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Abstract 

Adult lung function is highly heritable and 279 genetic loci were recently reported as associated with 

spirometry-based measures of lung function.  Though lung development and function differ between 

males and females throughout life, there has been no genome-wide study to identify genetic 

variants with differential effects on lung function in males and females.  Here, we present the first 

genome-wide genotype-by-sex interaction study on four lung function traits in 303,612 participants 

from the UK Biobank.  We detected five SNPs showing genome-wide significant (P<5 x 10-8) 

interactions with sex on lung function, as well as 21 suggestively significant interactions (P<1 x 10-6).  

The strongest sex interaction signal came from rs7697189 at 4:145436894 on forced expiratory 

volume in 1 second (FEV1) (P = 3.15 x 10-15), and was replicated (P = 0.016) in 75,696 individuals in 

the SpiroMeta consortium.  Sex-stratified analyses demonstrated that the minor (C) allele of 

rs7697189 increased lung function to a greater extent in males than females (untransformed FEV1 β 

= 0.028 [SE 0.0022] litres in males vs β = 0.009 [SE 0.0014] litres in females), and this effect was not 

accounted for by differential effects on height, smoking or age at puberty.  This SNP resides 

upstream of the gene encoding hedgehog-interacting protein (HHIP) and has previously been 

reported for association with lung function and HHIP expression in lung tissue.  In our analyses, while 

HHIP expression in lung tissue was significantly different between the sexes with females having 

higher expression (most significant probeset P=6.90 x 10-6) after adjusting for age and smoking, 

rs7697189 did not demonstrate sex differential effects on expression.  Establishing the mechanism 

by which HHIP SNPs have different effects on lung function in males and females will be important 

for our understanding of lung health and diseases, such as chronic obstructive pulmonary disease 

(COPD), in both sexes. 
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Introduction 

Measures of lung function, including forced expiratory volume in 1 second (FEV1) and forced vital 

capacity (FVC), are used to determine diagnosis and severity of chronic obstructive pulmonary 

disease (COPD).  COPD refers to a group of complex lung disorders characterised by irreversible (and 

usually progressive) airway obstruction, and is projected to be the third leading cause of death 

globally in 2020 (1). The major risk factor for COPD is smoking, but other environmental and genetic 

factors have been identified. 

Physiological lung development and function differ throughout life between males and females.  

Female foetuses have smaller airways and fewer bronchi, but their lungs mature faster and they 

produce surfactant earlier than lungs of male foetuses (2).  During childhood, females have smaller 

lungs compared to height-matched males, but have a higher flow rate per lung volume, perhaps 

reflecting airway growth lagging behind lung growth in males (3).  In adulthood, females have 

smaller diameter airways, fewer alveoli, and smaller lung volumes and diffusion surfaces compared 

to males (4).  However, there is some evidence to suggest that age-related decline in lung function is 

slower in females (5).   As well as these anatomical differences, it is known that sex hormones can 

influence lung structure and function throughout life but the mechanisms are not well understood 

(5, 6).  

The incidence and presentation of lung diseases such as COPD also exhibit sex disparity.  

Traditionally viewed as a disease of older males, COPD has been increasing in prevalence amongst 

females over the last two decades.  It has been reported that females are more vulnerable to 

environmental risk factors for COPD and are over-represented amongst sufferers of early-onset 

severe COPD (7, 8).  Females are also more likely to present with small airway disease whereas 

males are more likely to develop emphysematous phenotype.  Moreover, females report more 

frequent and/or severe exacerbations of respiratory symptoms than males and higher levels of 

dyspnea and cough (7). 

In a recent paper, 279 genetic loci were reported as associated with lung function traits, but these 

only explain a small proportion of the heritability (9).  One possible source of hidden heritability is 

the interaction between genetic factors and biological sex on lung function traits.  A genome-wide 

genotype-by-sex interaction study in three studies comprising 6260 COPD cases and 5269 smoking 

controls found a putative sex-specific risk factor for COPD in the CELSR1 gene, a region not 

previously implicated in COPD or lung function (10).  However, having sufficient statistical power to 

reproducibly detect genotype-by-sex interactions will require much larger sample sizes.  Statistical 

power can also be enhanced by using quantitative lung function traits as outcomes but we are not 
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aware of any genome-wide genotype-by-sex interaction studies on lung function traits.  

Understanding the role of sex in lung function and COPD will be important for developing 

therapeutics that work for both males and females (11). 

In this study, we tested for an interaction effect of 7,745,864 variants and sex on FEV1, FEV1/FVC, 

FVC and PEF in 303,612 individuals from the UK Biobank resource.  We sought replication of our 

findings in 75,696 independent individuals from the SpiroMeta consortium.  To our knowledge this is 

the first genome-wide sex-by-genotype interaction study on lung function traits and the largest sex-

by-genotype interaction study to focus on COPD-related outcomes.   
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Materials and Methods 

UK Biobank participants 

The UK Biobank is described here: http://www.ukbiobank.ac.uk.  It comprises over 500,000 

volunteer participants aged 40-69 years at time of recruitment, with demographic, lifestyle, clinical 

and genetic data (12).  Individuals were selected for inclusion in this study if (i) they had no missing 

data for sex, age, height, and smoking status, (ii) their spirometry data passed quality control, as 

described previously (9), (iii) they had genome-wide imputed genetic data, (iv) they were of 

genetically determined European ancestry, and (v) they were not first- or second-degree relatives of 

any other individual included in the study.  In total, 303,612 individuals met these criteria 

(Supplementary Table 1). 

Participants’ DNA was genotyped using either the Affymetrix Axiom® UK BiLEVE array or the 

Affymetrix Axiom® UK Biobank array (12).  Genotypes were imputed based on the Human Reference 

Consortium (HRC) panel, as described elsewhere (12).  Variants with minor allele frequency (MAF) < 

0.01 and imputation quality (info) scores < 0.3 were excluded from the analysis. 

SpiroMeta consortium 

The SpiroMeta consortium meta-analysis comprised 75,696 individuals from 20 studies.  Ten studies 

(N = 17,280) were imputed using 1000 Genomes Phase 1 reference panel (13, 14), nine studies (N = 

37,919) were imputed using the Haplotype Reference Consortium (HRC) panel (12), and one study (N 

= 2077) was imputed using the HapMap CEU Build 36 Release 22.  Two of the studies (ALSPAC and 

Raine) also provided data on children with an average age of 8 years (N = 5645).  Supplementary 

Tables 2 and 3 show the definitions of all abbreviations, study characteristics, details of genotyping 

platforms and imputation panels and methods. Measurements of spirometry for each study are as 

previously described (9, 15).  Fourteen SpiroMeta studies had data on PEF so the sample size for 

replication of PEF signals was 51,555. 

The lung eQTL study 

The lung expression quantitative trait loci (eQTL) study database has been described previously (16-

18). It consists of non-tumour lung tissue samples from 1,111 individuals who had undergone lung 

resection surgery, mainly current or former smokers, genotyped on the Illumina Human1M-Duo 

BeadChip array. 

 

Statistical analysis 
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Spirometry-based lung function traits FEV1, FEV1/FVC, FVC, and PEF were pre-adjusted for age, age2, 

standing height (or sitting height in the sensitivity analysis) and smoking status and the residuals 

rank-transformed to normality using the rntransform function of the GenABEL package in R.  To test 

each imputed variant for an interaction effect, a linear regression model with genotype (additive 

effect), sex, genotype-by-sex interaction, genotyping array and the first ten principal components 

included as covariates was implemented using Plink 2.0 software (https://www.cog-

genomics.org/plink/2.0/).  Genome-wide results were visualised using the R packages qqman, 

manhattanly and Circos v0.65.  Region plots were generated using LocusZoom. 

Following the genome-wide interaction study, sentinel SNPs were identified by selecting the SNP 

with the strongest sex interaction P value, excluding all SNPs (irrespective of LD) +/- 1Mb, and then 

selecting the SNP with the strongest sex interaction P value from the remaining signals.  This process 

was repeated until no SNPs with P<1 x 10-6 remained.  Step-wise conditional analyses to identify 

independently associated variants within the 2Mb region surrounding the sentinel SNPs were then 

undertaken using GCTA software (19, 20).  The SNPs with the strongest interaction P value at each 

independent locus were then selected for replication in SpiroMeta consortium studies.   

Sentinel SNPs were also tested for association with lung function traits in males and females 

separately to provide sex-specific effect sizes.   

Regression analysis to test genotype-by-sex interactions on height were conducted using a model 

including genotype (additive effect), age, age2, sex, genotyping array and the first ten principal 

components as covariates.  Interactions between smoking status and genotype on lung function 

were tested using lung function traits transformed as described above (with sex included in the 

model instead of ever-smoking status).  The linear regression model included genotype (additive 

effect), ever-smoking status, a genotype-by-smoking interaction term, genotyping array and the first 

ten principal components. 

To test whether pubertal timing has differential effects on the association between SNPs and lung 

function in males and females, the regression model was adjusted for relative age at menarche in 

females and relative age at voice breaking in males.  Relative age at voice breaking is categorised as 

earlier than average (1), around average (2) and later than average (3) in UK Biobank.  Age at 

menarche is given as the participant’s age at menarche in years. To make these variables 

comparable, age at menarche was categorised as early (<12 years old), average (12-14 years old) and 

late (>14 years old) as in a previous study (21).   As in the lung function analyses, ancestry-based 

principal components and genotyping array were included in all the regression models. 
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For the SpiroMeta consortium, summary statistics were generated by each contributing cohort 

separately according to the same analysis plan as the UK Biobank data.  That is, the lung function 

traits were transformed as above and then tested for association with SNP-by-sex interaction terms, 

adjusting for sex and ancestry-based principal components. Meta-analysis of SpiroMeta cohorts was 

conducted using inverse-variance weighted fixed effects meta-analysis the metagen function of the 

meta package in R.   
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Results 

We tested 7,745,864 genome-wide variants with MAF ≥ 0.01 and imputation quality scores > 0.3 for 

genotype-by-sex interactions on lung function in 303,612 unrelated individuals of European ancestry 

from UK Biobank.  Five independent signals were identified showing genome-wide significant (P<5 x 

10-8) interaction with sex on at least one of four lung function traits (FEV1, FEV1/FVC, FVC, and PEF) 

with a further 21 SNPs showing suggestive significance (P<1 x 10-6) (Table 1, Supplementary Figure 

1).  The top three genome-wide significant signals had been previously reported for association with 

lung function:  rs7697189 near the gene encoding hedgehog-interacting protein (HHIP) (interaction P 

= 3.15 x 10-15), rs9403386 near the gene encoding Adhesion G Protein-Coupled Receptor G6 

(ADGRG6, previously known as GPR126) (interaction P = 4.56 x 10-9), and rs162185 downstream of 

the gene encoding transcription factor 21 (TCF21) (interaction P = 4.87 x 10-9) (22-27).  Only 

rs355079 (interaction P = 8.84 x 10-7) showed an opposite direction of effect in males compared to 

females.   

We sought evidence for replication of all 26 signals in up to 75,696 individuals from 20 cohorts of the 

SpiroMeta consortium.  One variant, rs76911399, was poorly imputed in SpiroMeta cohorts 

(effective sample size, Neff = 41,135) and was excluded.  Of the UK Biobank genotype-by-sex 

interaction signals, one SNP showed a nominally significant (P < 0.05) interaction with sex on lung 

function in SpiroMeta cohorts: rs7697189 (near HHIP) (replication interaction P = 0.016) (Table 1, 

Figure 1).  A further 18 signals were not significant in SpiroMeta but exhibited the same direction of 

interaction effect as in UK Biobank. 

The strongest sex interaction signal came from rs7697189 on FEV1 (P = 3.15 x 10-15 in UK Biobank and 

P=0.016 in SpiroMeta).  The minor (C) allele of rs7697189 has a larger effect on lung function in 

males (β = 0.052 [SE 0.004], P = 2.13 x 10-33) compared to females (β = 0.013 [SE 0.003], P = 1.16 x 10-

5) (Table 1).  This SNP resides upstream of the HHIP gene and is in linkage disequilibrium with two 

previously reported lung function-associated sentinel SNPs, rs13141641 (27, 28) (r2 = 0.91) and 

rs13116999 (28) (r2 = 0.56).  SNP rs7697189 was also genome-wide and suggestively significant for 

interactions with sex on PEF and FEV1/FVC respectively, but did not meet the threshold for 

suggestive significance in FVC (P = 8.71 x 10-5) (Supplementary Table 4, Figure 2). 

 

rs7697189 interacts with sex on lung function independently of height, smoking and pubertal timing 

As SNPs in HHIP are also reported to be associated with height (29) and increased height is 

associated with increased lung function, it is possible that rs7697189 has differential effects on lung 
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function in males and females through differential effects on height.  However, the association of 

rs7697189 with standing height was not modified by sex in a combined analysis of UK Biobank males 

and females with a genotype-by-sex interaction term (interaction P = 0.806).  We also conducted a 

sensitivity analysis showing that the rs7697189-by-sex interaction on FEV1 remained significant after 

adjustment for sitting height (β = -0.04 [SE = 0.005], P = 1.97 x 10-15). 

Amongst the 303,612 UK Biobank participants in this study, the proportion of ever-smokers was 

higher in males (52.8%) than females (40.3%) (Supplementary Table 1).  A larger effect of rs7697189 

on lung function in males compared to females could arise if there was an interaction effect with 

smoking.  However, there was no interaction between rs7697189 and ever-smoking status on FEV1 

in this study (interaction P = 0.63). 

SNP rs7697189, and correlated SNPs in the region, have been shown to be associated with 

expression levels of Hedgehog-interacting protein (HHIP) in lung tissue (30).  HHIP is a critical protein 

during early development and HHIP variants have been associated with lung function in infancy (31).  

We tested whether HHIP SNPs also have differential effects on lung function in females compared to 

males in childhood using data from children with an average age of 8 years in the ALSPAC and Raine 

studies (N = 5645).  No significant association between rs7697189 and FEV1, and no significant 

interaction between rs7697189 and sex on FEV1 was detected, possibly due to the much smaller 

sample size of the childhood cohorts (Supplementary Figure 2).  Finally, as pubertal timing has been 

associated with adult lung function (15), we tested for an effect of relative age at puberty on the 

association between rs7697189 and lung function in a sex-stratified analysis.  The association 

between HHIP SNPs and lung function was adjusted for relative age at voice breaking in males and 

for age at menarche in females, but neither adjustment changed the effect estimate of the SNPs on 

lung function (Supplementary Table 5). 

 

rs7697189 is associated with HHIP expression, but no interaction with sex  

It is possible that rs7697189 interacts with sex on lung function through differential effects on HHIP 

expression.  We confirm that rs7697189 is associated with HHIP expression in lung tissue but we do 

not detect an interaction with sex on HHIP expression (Supplementary Table 6).  However, HHIP (in 

all samples irrespective of genotype at rs7697189) does show differential expression between males 

and females, with females showing higher expression (Supplementary Table 7). 
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Discussion 

We identified a genome-wide significant genotype-by-sex interaction signal at a locus previously 

reported for association with lung function upstream of the HHIP gene (rs7697189, FEV1 interaction 

P = 3.15 x 10-15). The signal was nominally significant in 75,696 individuals from 20 independent 

studies of the SpiroMeta consortium.  We demonstrated that the differential effects of this SNP in 

males and females (untransformed FEV1 β = 0.028 [SE 0.0022] litres in males vs β = 0.009 [SE 0.0014] 

litres in females) was not mediated by effects on height, smoking behaviour or pubertal age.   

SNPs at the HHIP locus also exhibited genome-wide or suggestive significant interactions with sex on 

two additional lung function traits in UK Biobank: FEV1/FVC and PEF (P = 8.98 x 10-8 and P = 8.78 x 10-

12 respectively).  Stratified analyses in males and females separately demonstrated that these SNPs 

appeared to have a stronger effect on lung function in males compared to females.  There was no 

interaction between these SNPs and ever-smoking status on lung function in UK Biobank, suggesting 

that the stronger effect in males is not due to differences in smoking behaviour.  We also 

demonstrate that an association between these SNPs and height is not modified by sex, suggesting 

that differential effects on height in males and females do not explain the genotype-by-sex 

interaction on lung function. 

The genome-wide significant sex interaction locus is located upstream of the HHIP gene, a region 

previously reported to be associated with lung function (23, 26) and HHIP gene expression (30).  The 

HHIP gene encodes hedgehog-interacting protein, a negative regulator of hedgehog signalling.  The 

hedgehog signalling pathway regulates numerous physiological processes such as growth, self-

renewal, cell survival, differentiation, migration, and tissue polarity and plays a vital role in the 

morphogenesis of lung and other organs  (32).  Hedgehog signalling has also been shown to 

participate in regulation of stem and progenitor cell populations in adult tissues, impacting tissue 

homeostasis and repair (33).  SNP rs7697189, showing the strongest sex interaction on lung function 

in our study, is in strong linkage disequilibrium (R2 = 0.93) with SNPs residing in an HHIP enhancer 

region (30).  These enhancer-region SNPs also exhibit genome-wide significant genotype-by-sex 

interactions on lung function in our data.  According to previous reports, the alleles associated with 

decreased lung function are also associated with reduced enhancer activity and reduced HHIP 

expression in lung tissues, providing a potential mechanism by which SNPs in this linkage 

disequilibrium block might modulate hedgehog signalling in the lungs (30). However, in our study, 

though HHIP was expressed at lower levels in males compared to females in lung tissue, the 

association between rs7697189 and HHIP expression was not modified by sex.  This may be because 

there is no sex differential effect on expression, or the study might have been underpowered to 
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detect an interaction effect (based on 472 males and 566 females).  It is therefore still not clear why 

SNPs upstream of HHIP would be showing different effects in males and females.   

Investigating the effects of HHIP at different stages of development by sex may help to shed light on 

this conundrum.  In our study we had access to genetic and lung function data from 5645 children 

with an average age of 8 years.  Though underpowered to detect the association between rs7697189 

and FEV1 seen in UK Biobank adults, the lack of a similar trend in children suggests that HHIP variants 

may have differential effects at different developmental stages (though the genotype-by-sex 

interaction is in the same direction as in adults).  We also looked for an effect of timing of puberty on 

the association between rs7697189 and lung function in adults, but adjustment for relative age of 

voice breaking in males and relative age at menarche in females made no difference to the 

relationship between rs7697189 and lung function. 

We identified four additional genome-wide significant (interaction P<5x10-8) sex-by-genotype 

interactions on lung function in our discovery analysis in UK Biobank, with a further 21 that met a 

less stringent threshold of interaction (P<1x10-6).  As far as we are aware, this is the first genome-

wide sex-by-genotype interaction study for lung function traits.  We did not find a significant 

genotype-by-sex interaction on lung function or COPD at the CELSR1 locus (interaction P = 0.525 and 

P = 0.503 respectively) previously reported to have sex-specific effects on risk of COPD (10).   

In conclusion, we have identified a novel genotype-by-sex interaction at SNPs at a putative enhancer 

region upstream of the hedgehog-interacting protein (HHIP) gene.  Establishing the mechanism by 

which HHIP has sex differential effects on lung function will be important for our understanding of 

COPD and for realising the potential of precision medicine by optimising treatment in males and 

females.  
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Figure 1.  Forest plot showing the beta-coefficients (test effects, TE) and standard errors for the 

interaction between rs7697189 and sex on FEV1 in 20 cohorts of the SpiroMeta consortium.  The 

overall effect size from fixed effects meta-analysis is represented by the diamond.   
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Figure 2.  Region plots showing genotype-by-sex interaction results within the HHIP region for lung 

function traits (FEV1, FEV1/FVC, FVC, and PEF).  The SNP with the strongest association in the 

rs7697189-proximal region is represented by a blue diamond.  The FEV1 and PEF sentinels are 

rs7697189, the FEV1/FVC sentinel is rs1512281 (R2 = 0.95 with rs7697189), and the FVC sentinel is 

rs7681384 (R2 = 0.57 with rs7697189).  Note that there is an independent suggestively significant 

signal from rs2353939 and surrounding SNPs for FVC, but this did not replicate in SpiroMeta cohorts.  

All other SNVs are colour coded according to their linkage disequilibrium (R2) with the sentinel SNP 

(as shown in the key).  All imputed SNVs are plotted irrespective of MAF, demonstrating that rarer 

variants are not exhibiting significant interactions with sex on lung function.  The locations of genes 

in the region are shown in the lower panel of each plot.  Recombination rate is represented by the 

blue lines. 
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Table 1.  Association between sentinel SNPs and lung function in males and females, and genotype-by-sex interaction results on lung function in all 

SNP (nearest 
gene) 

Test/
other 
allele Trait 

Lung function UK Biobank males Lung function UK Biobank females 
Sex interaction in UK 

Biobank 
Sex interaction in 

SpiroMeta 

MAF Beta (SE) P MAF Beta (SE) P Beta (SE) P Beta (SE) P 

rs7697189 
 (HHIP) 
4:145436894 C/G FEV1 0.390 0.052 (0.004) 2.13E-33 0.392 0.013 (0.003) 1.16E-05 -0.040 (0.005) 3.15E-15 -0.025(0.01) 0.016 

rs9403386 
(ADGRG6) 
6:142764073 C/A 

FEV1/FV
C 0.031 0.214 (0.012) 4.48E-75 0.031 0.128 (0.009) 2.16E-43 -0.086 (0.015) 4.56E-09 -0.035(0.032) 0.281 

rs162185  
(TCF21) 
6:134226147 C/T PEF 0.411 -0.038 (0.004) 1.35E-18 0.410 -0.009 (0.003) 0.002 0.030 (0.005) 4.87E-09 0.022 (0.0139) 0.083 

rs6480592  
(CHST3) 
10:73764509 C/T PEF 0.398 -0.021 (0.004) 1.66E-06 0.400 0.007 (0.003) 0.011 0.028 (0.005) 2.85E-08 0.003 (0.012) 0.808 

rs111893604 
(ZSCAN10) 
16:3141104 G/T FEV1 0.059 0.040 (0.009) 1.70E-05 0.059 -0.020 (0.006) 0.002 -0.060 (0.011) 4.04E-08 0.006(0.026) 0.827 

rs72694266  
(RP11-
907D1.1) 
14:97578576 A/C PEF 0.077 -0.044 (0.008) 2.69E-07 0.078 0.008 (0.006) 0.145 0.053 (0.010) 6.31E-08 -0.049 (0.027) 0.066 

rs72781459 
10:10247676 C/T PEF 0.096 0.031 (0.007) 3.44E-05 0.097 -0.012 (0.005) 0.014 -0.046 (0.009) 1.08E-07 0.007 (0.021) 0.729 

rs74316059  
(RP11-
649A16.1) 
3:146983325 T/C 

FEV1/FV
C 0.042 0.049 (0.010) 2.52E-06 0.043 -0.018 (0.008) 0.029 -0.068 (0.013) 2.38E-07 -0.031(0.028) 0.269 

rs55789572 
(EIF2S2/RALY) 
20:32687822 A/C FEV1 0.022 0.041 (0.015) 0.006 0.022 -0.047 (0.010) 2.67E-06 -0.089 (0.017) 2.80E-07 -0.01(0.033) 0.765 

rs74933518 
(DAPK2) 
15:64303295 A/G PEF 0.025 -0.072 (0.014) 1.23E-07 0.025 0.007 (0.009) 0.421 0.082 (0.016) 3.05E-07 0.025 (0.043) 0.568 
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SNP (nearest 
gene) 

Test/
other 
allele Trait 

Lung function UK Biobank males Lung function UK Biobank females 
Sex interaction in UK 

Biobank 
Sex interaction in 

SpiroMeta 

MAF Beta (SE) P MAF Beta (SE) P Beta (SE) P Beta (SE) P 

rs11247571  
(ABR) 
17:908502 G/A PEF 0.343 -0.025 (0.005) 3.65E-08 0.344 0.002 (0.003) 0.569 0.027 (0.005) 3.22E-07 0.010 (0.014) 0.473 

rs707588  
(RP11-
154H17.1) 
1:5711430 G/A FEV1 0.482 -0.020 (0.004) 3.23E-06 0.482 0.006 (0.003) 0.029 0.025 (0.005) 3.27E-07 0.014(0.01) 0.183 

rs138473298 
(AUTS2) 
7:69644989 T/C PEF 0.012 -0.077 (0.020) 0.0002 0.011 0.043 (0.014) 0.002 0.122 (0.024) 3.52E-07 0.037 (0.060) 0.540 

rs139069254 
(RP11-
648K4.2) 
15:88113916 A/G FEV1 0.018 0.071 (0.016) 1.83E-05 0.018 -0.027 (0.011) 0.017 -0.098 (0.019) 4.66E-07 -0.051(0.041) 0.216 

rs138163836 
(PVRL3) 
3:110952902 C/T FVC 0.021 0.064 (0.015) 1.94E-05 0.020 -0.025 (0.011) 0.019 -0.091 (0.018) 5.07E-07 -0.025(0.038) 0.5 

rs28493055  
(XDH) 
2:31573390 T/G FEV1 0.012 0.065 (0.020) 0.002 0.013 -0.055 (0.014) 6.40E-05 -0.119 (0.024) 5.60E-07 0.035(0.054) 0.519 

rs117380804 
18:76145905 T/C FVC 0.035 0.035 (0.012) 0.003 0.036 -0.035 (0.008) 1.93E-05 -0.070 (0.014) 6.25E-07 -0.034(0.03) 0.255 

rs602622 
(RASGRP3) 
2:33658226 C/G PEF 0.444 -0.022 (0.004) 2.11E-07 0.445 0.002 (0.003) 0.444 0.025 (0.005) 6.45E-07 -0.013 (0.013) 0.323 

rs2253718 
(RF00019, 
SFTA2) 

6:30900427 T/G PEF 0.409 -0.049 (0.004) 5.69E-30 0.405 -0.027 (0.003) 1.78E-20 0.025 (0.005) 7.05E-07 0.002 (0.016) 0.925 

rs2353939  
(HHIP) 
4:145729724 G/A FVC 0.437 0.016 (0.004) 0.0002 0.435 -0.009 (0.003) 0.002 -0.025 (0.005) 7.55E-07 -0.016(0.01) 0.124 
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SNP (nearest 
gene) 

Test/
other 
allele Trait 

Lung function UK Biobank males Lung function UK Biobank females 
Sex interaction in UK 

Biobank 
Sex interaction in 

SpiroMeta 

MAF Beta (SE) P MAF Beta (SE) P Beta (SE) P Beta (SE) P 

rs76911399 
(ZNF280A) 
22:22876151 G/C 

FEV1/FV
C 0.116 -0.025 (0.007) 0.0003 0.115 0.017 (0.005) 0.002 0.043 (0.009) 7.62E-07 Not tested  

rs13020954 
2:17296984 C/T 

FEV1/FV
C 0.014 0.050 (0.017) 0.004 0.014 -0.057 (0.014) 3.83E-05 -0.109 (0.022) 7.88E-07 -0.062(0.043) 0.148 

rs2731120  
(MLF1) 
3:158297633 A/C FVC 0.346 0.029 (0.004) 3.72E-11 0.346 0.003 (0.003) 0.310 -0.026 (0.005) 8.14E-07 -0.008(0.011) 0.433 

rs355079  
(LMCD1-AS1) 
3:8643371 T/C FVC 0.337 0.015 (0.004) 0.0007 0.339 -0.011 (0.003) 0.0004 -0.026 (0.005) 8.84E-07 0.001(0.011) 0.935 

rs7338055 
(SPRYD7) 
13:50504226 C/A FVC 0.259 0.018 (0.005) 0.0001 0.259 -0.009 (0.003) 0.008 -0.028 (0.006) 9.81E-07 -0.008(0.012) 0.478 

rs34490170 
(NEUROD1/ 
CERKL) 
2:182576419 C/T FVC 0.110 -0.035 (0.007) 6.41E-07 0.110 0.007 (0.005) 0.186 0.041 (0.008) 9.95E-07 0.009(0.018) 0.622 

Bold text in final column indicates that the effect in SpiroMeta was in the same direction to the effect in UK Biobank 
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