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Abstract 
Substantial genetic liability is shared across psychiatric disorders but less is known about risk 

variants that are specific to a given disorder. We used multi-trait conditional and joint 

analysis (mtCOJO) to adjust GWAS summary statistics of one disorder for the effects of 

genetically correlated traits to identify putative disorder-specific SNP associations. We 

applied mtCOJO to summary statistics for five psychiatric disorders from the Psychiatric 

Genomics Consortium – schizophrenia (SCZ), bipolar disorder (BIP), major depression 

(MD), attention-deficit hyperactivity disorder (ADHD) and autism (AUT). Most genome-

wide significant variants for these disorders had evidence of pleiotropy (i.e., impact on 

multiple psychiatric disorders) and hence have reduced mtCOJO conditional effect sizes. 

However, subsets of genome-wide significant variants had larger conditional effect sizes 

consistent with disorder-specific effects: 15 of 130 genome-wide significant variants for 

schizophrenia, 5 of 40 for major depression, 3 of 11 for ADHD and 1 of 2 for autism. In 

addition, we identified a number of variants that approached genome-wide significance in the 

original GWAS and have larger conditional effect sizes after conditioning on the other 

disorders. We show that decreased expression of VPS29 in the brain may increase risk to 

SCZ only and increased expression of CSE1L is associated with SCZ and MD, but not with 

BIP. Likewise, decreased expression of PCDHA7 in the brain is linked to increased risk of 

MD but decreased risk of SCZ and BIP.  
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Introduction 
Pervasive sharing of genetic risk factors between common psychiatric disorders (i.e. 

pleiotropy) has now been unequivocably demonstrated from genome-wide association studies 

(GWAS), as quantified by estimates of genetic correlation (rg) 
1, 2. The rg estimates are 

highest between schizophrenia and bipolar disorder (0.67, standard error (s.e.) = 0.03) but are 

> 0.15 for any combination of the five common disorders of schizophrenia (SCZ), bipolar 

disorder (BIP), ADHD, Major Depression (MD) and autism spectrum disorders (AUT) 2, 3. 

Cross-diagnosis analyses can leverage power to identify genetic risk loci shared across 

classical diagnostic boundaries 4 and can increase power for risk prediction of disorders in 

independent samples 5, 6. The shared genetic basis for psychiatric disorders contributes to an 

evidence base supporting a trans-diagnostic approach in clinical practice 7. Nonetheless, 

traditional diagnostic classes reflect real symptom differences at patient presentation even 

though it can be difficult to classify some individuals given a high-degree of concurrent and 

longitudinal comordibity.  Since rg estimates are higher between data sets of the same 

disorder than between data sets of different disorders 4, 8 it implies some real biological basis 

to the classical diagnostic classes. Hence, a key question of importance in psychiatry is 

identification of genetic factors that are disorder specific rather than those shared across 

classical diagnostic groupings. Identifying such variants could aid in understanding the 

biological pathways that underlie the constellation of symptoms seen in each disorder.  

 

Here, we sought to identify SNPs with disorder-specific effects by using independently 

collected genome-wide association study (GWAS) summary statistics for different disorders 

(thereby maximising contributing sample sizes). We conditioned the effect of  SNPs 

estimated for one disorder on those of other disorders using multi-trait, conditional and joint 

analysis (mtCOJO)9, a summary-statistics based method that accounts for overlap in samples 

contributing to the disorder specific GWAS. We report results from conditional analyses of 5 

psychiatric disorders: SCZ, BIP, MD, ADHD and AUT using association summary statistics 

from meta-analyses conducted by the Psychiatric Genomics Consortium (PGC) including 

data from 23andMe. Each disorder is conditioned on the other four disorders in one model.  
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Methods 

We applied the mtCOJO method as described in Zhu et al. 9. This method approximates a 

conditional analysis where the effect of a SNP on a disease is conditioned upon the covariates 

of the disease, but only requires summary statistics as input. As an example, if we are 

interested in estimating the effect of a SNP (z) on risk to schizophrenia (y) accounting for the 

effect of a covarying factor such as bipolar (x), we condition upon the effect of bipolar on 

schizophrenia  ����, as estimated using Generalised Summary-based Mendelian 

Randomisation (GSMR). This can be extended to condition upon multiple covarying diseases 

so that the effect of the SNP on risk on the disorder of interest is estimated conditional upon 

the covariates on the disorder (see Supplementary Material for detailed description of the 

method).  

 

To identify independent genome-wide significant SNPs for use as genetic instruments in 

mtCOJO analysis, each dataset was clumped to select independent genome-wide significant 

(GWS) SNPs (p < 5 x 10-8) using 7,762 unrelated individuals from the Atherosclerosis Risk 

In Community (ARIC) dataset10, imputed to 1000Genomes Phase III as an LD reference 

sample. GWS SNPs more than 1MB apart or with an r2 value < 0.05 were considered to be 

independent. GSMR accounts for any remaining LD between instruments. GSMR analysis 

with filtering to remove SNPs with outlier pleiotropic effects (compared to other GWS SNPs) 

using the HEIDI test 11 was performed with each disorder included both as an exposure and 

an outcome in combination with the other disorders. Owing to having fewer than 10 

independent GWS SNPs, independent SNPs significant at p < 10-7 were used for GSMR 

analysis with autism as the exposure variable. In order to compare the estimated effects of 

one disorder on another from MR, we derived a conversion of the estimated effects from 

GSMR to the liability scale (see Supplementary Material). 

 

We performed mtCOJO analysis (implemented in GCTA12  

(http://cnsgenomics.com/software/gcta/#mtCOJO) of 5 genetically correlated psychiatric 

disorders using the results from large genome-wide association studies from the Psychiatric 

GWAS consortium (Table 1)8, 13-16, running the analysis in turn with each disorder as the 

outcome with the other disorders as covariates. A total of 5,275,400 SNPs with matching 

alleles that were in common across the 5 disorders were used for further analysis. Indels were 

excluded from the analysis.  
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For each disorder, SNP effects conditional upon the other disorders were calculated. Results 

were uploaded to FUMA for annotation 17. Ranking SNPs according to the difference 

between the marginal and conditional effect sizes for each disorder is not necessarily 

meaningful because, for example, a SNP that has a low estimated marginal effect, so no 

effect on the outcome trait, will have a large conditional effect if the SNP has a large effect 

on the covariate traits. For the purposes of identifying which SNPs show evidence of 

disorder-specificity, we focus on presenting results for SNPs that were GWS with the 

outcome disorder in the original GWAS.  

 

MAGMA gene-set analysis 

MAGMA gene-set analysis18 as implemented in FUMA was used to investigate which sets of 

biologically related genes show the strongest evidence of association in the conditional 

analyses.  

 

Genetic Correlation 

LD-score regression 19 was used to estimate the genetic correlation between the conditional 

and unadjusted GWAS results. 

 

Summary Mendelian Randomisation  

To investigate the potential functional relevance of SNPs with disorder-specific effects, we 

applied the SMR approach 11, integrating eQTL (SNP-gene expression association) and 

mQTL (SNP_DNA methylation association) to the results from the conditional analyses. 

eQTL data from brain tissue were derived from a meta-analysis of the GTEx study, the 

Common Mind Consortium (CMC) and the Religious Orders Study and Memory and Aging 

Project (ROSMAP). The details of the meta-analysis have been described elsewhere20. Using 

meta-analysis results across brain tissues and studies is justified owing to the high correlation 

in effect sizes between tissues20. Only genes with a cis-eQTL with peQTL < 5 x 10-8 were 

included in the analysis. Experiment-wide significance accounting for testing multiple SNPs 

across multiple traits was set at pSMR = 1.9 x 10-06 and the threshold for no evidence of 

heterogeneity due to pleiotropy at pHEIDI > 0.01. Individual-level genotypes from the ARIC 

data (n = 7,762 unrelated individuals) 10 were used to estimate LD for the HEIDI test. 

 To test for the effects of disorder-specific variants on DNA methylation, we used 

SMR to integrating trait association data with meta-analysed brain mQTL data set from Jaffe 
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et al. (n = 526) ROSMAP (n = 486) and fetal brain mQTL data from Hannon et al 21. Only 

probes with at least one cis-mQTL with p < 5 x 10-8 were included in the SMR analysis. 

Probes that passed the significance threshold of 1.56 x 10-7 and did not show evidence of 

heterogeneity as indicated by the HEIDI test were considered to be significant. 

 

Cell-type specificity for disorders 

To gain insight into the cell types that are important for each disorder, we evaluated whether 

genes associated with specific brain cell-types are enriched for association with each of the 

disorders. Using data from single-cell sequencing experiments in mice, the cell-type 

specificity of each gene was calculated by comparing the expression of a gene in a given cell-

type to that across all cell types 22. MAGMA was used to calculate gene-based association 

statistics and to evaluate whether genes with high specificity in a given cell-type are enriched 

for association with a disorder. The enrichment analysis was performed for both unadjusted 

and conditional GWAS for all 5 disorders. To investigate whether there was a significant 

change in the cell-type enrichment after conditioning, MAGMA analysis was performed 

using the enrichment Z-scores from the unadjusted GWAS as covariates in the analysis and a 

conditional enrichment for all level 1 cell types analysed in Skene et al. 22 was estimated. 
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Results 

Baseline statistics 

After merging GWAS summary statistics for the five psychiatric disorders 5,275,400 

autosomal SNPs remained (Table 1). The number of independent genome-wide significant 

SNPs annotated by FUMA 17 is much greater for SCZ (M =130) compared to the other 

disorders (M =16, 40, 11, 2 for BIP, MD, ADHD, AUT respectively) reflecting mostly 

sample size, but also genetic architecture, and population risk. Linkage disequilibrium score 

regression (LDSC) estimates of SNP-based heritability on the liability scale and genetic 

correlations were all significantly different from zero (Table 2). Genetic correlations were 

highest between SCZ and BIP (rg = 0.67 (s.e. = 0.03)) and lowest between BIP and ADHD (rg 

= 0.15 (s.e. = 0.04)). The LD-score regression intercept was significantly greater than zero 

for the majority of pairs of disorders reflecting sample overlap in the GWAS studies. The 

intercept was highest between ADHD and AUT due to substantial overlap in controls.   

 

The GSMR analyses highlights some asymmetries in the estimates of the causal effects of 

one disorder on another (Table 3). In particular, the estimated liability ����  when considering 

MD as an exposure for each trait is higher than the estimates in the reverse direction. One 

explanation is that since MD is so common and is frequently comorbid with other disorders 

that MD samples include those diagnosed and undiagnosed with other disorders. However, if 

model assumptions are violated it may have greater impact when there is a large difference in 

lifetime risk between the pairs of disorder. However, countering this, we find a higher ���� 

from AUT to ADHD than from ADHD to AUT, but the standard errors on estimates are 

much higher for these disorders. Interpretation of these ���� estimates depends on the nature 

of the shared genetic contributions to psychiatric disorders that may reflect a complex mix of 

types of pleiotropy, where some sets shared of variants may have more correlated effect sizes 

than other sets of shared variants.  

 

Changes in Genetic Correlation  

The impact of the conditioning is demonstrated by the changes in the estimates of ���  

comparing original and conditional GWAS results. The ���  between SCZ conditional on the 

other disorders (denoted SCZcond) and SCZ remained high at 0.93, while between SCZcond and 

BIP it was much reduced (from 0.67 prior to conditioning to 0.36, after conditioning). It is 

noted that bzy is eliminated in the conditional analysis only if the SNP effect is mediated by 
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trait x. Therefore, there is remaining genetic correlation because of pleiotropic SNP effects. A 

similar pattern of changes in genetic correlation with other traits was seen for the analyses 

with the other disorders as the outcome variable (Supplementary Table 1).  

   

mtCOJO genome-wide significant SNP results 

As expected because of pleiotropy between disorders, conditional analysis leads to a 

reduction in the mean test statistic across all SNPs in the genome and hence the number of 

independent SNPs reaching the significance threshold (5x10-8) is reduced (Table 1). For each 

disorder, we present results for all independent SNPs significant in the unadjusted analysis or 

the conditional analysis (Supplementary Table 2). GWS SNPs that are more significantly 

associated in the conditional analysis than the unadjusted analysis are shown in Table 4. A 

larger conditional effect size suggests that these variants are disorder-specific or have 

heterogeneous effects across disorders.  

Given that SCZ is the disorder with the largest number of significant SNPs, we focus 

mostly on the results from the SCZ conditional analysis. Of the 130 SNPs from the 

unadjusted SCZ GWAS, five were more significant after adjusting for the other disorders (all 

of which had opposite direction of effects for BIP – Supplementary Table 2) and a further 

eight had a larger estimated effect size after conditioning. Forest plots for the four most 

significant SCZ SNPs from the conditional analysis (two of which were associated p<5x10-8 

in the unadjusted analysis) are shown in Figure 1.  

For all disorders except for AUT, a number of SNPs surpass the significance 

threshold that were not significant in the original GWAS. For schizophrenia, ten SNPs that 

were significant in the conditional analysis and not in the original GWAS (Table 4). All 10 

SNPs have opposite effects for BIP, so that the allele that predisposes to SCZ is in the 

protective direction for BIP. Although these opposite effects could be due to ascertainment, 

among them are variants in or near genes with annotated biological functions that are 

potentially relevant for SCZ. For instance a  SNP that was significant in the conditional 

analysis (rs2973038 – padj = 1.28 x 10-08; pscz = 1.72 x 10-06
 ) is located in the Glial Cell 

Derived Neurotrophic Factor (GDNF), a gene that encodes a protein that enhances the 

survival of midbrain dopaminergic neurons 23, and is expressed during development 24.  

All SNPs that were associated with BIP at p< 5x10-8 in the original GWAS were less 

significant in the conditional analysis, showing evidence that they have some pleiotropic 

effect across disorders. Notably, this includes genes involved in calcium signalling, 

dopaminergic signalling and synaptic plasticity, indicating these processes may be important 
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across psychiatric disorders. Three SNPs that were not significant in the BIP GWAS were 

significant in the conditional analysis (Table 4, Supplementary Table 2, Supplementary 

Figure 2).  

For each of the remaining disorders (MD, ADHD and AUT), we found that a small 

proportion of the existing significant SNPs had larger conditional effect sizes and one MD 

SNP and two ADHD SNPs that were not significant in the original GWAS became 

significant after conditioning (Table 4, Supplementary Table 2). Forest plots for significant 

SNPs that had increased conditional effect sizes are shown in Supplementary Figures 3-5 

 

SMR analysis  

 Changes in the expression of 9 genes were significantly associated with the 5 

disorders (0 for BIP, 5 for SCZ, 3 for MD and 1 for ADHD, 0 for AUT) after conditioning 

and removal of genes in the MHC (Supplementary Tables 3-4), and a total of 72 DNA 

methylation sites (2 for BIP, 18 for SCZ, 37 for MD, 8 for ADHD, and 6 for AUT) were 

significantly associated with the 5 conditional traits (Supplementary Table 3-4).  

Significant SMR results for gene expression where the associated SNP is more 

significant in the conditional analysis are presented in Supplementary Table 3. Three out of 

5 significant SMR associations for SCZ were with SNPs where the conditional significance 

was greater than in the unadjusted analysis. One SNP - rs3759384 – is associated with 

decreased expression of VPS29 in the brain and significantly increased risk for SCZ in the 

unadjusted analysis and has a larger conditional effect size (Supplementary Figure 6), 

indicating that VPS29 may be linked to the development of SCZ and not other disorders. The 

VPS29 protein is a component of the retromer complex which prevents the degradation of 

certain proteins including signalling receptors, ion channels and small molecule transporters. 

The complex is essential for maintenance of neurons and has been implicated in the etiology 

of a number of neurodegenerative disorders 25.  

One of the three associations for MD was with a SNP (rs7732179) with greater 

significance in the conditional analysis. The same variant shows evidence of association with 

SCZ but with opposite directions of effect (bSCZ = -0.045; pSCZ = 1.7 x 10-6 and bBIP = -0.029; 

pBIP = 0.027). The A allele confers risk to MDD but is protective for SCZ and BIP 

(Supplementary Figure 7). The SNP is associated with expression of PCDHA7 in the brain. 

This gene encodes a member of the protocadherin family of genes located together on 

chromosome 5. A significant association was also found in this region in the DNA 
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methylation analysis of MD. Little is known about the exact function of these genes, however 

they are concentrated at the synaptic junction suggesting a key role in neuronal signalling 26.  

Out of 72 significant DNA methylation sites, 34 were associated with SNPs with 

higher significance in the conditional analyses (1 for BIP, 3 for SCZ, 21 for MD, 4 for 

ADHD and 5 for AUT) (Supplementary Table 3). It is noteworthy that one variant 

(rs2064853) was significantly associated with both SCZ and MD and DNA methylation near 

the CSE1L gene, but with opposite alleles increasing risk to each disorder (Supplementary 

Figure 8).  

 We investigated whether genes identified in the gene expression SMR or that are the 

closest gene to a significant methylation site are the primary target for FDA-approved drugs. 

We identified two genes that are targeted by medications. The serotonin receptor gene 

HTR1D which was identified in the DNA methylation analysis for MD is the primary target 

of the migraine drug naratriptan. Individuals with migraine are at 2-4 fold higher risk of 

developing depression and these results may suggest that triptans, used to treat migraines, 

could also be effective for MD.  

The second drug target identified is with MPL and ADHD. This gene is targeted by 

romiplostim, an orphan drug developed for treatment of chronic idiopathic thrombocytopenic 

purpura. 

 

MAGMA gene-set analyses 

We conducted MAGMA gene-set analysis in FUMA to identify pathways and gene-sets that 

are enriched for association with the disorders after conditional analyses and to identify 

which sets become more or less significant after conditioning. Results for each disorder are 

presented in Supplementary Table 5. After conservative Bonferroni correction for the 

number of gene-sets tested for each disorder, three gene sets were significant -  two for SCZ 

conditional analysis and one for AUT. For SCZ, the two significant sets were 

go:establishment of localization in the cell and GO:Dendrite, of which establishment of 

localization had a more significant p-value in the conditional analysis (Supplementary 

Table 5). For AUT, the gene-set GO:Dendrite_morphogenesis was significant after multiple 

testing and had a more significant p-value in the conditional analysis, potentially implicating 

genes expressed in dendrites in autism-specific pathology.   
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Cell-type specificity for disorders  

The results from the cell-type enrichment analyses of raw and conditional analyses are shown 

in Figure 2. Consistent with previous results, the original SCZ results were enriched in 

medium spiny neurons (MSNs), pyramidal CA1 cells, pyramidal SS1 cells, interneurons and 

serotonergic neurons (Supplementary Table 6). All of these cell types also show some 

evidence of association with BIP and to a lesser extent MD, consistent with the genetic 

correlation between disorders and hence show reduced enrichment in the SCZ conditional 

analysis. All enriched cell-types for SCZ remained significant after conditioning except for 

serotonergic neurons, indicating that genes specific to this cell-type may increase risk to all 

five disorders. Enrichment in interneurons was found for SCZ, BIP and MDD indicating their 

potential importance across all 3 disorders. After conditioning, this cell-type was still 

significantly enriched in SCZ and MDD, but not BIP. This may reflect that the sample size of 

the BIP analysis is smaller than for SCZ and MDD.  

 

 

Discussion: 

Our goal was to identify genetic variants that show disorder specific association by 

conducting a summary statistics based GWAS analysis for each of five psychiatric disorders 

conditioning on GWAS results from the other disorders. As expected, given the high degree 

of pleiotropy across disorders,  compared to original GWAS results the number of SNPs 

associated at the threshold of genome-wide significance is very much reduced for each 

conditional GWAS. The conditional analyses identified SNPs that increased in significance 

compared to the unconditional results, which reflects SNPs which have opposite effect size in 

one or more of the disorders that are included in the conditional analysis. A small number of 

SNPs that were not previously significant surpassed the p<5x10-8 threshold in the conditional 

analyses. Since effect sizes are estimated with error, if these SNP associations are true 

positives we would expect them to become genome-wide signifcant in future disorder 

specific GWAS that are larger and more powered. For SCZ and MD, the proportion of 

previously genome-wide significant SNPs that have larger conditional effect sizes is 

approximately 10%. The conditional results for BIP, ADHD and AUT were less insightful, as 

expected, since the GWAS of these disorders have identified fewer significant loci. Future 

larger samples are needed to exclude results that have achieved increased statistical 

significance in conditional analyses through chance. We utilise mtCOJO as a method that 

uses summary statistics to quickly screen for SNP associations. Functional annotation can 
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help prioritise the associations of most interest. It will be important to understand why a 

variant increases risk only to that disorder and not to others.  

By integrating conditional GWAS results with SNP-gene expression and SNP-

methylation results, we identify decreased expression of VPS29 as a potential biological 

mechanism underlying schizophrenia. The variant that increases risk to SCZ and is associated 

with decreased expression of VPS29 in brain tissue shows no evidence for association with 

other psychiatric disorders. Moreover, SNPs associated with decreased expression of 

PCDHA7 and decreased methylation near other members of the protocadherin gene family on 

chromosome 5 may increase risk of MD, but be protective for SCZ and BIP. Methylation in 

the promoter of the CSE1L gene, whose encoded protein influences cellular proliferation and 

has been linked to progression of a number of cancers, shows evidence of increasing risk to 

SCZ but being protective for MD.  

Consistent with the large degree of pleiotropy between disorders, we found that most 

of the significant biological pathways for each disorder had reduced significance after 

conditioning. Pathway analysis of conditional results identified a potential role for genes 

expressed in dendrites in both autism and schizophrenia. Likewise, for the cell-type 

enrichment analysis, there was a reduction in the enrichment for most cell types in each 

disorder after conditioning. For SCZ, the previously identified enrichments in pyramidal SS1 

and CA1 cells as well as medium spiny neurons remained significant after conditioning, 

despite also showing evidence for enrichment in BIP. The largest change in enrichment was 

for serotonergic neurons, indicating that genes highly expressed there are important across all 

psychiatric disorders. 

We provide an analysis framework for conditional cross-disorder analyses using 

summary statistics. Our study was motivated to improve on the SCZ case vs. BIP case 

analyses that utilised PGC cohorts for which both SCZ and BIP genotyped samples were 

available 27, but which necessarily excluded 28% of cases that could not be allocated into 

matched cohorts. They identified 5 SNPs associated at p<5x10-8. We conducted an analysis 

of SCZ conditional on BIP and performed a lookup of those SNPs in the unadjusted and 

adjusted results. All but one (rs200005157) of their associated SNPs were matched directly or 

to an LD proxy (Supplementary Table 7). All show increased statistical significance in the 

conditional analysis. We identified more disorder-specific SNPs (10 specific to SCZ) 

consistent with the larger sample sizes afforded from using summary statistics, highlighting 

that mtCOJO is an efficient method for screening for disorder-specific SNPs for two or more 
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related disorders. An in depth discussion of the mtCOJO method and potential limitations are 

given in the Supplementary Material. 

 In conclusion, our results suggest that mtCOJO is an efficient method for identifying 

variants with disorder-specific effects and they represent a small fraction of variants 

identified for each disorder to date, reflecting the high degree of pleiotropy between 

disorders. Nonetheless, we identify several loci that have evidence of being disorder-specific. 

Further research in human studies should focus on whether the disorder-specific variants 

associate with specific symptoms in mixed clinical populations. 
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FIGURES  

Figure 1 – Forest plots for the 4 most significant SNPs in SCZ mtCOJO analysis with larger 

conditional effect sizes 
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Figure 2 Results from brain cell-type enrichment analyses of raw and conditional GWAS 
analyses 
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Tables 
Table 1. Summary of datasets used and results from conditional GWAS analysis 
 

Disorder Cases Controls No. SNPs in original study 

No 
GWS 
SNPs 
in 
merged 
data 

Study reference 

No. GWS 
SNPs in 
Published 
Study 

Assumed 
Lifetime 
Disease 
Risk 

GWS loci 
in 
conditional 
GWAS 

New 
GWS 
loci 

GWS SNPs from 
unadjusted 
GWAS with 
larger 
conditional 
effect size 

SCZ 40,675 64,643 5,471,613 130 Pardinas et al 2018 
145 

0.01 43 10 15 

BIP 20,352 31,358 9,498,970 16 Stahl et al 2018 BioRxiv 19 0.01 4 3 0 

MD 135,458 344,901 10,468,943 40 Wray et al 2018 44 0.15 15 1 5 

ADHD 19,099 34,194 6,755,648 11 Demontis et al 2019 
12 

0.05 5 2 3 

AUT 18,381 27,969 7,539,669 2 Grove et al 2019 3 0.01 1 0 1 
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Table 2. Estimated SNP-based heritability on the liability scale, genetic correlation and 
LD-score intercepts estimated from LD-score regression 
  SCZ BIP MDD ADHD AUT 
SCZ 0.23 (0.01) 0.21 (0.01) 0.03 (0.01) 0.02 (0.01) 0.008 (0.01) 
BIP 0.67 (0.02) 0.19 (0.01) 0.05 (0.007) 0.03 (0.006) 0.009 (0.008) 
MD 0.36 (0.02) 0.35 (0.02) 0.08 (0.004) 0.10 (0.008) 0.09 (0.008) 
ADHD 0.18 (0.03) 0.15 (0.04) 0.43 (0.03) 0.22 (0.01) 0.35 (0.008) 

AUT 0.23 (0.05) 0.15 (0.05) 0.43 (0.04) 0.36 (0.05) 0.12 (0.01) 

     LD-score SNP-based heritability on the liability scale and standard error reported on 
diagonal 

 rg and standard error reported below the diagonal 
 Bivariate ldsc intercept reported above the diagonal. Value significantly greater than zero 

(in italics) quantify sample overlap  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2019. ; https://doi.org/10.1101/592899doi: bioRxiv preprint 

https://doi.org/10.1101/592899
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

 
 
Table 3. GSMR estimates of causal effect of each psychiatric disorder on the others with 
conversion to the log odds ratio and liability scales 

Exposure Outcome N SNPs bxy bxy_se bxy_liability OR bxy_pval 

SCZ BIP 111 0.417 0.019 0.417 3.06 5.0E-109 

SCZ MD 111 0.074 0.007 0.109 1.22 4.9E-26 

SCZ ADHD 111 0.054 0.019 0.066 1.16 5.2E-03 

SCZ AUT 111 0.144 0.019 0.144 1.47 2.9E-09 

BIP SCZ 16 0.498 0.039 0.498 3.82 1.6E-37 

BIP MD 16 0.091 0.016 0.134 1.28 2.0E-08 

BIP ADHD 16 0.028 0.043 0.034 1.08 5.2E-01 

BIP AUT 16 0.123 0.046 0.123 1.39 7.4E-03 

MD SCZ 40 0.414 0.059 0.281 2.13 2.7E-12 

MD BIP 40 0.600 0.068 0.408 2.97 1.1E-18 

MD ADHD 40 0.402 0.072 0.339 2.09 2.9E-08 

MD AUT 40 0.463 0.078 0.314 2.33 3.7E-11 

ADHD BIP 13 0.135 0.052 0.109 1.34 8.9E-03 

ADHD MD 13 0.086 0.019 0.102 1.21 9.1E-06 

ADHD SCZ 13 0.156 0.043 0.126 1.40 2.8E-04 

ADHD AUT 11 0.333 0.060 0.269 2.06 2.9E-08 

AUT SCZ 11 0.063 0.041 0.063 1.19 1.3E-01 

AUT BIP 11 0.053 0.057 0.053 1.15 2.9E-01 

AUT MD 11 0.011 0.021 0.016 1.03 5.9E-01 

AUT ADHD 11 0.413 0.062 0.512 3.03 3.6E-11 

        * Estimates using autism as the exposure used instruments with p < 10E-06 due to lack of 
genome-wide significant SNPs for autism 
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Table 4. Results for SNPs that were genome-wide significant in the conditional analysis and have larger estimated conditional effect sizes than in 
the original GWAS 
 

Disorder SNP 
CH
R Position A1 

Adjuste
d beta 

Unadjusted 
beta 

SE 
Adjusted 

beta 
Adjusted p-

value 
Unadjusted p-

value nearestGene 

SCZ rs3764002 12 108618630 C 0.083 0.054 0.012 1.9E-12 6.1E-07 WSCD2 
SCZ rs6095357 20 47523865 A -0.069 -0.048 0.011 1.2E-10 1.2E-06 ARFGEF2 
SCZ rs7790864 7 28478625 A -0.062 -0.044 0.011 6.3E-09 7.2E-06 CREB5 
SCZ rs1054972 19 1852582 A 0.076 0.053 0.013 6.4E-09 1.3E-05 KLF16 
SCZ rs2867673 7 71752652 T 0.060 0.049 0.010 9.4E-09 4.1E-07 CALN1 
SCZ rs6564668 16 79457393 C -0.060 -0.038 0.010 1.0E-08 7.9E-05 RP11-467I7.1 
SCZ rs11922765 3 95047279 G -0.060 -0.044 0.010 1.2E-08 4.4E-06 RPS18P6 
SCZ rs2973038 5 37833781 C 0.066 0.051 0.012 1.3E-08 1.7E-06 GDNF 
SCZ rs10903945 10 363275 C 0.057 0.040 0.010 3.1E-08 3.3E-05 DIP2C 
SCZ rs10282935 8 38703797 A 0.058 0.041 0.011 3.9E-08 3.2E-05 TACC1 

SCZ rs6701877 1 174015259 G -0.096 -0.073 0.014 1.5E-11 2.4E-08 
RP11-
160H22.3 

SCZ rs7372313 3 135872958 G -0.069 -0.062 0.010 4.3E-11 1.5E-10 MSL2 
SCZ rs1765142 11 30378559 C 0.065 0.058 0.011 1.5E-09 1.1E-08 ARL14EP 
SCZ rs55646993 7 105017864 G -0.062 -0.053 0.010 2.2E-09 3.8E-08 SRPK2 
SCZ rs150437760 14 59981768 A 0.131 0.121 0.024 3.7E-08 4.6E-08 CCDC175 
BIP rs12554512 9 23352293 T -0.083 -0.066 0.014 1.6E-09 1.3E-06 ELAVL2 
BIP rs6891181 5 80849101 T -0.081 -0.075 0.014 1.5E-08 1.3E-07 SSBP2 
BIP rs12268910 10 111878510 T -0.097 -0.091 0.018 3.3E-08 2.7E-07 ADD3 
MD rs11697370 20 47731767 T -0.031 -0.023 0.005 3.3E-09 3.5E-06 STAU1 
MD rs27732 5 87992576 A 0.034 0.031 0.005 1.2E-11 1.9E-10 MEF2C 
MD rs1806153 11 31850105 T 0.037 0.036 0.006 8.8E-10 1.2E-09 RCN1 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted M
arch 30, 2019. 

; 
https://doi.org/10.1101/592899

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/592899
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

MD rs1354115 9 2983774 A 0.029 0.028 0.005 1.7E-08 2.4E-08 CARM1P1 

MD rs301799 1 8489302 T -0.028 -0.026 0.005 2.5E-08 4.7E-08 RERE 

ADHD rs78648104 6 50683009 T 0.136 0.124 0.023 4.3E-09 3.6E-07 TFAP2D 

ADHD rs2244336 10 8831827 C 0.071 0.069 0.013 3.8E-08 3.7E-07 

ENSG00000270

234 

ADHD rs12410444 1 44188719 A 0.107 0.106 0.014 4.2E-15 3.8E-13 ST3GAL3 

ADHD rs13023832 2 215219808 A 0.133 0.117 0.020 1.2E-11 1.6E-08 SPAG16 

ADHD rs281320 15 47769424 T -0.080 -0.074 0.013 1.8E-10 3.1E-08 SEMA6D 

AUT rs10099100 8 10576775 C 0.084 0.084 0.014 1.2E-09 1.0E-08 SOX7 
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