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SUMMARY 

Cardiovascular diseases (CVD), and in particular cerebrovascular and ischemic heart diseases, are leading 

causes of death globally.1 Lowering circulating lipids is an important treatment strategy to reduce risk.2,3 

However, some pharmaceutical mechanisms of reducing CVD may increase risk of fatty liver disease or 

other metabolic disorders.4,5,6 To identify potential novel therapeutic targets, which may reduce risk of 

CVD without increasing risk of metabolic disease, we focused on the simultaneous evaluation of 

quantitative traits related to liver function and CVD. Using a combination of low-coverage (5x) whole-

genome sequencing and targeted genotyping, deep genotype imputation based on the TOPMed 

reference panel7, and genome-wide association study (GWAS) meta-analysis, we analyzed 12 liver-

related blood traits (including liver enzymes, blood lipids, and markers of iron metabolism) in up to 

203,476 people from three population-based cohorts of different ancestries. We identified 88 likely 

causal protein-altering variants that were associated with one or more liver-related blood traits. We 

identified several loss-of-function (LoF) variants reducing low-density lipoprotein cholesterol (LDL-C) or 

risk of CVD without increased risk of liver disease or diabetes, including variants in known lipid genes 

(e.g. APOB, LPL). A novel LoF variant, ZNF529:p.K405X, was associated with decreased levels of LDL-C 

(P=1.3x10-8) but demonstrated no association with liver enzymes or non-fasting blood glucose levels. 

Silencing of ZNF529 in human hepatocytes resulted in upregulation of LDL receptor (LDLR) and increased 

LDL-C uptake in the cells, suggesting that inhibition of ZNF529 or its gene product could be used for 

treating hypercholesterolemia and hence reduce the risk of CVD. Taken together, we demonstrate that 

simultaneous consideration of multiple phenotypes and a focus on rare protein-altering variants may 

identify promising therapeutic targets.  
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MAIN TEXT 

We combined several approaches for genomic discovery to identify independent variants associated 

with 12 liver-related phenotypes (see Supplementary Figure 1 for an overview). The 12 traits we 

examined were related to: i) blood lipid levels which impact cardiovascular, neurological and eye-related 

diseases: total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein 

cholesterol (HDL-C) and triglyceride (TG) levels; ii) C-reactive protein (CRP; only values <15 mmol/L were 

included) which is predictive of cardiovascular disease;8 iii) enzymes which mainly reflect liver function: 

alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and 

gamma-glutamyltransferase (GGT); and iv) iron-related phenotypes: serum iron, total iron binding 

capacity (TIBC), and transferrin saturation percentage (TSP).  

 

Using four primary discovery designs, we identified 763 unique variants within 340 genomic 

regions (i.e. loci) associated with at least one of the 12 quantitative liver-related blood traits. We 

identified genome-wide significant associations with at least one trait at 88 presumed causal protein-

altering variants, of which 9 result in LoF of a specific protein – 3 frameshift indels and 6 premature stop 

codons. 

 

First, we tested for association with liver-related traits among 69,479 participants 

(Supplementary Table 1) in the population-based Nord-Trøndelag Health Study (HUNT) in Norway.9 26 

million polymorphic genetic variants were imputed with sufficient quality and at least 10 alleles using 

the TOPMed multi-ethnic reference panel consisting of 60,039 deeply sequenced genomes.7 We used a 

linear mixed model10 to account for relatedness in the HUNT sample set and identified 246 genome-

wide statistically significant (P<5x10-8) associations between independent genomic loci and one or more 

traits (Supplementary Figure 2 and Supplementary Table 2). At 28 of the 246 loci, the most strongly 

associated variant (i.e. the locus index variant) alters (N=26) or results in LoF (N=2) of the protein. We 

considered these 28 variants as presumed casually related to the trait of interest. 

 

Second, we conducted step-wise conditional analyses across the 246 primary loci and identified 

an additional 189 independent associated variants (Supplementary Table 3). These include 30 additional 

protein-altering variants, including 2 LoF variants, that were significantly associated with one or more 
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liver traits but were independent of the original index variant. Notable variants include 

TM6SF2:p.L156P,11 associated with TG and ALT (PTG=8x10-9, PALT=6x10-10), and a rare variant in PCSK9 

(PCSK9:p.N157K)12 associated with LDL-C (beta=-1.1, minor allele frequency [MAF]=0.05%, P=1x10-14). 

We identified significant associations with ALP and four independent coding variants in the alkaline 

phosphatase gene (ALPL:p.R75H, p.M115T, p.E69K, p.E114K), and with the liver trait ALT, we identified 

association with four independent coding variants in the gene encoding the enzyme alanine 

aminotransferase 1 (GPT: p.A87V, p.G128S, p.P234L, p.V452L). ALP was also associated with five 

independent coding variants in GPLD1 (p.N103S, p.P336L, p.R181C, p.S452L, p.V815Sfs*46), encoding 

the enzyme phosphatidylinositol-glycan-specific phospholipase D,13 which degrades a 

glycosylphosphatidylinositol anchor of proteins to the cell surface and is known to interact with 

apolipoprotein A-containing complexes.14 Interestingly, we also identified two protein-altering variants 

in APOE:p.C130R) demonstrated substantial pleiotropy – showing association with CRP, LDL-C, TC, HDL-

C, and ALT;p.R176C was associated with LDL-C, TC and HDL-C. Together, these two variants define the 

well-known APOE 2, 3, and 4 haplotypes. 

 

Third, we performed association testing for the 12 liver-related blood traits in up to 57,060 

HUNT Study participants based on directly genotyped variants that were included as custom content on 

the array and not part of the primary GWAS (see Online Methods for details). This identified 14 

additional protein-altering variants, including 4 LoF variants (P<5x10-8; Supplementary Table 4). Thirteen 

of these variants were rare (ranging from 1 in 177 to 1 in 6313 individuals). The 14 variants included 8 

variants originating from low-coverage (5x) whole-genome sequencing of 2,202 HUNT Study 

participants. In addition, we identified a significant association with three LDLR variants (p.D180N, 

p.R248W, and p.M484V with 19, 9 and 30 allele copies, respectively). Lastly, we identified three 

nonsense variants in APOB that demonstrated significant association with LDL-C, bringing the total 

number of independent associated APOB variants to seven (p.L12_L14del, p.R1333X, p.K1813X, 

p.H1923R, p.W3087X, p.R3527Q, p.S4338N). Each of these three HUNT-specific strategies identified 

novel liver-trait associated variants that would not otherwise be found from imputation-based 

approaches. 

 

Fourth, we performed a trans-ancestry meta-analysis by combining summary statistics based on 

the primary discovery effort in HUNT with additional GWAS statistics from Sardinia (SardiNIA cohort)15 
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and Japan (Biobank Japan)16, resulting in an analysis of up to 203,476 participants and 31.5 million 

unique variants (Supplementary Figure 3). This analysis identified 388 significant variants, identifying 93 

additional loci (Supplementary Table 5) and an additional of 16 protein-altering locus index variants, 

including the previously described Sardinian-specific LoF variant HBB:p.Q40X, which has been associated 

with beta thalassemia17 and decreased LDL-C and TC (Table 1).18  

 

After combining results across all samples and discovery strategies, we were particularly 

interested in nine variants which appeared to result in LoF of a gene, including the novel association 

between ZNF529:p.K405X and decreased LDL-C (Table 1). We observed 4 additional LoF variants also 

resulting in substantially decreased LDL-C (3 nonsense variants in APOB, and a common frameshift indel 

in SLC22A1; Table 1). The remaining LoF were associations with other blood lipid traits (HBB:p.Q40X 

with TC in addition to LDL-C, LPL:p.S474X with TG, and LIPC:p.G247Afs*11 with HDL-C). Of the 9 LoF 

variants, the five within APOB, LPL, LIPC, and ZNF529 were not even nominally significantly associated 

(P>0.05) with liver enzymes ALT, AST, ALP or GGT (Figure 2b). This suggests that these genetic variants 

do not cause liver damage, suggesting these genes may serve as potential drug targets to reduce LDL-C. 
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Table 1: Loss-of-function variants associated with liver-related traits 

  

Gene variant Chr:pos Minor/major 
allele 

MAF % 
(MAC) Trait Beta SD SE P Discovery method Novelty of variant-trait 

association 

APOB p.K1813X chr2:21011431 A/T 0.009 (10) LDL-C -2.63 0.35 1.1x10-13 
Custom array – 

predicted nonsense 

Novel (in known LDL-C locus; 

known gene19,20) 

APOB p.R1333X chr2:21013379 A/G 0.009 (10) LDL-C -2.80 0.35 2.5x10-15 
Custom array – 

predicted nonsense 

Novel (in known LDL-C locus; 

known gene,19,20 variant previously 

linked to familial 

hypobetalipoproteinemia21) 

APOB p.W3087X chr2:21007608 T/C 0.011 (12) LDL-C -2.79 0.32 5.1x10-18 
Custom array – 

predicted nonsense 

Novel (in known LDL-C locus; 

known gene19,20) 

GPLD1 

p.V815Sfs*46 
chr6:24429112 C/CT 0.85 ALP -0.87 0.039 2.2x10-107 

HUNT locus index 

variant (imputed from 

TOPMed) 

Novel (in known ALP locus16; gene 

experimentally linked to liver 

disease22) 

HBB p.Q40X chr11:5226774 A/G 4.81 TC -0.48 0.048 5.4x10-23 
Trans-ancestry meta-

analysis index variant 

Novel (previously associated with 

beta thalassemia,17 which has bee 

related to LDL-C and TC23) 

LIPC 

p.G247Afs*11 
chr15:58545904 ACG/A 0.16 (221) HDL-C 0.58 0.081 1.1x10-9 

HUNT conditional 

analysis (imputed from 

TOPMed) 

Novel (in known HDL locus;19,20 

variant report in carrier with mixed 

hyperlipidemia but who also 

carried APOB variants24) 

LPL p.S474X chr8:19962213 G/C 11.9 TG -0.17 0.0057 1.3x10-196 
Trans-ancestry meta-

analysis index variant 
Known variant at known locus19,20 

SLC22A1 

p.D426Pfs*28 
chr6:160139865 C/CTGGTAAGT 39.3 LDL-C -0.05 0.0060 3.3x10-9 

HUNT conditional 

analysis (imputed from 

TOPMed) 

Novel (in known LDL-C locus19,20) 
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ZNF529 p.K405X chr19:36547291 A/T 0.099 (110) LDL-C -0.60 0.11 1.3x10-8 

Custom array – 

observed in low-pass 

genomes 

Novel 

Chr: Chromosome, pos: position human genome build hg38, MAF: Minor allele frequency, MAC: minor allele count, SE: standard error of the beta, 
P: P-value, LDL-C: Low-density lipoprotein cholesterol, ALP: Alkaline phosphatase, TC: Total cholesterol, HDL-C: High-density lipoprotein 
cholesterol, TG: Triglycerides. 

 

 

We expect that protein-altering variants which are the peaks of association represent functional variants that pinpoint biologically-

relevant genes and potential drug targets. We also sought novel genes that decreased cardiovascular risk factors (such as LDL-C), but did not 

increase risk of liver disease or impact liver enzymes. Thus, we focused on the novel association between ZNF529:p.K405X and LDL-C (P=1.3x10 -

8) since this variant was not associated with liver enzymes (P=0.4 – 0.9 for all 4 liver enzyme traits, up to N=48,569) or (non-fasting) blood 

glucose (P=0.93, N=54,093 individuals) in HUNT. To experimentally assess the consequence of LoF of zinc finger 529 (ZNF529), we transiently 

knocked-down expression of ZNF529 in human hepatoma HepG2 cells using siRNA (90.5% reduction). This resulted in significant upregulation of 

LDL receptor (LDLR) mRNA (increased 91.5%, P=3x10 -6) and protein (83%, P=0.001) (Figure 1). Using labeled LDL-C, we observed that ZNF529-

silencing resulted in a marked increase in LDL-C uptake by HepG2 cells and 2.2-fold increase in intracellular cholesterol content (P=0.007). These 

findings suggest that ZNF529 is a novel regulator of plasma LDL-C via regulation of hepatic LDLR. 
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Figure 1. ZNF529 silencing induces LDLR expression and LDL-C uptake.  
(a) Efficient silencing of ZNF529 in HepG2 cells via siRNA as shown by qPCR using GAPDH as reference 

(N=15). (b) ZNF529 silencing in HepG2 cells induces LDLR mRNA as shown by qPCR using GAPDH as 

reference (N=15), (c, d) and LDLR protein as shown by Western blot using β-actin as loading control 

(N=4). (e) ZNF529 silencing in HepG2 cells increases LDL-C uptake as evidenced by enhanced fluorescence 
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of Dil-LDL. scale bars=200 µm, (N=6), (f) and leads to increased intracellular cholesterol (N=12). Values 

are presented as mean ± SD showing all points. 
 

 

Individuals heterozygous for ZNF529:p.K405X (N=109) had a mean LDL-C level of 2.58 mmol/L 

vs. 3.44 mmol/L in non-carriers. This reduction in LDL-C of 25% in heterozygous carriers is in the range of 

what is seen for 5 years of treatment with 40mg of statin (-35% change).25 We only observed one 

homozygous female carrier. Despite being obese and server hypertensive, she was alive at age >90 years 

and had no diagnosis of cardiovascular disease, liver disease, or diabetes, and had an LDL-C level slightly 

below average for her age group (3.45 mmol/L vs. mean 3.8 mmol/L for women >90 years old). This one 

individual with a natural absence of both copies of ZNF529 suggests that homozygous knockout of this 

gene is compatible with survival. 

 

We also highlight 17 protein-altering variants with an impact >1 standard deviation on the trait 

(Figure 2a, Supplementary Figure 4, and Supplementary Table 6). For lipids, protein-altering variants in 

APOB, LDLR, and PCSK9 that impact LDL-C, and in CETP that impact HDL-C, are well known.19 However, 

for liver enzyme traits, TNK1:p.G574V is a new finding to complement genes previously known to impact 

liver enzymes including ALPL (with ALP),26
 GPLD1 (with ALP), and GPT (with ALT).27 This rare TNK1 

variant, present in 46 individuals (1 in 814 individuals), was identified in Norwegian sequenced samples, 

genotyped using the custom array, and observed to have a large impact on ALP (beta=1.2, P=1.7x10-14). 
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Figure 2. Protein Altering Variants for Lipid and Liver Blood Traits.  

(a) Smile plot comparing the frequency of the blood-trait increasing allele with the allele’s effect size for 

protein altering variants significantly (P<5x10
-8

) associated with a lipid (HDL-C, LDL-C, TG, TC) or liver (ALT, 

ALP, AST, GGT) trait. The most significant variant is shown for variants with significant association for 

multiple traits. Color indicates the trait category for which the variant is significant, with loss-of-function 

variants shown as x. Power curve (dashed line) denotes estimated 90% power in the meta-analysis with a 

sample size of N=210,000 at alpha=5x10
-8

. (b) For any variant significantly (P<5x10
-8

) associated with a 

lipid trait (HDL-C, LDL-C, TG, TC), the maximum effect size in terms of the allele associated with good lipid 

health (e.g. lowered LDL-C, increased HDL-C, lowered TG, and lowered TC) is compared to the minimum p-
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value for association with liver trait (ALT, ALP, AST, GGT). Nominal P-value of 0.05 (vertical dashed line) is 

indicated to highlight variants in the bottom right quadrant which lack significance for association with 

liver traits. These variants are better drug target candidates given estimated favorable lipid-effects on 

health and absence of association with potentially unfavorable liver traits. 

 

 

 To further characterize genes that may be involved in these liver-related phenotypes, we 

performed gene-based burden tests, using SKAT-O as implemented in SAIGE-GENE,28 for all protein-

altering variants with frequency below 0.5% in the HUNT dataset. Although twenty-eight unique genes 

were significantly associated (P<2x10-7) with at least one of 12 liver traits (Supplementary Table 7), in 

only two cases was the gene-based evidence for association substantially stronger than the gene-based 

test relative to the strongest single variant: rs147998249 with the gene GPT associated with ALT 

(P=2.35x10-60); rs138587317 with the gene ALPL associated with ALP (P=2.9x10-239). These data suggest 

there are multiple, functional coding rare variants in each of these two genes as noted above. Gene-

based burden results, which are independent of nearby signals, may point to the functional gene. We 

see this at well-known genes CETP and ABCA1 for HDL-C; PCSK9, LDLR and APOB for LDL-C; the CRP gene 

for CRP, TF for TIBC; and GPLD1 for ALP (Supplementary Table 7). Additionally, burden tests for LoF of 

APOB variants indicated no association with liver enzymes for heterozygous LoF carriers (Supplementary 

Table 8). 

 

To expand our understanding of the 88 protein-altering variants, to investigate their impact on 

disease, and to evaluate potential consequences of targeting the implicated gene or its gene product, we 

imputed the TOPMed reference panel7 into the UK Biobank and performed a phenome-wide association 

studies (PheWAS) across 1,342 ICD code-defined disease groups,29,30 in 408,961 people of white British 

ancestry. 77 of the 88 protein-altering variants could be imputed sufficiently well (R2>0.3). For 29 variants, 

we found a phenome-wide significant (P<3.5x10-5) association with one or more diseases (Figure 3, 

Supplementary Figure 5, and Supplementary Table 9). 
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Figure 3: Phenome-wide associations in UK Biobank (N=408,961 participants) based on protein-
altering variants with impact on liver-related blood traits in The HUNT Study (N=69,479). 

29 protein-altering variants associated with liver-related traits had additional associations with selected 

cardiovascular, liver, and metabolic phenotypes. Arrows denote the direction of effect for the minor 

allele. Larger arrows signify more significant associations. Please see Supplementary Figure 5 for the full 

phenome-scan across all traits and variants.  The ZNF529 LoF variant could not be evaluated in the UK 

Biobank. 
 

 

 

To identify potentially useful drug targets that may reduce blood lipid levels and risk of coronary 

artery disease (CAD) and type 2 diabetes (T2D) without an increased risk of fatty liver disease, we 

attempted to identify variants that decreased LDL-C and/or TG, but were not associated with changes in 

liver enzyme levels (P>0.05, Figure 3, Supplementary Figure 5 and Supplementary Tables 6-8), suggesting 

that liver function was not altered. The four variants with this pattern of association include COBLL1 

p.N497D which is associated with decreased TG levels and decreases risk of T2D in both HUNT and UK 

Biobank and of liver disease in HUNT. HDL-C-associated ANGPTL4 p.E40K appears to decrease risk of T2D, 

CAD and hypertension whereas LPL p.N318S appears to decrease risk of CAD, liver disease and 

hypertension. APOB LoF variants decrease LDL-C and risk of CAD, but may also have a beneficial impact 

on CAD, T2D and hypertension (Figure 3, Supplementary Figure 5 and Supplementary Tables 6-8). 
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From the PheWAS, we observed other interesting associations. For example, we identify alleles 

that reduce risk of myocardial infarction (MI) but increase risk liver and pulmonary disease for 

SERPINA1:p.E366K, which is known for causing alpha-1-antitrypsin deficiency31. This pattern suggests 

caution in ongoing efforts to treat acute MI with exogenous administration of alpha-1-antitrypsin.32,33 

Another interesting and novel finding from UK Biobank PheWAS is the association between 

TMPRSS6:p.V727A and an increased risk of ‘nonspecific chest pain’. We initially found this allele to be 

associated with decreased iron and TSP in HUNT, – perhaps suggesting that the association with chest 

pain might be explained by anemia-induced cardiac ischemia (Figure 3, Supplementary Figure 5 and 

Supplementary Tables 7, 9). Further studies are obviously warranted to uncover the biological 

mechanisms underlying these associations, however, each of them could help inform clinical 

implications of targeting the underlying gene or gene product.   

 

In summary, by using four complementary approaches for genomic discovery: sequencing, 

imputation, array-based genotyping and trans-ancestry meta-analysis, we identified >300 loci associated 

with liver-related quantitative traits, including 88 presumed causal protein-altering variants. By 

considering disease end-point associations with disease phenotypes for protein-altering variants, we 

prioritize several novel genes as potential drug targets. The newly uncovered association and in vitro 

studies indicate that ZNF529 LoF is associated with lower plasma LDL-C which could be explained by 

induction of LDLR in hepatic cells and increased LDL-C uptake. While these findings indicate a therapeutic 

potential for lowering plasma LDL-C by ZNF529 inhibition, further studies are warranted to elucidate the 

mechanisms by which ZNF529 regulates LDLR and LDL-C uptake in the liver. We further confirmed several 

genes as promising drug targets for cardiometabolic disease with no expected impact on liver disease by 

testing association with impactful protein-altering variants in APOB and LPL, to reduce LDL-C and risk of 

coronary artery disease, and COBLL1, to reduce TG and risk of type 2 diabetes.  Future functional studies 

to rule out their role in liver and other cardiometabolic disease will likely contribute to better prediction 

of outcomes and disease progression and facilitate development of personalized treatments.  

 

All together, we demonstrate that identifying rare protein-altering variants and careful 

consideration of multiple phenotypes in well-powered studies may point to promising drug targets. We 
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used a variety of approaches to identify rare protein-altering variants, and we found that if exome 

sequencing is prohibitively expensive, sequencing a subset of samples followed up with a custom 

genotyping array can be a viable strategy to identify impactful rare variants. 
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URLs 

SAIGE/SAIGE-GENE [https://github.com/weizhouUMICH/SAIGE] 

EPACTS  [https://github.com/statgen/EPACTS] 

liftOver: [https://genome.ucsc.edu/cgi-bin/hgLiftOver] 
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ONLINE METHODS  

Discovery cohorts  

HUNT: The Nord-Trøndelag Health Study (HUNT) is a population-based health survey conducted in the 

county of Nord-Trøndelag, Norway, since 1984.9 Participation in the HUNT Study is based on informed 

consent and the study has been approved by the Data Inspectorate and the Regional Ethics Committee 

for Medical Research in Norway (REK: 2014/144). We included a total of 69,479 individuals with values 

for at least one of the traits examined (ALT, ALP, AST, CRP, GGT, HDL-C, LDL-C, TC, TG, Iron, TIBC, TSP). 

Genotyping was performed using the Illumina Human CoreExome v1.1 array with 70,000 additional 

custom content beads.34,35 Variants were selected for genotyping if they were: protein-altering 

(N=13,618); modestly associated with lipids in HUNT but not tested in large consortia (N=960); identified 

as causing familial hypercholesterolemia in Norwegian patients (N=110); or predicted to result in a loss-

of-function of one of the 56 ACMG genes (N=27,144, Supplementary Table 10). Additionally, we 

selected missense variants with 2 or more copies (N=8,720) and nonsense variants with 1 or more copy 

(N=756) identified from low-pass sequencing of 2,202 HUNT samples. 

 

Imputation was performed from 60,039 TOPMed reference genomes using Minimac3 and 

variants with imputation quality >0.3 were retained. To account for relatedness within the sample, we 

performed association testing using the linear mixed model with genetic relationship matrix as 

implemented in SAIGE.10 Conditional analysis was performed with the same analysis tools and command 

line options as the association analysis. Conditional analysis was performed by adding the lead-SNP(s) in 

a step-wise manner as covariate(s) into the SAIGE step1 parameter estimation until the variant with 

smallest P-value in the locus was >5x10-8. 

 

Biobank Japan: Biobank Japan (BBJ) is a multi-institutional hospital-based registry of ~200,000 

individuals from 66 Japanese hospitals collected from 2003-2007. Genotype, imputation, and QC were 

performed as described previously.16 Briefly, samples were genotyped with Illumina 

HumanOmniExpressExome or a combination of the Illumina HumnOmniExpress and HumanExome 

BeadChips and imputed using 1000 Genomes Project Phase 1 version 3 East Asian reference haplotypes. 

Publicly available summary statistics from linear regression assuming an additive model for quantitative 

measures of ALP, ALT, AST, CRP, GGT, HDL-C, LDL-C, TC, and TG were used. Quantitative traits were 

adjusted for age, sex, top 10 PCs of genetic ancestry, and disease status for 47 target diseases. Sample 

sizes for traits ranged from 70,567 to 134,182.16 
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SardiNIA: 6,602 individuals from four villages in the Lanusei valley on Sardinia (>60% of the adult 

population) were genotyped on four different Illumina Infinium arrays: OmniExpress, Cardio-

Metabochip,36 Immunochip,37 and Exome Chip. Low-depth (~4x coverage) whole-genome sequencing on 

3,839 individuals was performed, of which 2,340 were also genotyped. Imputation of 1.1m indels and 

24.1m biallelic single nucleotide variants was performed using Minimac338 and markers with imputation 

quality >0.3 (or >0.6 if MAF<1%) were retained. Samples, genotyping, sequencing and variant calling 

have been previously described.18    

 

Liver traits (ALT, AST, CRP, GGT, HDL-C, Iron, LDL-C, TC, TG and transferrin) from the first visit were 

measured except LDL-C, which was computed using the Friedewald Equation.15 Association analyses 

were performed for liver traits assessed in 5,570 – 5,942 individuals (median=5,917) using the age, age2 

and sex-adjusted inverse-normalized residuals of the outcomes as input to the Efficient Mixed Model 

Association eXpedited (EMMAX)39 single variant test (i.e. a linear model with a kinship matrix) as 

implemented in EPACTS. Genomic control correction was not applied as the lambda values were not 

inflated (range 0.97 to 1.02, Supplementary Table 11).  

  

Meta-analyses  

As the summary statistics from SardiNIA and Biobank Japan were in Human Genome Build hg19, the 

positions were mapped to Human Genome Build hg38 using liftOver. The genomic control corrected 

summary statistics from the contributing cohorts were combined with METAL40 using inverse variance 

weighted meta-analysis. Meta-analysis included SardiNIA, Biobank Japan, and HUNT for all traits, with 

the exception of ALP, Iron, and TIBC which were only available from HUNT and Biobank Japan. TSP was 

available only in HUNT and not meta-analyzed. 

  

PheWAS in UK Biobank  

Association results for 1,342 trait groups (PheCodes)29 in UK Biobank were generated using SAIGE.10  

Phenotypes were grouped by combining ICD-9 and ICD-10 codes of closely related traits following 

previously published methods.30 Analysis was performed on the white British subset of UK Biobank after 

imputation with the TOPMed reference panel. Sex, birth year, and 4 principle components were 

included as covariates. Significance was determined based on Bonferroni correction for the number of 

traits tested (P<3.5x10-5). 
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Gene-based SKAT-O tests 

The exome-wide gene-based SKAT-O tests were performed using SAIGE-GENE v3628 for all 12 liver traits 

based on the TOPMed-imputed HUNT data. Missense and stop-gain variants annotated by ANNOVAR41 

with MAF≤0.005 are included. Conditional analysis was performed to condition on the most significant 

single variant association signal within 500 kB of the gene. We selected a significance threshold of 

2.5x10-6 accounting for 20,000 genes and 12 traits. 

 

Replication attempt of ZNF529:p.K405X in MGI 

The Michigan Genomics Initiative (MGI) is a repository of electronic medical record and genetic data at 

Michigan Medicine (N~58,000 participants). MGI participants were enrolled during pre-surgical 

encounters at Michigan Medicine and provided consent to study genetic and electronic health record 

data for research. The MGI study was approved by the Institutional Review Board of the University of 

Michigan Medical School. DNA was extracted from blood samples and participants were genotyped 

using Illumina Infinium CoreExome-24 bead arrays, which includes the same custom content as the 

HUNT study. Genotype data was imputed to the Haplotype Reference Consortium using the Michigan 

Imputation Server, providing 17 million imputed variants after standard quality control and filtering. 

Only European individuals were used for analysis. We attempted to replicate the association with 

ZNF529:p.K405X in 13,319 MGI participants with LDL-C measurements, however, only 1 participant was 

heterozygous for ZNF529 so the power to detect association was near zero. In contrast, we identified 

110 heterozygous individuals in the HUNT discovery study.  

 

In vitro studies   

Cells 

The HepG2 human hepatoma cell line was obtained from the American Type Culture Collection (ATCC) 

and cultured at 37˚C and 5% CO2 in Dulbecco's Modified Eagle Medium (DMEM, Gibco) supplemented 

with 10% fetal bovine serum (FBS, Sigma-Aldrich) and 1% Penicillin-Streptomycin (Pen-Strep, Gibco).  

 

ZNF529 gene silencing using small interfering RNA (siRNA) 

siRNA targeting zinc finger protein 529 (siZNF529: GGCUUUUGGAGUAUGUAGAtt) and non-targeting 

siRNA control (siCTL) were obtained from Ambion (siRNA IDs s33654 and AM4611, respectively). HepG2 

cells were transfected with 20 nM of siZNF529 or siCTL using Lipofectamine RNAiMAX (Invitrogen) in 
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Opti-MEM reduced-serum medium (Gibco) in accordance with the manufacturer’s protocol.42 Cellular 

lipid or protein extraction, RNA isolation or LDL-C uptake assays were conducted 48 h post 

transfection.    

 

Lipid extraction and cholesterol quantification 

The lipids of HepG2 cells were extracted using hexane (≥99%, 32293, Sigma-Aldrich) and isopropanol 

(≥99.5%, A426-4, Fisher Chemicals) at a 3:2 ratio (v:v), and the hexane phase was left to evaporate for 

48 h. The remaining cells in the plates were disrupted in 0.1 M NaOH for 24 h and an aliquot was taken 

for measurement of cellular protein using the Bradford protein assay (Bio-Rad). The content of cellular 

cholesterol was determined spectrophotometrically using a commercially available kit (Wako Chemicals, 

999-02601). Cholesterol data was normalized to cellular protein levels.43,44 

 

RNA isolation, RT-PCR and qPCR  

Total RNA was purified from HepG2 cells using the QIAGEN’s RNeasy kit (QIAGEN). cDNA was 

synthesized using SuperScript III (Invitrogen), and qPCR was performed using SYBR green reagents (Bio-

Rad). Gene expression is presented as fold increase compared with RNA isolated from control cells by 

the comparative CT (2−ΔΔCT) method using GAPDH as the reference gene.43,45 Primer pairs used for qPCR 

were obtained from Integrated DNA Technologies and are available in Supplementary Table 12. 

 

Protein extraction and Western blot  

Cells were lysed in radioimmunoprecipitation assay lysis buffer (RIPA buffer, Thermo Scientific) 

supplemented with a protease inhibitor cocktail (Roche Applied Science). Proteins were resolved in 8% 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose 

membranes (Bio-Rad). The membranes were blocked for 1 h at room temperature in tris-buffered 

saline-Tween 20 (TBST) containing 5% fat-free milk and incubated with primary antibody at 4°C 

overnight. The following primary antibodies were used: rabbit monoclonal anti-LDLR antibody (Abcam, 

ab52818, working dilution 1:1000) and mouse monoclonal anti-β-actin antibody (Cell signaling, 

8H10D10, working dilution 1:2000). After TBST washing, membranes were incubated with secondary 

antibodies (LI-COR Biotechnology, donkey anti-rabbit IRDye 926-32212 and donkey anti-mouse IRDye 

926-68072, working dilution 1:10000) for 1 hour at room temperature. After TBST washing, bands were 

visualized and quantified using an Odyssey Infrared Imaging System (LI-COR Biosciences, version 2.1).43    
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DiI-LDL uptake assay  

3,3'-dioctadecylindocarbocyanine-low density lipoprotein (DiI-LDL, Alfa Aesar) was used to evaluate the 

cellular uptake of LDL-C46 in accordance with the manufacturer’s instructions. Briefly, 48 h following 

siRNA transfection, HepG2 cells were washed with PBS (x2) and changed to serum-free media 

supplemented with 0.1% bovine serum albumin (BSA, Sigma-Aldrich). Then, cells were incubated with 10 

μg/ml of DiI-LDL for 5 h at 37°C in the dark. Nuclei were stained with 4ʹ,6-diamidino-2-phenylindole 

(DAPI). After incubation, the cells were washed twice with serum- and probe-free medium. Finally, the 

cells were visualized using a fluorescent microscope (Olympus, IX71). For each experiment two random 

fields were chosen and photographed in a blinded fashion. Dil-LDL and DAPI images were merged using 

ImageJ software (NIH).  

 

Statistical analyses for in vitro studies  

Statistical analyses were performed using SPSS 24.0 software (SPSS Inc. IBM). Unless indicated 

otherwise, values are presented as mean ± SD showing all points. All data were tested for normality and 

equal variance. If the data passed those tests, Student t test was used for comparisons between the two 

groups. If the data did not pass those tests, nonparametric Mann-Whitney U test was used. P<0.05 was 

considered statistically significant.  

 

DATA AVAILABILITY 

Summary statistics will be deposited upon manuscript acceptance. 
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