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ABSTRACT 

    There is growing evidence that rather than using a single brain imaging modality to study its association with 

physiological or symptomatic features, the field is paying more attention to fusion of multimodal information. 

However, most current multimodal fusion approaches that incorporate functional magnetic resonance imaging 

(fMRI) are restricted to second-level 3D features, rather than the original 4D fMRI data. This trade-off is that the 

valuable temporal information is not utilized during the fusion step. Here we are motivated to propose a novel 

approach called “parallel group ICA+ICA” that incorporates temporal fMRI information from GICA into a 

parallel ICA framework, aiming to enable direct fusion of first-level fMRI features with other modalities (e.g. 

structural MRI), which thus can detect linked functional network variability and structural covariations. 

Simulation results show that the proposed method yields accurate inter-modality linkage detection regardless of 

whether it is strong or weak. When applied to real data, we identified one pair of significantly associated fMRI-

sMRI components that show group difference between schizophrenia and controls in both modalities. Finally, 

multiple cognitive domain scores can be predicted by the features identified in the linked component pair by our 

proposed method. We also show these multimodal brain features can predict multiple cognitive scores in an 

independent cohort. Overall, results demonstrate the ability of parallel GICA+ICA to estimate joint information 

from 4D and 3D data without discarding much of the available information up front, and the potential for using 

this approach to identify imaging biomarkers to study brain disorders. 

 

Keywords: Multimodal Fusion, Group Independent Component Analysis (GICA), Parallel Independent 

Component Analysis (parallel ICA), Temporal Information, Subjects’ Variability, Schizophrenia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 1, 2019. ; https://doi.org/10.1101/595017doi: bioRxiv preprint 

https://doi.org/10.1101/595017


 

1. INTRODUCTION 

    Magnetic resonance imaging (MRI) has provided remarkable new insights into the structure and function of 

human brain. Acquisition of multimodal MRI from the same subject has been widely adopted in brain imaging 

researches, as different modalities represent different perspectives of the brain functional, structural or anatomical 

properties. Moreover, there is growing evidence suggesting that instead of using a single brain imaging modality 

to study the association with physiologic or pathological properties, researchers are paying more attention to 

fusion of multimodal information, a method that can take advantage of multiple imaging techniques, and to 

uncover the latent relationships that might be missed from single modality imaging analysis (Calhoun and Sui, 

2016; Suk, et al., 2014; Zhang, et al., 2011). For instance, multimodal fusion can tell us how brain structure and 

function are impacted by psychopathology, and which structural or functional aspects of pathology could drive 

human behavior or cognition (Sui, et al., 2014).  

However, most current multimodal fusion approaches (including joint independent component analysis (jICA) 

(Calhoun, et al., 2006), multi-set canonical correlation analysis (mCCA) (Correa, et al., 2010), parallel ICA 

(pICA) (Liu, et al., 2009), parallel ICA with reference (pICAR) (Chen, et al., 2013), mCCA+jICA, mCCAR+jICA 

(Qi, et al., 2018a), and linked ICA (Groves, et al., 2011), etc.) are restricted to second-level 3D fMRI features, 

e.g., fractional amplitude of low frequency fluctuations (fALFF) or regional homogeneity (ReHo) for fMRI 

(subject × imaging feature variables), rather than first-level 4D imaging features (subject × voxel × time points). 

The main reason for using second-level features in multimodal fusion is to provide a simpler subspace in which 

to link the multimodal data (Calhoun and Adali, 2009). While this provides a powerful framework for capturing 

multimodal information, the trade-off is that some essential information may be lost. For example, in fMRI related 

multimodal fusion analysis, the temporal dynamic information was not included in the above fusion methods.  

It is well known that the temporal variation in fMRI signal conveys important information (Schmithorst and 

Holland, 2004). Reducing the 4D fMRI data to 3D spatial maps (non-temporal features) prior to the data fusion 

step does not allow the fusion process to utilize the temporal information. On the other hand, group ICA (GICA) 

(Calhoun, et al., 2001) is an approach that operates on first-level 4D fMRI data for multiple subjects, which is 
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able to extract both group and subject-specific independent components (ICs) as well as their time courses. 

Although there are other ICA related method that can deal with fMRI, such as probabilistic ICA (Beckmann and 

Smith, 2004) and noisy ICA (Cichocki, et al., 1998; Griffanti, et al., 2017), GICA has demonstrated great potential 

to deal with multi-subject fMRI data, so in this paper our proposed method is based on GICA. GICA allows us to 

establish a correspondence of group ICs with subjects’ ICs while fully leveraging the temporal information. In 

contrast, parallel ICA aims to simultaneously identify ICs of two modalities and the linkage between them by 

maximizing both inter-modality correlation and intra-modality independence. Building on the success of GICA 

to leverage temporal information as well as the flexible fusion framework of parallel ICA, we combine GICA and 

pICA in order to simultaneously analyze both first-level fMRI and structural MRI (sMRI) features, with the 

purpose of identifying linked functional spatial network variability and structural covariations, while retaining 

the original desirable properties of both pICA and GICA. Therefore, we propose to extend the pICA method and 

link brain structure to first-level functional MRI data via direct optimization of their associations, enabling us to 

reveal structural influence on coherent functional network variability.  

Parallel GICA+ICA works by defining a variability matrix that measures the subject-level variations between 

group and back-reconstructed subject spatial maps within GICA, and maximizing the correlation of that measure 

with subject expression profiles from an ICA decomposition of a sMRI dataset. In order to achieve data fusion 

between structural (subject × voxel-wise gray matter (GM) volume values) and functional data (subject × voxel 

× time points), a subject-level summary feature that captures variability among subjects must be defined for 

fMRI, so that direct associations can be measured between both modalities. To that end, we note that the group-

level ICs from GICA capture spatial co-activation patterns shared among all the subjects, each forming an 

independent brain network. In this sense, group ICs can be interpreted as a cohort common pattern representing 

a functional brain network template shared over all subjects. Therefore, it is worthwhile to examine how much 

the subject-specific ICs deviate from the shared common pattern and whether this deviation may serve as a 

summarized fMRI feature which associates with structural data (Chen, et al., 2018). Based on this feature, a novel 

parallel GICA+ICA approach that leverages the first-level temporal information from fMRI can be derived 

enabling the discovery of associations in the form of linked covariation between functional spatial network 
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patterns and structural features. The key difference from pICA is that an intermediate subject-level variability 

matrix (𝑪1) is constructed for parallel GICA+ICA by calculating the L2-distance between group- and subject-

specific spatial component maps, capturing subject component variability from a group template. This variability 

matrix is then utilized to allow multimodal associations to directly influence the GICA and ICA estimation 

iteratively, hence leveraging the full temporal information of the fMRI as well as spatial variance (Fig. 1). Another 

advantage of parallel GICA+ICA compared with current existing multimodal fusion methods is that it also enables 

post functional network connectivity (FNC) analysis for fMRI after identification of sMRI links from the fusion 

analysis as well as other post analysis such as spectra and dynamic information (Hutchison, et al., 2013) for fMRI.  

In psychopathological studies, mounting evidence shows that schizophrenia (SZ) is associated with abnormal 

FNC between different brain networks, for example, visual, auditory and default mode networks (Friedman, et 

al., 2008). Based on the proposed method, we can perform post FNC analysis to identify abnormal connections 

between brain networks that are also associated with structural covariation. In this paper, we aim to apply the 

proposed method to identify linked functional network variability and structural covariations, and ultimately 

predict cognitive scores based on the identified linked fMRI-sMRI features. The Function Biomedical Informatics 

Research Network (fBIRN) phase III datasets (n=311) (Keator, et al., 2016) were used as a discovery cohort and 

the Center for Biomedical Research Excellence dataset (Jorge Nocedal, 1999) (COBRE, n=177) were used as a 

replication cohort. Results show that the proposed method can extract linked fMRI-sMRI components pair in both 

simulation and real human brain data. Moreover, the identified linked fMRI-sMRI features can predict multiple 

cognitive scores of fBIRN cohort, which demonstrates the biomarker property of the multimodal features 

extracted by the proposed method. Furthermore, these identified linked fMRI-sMRI features can also predict 

multiple cognitive scores of an independent COBRE cohort, demonstrating the ability of parallel GICA+ICA to 

identify potential biomarkers and the wide utility of the proposed method for the study of brain disorders.  
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2. METHODS AND MATERIALS  

 

Figure. 1 Flowchart of the proposed parallel GICA+ICA approach. (a) First-level fMRI features (𝑿1) from 

preprocessed fMRI data (e.g. preprocessed spatiotemporal fMRI data). (b) SMRI features (𝑿2) from preprocessed 

sMRI data (e.g. voxelwise gray matter volume or concentration). (c) Parallel GICA+ICA, which includes 

maximizing the independence for both modalities based on GICA and ICA portions separately, as well as 

maximizing the correlation between the variability matrix from GICA of fMRI and subject expression profiles 

from ICA of sMRI. (d) Group-level components and variability matrix obtained from GICA portion. (e) Subject-

level components and time courses obtained from GICA portion. (f) Group-level components and subject 
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expression profiles resulting from ICA portion. (g) Post functional network connectivity (FNC) analysis for fMRI 

time courses. PCA: principal component analysis; GICA: group independent component analysis; 𝑭𝑖 : 

dewhitening matrix from subject-level PCA for fMRI; 𝑮1 : dewhitening matrix from group-level PCA for 

fMRI; 𝑮2: dewhitening matrix from group-level PCA for sMRI; 𝑺group,j: group components from GICA; 𝑺subi,j: 

subject-specific components from GICA; 𝑪1: variability matrix calculated by the L2-distance between group- and 

subject-specific GICA spatial maps; 𝑨2 : mixing matrix from sMRI, which also represents between-subject 

variability. Δ𝑾1,Infomax  and Δ𝑾2,Infomax  are the gradient updates obtained from GICA and ICA portions, 

separately. Δ𝑾1,C1 and Δ𝑾2,A2 are the gradient updates obtained from the between-modality linkage-regularized 

optimization. Dark and light colors in the variability matrix in panels (d-f) represent two groups, for example, 

schizophrenia patients and healthy controls. 

 

The main idea of parallel GICA+ICA is straightforward. As shown in Fig. 1, in order to retain the temporal 

nature of fMRI, we define a new variability matrix (𝑪1 ) to capture functional subject-wise variability by 

calculating the L2-distance between group-level ICs (𝑺𝑔𝑟𝑜𝑢𝑝,𝑗) and subject-level ICs (𝑺𝑠𝑢𝑏𝑖,𝑗) (𝑖 = 1,2, … , N, 𝑗 =

1,2, … , M, where N is subject number and M is component number), in correspondence to the subject expression 

profiles (𝑨2) from sMRI. In addition to maximizing the independence of each component for each modality, a 

regularization term is added to simultaneously maximize the correlation between functional (𝑪1) and structural 

(𝑨2) between-subject variabilities, as shown in Fig. 1(c).  

2.1 Parallel group ICA + ICA 

    Assume that 𝑿1 = [𝒙1; 𝒙2; … ; 𝒙𝑁] is fMRI data that is concatenated over subjects in the temporal dimension, 

where 𝑿1 is in dimension of NT × V, in which T is time point number, V represents voxel number, and 𝒙𝑖  is 

the T × V data matrix. First, principal component analysis (PCA) is performed on fMRI data (𝑿1) for dimension 

reduction at subject- and group-levels respectively. Let 𝑷𝑖 = 𝑭𝑖
−1 ∙ 𝒙𝑖 be the L × V dimension reduced data matrix 

of subject 𝑖 , where 𝑭𝑖
−1  is the L × T  subject-level whitening matrix (determined by subject-level PCA 

decomposition) and L is the rank of the PCA decomposition. The temporal dimension reduced data are then 

concatenated over subjects in the temporal direction and a group-level PCA is performed to further reduce the 

temporal dimension of the group data to the number of ICs M, as summarized in equation (1).  
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𝒁1 = 𝑮1
−1 [

𝑭1
−1 ∙ 𝒙1

⋮
𝑭𝑁

−1 ∙ 𝒙𝑁

]                                                                                                                                             (1) 

where 𝑮1
−1 is the M × (N ∙ L) group-level whitening matrix (determined by group-level PCA), 𝒁1 is the reduced 

data matrix for the fMRI modality. 

After ICA decomposition, we can write 𝒁1 = 𝑨1 ∙ 𝑺𝑔𝑟𝑜𝑢𝑝, where 𝑨1 is the M × M mixing matrix for fMRI and 

𝑺𝑔𝑟𝑜𝑢𝑝 is the M × V group-level ICs. Substituting this equation for 𝒁1 into (1) and multiplying both sides by the 

group-level dewhitening matrix 𝑮1, we have 

𝑮1𝑨1𝑺𝑔𝑟𝑜𝑢𝑝 = [
𝑭1

−1 ∙ 𝒙1

⋮
𝑭𝑁

−1 ∙ 𝒙𝑁

]                                                                                                                                     (2) 

The matrix 𝑮1 is partitioned by subject which provides the following expression 

[
𝑮11

⋮
𝑮1𝑁

] 𝑨1𝑺𝑔𝑟𝑜𝑢𝑝 = [
𝑭1

−1 ∙ 𝒙1

⋮
𝑭𝑁

−1 ∙ 𝒙𝑁

]                                                                                                                               (3) 

The equation for subject 𝑖 by dealing only with the elements in partition 𝑖 is as in (4) 

𝑮1𝑖𝑨1𝑺𝑠𝑢𝑏𝑖 = 𝑭𝑖
−1 ∙ 𝒙𝑖                                                                                                                                           (4) 

𝑺𝑠𝑢𝑏𝑖 includes spatial maps for subject 𝑖. We now multiplying both sides of (4) by the subject-level dewhitening 

matrix 𝑭𝑖 

𝒙𝑖 = 𝑭𝑖𝑮1𝑖𝑨1𝑺𝑠𝑢𝑏𝑖                                                                                                                                                (5) 

which provides the ICA decomposition of 𝒙𝑖 from subject 𝑖. 𝑺𝑠𝑢𝑏𝑖 (M × V) contains M ICs and 𝑭𝑖𝑮1𝑖𝑨1 (N × M) 

is subject-specific mixing matrix which contains the corresponding time course. This is the classic back-

reconstruction formula from GICA (Calhoun, et al., 2001).  

The between-subject functional variability matrix 𝑪1 is defined as in (6) below: 

c𝑖,𝑗 = distance(𝑺𝑔𝑟𝑜𝑢𝑝,𝑗, 𝑺𝑠𝑢𝑏𝑖,𝑗) = ‖𝑺𝑔𝑟𝑜𝑢𝑝,𝑗 − 𝑺𝑠𝑢𝑏𝑖,𝑗‖
2

2
= ‖(𝑾1𝑮1

−1 [
𝑭1

−1 ∙ 𝒙1

⋮
𝑭𝑁

−1 ∙ 𝒙𝑁

])

𝑗

− (𝑾1𝑮1𝑖
−1𝑭𝑖

−1 ∙ 𝒙𝑖)𝑗‖

2

2

 

(6) 

where 𝑾1 equals the inverse of mixing matrix 𝑨1. 
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Meanwhile, suppose that 𝑿2 represents the sMRI data matrix, following the blind source separation theory, we 

can get (7).  

𝑿2 = (𝑮2 ∙ 𝑾2
−1) ∙ 𝑺2;     𝑨2 = 𝑮2 ∙ 𝑾2

−1                                                                                                             (7)   

where 𝑮2 is group-level dewhitening matrix for sMRI. 

    Thus we can get the final cost function for the proposed method, parallel GICA+ICA, as in (8):  

max
𝑾1,𝑾2

𝐻(𝒀1) + 𝐻(𝒀2) + Corr(𝑪1, 𝑨2)2                                                                                                                 (8) 

where 

𝐻(𝒀𝑙) = −𝐸[ln𝑓𝑦(𝒀𝑙)], 𝑙 ∈ {1,2}                                                                                                                          (9) 

Corr(𝑪1, 𝑨2)2 =
Cov(𝑪1𝑘,𝑨2𝑗 )

2

Std(𝑪1𝑘)∙Std(𝑨2𝑗)
                                                                                                                         (10)                                    

And 

𝒀1,𝑎𝑏 =
1

1+𝑒−𝑼1,𝑎𝑏,  𝑼1 = 𝑾1 ∙ 𝑿1 + 𝑾10, 𝑨1 = 𝑾1
−1 

𝒀2,𝑎𝑏 =
1

1+𝑒−𝑼2,𝑎𝑏,  𝑼2 = 𝑾2 ∙ 𝑿2 + 𝑾20, 𝑨2 = 𝑾2
−1                                                                                        (11) 

where 𝒀𝑖,𝑎𝑏  and 𝑼𝑖,𝑎𝑏  represent elements for matrix 𝒀𝑖  and 𝑼𝑖 , respectively, with row index |𝑎| and column 

index |𝑏|. 𝐻 is the entropy and Corr is the correlation. 𝑘 and 𝑗 represent the selected constrained ICs in each 

maximization iteration. Although the cost function (8) looks the same as pICA, we redefined a new variability 

matrix (6) here for fMRI. This matrix estimates the degree to which the subject specific component deviates from 

the cohort-common pattern, thus leads us to investigate whether this deviation may be associated with structural 

features. The first two terms in (8) are solved in parallel using the infomax framework (Amari, 1998). The third 

term is optimized using the steepest descent method, and the step size is calculated at each iteration on the selected 

ICs. Finally, we obtain the update rules as following: 

For the first term (major updates for 𝑾1): 

∆𝑾1 = 𝜆1
𝜕𝐻(𝒀1)

𝜕𝑾1
= 𝜆1[𝑰 + (1 − 2𝒀1)𝑼1

𝑇] × 𝑾1                                                                                                (12) 

For the second term (major updates for 𝑾2):  

∆𝑾2 = 𝜆2
𝜕𝐻(𝒀2)

𝜕𝑾2
= 𝜆2[𝑰 + (1 − 2𝒀2)𝑼2

𝑇] × 𝑾2                                                                                                 (13) 
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For the third term (minor updates for 𝑾1𝑘 and 𝑨2𝑗): 

∆𝑾1𝑘 = 𝜆c1 ∙ 𝜂1
𝜕Corr(‖𝑾1𝑘𝒁1−𝝃𝑘‖2

2,𝑨2𝑗)
2

𝜕𝑾1𝑘
= 𝜆c1 ∙ 𝜂1 ∙

2Corr(𝑨2𝑗,‖𝑾1𝑘𝒁1−𝝃𝑘‖2
2)

Std(𝑨2𝑗)Std(‖𝑾1𝑘𝒁1−𝝃𝑘‖2
2)

× {(𝑨2𝑗 − 𝑨2𝑗
̅̅ ̅̅̅) +

Cov(𝑨2𝑗,‖𝑾1𝑘𝒁1−𝝃𝑘‖2
2)(‖𝑾1𝑘𝒁1−𝝃𝑘‖2

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −‖𝑾1𝑘𝒁1−𝝃𝑘‖2
2)

Var(‖𝑾1𝑘𝒁1−𝝃𝑘‖2
2)

}
T

× {2|𝑾1𝑘𝒁1 − 𝝃𝑘|(𝒁1
T)}                                                        (14) 

where  𝝃𝑘 ≜ (
(𝑾1𝑮1

−1𝑭1
−1 ∙ 𝒙1)𝑘

⋮
(𝑾1𝑮𝑁

−1𝑭𝑁
−1 ∙ 𝒙𝑁)𝑘

) (𝑘 = 1,2, … , 𝑴)       

∆𝑨2𝑗 = 𝜆c2 ∙ 𝜂2

𝜕Corr(‖𝑾1𝑘𝒁1 − 𝝃𝑘‖2
2, 𝑨2𝑗)

2

𝜕𝑨2𝑗
 

         = 𝜆c2 ∙ 𝜂2 ∙
2Corr(‖𝑾1𝑘𝒁1−𝝃𝑘‖2

2,𝑨2𝑗)

Std(‖𝑾1𝑘𝒁1−𝝃𝑘‖2
2)Std(𝑨2𝑗)

× {(‖𝑾1𝑘𝒁1 − 𝝃𝑘‖2
2 − ‖𝑾1𝑘𝒁1 − 𝝃𝑘‖2

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) +

Cov(‖𝑾1𝑘𝒁1−𝝃𝑘‖2
2,𝑨2𝑗)(𝑨2𝑗̅̅ ̅̅ ̅−𝑨2𝑗)

Var(𝑨2𝑗)
}                                                                                                                               (15) 

where 𝜆c𝑙 is the learning rate for fMRI, sMRI, and 𝜂𝑙 is the step size calculated at each step according to Wolfe 

conditions (Jorge Nocedal, 1999). The learning rate plays an important role in algorithm convergence and balance 

between the modalities, as well as determines the weights during the maximization process. 

The code of parallel GICA+ICA will soon be added in Fusion ICA Toolbox (FIT, 

http://mialab.mrn.org/software/fit). 

2.2 Simulation 

Then we simulated fMRI and sMRI data to compare parallel GICA+ICA with separate GICA and ICA to access 

the capability to detect accurate inter-modality linkage. Eight source maps were simulated using the simTB 

(Erhardt, et al., 2012) for each modality, which can be freely downloaded at http://mialab.mrn.org/software. The 

simulated brain networks were used as true sources 𝑺1𝑖 (in dimension of 100 × 100) for fMRI, each has 100 time 

points, and 𝑺2 (in dimension of 150 × 150) for sMRI. TC matrix generated from simTB for fMRI is 100 × 8, 

mixing matrix 𝑨2 for sMRI was randomly constructed in a size of 100 × 8. Variability matrix 𝑪1 for fMRI is 

constructed by calculating the L2 norm between the group map and subject map, in which one column (the 1st and 

6th column for 𝑪1  and 𝑨2 ) is carefully designed to be moderately (r=0.28) or highly correlated (r=0.49). 
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Therefore, a linear mixture of 𝑻𝑪𝑖 ∙ 𝑺1𝑖 (𝑨2 ∙ 𝑺2) will generate fMRI and sMRI data matrices of 100 samples with 

10000 and 22500 voxels respectively. The observation matrix 𝑿2 for sMRI is generated according to 𝑿2 = 𝑰2 +

𝑵2 = 𝑨2𝑺2 + 𝑵2 in which 𝑵2 is the added noise which contains 15 peak signal-to-noise ratios (PSNR) noise 

levels. Here, the PSNR level is calculated from (16), which ranges from -10 dB to 17 dB. For fMRI, each 𝒙𝑖 is 

generated by 𝒙𝑖 = 𝑰𝑖 + 𝑵𝑖 = 𝑻𝑪𝑖𝑺1𝑖 + 𝑵𝑖 (𝑖 = 1,2, … N). Here, for each specific PSNR, we randomly generated 

10 same PSNR 𝑿2 and 𝒙𝑖. Thus we can obtain the mean as well as the standard deviation of the inter-modality 

linkage estimation.  

PSNR = 10log10 [
(2bit−1)

2

1

𝑙
∑ |𝑿𝑘(𝑖)−I𝑘(𝑖)|2𝑙

𝑖=1

] = 20log10 [
255

1

𝑙
∑ |𝑿𝑘(𝑖)−I𝑘(𝑖)|2𝑙

𝑖=1

]                                                                 (16) 

k = 1,2, bit = 8, 𝑙 = 10000(for fMRI), 22500(for sMRI). 

2.3 Real human brain data 

For real human brain data, we used subjects collected from the fBIRN (Keator, et al., 2016) phase III study, 

including 149 SZ patients (37.9 ± 11.5) and 162 age-gender matched HCs (37.0 ± 11.0). All participants are adults 

between 18 and 65 years old. The Structured Clinical Interview for DSM-IV (SCID) (M. B. First, 2002) was used 

to diagnose patients by doctors. Furthermore, current or past psychiatric disorder or having a first-degree relative 

with an Axis-I psychotic illness HCs were excluded. The cognitive performance for both SZ and HC were 

measured by the Computerized Multiphasic Interactive Neurocognitive System (CMINDS) (van Erp, et al., 2015). 

There is no significant age (p=0.49) and gender (p=0.23) difference between SZ and HC for the fBIRN cohort. 

The COBRE cohort consists of 94 SZs (35.6 ± 13.1) and 83 age-gender matched HCs (36.3 ± 12.5) and were 

assessed using a similar cognitive assessment battery, the Measurement and Treatment Research to Improve 

Cognition in Schizophrenia Consensus Cognitive Battery (MCCB) (Green, et al., 2004). Detailed cognitive 

information of fBIRN and COBRE subjects are presented in Supplementary Table I-II.  There is also no 

significant age (p=0.45) and gender (p=0.91) difference for the COBRE cohort. Resting state functional MRI and 

structural MRI were obtained for both cohorts. Detailed imaging parameters and preprocessing steps can be found 

in Supplementary “imaging parameters and preprocessing” section. Written informed consent was obtained 
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from all participants under protocols approved by the Institutional Review Boards for both fBIRN and COBRE 

cohorts.  

3. RESULTS 

3.1 Simulation results 

 

Figure. 2 Comparison of parallel GICA+ICA (red) with separate GICA and ICA (blue) in a simulated two-

way data fusion. (a-b) Cross modality linkage detection under strong association (r=0.49) and the corresponding 

significance p value. (c-d) Cross modality linkage detection under weak association (r=0.28) and the 

corresponding significance p value. The green lines in (b) and (d) represent p=0.05. These results show that, 

compared with separate GICA and ICA without fusion, parallel GICA+ICA yields more accurate (and significant) 

inter-modality associations regardless of whether the association is strong or weak, i.e. it improves the estimation 

of existing links while not inflating the link artificially. 
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The proposed parallel GICA+ICA algorithm was compared with separate GICA and ICA on carefully designed 

simulated data. One important property is that whether the proposed method can detect the inter-modality linkage 

of the target components accurately and significantly under both strong (r=0.49) and weak (r=0.28) inter-modality 

associations. Fig. 2(a-b) show the ability for estimating cross modality associations and corresponding 

significance for different fusion methods under 15 different noise levels with strong inter-modality linkage. The 

green line in Fig. 2(b) and Fig. 2(d) represents a significance level of p=0.05. It is clear that the proposed method, 

parallel GICA+ICA (red), could detect more accurate inter-modality linkage compared with separate GICA and 

ICA under strong real linkage. The estimation linkage accuracy trend goes down with high noise levels, which is 

also the same as in significance detection. Fig. 2(c-d) show the boxplot of estimating inter-modality associations 

and corresponding significance for different fusion methods under weak linkage. It is clear that parallel 

GICA+ICA outperforms separate GICA and ICA for weak linkage detection. More importantly, the association 

estimation of separate GICA and ICA decreases remarkably when the real correlation is weak (r=0.28), when 

compared with Fig. 2 (a) and Fig. 2 (c), demonstrating the advantage of the proposed method in estimating 

association with weak linkage, the likely situation in real data. So collectively, the above results show that the 

proposed method provide more accurate detection of the inter-modality associations for both strong and weak 

links, and importantly, the fusion approach does not appear to inflate the multimodal links artificially. 

Besides the linkage estimation, we also compared the source and mixing matrix (or variability matrix) 

estimation, as shown in Fig. 3. The estimation accuracy is defined as the correlation between the true mixing 

matrices/source(s) and the estimated mixing matrices/component(s). It is clear that parallel GICA+ICA can 

achieve high estimation accuracy of subject variability within the fMRI modality (Fig. 3a), and comparable 

estimation accuracy for structural mixing matrix and source, and also the subject specific functional source. 

Finally, the estimation accuracy for different IC numbers to extract modality linkage (under strong linkage, 

r=0.49) between target ICs is presented in Fig. 4. It is evident that parallel GICA+ICA out performs separate 

GICA and ICA in inter-modality linkage estimation. 
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Figure. 3 Estimation accuracy comparison for all the ICs under 15 level noises between parallel GICA+ICA 

(red) and separate GICA and ICA (blue). Results show that parallel GICA+ICA can achieve comparable 

estimation accuracy for both source and variability matrix. 

 

Figure. 4 Comparison of inter modality linkage estimation when using different IC number M. The 

simulated true IC number = 8. Here we tested M that varies from 6 to 12. Parallel GICA+ICA outperforms separate 

GICA and ICA with regard to the inter modality linkage detection.  
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When determining the value of 𝜆c𝑖 and 𝜂𝑖 in Eq (9) that control the weight between the independence constraint 

and the association constraint, we tune them adaptively. The criteria is that when the maximum value in 𝑾𝑖 is 

bigger than the predefined weight maximum (1.0 × 108), then 𝜆c𝑖(𝜂𝑖) was update as 𝜆c𝑖(𝜂𝑖) = 0.95 ∙ 𝜆c𝑖(𝜂𝑖) to 

avoid the blown up of 𝑾𝑖. This means that keeping the independence among components is always the first aim, 

the second is to maximize the cross modality correlation simultaneously. 

3.2 Results of real human brain data 

3.2.1 Linked components pair 

 

Figure. 5 Linked components pair that indicate significant group differences in both fMRI and sMRI. (a) 

The brain maps of the identified linked component pair visualized at |Z|>2. (b) Group difference of the loadings 

for linked IC pair, and correlation between variability loadings of fMRI_IC3 and the CMINDS composite 

cognitive scores. 

 

We also applied the proposed approach on fBIRN multimodal datasets including 311 subjects (162 HCs, 149 

SZs). The original preprocessed TCs×voxels from resting-state fMRI, GM volume from sMRI were extracted 

and combined by parallel GICA+ICA to identify associated fMRI-sMRI components. The subject-level 

component was 50, which needs to be higher than the group level (Erhardt, et al., 2011), and the group-level 

component was 20 based on MDL (Li, et al., 2007) criterion for fMRI modality. Then two-sample t-tests was 
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performed on the mixing coefficients as well as the variability loadings of each IC for each modality to compare 

patients and controls. 

Among the 20 derived ICs, the 3th IC of fMRI, the 19th and the 3th IC of sMRI were found to be the linked 

components pair (r=0.24, p=2.6e-05* between fMRI_IC3 and sMRI_IC19). ∗ means FDR corrected for multiple 

comparisons. Note that this association still exist even after regressing out diagnosis (r=0.21, p=0.0002*). The 

mixing coefficients (or variability loadings) of the paired components show significant group difference (p=7.0e-

06*, p=0.01) for fMRI_IC3 and sMRI_IC19. Fig. 5(a) shows the Z-scored brain maps (visualized at |Z| > 2), Fig. 

5(b) presents the group difference of variability loadings for each modality, as well as the correlation between 

variability loadings and cognitive scores. So the red brain regions in sMRI denote a higher weights in HCs than 

SZs and the blue brain areas are opposite. While for fMRI component, the red regions indicate a higher variability 

compared with fMRI_IC3 in HCs than SZs and the blue regions are opposite.  

 

Figure. 6 Correlation analysis between loadings of sMRI_IC3 and multiple CMINDS cognitive domains. 
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In addition, we found that fMRI_IC3 also correlated with sMRI_IC3 (r=0.14, p=0.01; r=0.12, p=0.051 after 

regressing out diagnosis). Significant group difference (p=0.001*) exist for the variability loadings of sMRI_IC3, 

which is also positively with speed of processing (r=0.349, p=4.3e-08*), working memory (r=0.344, p=6.1e-08*), 

visual learning (r=0.336, p=1.5e-07*), verbal learning (r=0.337, p=1.5e-07*) and composite cognitive scores 

(r=0.30, p=4.1e-06*), as displayed in Fig. 6. Note that after regressing out group label, the correlation between 

loadings of sMRI_IC3 and cognitive scores still remain significant. Details are presented in Supplementary 

“regression out diagnosis” section. 

3.2.2 Modality specific group-discriminative IC 

 

Figure. 7 Modality specific and group discriminative left attention network in fMRI_IC16. (a) The brain 

maps visualized at |Z|>2. (b) Group difference of the loadings for fMRI_IC16. (c) Correlations between time 

courses of fMRI_IC16 and the CMINDS attention scores (HC: red dots, SZ: blue dots. (d) Correlations between 

variability loadings of fMRI_IC16 and the CMINDS attention scores. 
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Apart from the linked components pair, we also identified one fMRI component IC16 containing the left 

attention network that shows marginal group difference (p=0.045), and the corresponding variability loadings is 

negatively correlated with attention subdomain (r=-0.132, p=0.045). More importantly, the time courses of 

fMRI_IC16 were also anti-correlated with attention scores (r=-0.187, p=0.004). 

3.2.3 Post FNC analysis 

 

Figure. 8 Post FNC analysis based on the fMRI results from parallel GICA+ICA. Mean FNC matrix for HCs 

(a) and SZs (b). (c-d) The group difference (SZ–HC) in FNC.  

 

One of the advantages of the proposed method compared with other fusion methods is that after the fusion 

analysis, we can still perform FNC analysis using time courses of the corresponding components. Collectively, 

19 components were selected from 20 components, with one artefactual component excluded. Fig. 8(a-b) shows 

the mean FNC matrix for HCs and SZs. The black lines partition the FNC matrix into the 7 categories: visual 

(VIS), default-mode network (DMN), auditory (AUD), attention network (ATN), sensorimotor (SM), cerebellar 

(CB) and sub-cortical (SC). We also compared the group difference of FNC matrix between HCs and SZs. Values 

in FNC matrix are calculated as −log10(𝑝) × sign(𝑡). Results show that the AUD-VIS, AUD-ATN, DMN-SC 
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are group discriminating FNCs when 𝑝 was thresholded as 𝑝 < 0.01, while the AUD-VIS still remains significant 

group difference when 𝑝 was thresholded as 𝑝 < 0.0001 (FDR corrected). 

3.2.4 Predicting ability 

 

Figure. 9 The identified linked fMRI-sMRI biomarkers and the prediction results on multiple cognitive 

and symptom scores of fBIRN cohort. Five modality-specific time courses and brain networks (a) were used as 

regressors in the multiple linear regression models to predict cognitive scores (b).  

 

 

An ultimate goal of using imaging biomarkers is whether these identified imaging features is predictive on 

cognition or symptoms (Gabrieli, et al., 2015). To verify the predictability of the identified linked multimodal 

brain features by our proposed method, we used the extracted linked components ROIs (mean time courses in 

positive and negative brain networks in fMRI_IC3, and positive and negative brain networks in sMRI_IC19 and 

sMRI_IC3, details can be found in Supplementary “Predictive biomarker extraction” section) to predict 

multiple CMINDS cognitive scores. Based on the following Eq (17), a multiple linear regression for the cognitive 

scores was performed.  

Cognitive domain scores = 𝛽0 + TCpositive × 𝛽1 + TCnegative × 𝛽2 + sMRI_IC3 × 𝛽3 + sMRI_IC19positive ×
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𝛽4 + sMRI_IC19negative × 𝛽5                                                                                                                             (17) 

 

Figure. 10 Prediction of multiple cognitive scores of COBRE cohort based on the identified multimodal 

features in the linked components pair by pGICA+ICA in fBIRN cohort.  

 

The predictive accuracy is measured by correlation between the estimated cognitive scores and its true values, 

as well as the normalized root mean squared prediction error (NRMSE) (https://en.wikipedia.org/wiki/Root-

mean-square_deviation). Multiple cognitive domain prediction results are shown in Fig. 9. The five features 

identified based on the proposed parallel GICA+ICA were able to predict working memory (r=0.266, p=4.5e-05; 

NRMSE=0.19), verbal learning (r=0.254, p=8.0e-05; NRMSE=0.21) and composite cognitive scores (r=0.261, 

p=6.7e-05; NRMSE=0.15). More importantly, after regressing out diagnosis, the prediction still keeps significant 

for verbal learning (r=0.157, p=0.016) and composite cognitive domains (r=0.15, p=0.02), demonstrating the 

effectiveness of the proposed method in identifying linked multimodal biomarkers associated with brain disorders. 

To test the predictability of the extracted five linked multimodal features by the proposed method on new unseen 

dataset, we then extracted the brain features in COBRE cohort through fBIRN identified masks and predict an 

independent cohort(COBRE)’s multiple MCCB cognitive scores for working memory (r=0.235, p=0.001; 

NRMSE=0.15),  verbal learning (r=0.25, p=8.5e-04; NRMSE=0.17), and composite cognitive scores (r=0.256, 

p=9.2e-04; NRMSE=0.18), as displayed in Fig. 10. Note that MCCB and CMINDS are similar but not identical 

cognition assessment batteries (van Erp, et al., 2015); hence, the cross-cohort prediction is a strong evidence to 

demonstrate the predictability of the identified multimodal features detected by parallel GICA+ICA. Furthermore, 
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after regressing out diagnosis, the prediction still keeps significant, details are presented in Supplementary 

“regression out diagnosis” section. 

4. DISCUSSION AND CONCLUSION 

In this paper, we proposed a novel temporal information included parallel GICA+ICA, by adding a constraint 

that maximize the correlation between two variability matrices from fMRI and sMRI, aiming to extract the 

associated functional network variability with sMRI covariations. Compared with traditional multimodal fusion 

methods (mCCA, jICA, pICA, pICAR, mCCA+jICA, MCCAR+jICA, linked ICA), parallel GICA+ICA can deal 

with first-level features (temporal information included) in fMRI related fusion analysis. Another advantage is 

that we can also perform FNC analysis based on the fMRI results of parallel GICA+ICA. To the best of our 

knowledge, this is the first established method to incorporate temporal information in multimodal fusion analysis, 

which provides a new perspective to interpret interrelated patterns between functional network variability and co-

varied structural measures.  

    In simulations, we compared parallel GICA+ICA with separate GICA and ICA on the performance of detecting 

linked fMRI-sMRI components. Our results indicate that parallel GICA+ICA provides more accurate detection 

of inter-modality linkage regardless of whether it’s strong or weak, which means that it doesn’t inflate the link 

artificially as well as achieves comparable accuracy on both source maps and mixing coefficients. More 

importantly, the association estimation of separate GICA and ICA decreases remarkably when the real correlation 

is weak (r=0.28) compared with parallel GICA+ICA, as shown in Fig. 2(c-d), demonstrating the advantages of 

the proposed method in estimating association with weak linkage, which is always the case in real data. 

    In the real multimodal brain imaging fusion application, we combined data from gray matter volume and brain 

function from SZ patients and HCs. One linked component pair (fMRI_IC3-sMRI_IC19) was identified that show 

significant group difference between SZ and HC. Subcortical regions including bilateral insular, striatum, 

thalamus and hippocampus are identified in the linked fMRI_IC3. These regions have been widely reported as 

dysfunctional brain areas in SZ (Friedman, et al., 2008), and also associated cognitive deficits in SZ (Bush, et al., 

2005; Glahn, et al., 2005). SMRI_IC3 is correlated with several cognitive domains, which is consistent with the 
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prefrontal cortex detected in sMRI in our results being involved in multiple high-order cognitive functions 

including manipulating and maintaining information in problem solving (Minzenberg, et al., 2009), working 

memory (Aleman, 1999; Potkin, et al., 2009) and decision making (Barch and Ceaser, 2012). We also identified 

one modality-specific fMRI component containing the left attention network, whose variability loadings show 

group difference and also correlated with attention domain. More importantly, the corresponding time courses of 

fMRI_IC16 are also correlated with attention domain. The identified correspondence between the identified brain 

areas and the correlation with attention demonstrates well the effectiveness of the proposed method. Apart from 

the traditional multimodal fusion analysis, we also performed FNC analysis, and identified one abnormal FNC 

pair between visual and auditory networks compared with SZ and HC, which is widely reported associated with 

the auditory hallucination impairment with SZ (Friedman, et al., 2008; Liu, et al., 2018).     

Finally, the primary goal of brain imaging studies is to identify biomarkers that can predict individual cognition 

or symptoms scores (Gupta, et al., 2015). Based on the identified multimodal brain features in the linked 

component pair, multiple cognitive scores can be predicted in fBRIN cohort. These features can also be applied 

to independent cohort (COBRE) to predict unseen subjects on similar but different cognitive measures. All the 

above results demonstrate the ability of parallel GICA+ICA in detecting associated multimodal components pair 

that contains potential biomarkers related with mental disorders, suggesting a wide utility in the brain imaging 

community (Carter, et al., 2008; Jiang, et al., 2018). 

    In addition to sMRI, other modalities could also be fused with temporal information included fMRI based on 

the proposed method, such as fractional anisotropy from dMRI (Sui, et al., 2018). Parallel GICA+ICA can be 

applied straightforwardly to study other brain disorders, such as bipolar disorder, depression (Etkin and Wager, 

2007; Qi, et al., 2018b), and attention-deficit/hyperactivity disorder, suggesting a comprehensive application in 

brain disorder related imaging studies. Moreover, except for the distance that measuring the subject variability, 

other measures (such as correlation or covariance between group and subjects) can be directly incorporated into 

our proposed method as well. Furthermore, apart from static FNC analysis in the current study, dynamic FNC 

(Calhoun, et al., 2014) can also be calculated based on the parallel GICA+ICA results.  
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In summary, this study proposed a novel temporal information added multimodal fusion method, i.e., parallel 

GICA+ICA, and verified its effectiveness in both simulation and real human brain imaging data. To the best of 

our knowledge, this is the first proposed method that can directly link first-level fMRI features with sMRI data, 

seeking for potential linked multimodal MRI markers in brain disorders. Based on the proposed parallel 

GICA+ICA, we identified one linked fMRI-sMRI pair that was indicated to be associated with major SZ deficits 

in multiple reports, which can also be used to predict multiple cognitive scores of fBIRN cohort, as well as an 

independent COBRE cohort, promising a wide usage of the proposed method in detecting potential linked 

multimodal biomarkers for psychosis.  
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