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Abstract 

 

Dynamic functional connectivity (DFC) analysis has attracted interest in the last years for the 

characterization of brain electrophysiological activity at rest. In this work, we investigated 

changes in mild Traumatic Brain Injury (mTBI) patients using magnetoencephalographic 

(MEG) resting-state recordings and a DFC approach. The activity of several well-known brain 

rhythms was first beamformed using linearly constrained minimum norm variance of the 

MEG data to determine ninety anatomical brain regions of interest. A DFC graph was 

formulated using the imaginary part of phase lag value which were obtained from 30 mTBI 

patients and 50 normal controls. Filtering each quasi-static graph statistically and 

topologically, we estimated a normalized Laplacian transformation of every single quasi-

static graph based on the degree of each node. Then, the related eigenvalues of the 

synchronization of each node were computed by incorporating the complete topology. 

Using the neural-gas algorithm, we modelled the evolution of the eigenvalues for each 

group, resulting in distinct FC microstates (FCμstates). Using the so-called chronnectomics 

(transition rate, occupancy time of FCμstate, and Dwell time) and complexity index over the 

evolution of the FCμstates, we evaluated the level of discrimination and derived statistical 

differences between the two groups. In both groups, we detected equal number of 

FCμstates with statistically significant transitions in the δ, α, β, and γlow frequency bands. 

The discrimination rate between the two groups was very high in the θ and γlow bands, 

followed by a statistically significant difference between the two groups in all the 

chronnectomics and the complexity index. Statistically significant differences in the degree 

of several anatomical subnetworks (BAN – brain anatomical networks: default mode 

network; frontoparietal; occipital; cingulo-opercular; and sensorimotor) were revealed in 

most FCμstates for the θ, α, β, and γlow brain rhythms, indicating a higher level of 

communication within and between the BAN in the mTBI group. In our previous studies, we 

focused on intra- and inter-frequency couplings of static FC. Our current study summarizes a 

complete set of frequency-dependent connectomic markers of mTBI-caused alterations in 

brain connectivity that potentially could also serve as markers to assess the return of an 

injured subject back to normality. 

 

Keywords: MEG; mTBI; beamforming; dynamic functional analysis; network microstates; 

symbolic dynamics 
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1. Introduction  

Mild traumatic brain injury (mTBI) seems to include approximately 90% from most of the 

brain injuries (Len and Neary, 2011), establishing it as a major root of brain insult (Huang et 

al., 2014). A considerable part of these patients develops persistent cognitive deficits (van 

der Naalt et al. 1999; Vanderploeg et al. 2005), and post-concussion symptoms can cause 

irremediable problems in approximately 20% of the patients (Bharath et al., 2015) several 

months after the first injury (Huang et al., 2014). The main characteristics of those 

symptoms are often physical, emotional, cognitive, and sleep disturbances and may need 

several months to recover (Huang et al., 2014). In many neuropsychological studies, it has 

reported a reduced cognitive efficiency in several brain functions, especially in tests 

measuring executive function, processing speed, attention, connectivity, and memory in 

mTBI patients with persistent symptoms (Huang et al., 2014; Pang et al., 2016). Handling 

mTBI patients is not a trivial task and it is most of the times affects crucially the brain 

functionality (Vanderploeg et al., 2005; De Monte et al., 2006). 

The conventional structural neuroimaging (computed tomography (CT), acute 

magnetic source imaging (MRI), or functional MRI (fMRI)) usually offers low sensitivity 

profiles on the detection of physiological alterations caused by mTBI (Kirkwood et al., 2006). 

Magnetoencephalography (MEG) is a non-invasive functional modality that detects activity 

from the synchronous oscillations of neurons’ membranes in the gray matter. Thus, MEG is 

a modality that mainly incorporates high sensitivity keeping the environmental noise to a 

low level, and includes low resolution spatial details and highly temporal accuracy (Leahy et 

al., 1998). In this study, we combined for the very first time the reconstructed source MEG 

activity with the notion of Functional Connectivity (FC) for the characterization of mTBI over 

the evolution of time. FC is crucial for the characterization most of the brain disorders 

(Eierud et al., 2014). The term FC was coined when the human brain was first modelled as a 

neurophysiological network with functional communication among several anatomical 

areas. These distinct networks can exist in a range of spatiotemporal scales with spatial 

diversity and temporal variability. Spatially, they can vary between microscopic neuronal 

level and large-scale interconnected areas (Eierud et al., 2014).  

 Several studies, including ours, recently investigated the design of the robust 

biomarker for the identification of mTBI including MEG and FC (see reviews by Jeter et al., 

2013; Huang et al., 2009; and Eierud et al., 2014); Castellanos et al., 2010; Zouridakis et al. 

2012; 2013; Da Costa et al. 2015; Vakorin et al. 2016 Dunkley et al. 2015). More recently, 

Dunkley et al. (2018) investigated the impact of injury underlying ICNs and showed 

increased coupling in the default mode network of mTBI patients. Dimitriadis et al. (2015b) 

using phase-synchronization quantified intra-frequency couplings at the sensor level and 

showed that significantly different patterns were seen mostly in the delta band, whereas 

Alhourani et al. (2016) used the same metric at the source level and showed reduced local 

efficiency in different brain regions in mTBI patients. In a follow-up study, Antonakakis and 

colleagues (2015, 2016, 2017a) showed less dense for mTBIs in which was in line with (Rapp 
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et al., 2015), and later (Antonakakis et al., 2017b) that mTBIs obtained a higher 

synchronization among rich-club hubs. More recently, Li et al. (2018) showed a denser 

causality network for mTBI patients, whereas Kaltiainen et al. (2018) underlined that 

aberrant theta-band activity can provide an early objective sign of brain abnormality after 

mTBI. 

MEG-based FC is noticed as an emerging prcedure in the development of reliable 

biomarkers for mTBI using resting-state networks (RSNs), not only at the sensor level, but 

also at source level, since such RSNs have been successfully estimated in past few years 

(Brookes et al., 2011a,b; Luckhoo et al., 2012; Hipp et al., 2012; Hall et al., 2013; Wens et al., 

2015). MEG-based RSNs seem a promising approach for detecting several other brain 

functional abnormalities, involving dyslexia (Dimitriadis et al., 2013b, 2015c; 2016c), mild 

cognitive impairment (Dimitriadis et al., 2015b) and multiple sclerosis (Tewarie et al., 2015). 

However, summarizing RSNs as short-lived transient brain states varies significantly across 

different studies, ranging from estimating the MEG frequency spectrum (Vidaurre et al., 

2016) to band-specific amplitude envelopes of reconstructed MEG sources (Baker et al., 

2014; O’Neill et al., 2015 Vidaurre et al. 2016). A recent neuroimaging index, called 

chronnectomics (Allen et al., 2012; Calhoun et al., 2014), was showed in fMRI studies and it 

combines the synergy between the time-varying FC and the evolution of the distinct spatio-

temporal alternations among the brain states (Dimitriadis et al., 2013a; Dimitriadis et al., 

2015a). To our knowledge, this is the first study that utilizes DFC on the reconstructed 

source activity from MEG for the investigation of mTBI. Similar methodological aspects are 

adopted by a recent study (Dimitriadis et al., 2018a). 

In this study, we investigated whole-brain dynamic FC (DFC) derived from MEG 

resting-state data from 80 subjects. The within brain interactions were modeled using 

beamformed MEG source activation and DFC among ninety atlas-based brain areas using a 

template MRI. Each quasi-static FC was determined by the imaginary content of the phase 

locking value (iPLV) and it was filtered statistically and topologically (Dimitriadis et al., 

2017a,b) for the reduction of spurious connections. Subsequently, we coded the estimated 

time-varying network activity into prototypical network microstates or FCμstates 

(Dimitriadis et al., 2013a, 2018a). Through this approach, we derived symbolic-formed time 

series for which the chronnectomic behavior (Dimitriadis et al., 2018a) was modeled based 

on the metric transition rate of FCμstates, fractional occupancy of each FCμstate, Dwell time 

and complexity (Antonakakis et al., 2016b; Dimitriadis, 2018b). Finally, we assessed 

differentiations in the DFC of mTBI using statistical inference and classification. 

 

2. Methods  

2.1. Participants and Recordings  

The current study included fifty right-handed healthy controls (HC) (29.25 ± 9.1 years of age) 

and thirty right-handed mTBI patients (29.33 ± 9.2 years of age) (Gouridakis et al., 2012). All 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 2, 2019. ; https://doi.org/10.1101/596155doi: bioRxiv preprint 

https://doi.org/10.1101/596155


Alterations of MEG Beamformed DFC in mTBI                             Antonakakis et al. 

 

clinical information including selection criterions and patients’ demographics were reviewed 

and provided by certified clinicians and they are available in our previous studies 

(Gouridakis et al., 2012; Antonakakis et al., 2016; 2017a,b). The HC group was determined at 

UTHSC-Houston and the recruitment of the mTBI patients was done by three trauma 

centers in the greater Houston metropolitan area. Those centers participated in larger study 

and detailed information can be found elsewhere (Gouridakis et al., 2012). All the 

participants had given their written and informed consent to participate in the current 

study. Further details are provided in our previous studies (Gouridakis et al., 2012; 

Dimitriadis et al., 2015b; Antonakakis et al., 2016; 2017a,b). The definition of the every mTBI 

patient was based on the guidelines the American Congress of Rehabilitation Medicine (Kay 

et al., 1993) and of department of Defense (Assistant Secretary, 2007). The corresponding 

approval for the project was declared by the Institutional Review Boards (IRBs) at the 

participating institutions and the Human Research Protection Official’s review of research 

protocols for the department of Defense. All procedures were fully compliant with the 

Health Insurance Portability and Accountability Act (HIPAA).  

The MEG activity was acquired with a whole-head Magnes WH3600 system of 248 axial 

gradiometers (4D Neuroimaging Inc., San Diego, CA) for ten minutes. Every subject was in a 

supine position with eyes closed during the acquisition of spontaneous activity. The 

sampling rate was 1017.25 Hz and an online bandpass filter between 0.1–200 Hz was 

applied. No independent ocular and cardiac activity monitoring was recorded. In the current 

study, we analyzed the five minutes out of ten minutes after excluding activity 

contaminated with artifacts (Dimitriadis et al. 2015a) and the conversion from axial 

gradiometer recordings to planar gradiometer field approximation in FieldTrip 

(Oostenveld et al., 2011). 

2.2 MEG Preprocessing  

The artifact reduction in the MEG recordings was performed within an automated detection 

and elimination procedure as it was described elsewhere (Antonakakis et al., 2017a) 

including the software FieldTrip (Oostenveld et al., 2011) and implemented routines in 

MATLAB (The MathWorks, Inc., Natick, MA, USA). In brief, the noisy activity was reduced 

including the following steps: (1) correction of the bad MEG channel activity applying 

interpolation techniques (2) frequency spectrum elimination within the range 0 – 100 Hz 

using digital filtering (3) restricted filtering of the power line noise at 60 Hz with a notch 

filter and (4) detection and elimination of the biological artifacts (ocular and cardiac) by the 

decomposition of the MEG data into statistically independent components (Delorme 

and Makeig, 2004) and the application of the combined fixed thresholds on the metrics, 

kurtosis, skewness and Rényi entropy (Antonakakis et al., 2017a).   

 

[Please put figure 1 around here] 
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2.3 Source Analysis  

Atlas-based beamforming was applied reconstructed the source activity from the MEG data 

for every well-known brain rhythm. The investigated frequency content included δ (0.5–4 

Hz), θ (4–8 Hz), αlow (8–10 Hz), αhigh (10–13 Hz), β (13–30 Hz), γlow (30–55 Hz), and γhigh (55–

90 Hz). First, the MEG sensors of every subject were realigned and normalized using a 

standard template T1 weighted MRI of 2 mm resolution as it was provided by SPM8 

(Weiskopf et al., 2011). The clustering of the MRI voxels into ninety brain regions of interest 

(ROIs) was performed based on the Automated Anatomical Labeling (AAL) atlas (Tzourio-

Mazoyer et al., 2002; Hillebrand and Barnes, 2002; Hillebrand et al., 2016; Hunt et al., 2016; 

Dimitriadis et al., 2018a). Employing a realistically shaped head model of one single shell 

(Nolte et al., 2003), we included 5061 sources (6 mm resolution) that covered the entire 

brain tissue. The frequency-depended MEG source activity was reconstructed using the 

linearly constrained minimum norm variance (LCMV) algorithm in FieldTrip.  

We adopted similar methodological modules as in a recent study (Dimitriadis et al., 

2018a) for the determination of a representative source signal in every ROI. In particular, 

the contribution of every MEG sensors was weighted by the LCMV beamformer for the 

reconstruction of the voxel-based time series for the entire predefined grid. The projection 

of the MEG sensor activity to the source point was the definition of the each spatial filter. 

Each atlas-based ROI contained a different number of voxels. Subsequently, we estimated 

the ROI-representative by functionally interpolating activity from the voxel time series of 

the specific ROI. Within each atlas ROI, we estimated the correlation between every pair of 

source time series creating a functional connectivity representation. The next step was the 

calculation of the node-strength of each voxel within the ROI. The strength was determined 

by summing the existed connectivity values between the specific node-voxel with the other 

node-voxels within the same ROI. Then, we normalized every strength resulting to a set of 

weights with sum equal to 1 within the ROI. The procedure ended up with the estimation of 

a representative time series for each ROI by getting the sum across the multiplying voxel 

time series with their respective weights. A block diagram of the procedure is given (Fig.1a) 

with exemplary a time series from a specific ROI.   

2.4 Dynamic Functional Connectivity Graphs   

In the current work, DFC graphs (DFCG) were calculated and examined for each of the 

previously described brain rhythm. The used FC estimator was the iPLV (i.e. the imaginary 

side of the Phase Locking Value (Lachaux et al., 1999), a metric that has shown good 

sensitivity to non-zero-phase lags and tolerability to instantaneous self-interactions from 

volume conductance (Nolte et al., 2004). Here, we applied the specific metric in a dynamic 

manner for understanding better the time-varying alterations of the phase-to-phase 

interactions. This was achieved by computing the iPLV within a series of shifted and 
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overlapped windows spanning the entire five minute continuous ROI time series (Fig.1b). 

The window-length of each temporal segment (or timestamp) was set to 2 sec with an 

overlap of 20% for each frequency band. The resulting number of timestamps was equal to 

1785 per frequency and subject.  

2.4.1 DFCG Filtering  

Statistical Filtering of the DFCG. A surrogate analysis was performed to evaluate the non-

spurious iPLV connections on each sliding window (i.e., timestamp) for every specific brain 

rhythm. Our examined null hypothesis H0 had to do with whether the given iPLV coupling 

belongs to the empirical distribution estimated by the surrogates. To evaluate this 

hypothesis, ten thousand surrogate time-series were generated. Each surrogate quasi-static 

FCG was defined by shuffling temporally the original entire representative ROI time series 

(Aru et al., 2015). This procedure ensured similar statistical properties for both original and 

surrogate iPLV (iPLVs). After the estimation of the empirical distribution, a statistical level of 

significance was determined for every iPLV value. The determination of this level was done 

by estimating the amount of iPLVs that was higher than the original iPLV. The p-value was 

ste to 0.05. A further condition was applied for examination of multiple comparisons within 

each quasi-static FCG (a 90 × 90 matrix with tabulated p-values) with the expected fraction 

of false positives being at the level 0.01 (Benjamini and Hochberg, 1995). The non-significant 

values were set to zero and the final DFCG had a 3D dimension of 1785 (segments) × 90 

(sources) × 90 (sources) per subject and brain rhythm.  

Topological Filtering of the DFCG. In addition to statistical filtering, a data-based topological 

connection-cutting was applied based on a recently suggested procedure (Dimitriadis et al., 

2017a, b). The so-called Orthogonal Minimal Spanning Trees (OMST
1
) was performed to 

uncover the entire structure of the most dominant paths within every quasi-static FCG. The 

the OMST procedure was first enhanced from the notion that the full connected FCG can be 

extracted to an acyclic FCG or MST of minimum cost from the root node to leaf node 

without changing the strong connections strong from the weak connections (Dimitriadis et 

al., 2017a, b). Subsequently, the global efficiency of the specific MST was optimized 

preserving same total cost among within the connections (Dimitriadis et al., 2017b, d). The 

resulting DFC profiles had a 3D array of size 1785 (segments) × 90 (sources) × 90 (sources) 

for every subject and frequency band.  

2.4.2 DFCG Metrics  

In every node of the statistically and topologically quasi-static FCG, we calculated the 

strength and degree. In particular, the strength was defined as the total sum of the iPLV 

values in every node resulting to a vector of ninety values per quasi static graph, brain 

rhythm and subject (90 x 1785 x 6 x 80). The degree was defined as the total number of 

connections in every node resulting to same dimensions as the strength. Moreover, to 

better understand the network connectivity in the whole brain, we estimated the mean 
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strength between couples of the following brain networks, default mode network 

(DMN), sensorimotor (SM), frontopatietal (FP), occipital (O), and cingulo-opercular (OC)—

and the degree for each of these networks (these abbreviations were used to present the 

interaction among these brain networks).   

2.4.3 Symbolization of the DFCG  

The full symbolization scheme has been described in a great detail in specific previous 

studies (Dimitriadis et al., 2012a,b, 2013a,b). The symbolization scheme included the 

representation of the DFC profiles as prototypical functional connectivity microstates 

(FCμstates). This procedure exploited a vector quantization procedure for the 

effective modeling of DFCGs (Dimitriadis et al., 2013a). For this procedure, we used the 

neural-gas (NG) algorithm (Martinetz et al., 1993) which has the property of converting a FC 

time series into to a codebook with a constant number k of prototypical FCμstates 

(Dimitriadis et al., 2013a, b, 2015a). Thus, DFCG conversion was modeled based on the 

vectorization of the upper triangular part of every quasi-static FCGs. This procedure ended 

up to a 2D array with the first dimension being the number of timestamps and, the second, 

the vectorized quasi-static FCG (Dimitriadis et al., 2013a). In the current work, we used the 

statistically and topologically filtered DFCGs in their inherent format, i.e., as 3D tensors (the 

third dimension was time). Then, Adopting a recent approach for modeling the DFCGs 

(Dimitriadis 2018) based on the Laplacian transformation of the filtered DFCG eigenvalues, 

we first calculated the normalized Laplacian matrix for every quasi-static FCG based on the 

equation,  

� � � � ��
�

� · � · ��
�

� 	1� 

where D is the degree matrix and G is the quasi-static FCG. Afterwards, we applied 

eigenvalue analysis to each of the normalized Laplacian matrices. By applying the current 

eigenvalue analysis, we were able to reveal the synchronized level of the original FCGs. 

Then, the NG algorithm was applied on the 2D arrays after the concatenation across all 

subjects (90 x [timpestamps x subjects]) independently for each frequency band and group 

(control: 90 x 89250 and mTBI: 90 x 53550). By applying this, the existed richness of 

information in the DFC profiles was represented by a decomposed matrix U indicating the 

assignment of input FC profiles to code vectors.  

The NG algorithm was an iterative procedure which was applied in the normalized 

Laplacian matrix and the stop condition was based on the threshold. The detection of the 

optimal threshold was obtained based on the estimation the reconstructed error between 

the original and the reconstructed 2D matrix (90 × [slides × subjects]). The final k was 

assigned to each timestamp of the DFCG based on a predefined threshold per case. Notice 

that the selection of parameter k expressed the compression level and fidelity.In the present 

study, the stop condition of the reconstruction error was < 1% for every the brain rhythm 

and group. The visualization of the reconstructed error E versus the threshold was used for 
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the observation its corresponding plateau resulting to the selection of the final threshold. 

The estimated normalized Laplacian-based symbolic times series that preserved the 

information of network FCμstates are indicated hereafter as STS
L−EIGEN

 (L:Laplacian − 

Eigen:Eigenalysis). An STS
L−EIGEN

 can be assumed as a first order Markovian Chain that 

describes temporally the evolution FCμstates in both groups. The final number of FCμstates 

was 4 for the δ frequency band and 3 for the rest frequency bands for both groups. 

2.4.4 Characterization of Time-Varying Connectivity  

We mainly calculated DFC metrics based on the so-called chronnectomic features which 

were estimated on the STS
L−EIGEN

 that expressed the alternation among the FCμstates. The 

first metric was the transition probability (TP) that expressed the transition rate among the 

FCμstates applying the following equation, 

� � ������ �� �����������
������ � 1  	2� 

where slides denotes the number of timestamps. TP yielded higher values for increased 

numbers of “hops” of the brain between the FCμstates. The next metric was the Occupancy 

Time (OT) of the FCμstates. The OT metric accounts the percentage of the occurrence across 

the experimental time in every FCμstate and it is described as, 

��	�� � ������� ! �� �  ���� �
������  	3� 

where slides denotes the number of timestamps and k denotes the FCμstates. The next 

metric was the complexity index (CI). The CI of a STS
L-EIGEN

 is estimated as follows, 

#�	STS�������� � &  		STS��������



	��

	4� 

where  	(STS�������� was the number of distinct substrings of STS�������  of length � 

(Dimitriadis et al., 2012c; 2013a; 2016a; Antonakakis et al., 2016). The parameter � was set 

to 7 for the frequency bands and subjects. An additional applied metric was the Dwell Time 

which counts the time the brain spends on a FCμstate before it transitions to another brain 

state. The difference with OT is the search of consecutive periods that a brain sticks to a 

brain state, while OT measures the summation of time that the brain spends on a brain 

state. The final used metric was the Transition Probability Matrix. This metric counts the 

pairwise transitions count all possible pairwise transitions of brain states over a common 

codebook scanning the Markovian chain from left to right. For example, the following STS 

describes the temporal evolution of three brain states [1 2 2 1 2] and the pairwise 

transitions (PT) are equal to:  PT12 = 2/4=0.5 and PT21 = 1/4=0.25. The size of the pairwise 

transition matrix is equal to (the number of brain states) x (the number of brain states). 

 For the aforementioned chronnectomic features, we assessed their significant level 

by adopting a surrogate data analysis. We shuffled 1000 times the subject-specific STS
L−EIGEN

 

resulting in 1000 surrogate chronnectomics estimates. Then, we assigned a p-value to every 

subject-specific chronnectomic by comparing the original value with the 1000 surrogate 

values. Finally, we analyzed at the group-level only the subject-specific chronnectomic 
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features that were statistically significant (p < 0.01). Especially for the pairwise transitions, 

we created a transition matrix by assigning a p-value to each pairwise transition. 

Subsequently, we controlled for multiple comparisons employing the false detection rate 

correction procedure (Benjamini and Hochberg, 1995) in the level of q ≤ 0.01 independently 

in every frequency band. 

2.4.5 Classification and Statistical Assessments  

We assessed the discrimination of the mTBI and control groups by using as feature vector all 

the chronnectomic indexes (TP, OT, CI and DT) of the corresponding FCμstates via machine 

learning schemes. Within an iterative scheme of thousand times and using ten-fold cross-

validation, we first calculated the most informative features using a Laplacian score (Xe et 

al., 2005) through iterative bootstrapping procedure for determining a cut-off threshold. 

This threshold was served a cut-off condition in the features (Dimitriadis et al., 2015a; 

Antonakakis et al., 2016a, b) avoiding any hazard for overfitting. The labels of the two 

groups were first shuffled and their Laplacian score was re-calculated. Then, we applied a 

threshold to the original Laplacian scores derived by the mean + 2SD (SD: standard 

deviation) of the thousand Laplacian scores estimated via the randomization procedure. 

Afterward, classification based on the k nearest neighbor algorithm (kNN; Horn and 

Mathias, 1990) was performed to observe the discrimination level between the two groups. 

The entire procedure was repeated separately for each frequency band, including all 

FCμstates and chronnectomic indexes per group.  

Statistical analysis was performed on the feature vectors used for classification to 

further confirm the discrimination level between the two groups. The same statistical 

analysis was performed on the mean strength between pairs of the brain networks (DMN, 

SM, FP, O, and OC) and mean degree of each brain network to evaluate the discrimination 

level based on the mean value between the two groups. The statistical procedure included a 

normality control based on the Kolmogorv-Smirnov test and based on its result, either the 

use of parametric pair-wise sample t-test or non-parametric pair-wise Mann-Whitney u-test 

(Antonakakis et al., 2016a). The threshold for significance of the p-value was set to 95%. 

Control for multiple comparisons was applied thought the FDR adjustment (Benjamini and 

Hochberg, 1995) at a q level of less than 0.01. 

3. Results  

3.1. From multichannel recordings to a restricted repertoire of quasi-static FCμstates 

Our analytical pipeline revealed unique phase-based synchronized functional connectivity 

patterns (FCμstates) that can be considered as discrete brain states: the human brain 

‘jumps’ between characteristic FCμstates whose temporal evolution can hide important 

information. Figure 2 illustrates representative state-transitions of FCμstates, from the first 

HC and mTBI subjects, for every frequency band. The analysis revealed four FCμstates for δ 
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and three for θ to γ2 in both groups. In addition to the representative STS
L−EIGEN

, we 

demonstrated brain topologies that represent the mean-degree of the nodes that constitute 

the default mode network, independently for each FCμstate. Figure 3 demonstrates the 

significant transition rates between FCμstates for every group and frequency band. 

FCμstates are sketched as 5-to-5 networks, where the size and color of every node codes 

the mean degree within every subnetwork, while the color of the between sub-networks 

connections decodes the functional strength between the ROIs that constitute those sub-

networks.  

 

[Please add figure 2 - 3 around here] 

 

3.2. Aberrant Higher-Lower Global Mean Degree for mTBI subjects 

Figure 4 summarizes the global mean degree for every FCμstate across frequency bands in 

both groups. Following a statistical group comparison independently for every FCμstate, we 

revealed statistical significant differences between the groups in most cases. Our analysis 

under the framework of global mean degree untangled an aberrant higher-lower pattern for 

mTBI subjects compared to healthy controls. 

 
[Please add figure 4 around here] 

 
3.3. Classification performance and Feature Ranking 

Table 1.A summarizes the results of absolute classification performance based on 

chronnectomic features in every frequency band. Table 1.B represents the ranking of 

features selected consistently across the cross-validation scheme per frequency band. 

Figure 5a demonstrates the group-averaged chronnectomic features for every frequency 

band. Statistical analysis revealed significant higher TP and CI for HC compared to mTBI. The 

mTBI averaged OC of FCμstate was statistical significantly higher the HC subjects in the δ 

frequency band. Group mean values were statistical significantly higher for HC compared to 

mTBI for OC in the δ, θ, and α frequency bands, and higher for mTBI compared to HC in the 

β, and γlow frequencies. Additionally, group mean DTs were significantly higher in HC 

compared to mTBI in the δ, θ, α, and β bands, and higher in mTBI in the γlow band compared 

to HC. ΤP in the θ, β, and γlow bands were the most discriminative features across the 

chronnectomic features. Projecting every subject using this triplet of TP-related features, 

absolute discrimination was obtained between the two groups, and each group was 

allocated a distinct projection subspace (Fig. 5.B). 

 

[Please add Figure 5 and Table I around here] 

 

 

4. Discussion  
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Thought the current study, we developed a framework for analyzing the spatiotemporal 

evolution of functional connectivity patterns on the MEG source-reconstructed activity at 

rest for mTBI and HC subjects. Each frequency-dependent DFCG was discretized via the 

neural-gas algorithm into a symbolic time series that described the temporal evolution of 

brain states (FCμstates). DFCGs were trimmed as Markovian chains of 1
st

 order from which 

valuable chronnectomic markers were estimated. Our results revealed significantly lower 

values of transition probability (TP), complexity (C), dwell time (DT), and occupancy time 

(OT) for mTBI subjects compared to HC. Following a machine learning approach, we 

succeeded to discriminate the two groups with absolute accuracy (100%). The three 

features with the highest discriminative power were the TP in the θ, β, and γlow frequency 

bands. 

Recent advances in MEG and network neuroscience have shown that mTBI can be 

manifested as an excessive pattern of slow-wave activity (Huang et al., 2012), while 

localization of this slow-wave activity can reveal the foci of the damage (Huang et al., 2014). 

Dimitriadis et al. (2015b) employed PLI to quantify time-static FCGs at the sensor level. They 

revealed a dense local and sparse long-range connectivity pattern for healthy controls and a 

sparse local and dense long-rage pattern for the mTBI subjects. Activity in the alpha 

frequency was the most discriminative for separating the two groups. In our previous 

studies (Antonakakis et al., 2015, 2016, 2017a), we employed an analysis of combined the 

content of intra-based and inter-based frequency couplings in a single FCG suggestion that 

HC formed a dense network of stronger local and global connections in agreement with 

other studies (Rapp et al., 2015). In our most recent study (Antonakakis et al., 2017b), the 

mTBI group indicated a hyper-synchronization in rich-club network organization compared 

to HC groups. 

Structural neuroimaging combined with diffusion tensor imaging (DTI) revealed an 

association of mTBI with aberrant white matter microstructures (Huang et al., 2009). 

Specifically, a connection of focal increased slow wave activity with the location of white 

matter injury was shown, which was consistent with the hypothesis that the deceleration of 

oscillations could be caused by differentiation (Llinás et al., 1999). 

A disrupted inter-regional frequency-dependent functional connectivity pattern has 

also been reported in combat-related blast injury using EEG (Sponheim et al., 2011). 

Oscillatory functional synchronization between brain areas play a pivotal role in network 

connectivity and support both cognition and behavior (Ward, 2003; Uhlhaas et al., 2009). 

The expression of this network connectivity in various frequencies at resting-state is related 

to the intrinsic multi-frequency organization of brain activity that is pertinent to normal 

brain function and dysfunction in various clinical populations (Engel et al., 2014). 

The present study explored for the very first time the consequences of mTBI in 

human brain functionality at resting-state using MEG and DFCG analysis. Our analysis 

summarized DFCGs with prototypical connectivity graphs, where each graph was associated 

with a FCμstate (brain state). The major outcome of this analysis was a symbolic time series 

for the temporal description of the evolution of these brain states. Dynamic functional 
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connectivity graphs were trimmed as Markovian chains from which a variety of 

chronnectomic metrics were extracted. Machine learning analysis over the derived 

chronnectomics produced absolute classification between healthy controls and mTBI 

subjects (Table 1). Ranking the features with an appropriate feature selection algorithm 

revealed that TP was the most discriminative feature in every frequency band. To visualize 

the absolute classification in 3D, we extracted the three features with the highest 

discriminative power, namely the TP for θ, β, and γlow frequencies. Figure 5 b shows that the 

projections of the two groups using the three TRs occupy distinct 3D sub-spaces. 

Figure 4 demonstrates the global mean degree for every FCμstate across frequency 

bands in both groups. Our statistical analysis applied independently to every FCμstate 

revealed significant differences between the two groups in most cases. Our analysis 

untangled an aberrant higher-lower pattern for mTBI subjects compared to healthy controls. 

The central brain networks more connected with the rest of the brain were the CO and 

DMN across all frequency bands. Ιn mTBI subjects, DMN and CO were less connected with 

the rest of brain networks compared to healthy controls (Fig. 4). DMN reduced their activity 

during cognitive demands and may be involved to self-referential processing and internal 

emotional states (Power et al., 2011; Barch, 2017). Finally, CO played a central role in 

sustaining alertness and attention (Coste and Kleinschmidt, 2016).  

Our study employed beamformed source-reconstruction of resting-state MEG 

activity in various frequency bands with a common MRI template for all subjects. However, 

a recent study explored the deviation in power and connectivity of virtual source MEG 

activity when using a template instead of native MRIs (Douw et al., 2017) and found that 

relative power, connectivity measures, and network estimates were consistent in both 

cases. Finally, it would be interesting to evaluate in a future study the sensitivity of the 

current analysis approach and chronnectomic features in detecting the return of mTBI 

subjects back to normality. 

5. Conclusions  

In the present study, we obtained for the very first time how mTBI affects the dynamics of 

functional brain networks on beamformed source-reconstructed resting-state activity. 

Dynamic functional graphs were trimmed as a Markovian chain via a well-established 

analytic framework that discretized their temporal evolution into a symbolic time series. 

Symbolic dynamics and chronnectomics proved valuable for the absolute discrimination of 

healthy controls from mTBI subjects. The TP in θ, β, and γlow frequencies were the most 

discriminative chronnectomic features. CO and DMN were the central network hubs of the 

derived brain states (FCμstates), where mTBI subjects were less connected with the rest of 

the brain networks compared to healthy controls. 
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Figure 1. A brief overview of the proposed pipeline. a) Steps for determining the representative virtual sensor 

for each ROI. (Left to right) A sample of the 119 voxel time series from the right inferior frontal gyrus. Distance 

correlation matrix (S
Voxels

) derived by pair-wise estimation of the 119 voxel time series. Summation of the 

columns of S
Voxel

 produced the vector SS. Normalization of vector SS further producesd W
k
 where its sum 

equals to 1. Multiplication of every voxel time series with the related weight from the W
k
. This example 

demonstrates multiplication for the first and last voxel time series. Summing the weighted versions of every 

voxel time series for the final estimated virtual sensor for each ROI b) Basic steps for estimating time varying 

(or dynamic) functional connectivity graphs (DFCGs) (filtering the virtual sensor in several frequency bands 

given from a ROI; topologies of snapshots of imaginary part of the phase locking value (iPLV) DFGC from the 

first two (t1 and t2) and the last (tN) temporal segments in the δ frequency band for Subject 1. These 

topologies are statistically and topologically filtered; Dynamic evolution of the eigenvalues of the normalized 

Laplacian matrices (NLEG) for each frequency band. An example for the δ frequency band c) Short 

representation of the FCμstates procedure showing a sample of the symbolic time series and the 

corresponding prototypical FCμstates in a circular visualization with nodes the degree of basic anatomical 

networks (default mode network – DMN; frontoparietal – FP; occipital – OCC; cingulo-percular – CO; 

sensorymotor – SM)) and edges the strength of the iPLV. An example with the first and forth FCμstates for the 

δ frequency band of Subject 1. 

 

Figure 2. Temporal evolution of FCμstates for representative HC and mTBI subjects in every frequency band. 

Sample symbolic time series per frequency band  for the control and mTBI group. The brain topologies 

represent the mean degree of every node that constitutes the default mode network for each FCμstate. 

 

Figure 3. Pairwise transition diagram between FCμstates for each group and frequency band. Statistically 

significant group differences of the pairwise transition rates between FCμstates characteristic for every 

frequency band. The color and size of every node encodes the mean degree of each sub-network, while the 

color of between sub-networks connection encodes the mean functional strength between the ROIs that 

constitute each sub-network. Both strength and degree are normalized using the maximum value between the 

two groups and all frequency bands. The color bar is common to all cases. Grey arrows represent statistically 

significant pairwise transition rates between FCμstates. Every FCμstate is represented with the corresponding 

label FCμsi  (i=1,…,4). 

 

Figure 4. Averaged node degree. Group (control: blue and mTBI: red) averaged node degree per FCμstate 

(FCμsi for i = 1,…,4) and  frequency band (δ, θ, α, β, γlow, γhigh) for every basic anatomical network (BAN: default 

mode network – DMN; frontoparietal – FP; occipital – OCC; cingulo-percular – CO; sensorymotor – SM)). The 

diagonal voxels depict averaged node degree within every BAN while the non-diagonal voxels represent 

averaged node degree between every pair of BANs. Statistical comparisons (*: p-value<0.05, **:  p-value<0.01 

and ***: p-value<0.001) are presented between the two groups. Statistical evaluation was based on the 

procedure described in Section 2.4.5. 

 

Figure 5. Discrimination between the two groups. a) Average value and standard deviation of each metric 

(transition probability, complexity, occupancy time, and dwell time) and group (blue for control and red for 

mTBI) for every frequency band. Statistically significant difference on mean value for every metric between the 

two groups are noticed (*: p-value<0.05, **:  p-value<0.01 and ***: p-value<0.001) b) The most informative 

features, as categorized by ranking analysis, that result in complete separation between the control (blue) and 

the mTBI (red) groups . Statistical evaluation was based on the procedure described in Section 2.4.5. 
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Table 1. Classification performance and Feature Selection per frequency band. 

Table 1. Classification performance and Feature Selection per frequency band. 

A. Classification Performance 

B. Ranking of selected features 

*Abbreviations: TP = Transition Probability, OC = Occupancy Time, DWELL = DWELL time and CL = Complexity 

Index. Number after abbreviation represents the Functional Connectivity micro state (4 for δ and 3 for the rest 

of the frequency bands).  
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