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Abstract

Particle filtering is a modern state inference and identification methodology that allows
filtering of general non-Gaussian and non-linear models in light of time series of
empirical observations. Several previous lines of research have demonstrated the
capacity to effectively apply particle filtering to low-dimensional compartmental
transmission models. We demonstrate here implementation and evaluation of particle
filtering to more complex compartmental transmission pertussis models – including
application for aggregate, two-age-groups and 32-age-groups population structure with
two different contact matrix, respectively – using over 35 years of monthly and annual
pre-vaccination provincial data from the mid-western Canadian province. Such filtering
supports estimation of (via sampling from) the entire state of the dynamic model, both
latent and observable, for each point in time, thereby supporting estimation of
proportion of susceptible individuals, and those at varying levels of immune protection
associated within waning of pertussis immunity. Estimation of the latent state also
supports capacity for model projection. Following evaluation of the predictive accuracy
of these four particle filtering models, we then performed prediction and intervention
experiments based on the most accurate model. Using that model, we contribute the
first full-paper description of particle filter-informed intervention evaluation. We
conclude that applying particle filtering with relatively high-dimensional pertussis
transmission models, and incorporating time series of reported counts, is a valuable
technique to assist public health authorities in estimating and predicting pertussis
outbreaks in the context of incoming empirical data. Within this use, the particle
filtering models can moreover perform counterfactual analysis of interventions to assist
the public health authorities in intervention planning.

Author summary

Pertussis is a common and highly contagious childhood disease. In contrast to some
other prevalent childhood diseases, immunity conferred by natural exposure or
vaccination to pertussis is widely believed to wane relatively rapidly. Such waning and
associated uncertainties raises challenges for accurate pertussis modelling and
simulation, with the speed and current degree of such waning in the population
remaining a notable point of uncertainty. In recent years, the sequential monte carlo
method of particle filtering has been employed for incorporating empirical time series
data so as to estimate underlying model state of simpler communicable disease
transmission models, particularly for influenza and measles. This paper characterizes
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the first time in which such methods have been applied to the more complex and higher
dimensional models of pertussis, using over 35 years of monthly and yearly empirical
time series from the pre-vaccination era in a mid-western Canadian province. In
addition, we contribute the first full-paper description of particle filter-informed
intervention evaluation for transmission models. Our findings suggest that applying
particle filtering with relatively high-dimensional pertussis transmission models can
serve as a valuable technique to assist public health authorities in estimating and
predicting pertussis outbreaks in the context of incoming empirical data. Application of
particle filtering can moreover support evaluation of intervention outcomes to assist
public health authorities in intervention planning.

1 Introduction 1

Pertussis is a common childhood disease, which is a highly contagious disease of the 2

respiratory tract that caused by the bacterium Bordetella pertussis [1]. It is most 3

dangerous for infants, due to risks of severe complications, post-paroxysm apnia [1]. 4

The most frequent complication is pneumonia, while seizures and encephalopathy occur 5

more rarely [1]. Pertussis is a highly contagious disease only found in humans, and 6

spreads from person to person by coughing, sneezing, and prolonged proximity [2]. 7

Evidence indicates a secondary attack rate of 80% among susceptible household 8

contacts [3]. In contrast to some other prevalent childhood diseases, immunity conferred 9

by natural exposure or vaccination to pertussis is widely believed to wane relatively 10

rapidly, leading to significant risks of infection even in adults who have been previously 11

infected. It is notable that babies can be infected by adults, such as parents, older 12

siblings, and caregivers who might not even know they have already contracted this 13

disease [2]. Pertussis incidence shows no distinct seasonal pattern. However, it may 14

increase in the summer and fall [3]. 15

In the pre-vaccination era, pertussis was one of the most common childhood 16

infectious diseases and a major cause of childhood mortality. In 1860, the mortality rate 17

of all-age pertussis in Demark was 0.015% [4], but that burden fell heavily on infants 18

and children. Research into historical mortality rates from pertussis indicate that the 19

death rate in infancy is higher than in other groups [4]. In recent years globally, there 20

were an estimated 24.1 million cases of pertussis, and about 160,700 deaths per year [5]. 21

Since the 1980s, there has been a rising trend in the reported cases of pertussis in the 22

United States [5]. The most recent peak year of the reported cases of pertussis in the 23

United States is 2012, when the Centers for Disease Control and Prevention (CDC) 24

reported 48,277 cases, but many more are believed to go undiagnosed and 25

unreported [5]. Research aimed at estimating the level of population susceptibility and 26

predicting the transmission dynamics of pertussis could aid outbreak prevention and 27

control efforts by health agencies, such as performing intervention before the predicted 28

next outbreak, and in targeted outbreak response immunization campaigns [6]. 29

Dynamic modelling has long served as an important tool for understanding the 30

spread of the infectious diseases in population [16], including pertussis, and for 31

evaluating the impacts of interventions such as immunization and quarantine. In recent 32

years, particle filtering as a machine learning method has been employed for 33

incorporating empirical time series data (such as surveillance [7] and online 34

communicational behavior data [8]) to ground the hypothesis as to the underlying 35

model state models in some previous researches [9–12], especially for the infectious 36

diseases of influenza [13,14] and measles [7]. In this paper, we apply the particle 37

filtering algorithm in a more complex and widely used compartmental model [15] of 38

pertussis by incorporating the reported pertussis cases in Saskatchewan during the 39

pre-vaccination era. Particle filtering for pertussis is different than for other pathogens 40

April 1, 2019 2/17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2019. ; https://doi.org/10.1101/598490doi: bioRxiv preprint 

https://doi.org/10.1101/598490
http://creativecommons.org/licenses/by/4.0/


on account of the need for state estimation to estimate the population segments at 41

varying levels of immunity. Another need concerns extends from the heterogenous 42

nature of the mixing and incidence burden between different age groups. For this 43

reason, age-structured models are examined here. Specifically, we have examined two 44

categories of age-structured particle filtering models – with 2 age groups and with 32 45

age groups. Moreover, we have proposed and explored three methods for calculating the 46

contact matrix, so as to reduce the degrees of freedom associated with characterization 47

of the contact matrix. This contribution compares the results obtained from all the 48

particle filtering models by incorporating the empirical data across the whole timeframe 49

evaluating the predictive accuracy of the models. Finally, using the minimum 50

discrepancy particle filtering model, we demonstrate how we can evaluate intervention 51

effects in a fashion that leverages the capacity of particle filtering to perform state 52

estimation. 53

2 Methods 54

2.1 The mathematical models 55

As noted above, the infectious dynamics of pertussis is more complex than the infectious 56

diseases that confer lifelong immunity, such as measles, due temporary character of the 57

immunity acquired by Bordetella pertussis infection. As the time since the most recent 58

pertussis infection increases, the immunity of a person wanes [16]. People with lower 59

immunity generally tend to be more easily infected, and exhibit a higher risk of 60

transmitting the infection once infected. 61

In this paper, we have employed the structure of the popular pertussis mathematical 62

model in [15]. To capture the characteristics of pertussis in waning of immunity and the 63

different level of infectiousness and susceptibility involved with infection in light of 64

pre-existing immunity, the compartmental model in [15] further divides the infectious 65

population into three groups: weakly infectious (Iw), mild infectious (Im), and fully 66

infectious (I), and divided the recovered population into four groups: R1, R2, R3 and 67

R4 of successively increasing immune system strength. Moreover, in reflection of the 68

focus on the pre-vaccination era (pertussis reported cases in Saskatchewan from 1921 to 69

1956), the stocks related to vaccination (V1, V2, V3 and V4) in the original 70

compartmental model [15] are not included in this research. 71

Fig 1. The transfer diagram for the pertussis model without vaccination.
adapted from [15]

Fig 1 shows the mathematical structure of the compartmental pertussis model 72

adapted from [15] . In this compartmental model of pertussis in the pre-vaccination era, 73

the total population is divided into 8 distinct epidemiological classes. Newborns enter 74

directly into class S of fully susceptible individuals. If a fully susceptible individual 75

contacts an infective individual and is successfully transmitted pertussis, this previous 76

susceptible person becomes infectious and enters the class (state) I of full infectives. 77

Infective individuals in state I of have full cases of pertussis, with all of the usual 78

symptoms. When individuals recover from the state I of infectives, they achieve full 79

immunity and enter state R4. In this state, they are fully protected and can not be 80

infected by pertussis. However, as time goes by, their immunity wanes and they enter 81

into a less strong immunity class of R3. When individuals in class R3 are exposed to an 82

infective, they are assumed to return to the highest immunity class of R4 without 83

becoming infectious. Otherwise, their immunity keeps fading, and they enter to the 84

relatively lower immunity class of R2. When a person in the class of R2 is sufficiently 85
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(re-)exposed to an infective for transmission to occur, the infected individual enters the 86

Iw state with weak infectivity. Individuals in the Iw class have the weakest infective 87

capability to infect a susceptible. After they recover, the individuals in class of Iw then 88

secure the highest immunity, (re-) entering the class of R4 from which they originally 89

waned. By contrast, if people in the class of R2 are not re-exposed to the infectives, 90

their immunity continues waning, and they enter the minimally immune class of R1. 91

Similarly, if a person in class R1 is re-exposed to an infective, this person gets infected 92

with mild infectivity and enters the class of Im. Individuals in the class of Im have a 93

higher infectious capability compared with those in the class of the weak infective (Iw), 94

but exhibit a lower infectious capability compared to the fully infective individuals in I. 95

When recovered, the individuals in class Im enter the class R4 again. If the individuals 96

in the class of R1 are not re-exposed, they eventually lose all of their immunity and 97

move back to the class of S whence they originated at birth. Given the presence of 98

multiple infection states (I, Iw, Im) as well as multiple levels of immunity (R1, R2, R3, 99

R4), three invariants bears noting. Firstly, regardless of the pre-existing level of 100

immunity, following recovery from an infection, that individual always returns to the 101

full level of natural immunity (R4). Secondly, in any of the recovered states (R1, R2, 102

R3, R4), immunity continues to wane absent re-exposure. Thirdly, as the level of 103

immunity is reduced, the severity of resulting infectiousness rises, with no infectiousness 104

being possible at all from exposure in states R3 and R4. 105

It is notable that the model of Hethcote (1997) [15] makes use of a formulation in 106

which each state variable is of unit dimension, representing a fraction of the population 107

in different age groups of the same class. However, for the sake of comparison against 108

empirical data, the model in this paper is represented in a re-dimensionalized fashion, 109

with the state variables representing counts of persons. Based on this structure in Fig 1, 110

four models are considered in this research. Using n to denote the total number of age 111

groups in the models, we consider models of the aggregate population (n = 1), of two 112

age groups (n = 2), 32 age groups model (n = 32) with the contact matrix introduced in 113

the paper of Hethcote (1997) [15] and a further 32 age groups (n = 32) model with a 114

re-balanced contact matrix. In the two age group model, the population is divided into 115

child and adult categories, where the child age group includes individuals in their first 5 116

years of life, while the adult age group includes individuals aged 5 and above. In the 32 117

age group models, we follow Hethcote in assuming age groups as 0–1 month, 2–3 month, 118

4–5 month, 6–11 month, 1 year, 2 year, 3 year, 4 year, 5 year, 6 year, 7 year, 8 year, 9 119

year, 10 year, 11 year, 12 year, 13 year, 14 year, 15 year, 16 year, 17 year, 18 year, 19 120

year, 20–24 year, 25–29 year, 30–39 year, 40–49 year, 50–59 year, 60–69 year, 70–79 121

year, 80–89 year, 90 years and above [15]. It bears noting that while more detailed age 122

structure can better capture both the effects of population aging and inter-group 123

heterogeneity, in terms of particle filtering, it will require estimation of a larger 124

underlying model state – potentially adversely affecting the accuracy of that estimation. 125

In addition to examining the effects of assuming different age structures, we have 126

explored 3 different methods in formalizing the contact matrix that characterizes 127

contacts between different age groups [7, 15] in transmission models. In the two age 128

group model (n = 2), the contact matrix is consistent with the contact matrix 129

introduced in a previously contributed application of particle filtering to measles [7]. 130

This contact matrix used in [7] is powerful and effective in mathematical models with a 131

small number of age groups. However, this method encounters problems with extension 132

to larger number of age groups, given that the number of free parameters rises as the 133

square of the total number of age groups in the model (readers interested in the 134

mathematical proof are referred to S4 Appendix). Thus, in the 32-age-groups models, 135

we have explored two alternative contact matrices exhibiting a reduced number of free 136

parameters. In the first 32-age-groups model, we employed an identical contact matrix 137
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to that employed in [15]. Specifically, to generate the contact matrix in [15], this 138

research has assumed that the average number of people contacted a person in age 139

group i per unit time are distributed among people in age group j in proportion to the 140

fraction of all contacts per unit time received by people in the age group j [15]. 141

However, this contact matrix used in [15] is un-balanced, which means the total 142

contacts of age group i to age group j is not equal to the total contacts of age group j 143

to age group i (see S1 Appendix). Thus, we have explored another contact matrix in 144

the 32-age-groups model where the contact matrix is balanced, according to the 145

methodology established in [17]. As a result of the balancing, the total contacts in age 146

group i to age group j is taken as equal to the total contacts of age group j to age 147

group i. The number of free parameters in the contact matrix correspondingly grows 148

linearly with the total number of the age groups in the model. Readers interested in 149

details of the mathematical models and the mathematical characterization of the 150

alternative contact matrices are referred to S1 Appendix. 151

2.2 Particle filter implementation 152

Particle filtering is a modern state inference and identification methodology that allows 153

filtering of general non-Gaussian and non-linear models in light of time series of 154

empirical observations [7, 9, 10, 14, 18, 19]. At a given time, each state in the distribution 155

(represented by “particles” according to the principles of sequential importance 156

sampling) can be seen as representing a competing hypothesis concerning the underlying 157

state of the system at that time. The particle filtering method can be viewed as 158

undertaking a “survival of the fittest” of these hypotheses, with fitness of a given 159

particle being determined by the consistency between the expectations of the hypothesis 160

associated with that particle and the empirical observations. 161

Particle filtering offers value in the context of underlying state equation models 162

exhibiting stochastic variability. In the implementation of the particle filtering 163

algorithm, we extended the pertussis compartment model by adding “system noise” by 164

letting some parameters evolve with time. Readers interested in additional details with 165

the state space models implementation of the pertussis particle filtering models are 166

referred to S2 Appendix. In performing the particle filtering, we followed several past 167

contributions [7, 9, 11,13] by employing the “Condensation Algorithm” [19,20] as the 168

weight update rule of the particles at each time after considering the arriving 169

observation. By making the simplifying choice of the prior as the proposal 170

distribution [18,19], the Condensation Algorithm is straightforward to implement, and 171

represents the simplest and widely used variant of particle filtering algorithm. We 172

further followed [7, 9, 11,13,21] in assuming that the likelihood function in the particle 173

filtering algorithm is based around the negative binomial distribution. Specifically, for 174

the particle filtering model with an aggregate population, the likelihood function simply 175

applies the negative binomial distribution to link the result of the model and 176

observation data via monthly reported pertussis cases. By contrast, for the particle 177

filtering models with an age-structured population, the likelihood function is given by 178

the product of negative binomial density functions applied successively to the 179

observation and corresponding model quantity for each empirical dataset [7]. It bears 180

noting that the value of the dispersion parameter r [7, 9] associated with the negative 181

distribution in all scenarios in this paper is chosen to be 10. 182

In the aggregate particle filtering model of pertussis, only one empirical dataset – 183

the reported monthly population-wide incident pertussis cases in the province of 184

Saskatchewan from the year 1921 to 1956 – is employed [22]. To assess model accuracy, 185

the RMSE – Root Mean Square Error – between the monthly empirical data and 186

corresponding item in the particle filtering model is calculated as the discrepancy 187

among particles sampled by weight, according to importance sampling principles. In the 188
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age-structured particle filtering model of pertussis using 2 age groups, three empirical 189

datasets are used – monthly reported population-wide incident pertussis cases, the 190

yearly pertussis reported cases among children less than five years old, and the yearly 191

reported pertussis cases in those five or older. The weight update rule (likelihood 192

function) is the same as for the aggregate model, except for at the close of each year, 193

where the value of the likelihood function is the product of the negative binomial 194

function applied to each of the three types of obesrvations – monthly population-wide 195

pertussis reported cases, yearly pertussis reported cases for (separately) child and adult 196

age groups. It bears remarking that this structure mirrors that used in a previous 197

contribution using particle filtering for a measles model [7]. For assessing accuracy of 198

the two age-grouop model, the discrepancy includes the monthly RMSE and the sum of 199

yearly RMSE of each age group divided by 12 (so as to convert the unit to from year to 200

month). 201

In the pertussis age-structured particle filtering models involving 32 age groups, 7 202

empirical datasets are employed – monthly population-wide reported pertussis cases, 203

and yearly pertussis reported cases for each of six age groups, including less than 1 year, 204

from 1 to 4 years, from 5 to 9 years, from 10 to 14 years, from 15 to 19 years and 20 205

years and older. The update weight rule is similar to that for the age structured 206

pertussis model of two age groups, except that at the close of each year it is the product 207

of likelihood functions applied for each of the 7 empirical datasets. When assessing the 208

predictive accuracy of the model, the discrepancy also includes the monthly RMSE and 209

the sum of yearly RMSE of each age group divided by 12 (so as to convert the unit from 210

year to month). 211

Particle Filtering Algorithm 212

The particle filter algorithm that we employed in this paper is given as 213

follows [7, 9, 18,23]: 214

1. At time k=0: 215

(1) Sample X
N(i)
0 from q0(xN0 ); 216

(2) Compute a weight for each particle w
(i)
0 = 1

Ns
. It indicates that the weight at 217

initial time follows the uniform distribution. 218

2. At time k ≥ 1, perform a recursive update as follows: 219

(1) Advance the sampled state by sampling X
N(i)
k ∼ qk(xNk |yk, X

N(i)
0:k−1) and set 220

X
N(i)
0:k = (X

N(i)
0:k−1, X

N(i)
k ); 221

(2) Update the weights (by the Condensation Algorithm) to reflect the probabilistic 222

and state update models as follows: 223

w
(i)
k = W

(i)
k−1p(y

M
k |X

N(i)
k ). 224

Normalize the weights W
(i)
k =

w
(i)
k∑Ns

i=1 w
(i)
k

225

(3) Calculate the Seff : 1∑Ns
i=1 (w

(i)
k )

2 226

(4) If Seff < ST (ST is the minimum effective sample size – the threshold of 227

resampling), perform resampling to get a new set of X
N(i)
k . And set the weight of 228

the new particles as 1
Ns

. 229
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3 Results 230

3.1 Results of models incorporating empirical datasets across 231

all timeframe 232

Recall that to explore the predictive performance of particle filtering in different 233

compartmental pertussis models, four particle filtering models have been built in this 234

research – the aggregate particle filtering pertussis model (denoted as PFaggregate), the 235

age-structured particle filtering model of 2 age groups (denoted as PFage 2), the 236

age-structured particle filtering model of 32 age groups with the original Hethcote 237

contact matrix (denoted as PFage 32 Hethcote), and the age-structured particle filtering 238

model of 32 age groups with the re-balanced contact matrix (denoted as 239

PFage 32 rebalanced). In all of the four particle filtering models, the total number of 240

particles in the particle filtering algorithm is 3000; for clarity in exposition, we sampled 241

the same number when generating the plots of the 2D histogram and for calculating the 242

discrepancy. To compare the accuracy of a particle filtered model against that of a 243

traditional model of pertussis calibrated against comparable data, we have further built 244

a calibrated model of the aggregate population, henceforth denoted Calibrated. In this 245

calibrated model, the values of the parameters obtained from calibration against the 246

empirical dataset are listed as follows. The initial value estimated from the calibration 247

process in class S, I and R1 are 19420, 500, 9960. The value of the infectious contact 248

rate (β) is 56.692; it bears emphasis that this value incorporates both a rate of contact 249

and the probability of transmission. The calibrated value of the reporting rate of 250

pertussis is 0.01. The other parameters are the same as the particle filtering models. 251

Table 1. Comparison of the average discrepancy of the calibrated model
and all four particle filtered pertussis models considering empirical data
across all observation points; parentheses give the 95% confidence intervals.

Model Monthly Yearly in Month Total
Calibrated 34.2 NONE NONE
PFaggregate 20.9 (20.0, 21.9) NONE NONE
PFage 2 19.9 (18.8, 21.0) 21.0 (19.2, 22.7) 40.9 (38.1, 43.6)
PFage 32 Hethcote 20.6 (20.1, 21.2) 25.8 (23.0, 28.6) 46.4 (43.1, 49.7)
PFage 32 rebalanced 19.8 (19.5, 20.1) 28.1 (24.2, 31.9) 47.9 (43.9, 51.9)

Each of the five particle filtering models was run 5 times (the random seed generated
from the same set). Shown here are the average and 95% confidence intervals (in
parentheses) of the mean discrepancy for each model variant.

By comparing the discrepancy of these models, we sought to identify the model 252

offering the greatest predictive validity. We then use the most favorable model to 253

perform prediction and intervention analysis. To assess model results, each of the four 254

particle filtering models was run 5 times with random seeds generated from the same set. 255

We then calculate the average and 95% confidence intervals of the mean discrepancy. 256

Table 1 displays the average discrepancies of the four pertussis particle filtering models 257

and the calibrated deterministic pertussis compartmental model, where the discrepancy 258

considers the entire timeframes. The results of table 1 suggests that particle filtering 259

models significantly improves the predictive accuracy beyond what is achieved via 260

calibration. It is notable that both the calibrated deterministic model and the aggregate 261

particle filtering model only offer monthly average discrepancy, because the yearly 262

observations are stratified by age, but no age stratification is implemented in these two 263

models. Table 1 indicates that the particle filtering models are significantly more 264
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Fig 2. Boxplot of monthly and yearly discrepancy of all models at monthly
observation points, considering empirical data across all observation points.
“Calibrate” indicates the calibration model with aggregate population structure; “PF a1”
indicates the particle filtering model with aggregate population structure; “PF a2”
indicates the particle filtering model with 2 age groups; “PF a32H” indicates the
particle filtering model with 32 age groups and the contact matrix introduced in [15];
“PF a32R” indicates the particle filtering model with 32 age groups and the re-balanced
contact matrix. “ M” indicates the discrepancy of the models compares with the
monthly empirical data – the pertussis reported cases among all population; “ Y”
indicates the sum of discrepancy (of each age group) of the models compares with the
yearly empirical data – the pertussis reported cases divided in age groups – and adjust
the unit to Month by dividing 12. It is also notable that the dot in the boxplot
indicates the mean value, while the horizontal line indicates the median value.

accurate compared to the calibration model – the average discrepancies of the particle 265

filtering models are significantly lower than the average discrepancy of the calibrated 266

deterministic model. Moreover, although the monthly average discrepancies among the 267

four particle filtering models with different population structure and contact matrix 268

structure are quite close, the particle filtering models PFage 2 and PFage 32 rebalanced 269

exhibit smaller average discrepancies. With respect to the yearly average discrepancies, 270

table 1 shows that the age-structured model with two age groups offers better predictive 271

performance than the model with 32 age groups; as noted, the aggregate model lacks 272

the age stratification required to calculate yearly discrepancy. It is notable that the 273

total number of the yearly empirical datasets against which the calibration is assessed is 274

different between the age-structured models with 2 age groups (which is compared with 275

2 yearly empirical datasets) and that with with 32 age groups (which is compared with 276

6 empirical yearly datasets). The yearly average discrepancies listed in table 1 are the 277

sum of the average discrepancy with across each empirical dataset. Thus, this difference 278

may contribute to the result that the yearly average discrepancies of the model with 32 279

age groups are greater than the model with 2 age groups. However, we also employ the 280

particle filtering model with 2 age groups as the minimum average discrepancy model to 281

explore the performance of the outbreak prediction of pertussis below. 282

Fig 2 shows the boxplot of the distribution of the datasets of discrepancies among 283

the calibrated model and the four particle filtering models, where the boxplot 284

summarizes monthly discrepancy estimates for a given model at different times. Each of 285

the particle filtering models was run 5 times (with the random seed being generated 286

from same set). Then the average monthly and yearly discrepancy among these five 287

runs at each time between the particle filtering models and the empirical data are 288

plotted. Both the monthly and yearly (is adjusted to unit of Month by dividing 12) 289

distribution of the discrepancies of each age structured models are plotted in Fig 2. 290

This boxplot also indicates that when considered over time, the discrepancies of all the 291

particle faltering models tend to be smaller than for the calibrated model, although 292

there are similar median discrepancy values. More notable yet is the fact that the 293

discrepancies associated with the calibrated model are significantly more variable than 294

those for the particle filtered models. This suggests that particle filtering improves the 295

consistency of the model’s match against empirical data, when compared to a 296

traditional deterministic model with calibrated parameters. Finally, it bears note that, 297

the datasets of the discrepancy of the model PFage 2 has a particularly narrow 298

distribution, especially for the dataset of the yearly discrepancy. 299

Fig 3 compares the output of the calibration model and the empirical data. It 300

indicates that the deterministic model with calibrated parameters encounters difficulties 301

in tracking the oscillation of the outbreak of pertussis almost across the entire model 302
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time horizon, because the deterministic model of pertussis would approaches a stable 303

equilibrium. These results indicate that the particle filtering models considered here can 304

not only decrease the discrepancy between the model results and the empirical data , 305

but can further track the oscillation of the outbreaks of pertussis – by comparing the 306

results of particle filtering model and deterministic model with calibrated parameters. 307

All of these results suggest that incorporating particle filtering in the compartmental 308

model of pertussis could enhance the simulation accuracy and support more accurate 309

outbreak tracking. 310

Fig 3. Reported pertussis cases of the calibration model (monthly).

Fig 4. 2D histogram posterior result over the total timeframe for the
aggregate particle filtering pertussis model. The posterior result is sampled after
the weight is updated when the empirical data coming at each time step.

Fig 5. 2D histogram prior result over the total timeframe for the aggregate
particle filtering pertussis model. The prior result is sampled before the weight is
updated when the empirical data coming at each time step.

Fig 6. 2D histogram posterior result over the total timeframe of the
two-age stratified pertussis model. (a) the monthly particle filtering result
summed for the entire population. (b) the yearly particle filtering result for the child
(top) and adult (bottom) age groups.

Fig 7. 2D histogram posterior result over the total timeframe of the age
structured model of 32 age groups with the Hethcote contact matrix. (a)
the monthly particle filtering result summed for the entire population. (b) the yearly
particle filtering results of each age group of empirical datasets; age groups are
successively older from top to bottom.

Fig 4 presents the posterior results of the pertussis particle filtering model with 311

aggregate population structure for the entire timeframe. For this diagram, the results of 312

the particle filtering model are sampled according to the weight of all particles after the 313

weights are updated by incorporating the empirical data from the current time point. 314

Those time-specific values are then plotted; the values of empirical data points are 315

shown in red, while the sampled posterior distribution of particle filtering model are 316

shown in blue. The blue color saturation indicates the relative density of sampled points 317

within a given 2D bin. Fig 4 demonstrates that most of the empirical data points are 318

located in or near the high density location of the results of the particle filtering model. 319

It further indicates that the particle filtering model has the capability to track the 320

outbreak of pertussis over time, especially compared with the calibrated model whose 321

results are shown in Fig 3. It is notable that the particle filtered results can follow the 322

patterns of empirical data as they arrive; this capacity to update its estimate of model 323

state – both latent and observed – in accordance as new data arrives is central to the 324

function of particle filtering. By contrast, calibration lacks a means of updating the 325

estimate of the model state over time, and is instead relegated to estimating parameter 326

values, rather than the values of the state at varying points in time. 327

Fig 5 shows the prior results of the pertussis particle filtering model with aggregate 328

population structure for the entire timeframe. For the prior diagram, the results are 329

April 1, 2019 9/17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2019. ; https://doi.org/10.1101/598490doi: bioRxiv preprint 

https://doi.org/10.1101/598490
http://creativecommons.org/licenses/by/4.0/


sampled before the weight updated when the current empirical data come. Compared 330

with the posterior results shown in Fig 4, the prior values of sampled particles of Fig 5 331

spread in a wider range. This difference in dispersion indicates that the weight update 332

process of particle filtering algorithm in this paper has the capability to combine the 333

empirical data to the particle filtering model to constrain the particles in a tighter range 334

as suggested by the empirical data. 335

Fig 6 displays the 2D histogram plots comparing both the monthly and yearly 336

empirical datasets (on the one hand) with the distributions of samples from the 337

posterior distribution of incident cases from the pertussis age structured pertussis 338

particle filtering model with 2 age groups (denoted as PFage 2) (on the other). This 339

figure demonstrates that the model PFage 2 is capable of tracking and simulating the 340

outbreaks of pertussis, as evidenced by the fact that most of the monthly and yearly 341

empirical data (shown in the red dashes) in each month are located in or near the high 342

density area of the sampled distribution of the particle filtering model (shown in blue in 343

the 2D histogram plots). 344

Fig 7 displays the 2D histogram plots comparing both the monthly and yearly 345

empirical datasets (on the one hand) with the sampled posterior distribution of incident 346

cases from the pertussis age structured pertussis particle filtering model with 32 age 347

groups and the Hethcote contact matrix (denoted as PFage 32 Hethcote) (on the other). 348

It is notable that the total number of the yearly empirical datasets employed is 6. This 349

figure also demonstrates that the model PFage 32 Hethcote is capable of tracking and 350

simulating the outbreaks of pertussis, because most of the monthly and yearly empirical 351

data in each time are located in or near the high density area of the results of the 352

particle filtering model. 353

Fig 4, Fig 6 and Fig 7 represent the 2D histogram posterior result of all the particle 354

filtering models, except for the age-structured model of 32 age groups with a 355

re-balanced contact matrix. Results are omitted for this final model as they are highly 356

similar to the 32-age-group model with Hethcote contact matrix, which is shown in 357

Fig 7. The 2D histogram plots shown indicate that both the age-structured particle 358

filtering models and the aggregate population particle filtering model have the 359

capability to closely track the outbreak pattern of pertussis. The results of the models 360

could match the empirical datasets quite well, including both monthly empirical dataset 361

and yearly empirical datasets. In contrast to the calibrated model whose results are 362

shown in Fig 3, the particle filtering models are capable of localizing the model’s 363

prediction of empirical data near the empirical data. Although the results in table 1, 364

Fig 2 (for discrepancy) and Fig 4, Fig 6, Fig 7 (for posterior distribution) suggest that 365

all four pertussis particle filtering models are capable of tracking and estimating the 366

pertussis outbreaks, in the interest of brevity of exposition, we employ the minimum 367

discrepancy model – the age-structured particle filtering pertussis model of 2 age groups 368

– to perform the prediction and intervention analysis below. 369

The pertussis particle filtering models described here are particularly notable by 370

virtue of their capacity to perform ongoing estimation of entire model state – including 371

the latent and observable state of the dynamic models during the period of 372

incorporating the empirical observations. In the investigation of pertussis considered 373

here, the empirical data – monthly population-wide pertussis reported cases and yearly 374

reported pertussis cases of different age groups – are only related to an aggregation of 375

the latent states of weakly infectious (Iw), medium infectious (Im), and fully infectious 376

(I). However, by applying particle filtering to the compartmental models of pertussis 377

and the empirical data, the pertussis particle filtering models are capable of estimating 378

the entire model state across the whole model time horizon during which empirical 379

datasets on the basis of incorporation of multiple lines of empirical data. Fig 8 shows 380

the 2D histogram plots of samples from the distributions of latent stocks with the 381
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minimum discrepancy model (the two age stratified model incorporating both the 382

monthly and yearly empirical datasets) as an example. Figure 8 indicates that most of 383

the fully infectious individuals are estimated to be located amongst the children (less 384

than 5 years of age) age group, while most of the weak infectious and medium infectious 385

individuals are located in the “adult” (equal and greater than 5 years) age group. Most 386

of the recovered individuals are also located in the adult age group. Such estimates 387

accord with empirical observations with respect to pertussis transmission and build 388

confidence in the capacity of the model to meaningfully estimate the latent state. As 389

noted below, estimation of latent state not only provides strong support for 390

understanding the current epidemiological context, but can also be an important 391

enabler for projecting results forward to periods where empirical data is not yet 392

available, for understanding of the effects of interventions, as well as for providing 393

retrospective insights into historical circumstances. 394

Fig 8. 2D histogram results for the latent states from particle filtering of
the two age group stratified dynamic models. (a) the child age group (those
within their first 5 years of life). (b) the adult age group (years 5 and up). The latent
states in plots both (a) and (b) are “S”, “I”, “Im”, “R1”, “R2”, “R3”, “Iw”, “R4” in
order.

3.2 Prediction with the minimum discrepancy model 395

To assess the predictive capacity of the pertussis particle filtering models in anticipating 396

outbreaks, we performed out-of-sample prediction experiments. Informally, each such 397

experiments examines the capacity of the model to project results into the future, having 398

considered data only to some “current” time. That is, the model is particle filtered so as 399

to incorporate data only to up to but not including a “Prediction Start Time” (T ∗), and 400

then begins projecting (predicting) forward, starting at T ∗. More specifically, in this 401

process, the weights of particles will cease updating in response to observations at time 402

T ∗, following that point, all of the particles run without new empirical data being 403

considered. In this paper, all of the prediction experiments are run 4 years after the 404

“Prediction Start Time” T ∗. To evaluate the predictive capacity of the model, we 405

examined the effects of changing the prediction start time T ∗ so as to pose different 406

archetypal types of prediction challenges. It is notable that the minimum discrepancy 407

model – the age structured model with 2 age groups where the child age group is up to 408

5 year and incorporating both the monthly and yearly empirical datasets, which is 409

identified in the previous section – is employed to perform all of these experiments. 410

(1) Prediction started from the first or second time points of an outbreak. 411

(2) Prediction started before the next outbreak. 412

(3) Prediction started from the peak of an outbreak. 413

(4) Prediction started from the end of an outbreak. 414

Fig 9. 2D histogram depicting prediction using the minimum discrepancy
model from the first or second time points of an outbreak. (a) prediction from
month 190. (b) prediction from month 269.

Figs 9–12 display the prediction results of these situations with respect to the 415

monthly 2D histogram of reported cases of the total population. In the 2D histogram 416
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Fig 10. 2D histogram depicting prediction using the minimum discrepancy
model from the peak of an outbreak. (a) prediction from month 176. (b)
prediction from month 233.

Fig 11. 2D histogram depicting prediction using the minimum discrepancy
model from the end of an outbreak. (a) prediction from month 209. (b)
prediction from month 296.

Fig 12. 2D histogram depicting prediction using the minimum discrepancy
model prior to the next outbreak. (a) prediction from month 99. (b) prediction
from month 216.

plots of Figs 9–12, the empirical data having been considered in the particle filtering 417

process (i.e., incorporated in training the models) are shown in red, while the empirical 418

data not having been considered in the particle filtering process (and only displayed to 419

compare with model results) are shown in black. The vertical straight line labels the 420

“Prediction Start Time” (T ∗) of each experiment. 421

These prediction results suggest that the pertussis particle filter model offers the 422

capacity to probabilistically anticipate pertussis dynamics with a fair degree of accuracy 423

over a year or so. From the 2D histogram plots, empirical data lying after the 424

prediction start time – and thus not considered by the particle filtering machinery – 425

mostly lie within the high-density range of the particles. While not formally evaluated 426

here, it is notabe that in such examples the particle filter model appears to be able to 427

accurately anticipate a high likelihood of a coming outbreak and non-outbreak. Such an 428

ability could offer substantial value for informing the public health agencies with 429

accurate predictions of the anticipated evolution of pertussis over the coming months. 430

3.3 Intervention with the minimum discrepancy model 431

Based on the previous discussion, the capacity to accurately estimate (sample from) the 432

latent state of a model allows particle filtering used with pertussis models examined 433

here to be capable of estimating the entire latent state and projecting outbreak 434

occurrence and progression. The capacity for such state estimation also support particle 435

filtering models in simulating intervention strategies. 436

In this section, we have implemented several experiments to simulate stylized public 437

health intervention policies, based on the minimum discrepancy particle filtering 438

pertussis model identified above. The stylized intervention strategies are characterized 439

in an abstract way, and are typically performed before or at the very beginning of an 440

outbreak. For simplicity, we examine them as a historical counterfactual – taking place 441

at a certain historic context. Moreover, to support easy comparison with the baseline 442

prediction results of the minimum discrepancy model absent any interventions, all of the 443

intervention strategies are simulated starting at the start month of an outbreak (month 444

269) in this project. Moreover, we assume here that month 269 is the “current time” in 445

the scenario – that we wish to examine the effects of that intervention using all data 446

and only data available up to but not including month 269, and simulate the results of 447

the intervention forward from that point. The baseline prediction result of the minimum 448

discrepancy model without any interventions is shown in Fig 9 (b). We examine below 449

the impact of two stylized intervention policies – quarantine and vaccination. 450

Fig 13. 2D histogram of simulating quarantine during a pertussis outbreak.
This is realized by decreasing the contact rate by 20%.
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Fig 14. 2D histogram of simulating quarantine during a pertussis outbreak.
This is realized by decreasing the contact rate by 50%.

Fig 15. 2D histogram of simulating an immunization campaign during an
outbreak. This is realized by characterizing a stylized vaccine-induced protection level
among 20% of the population.

Fig 16. 2D histogram of simulating an immunization campaign during an
outbreak. This is realized by characterizing a stylized vaccine-induced protection level
among 50% of the population.

Fig 13 and Fig 14 display results from simulation of quarantine intervention 451

strategies [24] whose effects are characterized as decreasing the contact rate parameter 452

to be 20% and 50% less than its pre-intervention value, respectively. Similarly to the 2D 453

histogram plot of the prediction result without any intervention shown in Fig 9 (b), the 454

red dots represent the empirical data incorporated in the particle filtering model (here, 455

up to just prior to the point of intervention), while the black dots represent the 456

empirical data not incorporated in the model, but presented for comparison purposes. It 457

is notable that because the interventions being characterized are counterfactual in 458

character – i.e., did not in fact take place historically – the empirical data shown in black 459

reflect the situation of absent any intervention (that is, in a baseline context that lacked 460

an intervention of the sort simulated here). By comparing the quarantine intervention 461

results (see Fig 13 and Fig 14) with the model result without intervention shown in 462

Fig 9 (b) and the empirical data during the intervention period (that laying after the 463

triggering of the intervention, and not incorporated in the particle filtering model), we 464

can see that, although the interventions are implemented in a stylized fashion, by virtue 465

of its ability to estimate the underlying epidemiological state at the point of 466

intervention, the pertussis particle filtering model is capable of using the estimated state 467

to serve as a tool for probabilistically evaluating pertussis related intervention policies. 468

To simulate an immunization intervention during a pertussis outbreak, a vaccination 469

parameter is incorporated to represent the fraction of the population moved with respect 470

to their immunity status. Specifically, recall that the pertussis model characterizes a 471

chain of successively higher levels of vaccine-induced protection; this parameter moves a 472

certain fraction of the population from the previous stock (before vaccination) to the 473

stock representing the next higher level of vaccination (following vaccination). Fig 15 474

and Fig 16 show the results of the vaccination intervention. The layout of the 2D 475

histogram plots of the vaccination interventions with Fig 15 and Fig 16 is same as the 476

quarantine plots of Fig 13 and Fig 14. These results of pertussis interventions 477

demonstrate that by virtue of its ability to estimate the underlying epidemiological 478

state, the use of particle filtering with pertussis models supports evaluating public 479

health intervention policies to reduce or even avoid the outbreak of pertussis, etc. 480

4 Discussion and conclusion 481

This paper presents a new method of tracking pertussis outbreak patterns by integrating 482

a particle filtering algorithm with a pertussis compartmental model and empirical 483

incidence data. This contribution represents the first time that the particle filtering 484

algorithm has been incorporated in the research of pertussis transmission dynamics. 485

The models examined demonstrated a notable degree of accuracy in predicting pertussis 486

dynamics over multi-month timeframes – the 2D histogram plots comparing the 487

empirical data and samples from the posterior distributions of the particle filtering 488
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models’ output data (the monthly and yearly reported cases of pertussis) indicates that 489

the high probability density region of the model’s prediction of empirical data 490

encompasses or lies near those data. Moreover, the discrepancy of the pertussis particle 491

filtering model’s predictions vs. observed data is reduced by approximately 60% when 492

compared with a traditional calibration model. This reduction indicates that the 493

particle filtering algorithm is capable of enhancing model predictions when compared 494

with predictions resulting from the traditional calibration process. Additionally, it bears 495

emphasis that the calibrated deterministic model encounters marked difficulties in 496

tracking the fluctuation of the outbreak pattern of measles, while the particle filtering 497

model is capable to tracking the oscillation of the outbreak of pertussis. 498

Moreover, it is of great significance that the pertussis particle filtering models could 499

support effective estimation of the entire state of the pertussis transmission models 500

during the time incorporating the empirical datasets – including latent states of strong 501

interest, including states associated with waning of natural immunity and differing 502

levels of infection severity. Combined with the capability of performing outbreak 503

projections, such particle filtering models can serve as powerful tools for understanding 504

the current epidemiology of pertussis in the population, for projecting forward evolution 505

of pertussis spread – including occurrence of outbreaks. 506

Beyond that, in a further contribution, this research further marks the first instance 507

of research demonstrating the capacity to perform public health intervention 508

experiments using particle filtering models. 509

Despite the strengths of these contributions, there remain a number of limitations of 510

this work, and priorities for future research. We briefly comment on several. 511

Within this work, four particle filtering models have been researched, including an 512

aggregate population model, a two age group-stratified population model, and 32 age 513

group population models with both a contact matrix derived from Hethcote (1997) [15] 514

and (separately) using a re-balanced contact matrix. Although the results of all these 515

four particle filtering models could match the empirical data quite well, the minimum 516

discrepancy model emerged from the 2 age group age-stratified particle filtering model, 517

where the individuals in the child age group represent children in the first 5 years of life, 518

and incorporating both monthly and yearly empirical datasets. In this regard, it is 519

notable that according to the mathematical deduction of the age structured population 520

model introduced in [7] – adapted to pertussis in this research – with more age groups 521

considered in the age-structured model, the model can simulate the aging rate (ci) more 522

accurately. However, in this paper, the discrepancies associated with both of the 32 age 523

group particle filtering models do not show evident decrease compared with the two age 524

group particle filtered models. We provide here some possible reasons are listed as 525

follows. Firstly, the stochastic processes considered in both the 32 age group 526

age-structured model and the two age-groups age-structured model are different, 527

especially in characterizing the stochastic evolution of the contact rate. Secondly, the 528

likelihood functions employed in this project – which are captured as the product of 529

negative binomial density functions across all empirical datasets and sharing a common 530

dispersion parameter – may be too näıve to capture the difference between the age 531

groups within the empirical datasets. Thirdly, as the number of age groups increase, the 532

dimensions of the state space of the particle filtering models increase dramatically. This 533

latter issue must be considered in light of the limitations of the particle filtering 534

algorithm, particularly the fact that the particle filtering method employing a 535

condensation algorithm may encounter problems in high-dimensional systems. In such 536

systems, the probability density functions would be more complex, which may require 537

high dispersion for representation using the likelihood functions employed, because it is 538

difficult to represent the details of the multivariate likelihood function using the product 539

of simple probability density functions. Research is needed into more effective 540
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multivariate likelihood function design. The relationship between the the nominal state 541

space dimensionality and the number of particles required for effective particle filtering 542

also merits additional research, particularly in late of observed limitations in the benefit 543

of particle filtering for high dimensional systems [12]. Finally, when comparing the 544

discrepancy for distinct models, our lack of normalization for the count of datasets used 545

may lead to artificially stacking the comparison against the 32 age group model; while 546

the 32 age group does not exhibit markedly better discrepancy against the monthly 547

aggregate observations than does the 2 age group model, this consideration may suggest 548

that it is stronger than the yearly discrepancy numbers would suggest. 549

It also bears emphasizing the critical role of the stochastic process noise within the 550

state space models plays within successful particle filtering, and the challenges 551

associated with managing such noise. The stochastics associated with these factors 552

represents a composite of two factors. Firstly, there is expected to both be stochastic 553

variability in the measles infection processes and some evolution in the underlying 554

transmission dynamics in terms of changes in reporting rate, and changes in mixing. 555

Secondly, such stochastic variability allows characterization of uncertainty associated 556

with respect to model dynamics – reflecting the fact that both the observations and the 557

model dynamics share a high degree of fallability. Such stochastics impact the particle 558

filtering model in distinct ways during the estimation and prediction period, but results 559

in both periods are sensitive to the degree of stochastics involved. It was important that 560

the noise in the particle filtering models in this paper should be controlled in a proper 561

range, by tuning the parameters of diffusion coefficients in the stochastic processes 562

related to the Brownian motion. The need to characterize and tune stochastic noise 563

effectively can impose challenges in the speed with which particle filtering models can 564

be prepared for a new area of application. 565

The initial values of the age-structured population models in this paper are 566

estimated both manually and by the particle filtering algorithm. Specifically, the 567

population distribution among the different age groups are tuned manually, while the 568

population distribution among different stocks within a given age group is estimated by 569

the particle filtering algorithm by setting the initial values of stocks in a proper range 570

following a uniform distribution, but maintaining a total number of individuals for that 571

age group across the stocks. Especially in building the 32-age-groups particle filtering 572

models, much time and efforts was been used in estimating the population distribution 573

among the different age groups. 574

Particularly in light of the growing risk of pertussis outbreaks triggered by 575

combinations of vaccine hesitancy and waning dynamics from earlier generations of 576

MMR vaccine, a keen need for future work involves application the models presented 577

here to data in the vaccination era. While vaccination elements of the models discussed 578

here were only glancingly tapped by this research (in the context of demonstrating 579

capacity to reason about the effects of an immunization intervention), because of their 580

incorporation into the existing model structure, extension of this work to vaccine-era 581

dynamics should require only very limited changes to the models involved. 582

While application of particle filtering to pertussis dynamics is not without its 583

challenges, the approach examined here demonstrates great promise for creating models 584

that are automatically kept abreast of the latest evidence, for understanding the 585

underlying epidemiology of pertussis in the population – including the balance of the 586

population at varying levels of immunity – for projecting forward pertussis dynamics 587

and outbreak prediction over a year’s time, and for evaluation of counter-factual 588

interventions. The results of this paper – which represents both the first application of 589

particle filtering to pertussis and the first to use particle filtering to assess the tradeoff 590

between public health applications – suggest that particle filtering may represent an 591

important element in the arsenal of public health tools to address the increasingly 592
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difficult challenge of controlling pertussis in the context of vaccine hesitancy and waning 593

of both natural- and vaccine induced- immunity. 594
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particle filtering models. 600
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S5 Appendix. Mathematical deduction of the parameter of death rate in 602
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