNA sequencing and analysis  

RNA and library preparation, post-processing of the raw data and data analysis were performed 

by the USC CTT COBRE Functional genomics Core. RNAs were extracted with Qiagen RNeasy 

Mini kit as per manufacturer recommendations (Qiagen, Valencia, CA, USA) and RNA quality was 

evaluated on RNA-1000 chip using Bioanalyzer (Agilent, Santa Clara, CA, USA).  RNA libraries 

were prepared using an established protocol with NEBNExt Ultra II Directional Library Prep Kit 

(NEB, Lynn, MA). Each library was made with one of the TruSeq barcode index sequences, and 

the Illumina sequencing was performed by GENEWIZ, Inc. (South Plainfield, NJ) with Illumina 

HiSeq4000 (150bp, pair-ended).  Sequences were aligned to the Mus Musculus genome 

GRCm38.p5 (GCA_000001635.7, ensemble release-88) using STAR v2.4 (72).   Samtools (v1.2) 

was used to convert aligned sam files to bam files, and reads were counted using the 

featureCounts function of the Subreads package (73)  with Gencode.vM19.basic.annotation.gtf 

annotation file.  Only reads that were mapped uniquely to the genome were used for gene 

expression analysis.  Differential expression analysis was performed in R using the edgeR 

package (74). The average read depth for the samples was around 15 million reads, and only 

genes with at least one count per million average depth were considered for differential 

expression analysis.  Raw counts were normalized using the Trimmed Mean of M-values (TMM) 

method.  The normalized read counts were fitted to a quasi-likelihood negative binomial 

generalized log-linear model using the function glmQLFit, and genewise statistical tests for 

significant differential expression were conducted with empirical Bayes quasi-likelihood F-tests 

using the function glmQLFTest. 

Pathway enrichment and GSEA analysis.  
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Pathway enrichment of HIV-Tat and RK-33 regulated genes were analyzed using Enrichr (75) R 

package ( https://CRAN.R-project.org/package=enrichR ) with GO, KEGGs pathway and 

EnrichrPathway databases. The GSEA enrichment analysis were performed with Broad Institute 

software (43) (http://software.broadinstitute.org/gsea/index.jsp) with custom MSigDB, 

represented genes enriched in microglia, neurons and  astrocytes. The MSiDB were built as 

described in GSEA documentation ( 

https://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html). The gene lists  were 

prepared from Zhang dataset of transcriptome profiling of glia neurons and vascular cells of the 

cerebral cortex (44), https://web.stanford.edu/group/barres_lab/brain_rnaseq.html.   The genes 

which expressed 10 or more fold higher in one cell type relative to any other had been assigned 

as cell-type specific (Supplemental Table S3). Overrepresentation of Tat-activated genes in 

MOLIERE-selected subset were identified using hypergeometric distribution test.  

Preparation and cultivation of primary cortical cultures. 

       Primary cortical cell cultures were prepared from 18-day-old Sprague-Dawley (Envigo 

Laboratories, Indianapolis, IN) rat fetuses or from 18-day-old C57BL/6 mouse fetuses as 

previously described (76, 77).  Procedures were carried out in accordance with the University of 

South Carolina Institutional Animal Care and Use Committee. Briefly, cortical regions were 

dissected and incubated for 10 min in a solution of 0.05% Trypsin/EDTA in Hank's balanced salt 

solution (HBSS) (Thermo Fisher Scientific). The tissue was then exposed for 5 min to soybean 

trypsin inhibitor (1 mg/ml in HBSS) and rinsed 3 times in HBSS. Cells were dissociated by 

trituration and distributed to poly-L-lysine coated 12-well plates with inserted round glass 

coverslips. Alternatively, cortical cell cultures were grown in 6-well plastic plates (VWR 

International, Radnor, PA).  

          At the time of plating, plates contained DMEM/F12 (Thermo Fisher Scientific) 

supplemented with 100 mL/L fetal bovine serum (HyClone, Thermo Fisher Scientific). After a 24-

hr period, DMEM/F12 was replaced with an equal amount of serum-free Neurobasal medium 

supplemented with 2% v/v B-27, 2 mM GlutaMAX supplement and 0.5% w/v D-glucose (all 

reagents from Thermo Fisher Scientific). Half of the Neurobasal medium was replaced with freshly 

prepared medium of the same composition once a week. Cultures were used for experiments at 

the age of 10-12 days in vitro (DIV).  

 
Experimental treatments 
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 Primary cortical cultures were treated with recombinant Tat 1-86 (Diatheva, Italy), at 

concentrations ranging from 5 ng/ml up to 60 ng/ml as described in Figures and Figure legends. 

The concentrations of Tat had been selected to represent the estimated Tat concentration in the 

brain of HIV-infected patients (78).    Cocaine-HCl was obtained from Sigma Chemicals and was 

dissolved in sterile water immediately before the addition to cell cultures. Cocaine concentrations 

ranged from 10 µM up to 1000 µM as described in Figures. The concentration of cocaine is in a 

range of the brain cocaine concentration estimated for recreational users based on animal studies 

(79) and postmortem examination of the brain tissues in fatal cases of cocaine abuse (80).   RK-

33, a small molecule inhibitor of DDX3, was obtained from Selleck Chemicals, (Catalog 

No.S8246, Selleck Chemicals, Houston, Texas). A stock solution of RK-33 was prepared in 

DMSO (5 mM) and was diluted to final concentrations from 0.25 µM up to 12 µM.  

 

Apoptotic/Dead cells detection 
          Dead and apoptotic cells were detected using CellEvent Caspase-3/7 Kit (#C10423, 

Thermo Fisher Scientific) according to the manufacturer’s recommendations. Briefly, after 

experimental treatment, Caspase3/7 Green Detection Reagent was added directly to cells, and 

the plate was incubated 30 min at 37oC. The final concentration of the reagent was 500 nM. During 

the final 5 min of incubation, SYTOX AADvanced dead cell solution was added. The final 

concentration of the stain was 1 µM. Cells were rinsed with PBS, and images of live cells were 

taken immediately.  Alternatively, cells were fixed with 4% paraformaldehyde, imaged, and used 

for further experiments. 

 

Immunocytochemistry  
     For ICC analysis cells were plated on glass coverslips and placed inside 12-well plates. 

Following experimental treatment, primary neuronal cultures were fixed with 4% 

paraformaldehyde and permeabilized with 0.1% Triton X-100.  Fixed cultures were blocked with 

10% fetal bovine serum for 2 hours and then co-labeled overnight with different primary 

antibodies: chicken polyclonal anti-MAP2 antibodies (1:2,500) (# ab92434, Abcam, Cambridge 

MA ), rabbit monoclonal anti-Iba1 (1:200) (# ab178847 Abcam, Cambridge MA), human 

recombinant anti-CD11b/c (1:50) (#130-120-288, Miltenyi Biotec, Germany).  Secondary 

antibodies, goat anti-chicken IgG conjugated with AlexaFluor 594, and goat anti-mouse IgG 

conjugated with AlexaFluor 488 (1:500; Invitrogen Life Technologies, Grand Island NY), were 

used for visualization. Anti-CD11b/c antibodies were originally labeled with allophycocyanine. To 

identify cell nuclei, DAPI was added with the final PBS wash, and coverslips were mounted on 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/591438doi: bioRxiv preprint 

https://doi.org/10.1101/591438


glass slides using VECTASHIELD Vibrance mounting medium (Vector Laboratories, Burlingame, 

CA).   

 
Image processing and analysis 

Images were taken on a Carl Zeiss LSM 700 laser scanning confocal microscope (Carl 

Zeiss Meditec, Dublin, CA) equipped with 20x (Plan APO 0.8 air) or 63x (Plan APO 1.4 oil DIC) 

objectives. Images were captured using 1.0 scanning zoom with 312-nm (20x) or 142-nm (63x) 

X-Y pixel size. Fluorescence and differential interference contrast (DIC) imaging was done using 

single-frame or tile (3x3 or 3x4) modes.  

          ImageJ software (National Institutes of Health, USA) was used for manual or automatic 

analysis of microscopy images acquired using a Zeiss 700 confocal microscope. Total number of 

cells and percentage of Iba1 or CD11b/c - positive cells were estimated using segmentation of 

DNA channel (DAPI) followed by “Analyze Particles” ImageJ command.  Size of microglia cells 

was estimated individually using “Freehand selections” ImageJ tool.  Data were aggregated, 

analyzed and visualized using R gglot2 tools.  

Background correction of widefield images was performed by background (Gaussian blur) division 

procedure (32-bit mode) followed by image histogram adjustment for 16-bit dynamic range. 

 
Cytokine/Chemokine Array 
Cortical cultures medium were collected, frozen and sent to Eve Technologies Corporation 

(Calgary, Canada) for the LUMINEX based analysis of cytokines by Featured-Rat Cytokine Array/ 

Chemokine Array 8-plex (RECYT-08-204). The array analyzed IFN-γ, IL-2, IL-4, IL-6, IL-18, MCP-

1, TNF-α, and VEGF.  
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Figure Legends:  
 
 
 
Figure 1. Selection and experimental validation of  RK-33. The compound  protects 
neurons in primary cortical cultures from the combined neurotoxicity of Tat and cocaine 

Representation of ranking distribution of the ~27,000 HUGO genes. The ranked 
hypotheses representing the level of association of each gene with HAND were categorized as 
following: “Trivial” (top 2.5% genes with exceptionally high ranking scores typical of well-
explored prior connections clearly associated with HAND), “High Potential” (next 15% of genes), 
“Low Potential” (next 15% of genes) and “Random” (A). 

Representative selection of genes for experimental validation, from all the “high potential 
genes” to genes with known small molecule ligands that have already tested safe for animal 
toxicity (B).  
 

Primary cortical cultures were treated with Tat (6 or 60 ng/ml) and/or cocaine (10 or 25 
µM) or Tat combined with a range of RK-33 for 48 h prior to the addition of cocaine for another 
24 h. Cultures were then fixed with 4% PFA and the dead/apoptotic cells were detected using 
CellEvent Caspase 3/7 Assay Kit (C: green, Caspase 3/7; red, Ethidium Bromide. Scale bar, 
100 µm).   

Tat and/or cocaine only treatments are colored in green, and the deepening blue hue 
represents the increasing concentration of RK-33 (from 0.25 to 12 µM) (D). 

The bar graph shows Tat and/or cocaine only treatments in light blue and RK-33 in dark 
blue (E). The bar heights indicate mean values and error bars indicate one sample standard 
error from the sample mean. Each point corresponds to an image, with each image containing a 
range of 60-100 cells. The Mann-Whitney-Wilcoxon test is conducted to calculate the statistical 
significance, followed by Benjamini-Hochberg adjustment of p-values (*, p<0.05; **, p<0.01; ***, 
P<0.0001). 

 
 

Figure 2. RNA-seq analysis transcriptome profiling of cortical cultures treated with Tat 
and RK-33. 
 Cortical cultures were treated in triplicates with Tat (60 ng/ml), RK-33 (6 µM), 
combination of Tat (60 ng/ml) and RK-33 (6 µM) and then were compared with untreated 
cultures. RNA-seq transcriptomics profiling was performed as described (see Materials and 
Methods for details).  
 Hierarchical clustering of log transformed counts per millions for genes differentially 
regulated by Tat treatment (p<0.0005) (A). 

Volcano plot comparing gene expression of control vs Tat-treated samples (upper 
panel), Tat plus RK-33 vs Tat-treated samples (middle panel), and control vs RK-33 treated 
samples (lower panel). Color indicates differentially expressing genes (FDR corrected p<0.05, 
absolute fold change >1.5) belonging to selected Enrichr GO categories/pathways (B). 

GSEA enrichment plot of Microglia-specific genes in Tat vs control dataset (C). 
Heatmap for expressions of selected genes representing the microglia cells (D).  

 
 
Figure 3. RK-33 treatment suppresses the activation of microglia induced by different 
combinations of Tat and cocaine on cortical cells.  

Cortical cultures were treated with Tat alone (6 or 60 ng/ml) or Tat combined with RK-33 
(6 µM) for 48 h prior to addition of cocaine (10 or 25 µM) for another 24 h. Cultures were then 
fixed with 4% PFA, and microglial cells were detected using anti-Iba1 and anti-CD11b/c 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2019. ; https://doi.org/10.1101/591438doi: bioRxiv preprint 

https://doi.org/10.1101/591438


antibodies as described in Materials and Methods. The number of microglial 
cells increased when cultured cells were subjected to Tat alone or cocaine alone, and 
especially, when Tat was combined with cocaine, producing a dramatic increase of activated 
microglia in the cortical cell cultures (A: blue, DAPI; green, Iba1. Scale bar, 250 µm. C: blue, 
DAPI; purple, CD11b/c. Scale bar, 100 µm).   

The box-and-whisker plot graphs Tat and/or cocaine only treatments in light blue and the 
addition of RK-33 in dark blue (B, D). The boxes cover 50% of data in each condition, and the 
lines within the boxes indicate the median values. The Mann-Whitney-Wilcoxon test was 
conducted to calculate the statistical significance, followed by Benjamini-Hochberg adjustment 
of p-values (*, p<0.05; **, p<0.01; ***, p<0.001). 
 
 
Figure 4. RK-33 treatment decreases the size of microglial cells and attenuates the 
secretion of proinflammatory cytokines induced by HIV-Tat and cocaine 
 

Cortical cultures were treated with Tat (6 or 60 ng/ml) and/or cocaine (25 µM) alone or 
Tat combined with RK-33 (6 µM) for 48 h prior to addition of cocaine for another 24 h. 
Conditioned media were collected from each sample, cultures were then fixed with 4% PFA and 
microglial cells were detected using anti-Iba1, anti-CD11b/c, and anti-MAP2 antibodies as 
described in Materials and Methods. The area of microglial cells was quantified using ImageJ 
(A: blue, DAPI; green, Iba1; red, MAP2. Scale bar, 50 µm).   

The box-and-whisker plot graphs Tat and/or cocaine only treatments in light blue and 
RK-33 in dark blue (B). The boxes cover 50% of data in each condition, and the lines within the 
boxes indicate the median values. Each point corresponds to an image field, with each image 
covering a range of 60-100 cells. The Mann-Whitney-Wilcoxon test was conducted to calculate 
the statistical significance, followed by Benjamini-Hochberg adjustment of p-values (*, p<0.05; 
**, p<0.01; ***, p<0.001).  

(C) Cortical cultures were treated as above with Tat (60 ng/ml) and/or cocaine (25 µM) 
alone or Tat combined with RK-33 (6 µM). The cytokine levels were determined by 8-plex 
chemokine/cytokine array. Bars represent chemokine/cytokine concentrations in the medium 
(pg/ml). (*) indicates the concentration below the detection limit. 
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