Supporting information

Automatic structure-based methyl NMR resonance assignment in large proteins

Iva Pritišanac, ${ }^{1}$ Julia M. Würz, ${ }^{1}$ T. Reid Alderson, ${ }^{2}$ and Peter Güntert*, ${ }^{*, 3,4}$
${ }^{1}$ Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
${ }^{2}$ Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
${ }^{3}$ Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
${ }^{4}$ Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
*Correspondence to: guentert@em.uni-frankfurt.de

Contents

Figure S1. Parametrization of the distance cutoff $d_{\text {cut }}$ and the probability of expected methylmethyl NOE contacts, $p_{\text {NOE }}$.
Figure S2. Accuracy of the methyl assignments obtained for the different values of NOE probabilities over a range of NOE distance cutoffs, $d_{\text {cut }}$.
Figure S3. Determination of the optimal number of individual assignment runs for automatic methyl resonance assignment with MethylFLYA
Table S1. Methyl resonance assignments by MethylFLYA, MAGMA, MAP-XSII, and FLAMEnGO2.0.

Figure S4. Sources of errors in the automatic methyl resonance assignments generated by MethylFLYA.
Table S2. Summary of errors in the automatic methyl resonance assignments generated with MethylFLYA
Figure S5. Parameter optimization for automatic NOESY peak picking with CYPICK.
Figure S6. 2D ${ }^{13} \mathrm{C}\left(\omega_{1}\right)-{ }^{13} \mathrm{C}\left(\omega_{2}\right)$ projections of 3D CCH NOESY (ATCase, HSP90) or 4D HCCH NOESY spectra (EIN).
Table S3. MethylFLYA computation times (h) for different combinations of input NMR data, as in Figure 3.
Table S4. Results of the CYPICK application to the 3D CCH NOESY (ATCase, HSP90) and 4D HCCH NOESY (EIN) spectra.
Figure S7. Intersection of assignments generated with different automatic methyl assignment protocols.
Figure S8. MethylFLYA performance on different input structures for three enzymes in the benchmark.

Supplementary Methods

Figure S1. Parametrization of the distance cutoff $d_{\text {cut }}$ and the probability of expected methylmethyl NOE contacts, $p_{\text {NOE }}$. For each protein, the upper panel shows the percentage of correct (grey) and erroneous (red) strong (i.e. confident) assignments for given d_{cut} and p_{NOE} values. Assignment percentages are relative to the number of reference assignments. For each protein, the lower panels show for each protein the percentage of explained experimental NOESY peaks. The distances at which $\sim 80-85 \%$ of the data are explained generally led to the most reliable assignments. For the largest dataset (MSG) with >250 methyls, the algorithmic performance significantly deteriorates for $d_{\text {cut }}>6.5 \AA$ (equivalent to $>11.5 \AA \mathrm{C}-\mathrm{C}$ distance), resulting in an
unreliable assignment. Note that such large distance cutoffs are unrealistic in practice and unlikely to be generally required.

Figure S2. Accuracy of the methyl assignments obtained for the different values of NOE probabilities over a range of NOE distance cutoffs, $d_{\text {cut. }}$. The percentage of accurately (black) and erroneously (red) assigned methyl groups is shown for the NOE probability values of $0.1,0.4$, and 0.8 in the first, second, and third column, respectively.

Figure S3. Determination of the optimal number of individual assignment runs for automatic methyl resonance assignment with MethylFLYA. Positions of the "strong" (i.e. confident) MethylFLYA-derived methyl assignments for EIN are shown in ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation plots as circles with different colors and increasing diameters. (A) Running 20 parallel assignment calculations in three replicates, each from a different random starting point, shows some differences in the derived strong assignments between the replicates (arrows). (B-C) Increasing the number of calculations to 50 shows that the differences persist when compared to the higher number of parallel calculations (100 or 200). (D) Running 100 parallel MethylFLYA calculations is sufficient for the reproducibility of strong assignments. (E) A further increase in the number of parallel calculations (e.g. 200, 500) results in sets of strong assignments that are consistent with the set of 100 parallel calculations.

Table S1. Methyl resonance assignments by MethylFLYA, MAGMA, MAP-XSII, and FLAMEnGO2.0. The methyl groups with reference assignment are listed, with the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ chemical shift values in ppm in columns ' 13 C ' and ' 1 H '. Agreement or disagreement of the confident assignments by the four algorithms with the reference assignment is indicated by ' $=$ ' (agreement) or '!' (disagreement) signs. The first sign is for ${ }^{13} \mathrm{C}$, the second for ${ }^{1} \mathrm{H}$. Missing, nonconfident, or ambiguous assignments are left blank, except in the case of MethylFLYA, where also the weak (non-confident) assignments are indicated in parentheses. Filtered peak lists were used.

ATCase

Case								
	Met	thyl	13C	1H	FLYA	MAGMA	MAPXS	FLAMENGO
7	LEU	CD1	24.700	0.825	==			
7	LEU	CD2	23.351	0.779	==			
9	VAL	CG1	20.219	0.870	==			
9	VAL	CG2	21.153	0.879	==			
12	ILE	CD1	13.256	0.486	($==$)		! !	==
17	VAL	CG1	20.691	0.894	($==$)			
18	ILE	CD1	13.418	0.734	==		==	
21	ILE	CD1	14.203	0.678	(==)		==	
30	LEU	CD1	25.344	0.851	==	==		
30	LEU	CD2	23.065	0.650	==	==		
32	LEU	CD1	23.190	0.364	=			==
32	LEU	CD2	24.650	0.286	==			==
35	LEU	CD1	24.537	0.727	==	==		
35	LEU	CD2	21.752	0.733	==	==		
42	ILE	CD1	14.481	0.676	!	==	==	
44	ILE	CD1	16.259	0.769	!	==	=	
46	LEU	CD2	22.309	0.823	=	==		!
48	LEU	CD1	22.510	0.844	(!!)			
48	LEU	CD2	27.064	0.917	(!!)			
58	LEU	CD1	24.286	0.781	(==)		==	
58	LEU	CD2	26.475	0.732	($==$)			
59	ILE	CD1	14.045	0.754	$=$!		==	
61	ILE	CD1	14.380	0.679	$=$!		=	
66	LEU	CD1	24.699	0.617	(==)		!!	
66	LEU	CD2	21.671	0.481	(==)			
71	VAL	CG1	21.088	0.790	==			
71	VAL	CG2	23.701	0.902	=			

EIN

Methyl			13C	1H	FLYA	MAGMA	MAPXS	FLAMENGO
6	LEU	CD1	23.060	0.755	=	==		
6	LEU	CD2	25.480	0.891	==	==		
11	ILE	CD1	14.030	0.834	==	==	=	
12	ALA	CB	23.660	1.258	==	==	==	
16	ALA	CB	20.550	1.287	==	==	==	
17	LEU	CD1	25.850	0.884	==		! !	
17	LEU	CD2	23.840	1.025	=		! !	
18	LEU	CD1	25.640	0.978	==	==	! !	
18	LEU	CD2	23.450	0.800	==	==		
19	LEU	CD1	25.500	0.963	($==$)		! !	
19	LEU	CD2	23.980	0.890	($==$)		! !	
24	ILE	CD1	14.070	0.970	==	==	==	
26	ILE	CD1	11.330	0.531	==	==	==	
31	ILE	CD1	14.940	0.697	==	==	==	
33	ALA	CB	18.340	1.573	==	==		
36	VAL	CG1	21.790	1.087	==			
36	VAL	CG2	23.440	1.255	==		==	
40	VAL	CG1	21.440	1.161	==		==	
40	VAL	CG2	23.690	1.294	==		==	
44	LEU	CD1	21.810	0.669	==	==		
44	LEU	CD2	25.730	0.927	==	==		
50	ALA	CB	18.380	1.482	==			
54	LEU	CD1	26.170	1.046	==	==		
54	LEU	CD2	23.180	1.151	($==$)	==		
57	ILE	CD1	13.640	0.742	($=$!)		! !	
61	ALA	CB	18.520	1.593	($==$)		! !	
71	ALA	CB	18.220	1.530	(! !)		==	
72	ILE	CD1	12.740	0.697	==		==	
77	ILE	CD1	13.390	0.888	($==$)			
79	LEU	CD1	23.460	0.903	=			
79	LEU	CD2	25.500	0.916	==			
80	LEU	CD1	26.580	1.046	==			
80	LEU	CD2	24.410	1.011	==			

	Methyl	13 C	1 H
74	LEU CD1	25.859	0.789
76	LEU CD1	25.036	0.788
76	LEU CD2	24.234	0.659
83	VAL CG1	21.482	0.783
83	VAL CG2	21.844	0.779
86	ILE CD1	11.600	0.602
91	VAL CG1	21.777	0.944
91	VAL CG2	21.184	0.954
92	VAL CG1	21.705	1.032
92	VAL CG2	18.600	0.761
99	LEU CD1	25.443	0.739
99	LEU CD2	24.463	0.751
103	ILE CD1	13.711	0.794
106	VAL CG2	19.857	0.939
107	LEU CD1	25.746	0.448
107	LEU CD2	21.905	0.533
127	VAL CG1	21.790	0.696
127	VAL CG2	20.699	0.620
134	ILE CD1	13.073	0.492
136	LEU CD1	25.551	0.682
136	LEU CD2	25.695	0.588
149	VAL CG1	21.889	1.161
149	VAL CG2	20.361	0.954
150	VAL CG1	22.056	0.591
150	VAL CG2	22.442	0.733
151	LEU CD1	23.053	0.512
151	LEU CD2	24.279	0.458

Methyl			13C	1H	FLYA	MAGMA	MAPXS FLAMENGO
137	LEU	CD1	22.080	1.036	==		$=$
137	LEU	CD2	25.720	1.088	==		
138	LEU	CD1	25.620	1.089	==	==	==
138	LEU	CD2	24.580	1.095	==	==	==
141	ILE	CD1	14.690	1.022	==	==	==
142	LEU	CD1	26.290	0.949	==	==	==
142	LEU	CD2	22.890	1.063	$=$	==	
147	ILE	CD1	12.910	0.884	($==$)	==	==
149	LEU	CD2	23.210	0.850	==		! !
151	ALA	CB	19.030	1.427	($==$)	==	==
152	ILE	CD1	13.680	0.883	==	==	=
156	VAL	CG1	22.100	0.832	==		! !
156	VAL	CG2	17.160	0.826	==		! !
157	ILE	CD1	14.070	0.457	==	==	=
158	LEU	CD1	25.840	0.976	==		==
159	VAL	CG1	23.450	0.710	==		==
159	VAL	CG2	21.190	0.761	==		==
160	ALA	CB	24.410	1.387	==	==	==
161	ALA	CB	18.120	1.617	==		==
163	LEU	CD1	25.570	0.670	($==$)		
163	LEU	CD2	24.230	0.782	($==$)		
169	ALA	CB	19.220	1.459	(==)		! !
176	VAL	CG1	22.150	0.600)		! !
176	VAL	CG2	22.060	0.914	==		! !
177	LEU	CD1	26.030	0.889	==	==	=
177	LEU	CD2	21.700	0.860	==	==	
180	ILE	CD1	16.240	0.740	=	==	==
183	ALA	CB	20.740	1.604	(! !)		==
194	ALA	CB	18.450	1.470	(==)		
197	LEU	CD1	26.601	1.011	==		
199	LEU	CD1	26.133	0.840	($=!$)		
201	ALA	CB	22.220	1.031	(! !)		
202	ILE	CD1	13.550	0.731	==	$=$	==

85	LEU	CD1	24.750	1.031	==		=	203	VAL	CG1	19.700	0.729	($==$)		
85	LEU	CD2	24.730	0.927	==		==	208	VAL	CG1	22.860	0.922	=		==
89	ILE	CD1	14.270	0.619	==	==	==	208	VAL	CG2	19.660	0.830	==		==
90	ILE	CD1	13.940	1.107	==	==	==	212	VAL	CG1	23.000	0.925	==		==
91	ALA	CB	18.060	1.544	==	==		212	VAL	CG2	22.820	0.836	==		==
92	LEU	CD1	26.780	1.011	==	==		218	LEU	CD1	26.130	0.609	==	==	==
92	LEU	CD2	22.750	0.915	==	==		218	LEU	CD2	24.900	0.806	==	==	==
93	ILE	CD1	14.460	0.786	==	==	==	219	ILE	CD1	14.980	0.580	==		==
100	ALA	CB	19.750	1.771	==		==	220	LEU	CD1	24.990	0.781	==	==	==
102	ALA	CB	18.270	1.496	==		==	220	LEU	CD2	26.220	0.731	==	==	==
103	ALA	CB	20.840	1.470	==			222	ALA	CB	18.140	1.568	==	==	==
104	ALA	CB	17.780	1.442	==		==	223	VAL	CG1	20.380	0.918	($==$)		
107	VAL	CG1	21.610	0.961	==		==	223	VAL	CG2	21.200	0.936	($==$)		==
107	VAL	CG2	23.870	1.031	==		==	227	VAL	CG1	21.070	0.718	==		==
108	ILE	CD1	10.820	0.787	$=$	==	==	227	VAL	CG2	21.940	0.818	==		==
112	ALA	CB	18.440	1.429	==		==	229	VAL	CG1	21.470	0.996	==		==
114	ALA	CB	18.000	1.540	==			229	VAL	CG2	21.080	0.786	==		==
115	LEU	CD1	25.590	0.866	==	==	= $=$	235	VAL	CG1	21.160	0.527	==		==
115	LEU	CD2	23.090	0.976	=	==		236	ILE	CD1	13.530	0.754	=		==
118	LEU	CD2	22.450	0.945	($!=$)			241	ALA	CB	17.870	1.594	($==$)		
123	LEU	CD1	26.150	1.062	==			242	VAL	CG1	21.020	0.981	($=$!)		! !
127	ALA	CB	19.170	1.688	==		==	242	VAL	CG2	22.040	1.167	(!)		
130	VAL	CG1	22.207	0.976	==		==	246	VAL	CG1	21.100	1.041	($==$)		
130	VAL	CG2	23.390	1.038	==		==	246	VAL	CG2	20.840	1.075	($==$)		
133	ILE	CD1	14.630	0.784	= $=$	=	=	247	ALA	CB	19.240	1.534	($==$)		

MBP								
	Me	thyl	13C	1H	FLYA	MAGMA	MAPXS	FLAMENGO
2	ILE	CD1	13.054	0.402	(=!)	==	! !	
7	LEU	CD1	25.203	0.267	==	=	! !	=
7	LEU	CD2	24.064	0.615	==	==		=
8	VAL	CG1	20.962	0.876	(!)			
8	VAL	CG2	21.211	0.923	($=$!)			
9	ILE	CD1	14.523	0.346	==	==	! !	==
11	ILE	CD1	13.105	0.107	==	==	! !	
20	LEU	CD1	24.725	0.876	==			
20	LEU	CD2	26.879	0.638	=		! !	
23	VAL	CG1	22.314	0.823	=			
23	VAL	CG2	23.403	1.252	==			
33	ILE	CD1	10.138	0.574	==	==		==
35	VAL	CG1	20.685	0.331	==			
35	VAL	CG2	22.360	0.760	==			
37	VAL	CG1	22.840	0.951	$=$			
37	VAL	CG2	20.673	0.766	==			
43	LEU	CD1	26.677	1.101	==	==		
43	LEU	CD2	26.431	1.133	= $=$	==	! !	
50	VAL	CG1	21.260	0.967	(! !)			
50	VAL	CG2	19.894	0.906	(!!)			
59	ILE	CD1	13.790	0.735	(1)	==		
60	ILE	CD1	14.568	0.452	==	==	=	
75	LEU	CD1	25.725	0.638	($=$!)	= $=$		
75	LEU	CD2	20.664	0.538	(!!)	==		
76	LEU	CD1	27.430	0.897	==	==		
76	LEU	CD2	21.891	0.538	$=$	==	==	
79	ILE	CD1	12.313	0.161	==	==	==	
89	LEU	CD1	26.152	0.526	=	==		
89	LEU	CD2	25.298	0.484	==	==		
97	VAL	CG1	22.085	0.578	=			=
97	VAL	CG2	19.363	1.347	==			=
103	LEU	CD1	24.748	0.490	==	==		
103	LEU	CD2	24.100	0.972	=	==		
104	ILE	CD1	14.779	0.845	==	==		
108	ILE	CD1	9.981	0.637	==	==	=	
110	VAL	CG1	20.954	0.767	==			
110	VAL	CG2	20.424	0.476	=			
115	LEU	CD1	22.828	0.684	($==$)			
115	LEU	CD2	24.597	0.587	(!)			
116	ILE	CD1	13.706	0.459	(!!)			
121	LEU	CD1	24.729	0.665	==			
121	LEU	CD2	22.791	0.779	=			
122	LEU	CD1	25.548	0.930	(!!)			
122	LEU	CD2	26.848	0.937	(! !)			
132	ILE	CD1	12.360	0.560	==			
135	LEU	CD1	24.040	0.888	(!!)			
135	LEU	CD2	24.317	0.882	($!=$)			
139	LEU	CD1	25.914	0.787	$=$!			
139	LEU	CD2	22.927	0.852	! !			
147	LEU	CD1	22.500	0.683	($==$)			

147	LEU	CD2	27.555	0.936	($==$)				343	VAL	CG2	23.236	0.168	=		$=$	$=$
151	LEU	CD1	26.232	0.744	==				347	VAL	CG1	20.468	0.918	==			
151	LEU	CD2	23.579	0.135	==		! !		347	VAL	CG2	22.282	1.043	==			
160	LEU	CD1	19.602	-1.003	($==$)	==	= $=$		348	ILE	CD1	12.965	0.869	($==$)	==		==
160	LEU	CD2	25.084	-0.302	($==$)	==	! !		357	VAL	CG1	21.315	0.991	==			
161	ILE	CD1	13.081	0.760	==	==		==	357	VAL	CG2	23.401	1.045	==		! !	
178	ILE	CD1	13.905	0.853	($==$)		==	==	361	LEU	CD1	25.264	0.892	==	==		==
181	VAL	CG1	21.539	0.823	==		=	=	361	LEU	CD2	19.605	0.722	==	==	==	==
181	VAL	CG2	22.538	0.711	==				368	ILE	CD1	15.285	0.693	==	==	==	==

MSG						
	Methyl	13C	1H	FLYA	MAGMA	MAPXS FLAMENGO
5	ILE CD1	12.833	0.820	(==)		
10	LEU CD1	24.486	0.915)		
10	LEU CD2	22.364	0.868	==		
12	ILE CD1	15.537	0.008	==		
20	VAL CG1	21.566	0.463	==		
20	VAL CG2	23.955	0.739	==		
24	VAL CG1	20.604	0.541	==		
24	VAL CG2	22.556	0.137	==		
25	LEU CD1	24.621	0.295	==	==	
25	LEU CD2	20.071	-0.285	==	==	
30	LEU CD1	25.838	0.755	==	==	
30	LEU CD2	22.144	0.817	==	==	
42	ILE CD1	14.704	0.680	==	==	
43	VAL CG1	20.943	0.678	==		
43	VAL CG2	24.763	1.051	==		
46	LEU CD1	26.301	0.806	($==$)		
46	LEU CD2	22.903	0.827	($==$)		
53	LEU CD1	25.988	0.305	($==$)		
54	LEU CD1	24.942	1.101)		
54	LEU CD2	19.976	0.673	==		
60	ILE CD1	12.120	0.769	==	$=$	
64	LEU CD1	25.428	0.904	==	==	
64	LEU CD2	24.554	0.751	=	==	
75	VAL CG2	20.637	0.815	($==$)		
85	LEU CD1	24.801	-0.085	,	==	
85	LEU CD2	20.081	-0.210	==	==	
88	LEU CD1	23.547	0.823	==	==	
88	LEU CD2	25.333	0.674	=	==	
91	LEU CD1	25.353	0.901	(!!)		
91	LEU CD2	24.612	0.903	(!!)		
98	VAL CG1	20.318	0.852	(==)		
100	VAL CG1	21.311	0.958	-		
100	VAL CG2	22.218	0.857	=		
105	ILE CD1	10.255	0.810	(! =)	! !	
109	ILE CD1	14.490	0.724	($==$)	! !	
117	LEU CD1	25.348	0.578			
117	LEU CD2	26.534	0.593	= $=$		
118	VAL CG1	19.382	0.230			
118	VAL CG2	17.697	-0.834	(!)		! !
119	VAL CG1	21.619	0.737	(
119	VAL CG2	18.891	0.687	=		
128	LEU CD1	24.941	0.572	($==$)		
128	LEU CD2	24.322	0.607	($==$)		
138	LEU CD1	23.192	0.768	($==$)		
138	LEU CD2	26.304	0.748	($==$)		
142	LEU CD1	27.936	0.456	==	=	
142	LEU CD2	21.862	-0.448	=	=	
147	ILE CD1	13.610	0.262	==	=	
148	ILE CD1	11.341	0.390	==	= $=$	
166	VAL CG1	21.207	0.848	==		
166	VAL CG2	22.805	0.924	=		
167	ILE CD1	14.215	0.831	(! !)		
170	VAL CG1	22.279	1.178	==		=
170	VAL CG2	25.567	1.376	==		
178	LEU CD1	26.784	0.611	=		=
178	LEU CD2	26.758	0.726	==		=
180	LEU CD1	24.390	-0.082	==	=	
180	LEU CD2	22.737	0.359	= $=$	=	
188	VAL CG1	21.750	0.407	==		
188	VAL CG2	23.700	0.743	==		
189	VAL CG2	18.759	0.541	==		
193	VAL CG1	19.420	0.703	==		
193	VAL CG2	19.366	0.205	=		
194	VAL CG2	20.321	0.773	($=$!)		
198	LEU CD1	22.639	0.663	=	==	
198	LEU CD2	26.102	0.813	= $=$	= $=$	

200	ILE	CD1	16.119	0.746	==	=	=	577	LEU	CD1	26.739	0.781	(! !)		
202	LEU	CD1	24.801	0.768	==	==		577	LEU	CD2	22.528	0.738	(!)		
202	LEU	CD2	22.680	0.501	==	==		579	ILE	CD1	14.656	0.757	=	==	=
210	LEU	CD1	28.067	1.090	==		= $=$	581	VAL	CG1	20.609	0.530	==		
210	LEU	CD2	22.536	0.904	=		==	581	VAL	CG2	20.334	0.527	==		
217	VAL	CG1	21.989	0.800	=			592	ILE	CD1	13.646	0.825	==		==
217	VAL	CG2	21.929	0.880	==			596	LEU	CD1	26.922	1.050	==		==
229	ILE	CD1	10.616	0.562	==	==	=	596	LEU	CD2	24.904	1.053	==		
230	LEU	CD1	21.754	0.680	==			600	VAL	CG1	22.462	0.752	==		=
230	LEU	CD2	24.072	-0.499	($==$)			600	VAL	CG2	25.068	0.974	==		
231	LEU	CD1	25.413	0.876	,			603	ILE	CD1	14.352	0.502	($==$)		=
231	LEU	CD2	24.834	1.069	==			604	LEU	CD1	27.761	0.912	==	==	
236	LEU	CD1	25.156	0.804	($==$)	==		604	LEU	CD2	23.071	0.754	==	==	
236	LEU	CD2	22.500	0.699	($==$)	==		607	VAL	CG1	23.104	1.033	==		
238	ILE	CD1	13.747	0.503	==		==	607	VAL	CG2	26.709	1.120	=		
240	LEU	CD1	24.913	0.632	==	==	==	608	VAL	CG1	20.748	1.329	($==$)		
240	LEU	CD2	24.407	0.715	==			608	VAL	CG2	21.975	1.155	($==$)		
242	ILE	CD1	12.365	0.664	==		= $=$	611	VAL	CG1	21.774	0.864	==		
248	ILE	CD1	12.276	0.756	(! !)			611	VAL	CG2	25.146	1.349	=		==
256	ILE	CD1	11.691	0.901	==		==	623	ILE	CD1	14.613	0.784	($==$)		
259	VAL	CG1	19.992	0.651	==			626	VAL	CG1	20.784	0.805	==		
259	VAL	CG2	21.191	0.648	==		$=$	626	VAL	CG2	21.600	0.882	==		
260	ILE	CD1	11.138	0.651	($==$)		! !	628	LEU	CD1	25.544	0.894	==		
261	VAL	CG1	22.279	0.898	==			628	LEU	CD2	23.460	0.678	==		
261	VAL	CG2	21.020	0.924	==			635	LEU	CD1	27.517	0.867	==		
265	ILE	CD1	9.490	0.378	($==$)	==		635	LEU	CD2	25.306	1.020	==		
268	ILE	CD1	13.602	0.655	($==$)		! !	642	ILE	CD1	15.941	0.647	==		=
269	LEU	CD1	26.885	0.876	==			646	LEU	CD1	23.659	0.863	==		
269	LEU	CD2	22.419	0.655	==			646	LEU	CD2	25.235	0.829	==		
275	VAL	CG1	23.138	0.833	($==$)			650	ILE	CD1	8.057	0.581	==		==
275	VAL	CG2	21.430	0.785	($==$)			651	LEU	CD1	28.466	1.193	==		=
278	VAL	CG1	21.032	0.423	($==$)			651	LEU	CD2	25.318	1.057	==		=
278	VAL	CG2	18.142	0.642	($==$)			656	VAL	CG1	22.427	0.763	==		=
284	ILE	CD1	13.198	0.745	($==$)			656	VAL	CG2	24.262	1.119	==		==
286	LEU	CD1	25.696	0.881	($==$)			660	LEU	CD1	25.900	0.717	==	==	
286	LEU	CD2	26.157	0.768	($==$)			660	LEU	CD2	23.362	0.479	==	==	
291	LEU	CD1	25.289	0.601	=	==		666	VAL	CG1	19.705	0.899	=		
291	LEU	CD2	26.260	0.771	=	=		666	VAL	CG2	21.958	1.127	($==$)		
293	LEU	CD1	25.478	0.930	($=$!)			667	VAL	CG1	22.628	1.058	==		
293	LEU	CD2	24.044	0.778	($!=$)			667	VAL	CG2	23.404	1.131	==		
298	LEU	CD1	23.575	1.052	($=$!)			696	LEU	CD1	26.693	0.738	==		
298	LEU	CD2	25.239	0.821	($==$)			696	LEU	CD2	24.144	0.903	==		
313	LEU	CD1	25.130	0.938	($=$!)			697	ILE	CD1	14.757	0.574	($==$)		==
313	LEU	CD2	24.015	0.807	($==$)			699	LEU	CD1	25.034	0.907	==		
327	ILE	CD1	13.073	0.572	==			699	LEU	CD2	22.156	0.881	==		
329	LEU	CD1	25.272	0.204	($==$)			711	LEU	CD1	25.811	0.806	==		
329	LEU	CD2	22.249	0.625	==			711	LEU	CD2	22.836	1.022	==		
334	LEU	CD2	27.669	0.780	($==$)	= $=$		712	LEU	CD1	24.727	0.182	==		
335	LEU	CD1	25.213	0.818	($==$)			712	LEU	CD2	22.944	0.057	==		! !
335	LEU	CD2	22.086	0.633	(!!)			717	LEU	CD1	25.176	0.980	($==$)		
337	ILE	CD1	14.606	0.875	==	$=$		717	LEU	CD2	23.695	0.956	($==$)		
343	LEU	CD1	22.988	0.988	==										
343	LEU	CD2	25.785	0.745	==										

a7a7

	Met	hyl	13C	1H	FLYA	MAGMA	MAPXS	FLAMENG
21	LEU	CD1	25.996	0.607	($=$!)	==	==	==
24	VAL	CG1	24.215	0.930	==			==
24	VAL	CG2	21.800	0.873	==		==	==
31	VAL	CG1	21.101	0.975	==		==	==
38	LEU	CD1	26.082	0.639	==	==		==
38	LEU	CD2	28.507	0.701	==	==	==	==
46	VAL	CG1	19.945	0.821	==		==	==
46	VAL	CG2	22.010	0.938	==		==	==
47	LEU	CD1	25.259	0.714	==	==	==	==
47	LEU	CD2	28.341	0.572	==	==	==	! !
48	LEU	CD1	26.717	0.608	==	==	==	= $=$
48	LEU	CD2	23.970	0.748	==	==	==	!!
49	ILE	CD1	14.168	0.594	==	==	==	==
54	VAL	CG1	20.875	0.923	==		==	==
54	VAL	CG2	21.440	0.918	==		==	==
58	LEU	CD1	21.343	0.440	(! !)	==		==
58	LEU	CD2	26.121	0.784	($=1$)	==	==	==
59	ILE	CD1	13.464	0.791	($==$)	==	==	==
64	ILE	CD1	12.983	0.799	==	==	==	==
67	ILE	CD1	13.905	0.542	==	==	==	==
69	LEU	CD1	24.774	0.755	==	==	==	==
69	LEU	CD2	22.438	0.425	==	==	==	=

	Methyl	$13 C$	$1 H$
113	VAL CG1	20.996	0.301
113	VAL CG2	21.787	-0.033
116	VAL CG1	22.011	0.950
116	VAL CG2	21.613	0.940
134	VAL CG1	22.670	0.742
134	VAL CG2	23.838	0.872
136	LEU CD1	27.678	0.667
136	LEU CD2	26.611	0.410
137	ILE CD1	14.071	0.374
141	ILE CD1	12.458	0.616
144	ILE CD1	11.757	0.762
148	LEU CD1	25.245	0.731
148	LEU CD2	26.003	0.454
157	ILE CD1	13.663	0.638
165	ILE CD1	13.629	0.425
172	VAL CG1	23.655	0.696
172	VAL CG2	22.860	0.799
173	VAL CG1	21.461	0.946
173	VAL CG2	23.532	0.982
176	LEU CD1	25.759	0.638
176	LEU CD2	22.386	0.901
184	LEU CD1	25.965	0.733

FLYA MAGMA MAPXS FLAMENGO

70	ILE CD1	11.698	0.660	$==$	$==$	$==$	$==$
74	VAL CG1	20.747	0.770	$==$		$==$	$!!$
74	VAL CG2	22.071	0.947	$==$		$==$	$!!$
77	VAL CG1	22.491	0.733	$==$		$==$	$==$
77	VAL CG2	21.784	0.755	$==$			$==$
81	LEU CD1	22.548	1.077	$==$	$==$	$==$	$==$
81	LEU CD2	26.063	1.194	$==$	$==$	$==$	$==$
82	VAL CG1	21.933	1.173	$==$		$==$	$==$
82	VAL CG2	21.877	1.099	$==$		$==$	$==$
87	VAL CG1	20.901	1.033	$(==)$			$!!$
87	VAL CG2	20.479	1.151	$(==)$		$!!$	$!!$
88	LEU CD1	25.077	0.242	$==$	$==$	$==$	$!!$
88	LEU CD2	20.700	-0.095	$==$	$==$	$==$	$!!$
89	VAL CG1	21.464	0.784	$==$			$!!$
89	VAL CG2	23.461	0.711	$==$		$==$	$!!$
94	ILE CD1	13.229	0.793	$(==)$	$==$	$==$	$==$
106	LEU CD1	24.657	0.440	$==$	$==$	$==$	$==$
106	LEU CD2	23.969	0.227	$==$	$==$	$==$	$==$
107	VAL CG1	22.135	0.828	$==$		$==$	$!!$
107	VAL CG2	21.775	0.745	$==$			$!!$
109	ILE CD1	13.179	0.726	$==$	$==$	$==$	$==$
112	LEU CD1	23.297	0.652	$==$	$==$	$==$	$==$
112	LEU CD2	26.192	0.634	$==$	$==$	$==$	$==$

184	LEU CD2	22.537	0.806	$==$	$==$	$==$
190	VAL CG1	21.380	-0.176	$==$		$==$
190	VAL CG2	23.016	0.630	$==$		$==$
192	LEU CD1	24.522	1.077	$==$	$==$	$==$
192	LEU CD2	26.319	0.975	$==$	$==$	$==$
194	ILE CD1	10.361	0.506	$==$	$==$	$==$
197	LEU CD1	23.729	0.645	$==$	$==$	$==$
197	LEU CD2	25.212	0.652	$==$	$==$	$==$
201	LEU CD1	25.766	0.784	$==$	$==$	$==$
201	LEU CD2	22.016	0.660	$==$	$==$	$==$
207	LEU CD1	24.814	0.835	$==$	$==$	$==$
207	LEU CD2	26.319	0.762	$==$	$==$	$==$
212	ILE CD1	14.420	0.403	$==$	$==$	$==$
215	ILE CD1	16.367	1.051	$==$	$==$	$==$
217	VAL CG1	20.710	0.916	$==$		$==$
217	VAL CG2	21.220	0.945	$==$		$==$
223	ILE CD1	11.794	0.782	$==$	$==$	$==$
229	VAL CG1	21.420	1.023	$==$		$==$
229	VAL CG2	23.133	1.180	$==$		$==$
233	LEU CD1	25.610	0.872	$==$	$==$	$==$
233	LEU CD2	22.819	0.696	$==$	$==$	$==$

Figure S4. Sources of errors in the automatic methyl resonance assignments generated by MethylFLYA. Carbon atoms of the erroneously assigned methyls are shown as red spheres, whereas their correct assignment positions are given in black spheres, or exceptionally in red when the assignment at those positions is also incorrect (i.e. for assignment swaps such as Ile $42 \leftrightarrow$ Ile 44). The mis-assigned resonances belong to nearby methyl groups. For ATCase, the assignment errors cluster at the interface of the two subunits of the homodimer.

Table S2. Summary of errors in the automatic methyl resonance assignments generated by MethylFLYA. The mis-assigned methyls are assigned to spatially proximal residues.

Protein	Methyl group	Erroneously assigned to	C-C distance (\AA) between correct and erroneous assignment
ATCase	Ile $42 \delta_{1}$	Ile $44 \delta_{1}$	5.5
	Ile $44 \delta_{1}$	Ile $42 \delta_{1}$	5.5
	Ile $59 \delta_{1}$	Ile $21 \delta_{1}$	4.0
	Ile $61 \delta_{1}$	Ile $59 \delta_{1}$	5.9
MBP	Leu $139 \delta_{1}$	Leu $122 \delta_{1}$	5.2
	Leu $139 \delta_{2}$	Leu $122 \delta_{2}$	6.9

Figure S5. Parameter optimization for automatic NOESY peak picking with CYPICK. (A) Percentage of accurately (black) and erroneously (red) assigned methyls as a function of methyl ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOE distance cutoffs, $d_{\text {cut }}$, at fixed NOE probability value $p_{\text {NOE }}=0.1$. Results using the automatically generated CYPICK NOESY lists are in the left columns, and results obtained using the manually prepared NOESY lists are in the right column. (B) Varying baseline factors for automatic peak picking of methyl-methyl NOESY spectra using CYPICK at fixed distance cutoff $d_{\text {cut }}=5 \AA$ and NOE probability value $p_{\text {NOE }}=0.1$. Variation of the CYPICK find score (black), artifact score (red), and the percentage of explained inter-methyl NOEs (grey) as a function of the baseline factor. For all three proteins, a fixed distance cutoff $d_{\text {cut }}$ $=5 \AA$ and an NOE observation probability p_{NOE} $=0.1$ were used to generate the expected methyl-methyl NOEs. Assignment percentages are relative to the number of reference assignments.

Figure S6. 2D ${ }^{13} \mathrm{C}\left(\omega_{1}\right)-{ }^{13} \mathrm{C}\left(\omega_{2}\right)$ projections of 3D CCH NOESY (ATCase, HSP90) or 4D HCCH NOESY spectra (EIN). All spectra are plotted with contour levels starting at a signal-to-noise ratio of three, as determined by the software Sparky (T. D. Goddard and D. G. Kneller, University of California, San Francisco). Positive and negative contours are colored in red and blue, respectively. The spectra were acquired previously by Venditti et al. ${ }^{27}$ (EIN), Velyvis et al. ${ }^{24}$ (ATCase), and Shah et al. ${ }^{41}$ (HSP90).

Table S3. MethylFLYA computation times (h) for different combinations of input NMR data, as in Figure 3.

Protein	Filtered NOEs	Unfiltered NOEs	L, V=LV	2L, 2V	L, V=LV, 2LV
EIN	0.52	0.50	0.54	0.48	0.54
ATCase	0.38	0.40	0.40	0.36	0.41
MBP	0.46	0.45	0.53	0.52	0.59
MSG	1.23	1.23	1.53	1.20	1.24
$\alpha_{7} \alpha_{7}$	0.50	0.51	0.60	0.69	0.79

Calculations were performed using 100 Intel Xeon E5-2690 processor cores in parallel.

Table S4. Results of the CYPICK application to the 3D CCH NOESY (ATCase, HSP90) and 4D HCCH NOESY (EIN) spectra. The results are given for the baseline factor $\beta=5$. A find score indicates which percentage of NOE peaks from the reference were also found by CYPICK. Overall, find, and artifact scores are defined by Würz et al. ${ }^{37}$

Protein	Peaks (reference)	Peaks (CYPICK)	Overall score (\%)	Find score (\%)	Artifact score (\%)
EIN	618	775	74	83	34
ATCase	563	495	74	77	13
HSP90	409	624	68	82	46

Figure S7. Intersection of assignments generated with different automatic methyl assignment protocols. The illustration of the intersections of assignment solutions from MethylFLYA, MAGMA, FLAMEnGO2.0, and MAP-XSII are shown for the indicated benchmark cases. In the case of FLAMEnGO2.0, no confident (100%) assignments were found for EIN and MSG.

Protein	PDB ID	correct	error
atcase	1d09 (Rstate)	36	3
	1tug (Tstate)	36	1
mbp	1ez9 (open)	83	2
	3mbp (closed)	75	2
msg	1y8b (NMR)	129	0
	1d8c (X-ray)	173	0

Figure S8. MethylFLYA performance on different input structures for three enzymes in the benchmark. Differences in backbone conformations between the different protein states are shown with protein structures in cartoon representation (right column). In the left column, the positions of the methyl carbons are indicated with spheres for each of the conformers, with colors matching those assigned to the backbone (right). The total number of accurate and erroneous "strong" methyl assignments generated with MethylFLYA using different conformers is summarized in the table (bottom row).

Supplementary methods

An example MethylFLYA automated methyl assignment calculation for the N -terminal domain of E. coli Enzyme I (EIN) can be downloaded from http://www.cyana.org/methylflya.tgz.

The complete assignment calculation is performed by first running the RUN.cya macro that calls PREP.cya to make expected peaks using three different NOE distance cutoffs, and starts parallel FLYA automated assignment runs with CALC.cya for the different NOE distance cutoffs. After completing the FLYA runs, consensus chemical shifts are obtained with CONSOL.cya, which must be run separately.

Input files:

demo.seq	amino acid sequence
demo.pdb	3D structure
C13HSQC.peaks	2D [$\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right]$-HMQC peak list with amino acid type assignments (peaks are assigned to methyl groups of the correct amino acid type but arbitrary residue number)
HCcCH.peaks	short mixing-time 4D CCNOESY for intraresidual Leu/Val connections
CCNOESY.peaks	4D CCNOESY peak list, unassigned
ref.prot	reference chemical shifts (for comparison only)
init.cya	initialization macro
RUN.cya	automated assignment calculation (calls PREP.cya, CALC.cya)
PREP.cya	prepare peak lists for FLYA
CALC.cya	run FLYA assignment calculation
CONSOL.cya	determine consensus chemical shifts

The preparation macro, PREP.cya, performs the following tasks:

1. The $\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right]$-HMQC peak list, C13HSQC.peaks, which is assigned to methyls of the correct amino acid type (and arbitrary residue numbers that are not used), is split into four amino acid type-specific peak lists, C13HSQC_X.peaks, with $X=\mathrm{A}, \mathrm{I}, \mathrm{L}, \mathrm{V}$.
2. The peaks in the unassigned short mixing-time 4D CCNOESY peak list, HCcCH.peaks (formally treated as an HCCH TOCSY-type experiment), which contains intraresidual connections between the two methyl groups of Leu or Val, are assigned to amino acid types (and irrelevant, arbitrary residue numbers) according to the closest [$\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right]-\mathrm{HMQC}$ peaks, and the peak list is split into two amino acid type-specific peak lists, HCcCH_L.peaks and HCcCH_V.peaks.
3. The unassigned 4D NOESY peak list, CCNOESY.peaks, is treated similarly, and split into 16 amino acid pair type-specific peak lists, CCNOESY_XY.peaks, with $X, Y=\mathrm{A}, \mathrm{I}, \mathrm{L}, \mathrm{V}$.
4. The macro peaklists.cya that specifies the generation of expected peaks during the FLYA calculations in CALC.cya is written.

The RUN.cya macro creates three subdirectories demo_d4.5, demo_d5.0, and demo_d5.5 for the three FLYA calculations with different NOE distance cutoffs, $d_{\mathrm{cut}}=4.5,5.0,5.5 \bar{\AA}$. In each of these three directories, the input files are copied, the PREP.cya macro is executed, and three jobs of 100 individual FLYA assignment runs each are started with CALC.cya. The individual assignment runs are executed in parallel on different processors, if available.

Subsequently, consensus assignments are generated with the CONSOL.cya macro that produces the following main output files:

```
consol.prot consensus chemical shift lists (in XEASY format)
consol-strong.prot strong (confident) consensus chemical shifts (in XEASY format)
consol.tab
consol.pdf
table of consensus methyl assignments
plot of consensus methyl assignments
```

Optionally (not used in this paper), already known, partial methyl assignments can be included in the calculation by specifying their shifts in a chemical shift list file, e.g. fix.prot, and adding the line 'shiftassign_fix := fix.prot' to the CALC.cya macro.

For more details on specifying the partial assignments, comparing results to the known reference, or other generic FLYA input file requirements, macros, and output files please see: http://www.cyana.org/wiki/index.php/Tutorials.

Experiment definitions in the CYANA library

The CYANA library (cyana.lib) contains definitions of the experiments necessary for automatic methyl resonance assignment with MethylFLYA:

```
SPECTRUM C13HSQC C H
    0.980 C:C_A* H:H_A*
SPECTRUM CCNOESY3D C1 C2 H1
    0.900 C1:C_A* H1:H_A* ~4.0 H_A* C2:C_A*
    0.800 C1:C_A* H1:H_A* ~4.5 H_A* C2:C_A*
    0.700 C1:C_A* H1:H_A* ~5.0 H_A* C2:C_A*
    0.600 C1:C_A* H1:H_A* ~5.5 H_A* C2:C_A*
    0.500 C1:C_A* H1:H_A* ~6.0 H_A* C2:C_A*
SPECTRUM CCNOESY H1 H2 C2 C1
    0.900 C1:C_A* H1:H_A* ~4.0 H2:H_A* C2:C_A*
    0.800 C1:C_A* H1:H_A* ~4.5 H2:H_A* C2:C_A*
    0.700 C1:C_A* H1:H_A* ~5.0 H2:H_A* C2:C_A*
    0.600 C1:C_A* H1:H_A* ~5.5 H2:H_A* C2:C_A*
    0.500 C1:C_A* H1:H_A* ~6.0 H2:H_A* C2:C_A*
SPECTRUM HCcCH H1 H2 C2 C1
    1.000 H1:H_ALI C1:C_ALI C_ALI C2:C_ALI H2:H_ALI
```

The header line of an experiment definition starts with the word SPECTRUM and gives the name of the spectrum type and a list of labels that correspond to the nuclei that constitute the direct and indirect dimensions, one for each spectral dimension.

Subsequent rows specify the magnetization transfer pathways for the experiment. The first number denotes the peak observation probability. It is followed by a linear list of atom types that defines a molecular fragment, in which atoms must be of the given types, e.g. H_ALI for aliphatic hydrogens, H_A* for aliphatic or (for MethylFLYA irrelevant) aromatic hydrogens, C_ALI for aliphatic carbons, etc., as defined in the ATOMTYPES section the beginning of the $\overline{\mathrm{C}}$ aANA residue library. Atoms must be connected to the next atom in the list either by a covalent bond or, in the instances where a tilde followed by a number is given, by an NOE, i.e. a distance shorter than the given cutoff (in \AA) in the 3D structure. An expected peak is generated whenever a
molecular fragment matches the covalent structure and, in case of NOEs, the 3D protein structure. The nuclei for which the frequency is measured in the experiment are identified by labels, followed by a colon. There must be as many labels as in the header (SPECTRUM) line, corresponding to the dimensionality of the spectrum.

See http://www.cyana.org/wiki/index.php/Residue_library file for more details about the CYANA library.

Input peak list format

Input peak lists must contain a header line starting with \#SPECTRUM that specifies the spectrum type and the labels, which must match the corresponding entry in the CYANA library, but may be permuted to indicate the order in which data for the spectral dimensions is given in peak list columns. For instance, a 4D NOESY peak list in XEASY format may start as follows:

```
# Number of dimensions 4
#SPECTRUM CCNOESY H1 C1 H2 C2
\begin{tabular}{rrrrlllllllllll}
872 & 0.230 & 19.382 & 0.655 & 13.602 & 1 & U & \(1.000 \mathrm{E}+02\) & \(0.000 \mathrm{E}+00\) & e & 0 & - & - & - & - \\
874 & -0.834 & 17.697 & 0.655 & 13.602 & 1 & U & \(1.000 \mathrm{E}+02\) & \(0.000 \mathrm{E}+00\) & e & 0 & - & - & - & - \\
883 & 0.848 & 21.207 & 0.390 & 11.341 & 1 & U & \(1.000 \mathrm{E}+02\) & \(0.000 \mathrm{E}+00\) & e & 0 & - & - & - & - \\
887 & 0.924 & 22.805 & 0.390 & 11.341 & 1 & U & \(1.000 \mathrm{E}+02\) & \(0.000 \mathrm{E}+00\) & e & 0 & - & - & - & - \\
894 & 1.376 & 25.567 & 0.390 & 11.341 & 1 & U & \(1.000 \mathrm{E}+02\) & \(0.000 \mathrm{E}+00\) & e & 0 & - & - & - & - \\
901 & 0.407 & 21.750 & 0.746 & 16.119 & 1 & U & \(1.000 \mathrm{E}+02\) & \(0.000 \mathrm{E}+00\) & e & 0 & - & - & - & -
\end{tabular}
```

Following the header, data for each peak is given on one line: peak number, peak position (ppm; 4 real numbers), " 1 U", peak volume, volume error (if known), "e 0", and assignment ("-‘ if unassigned). Assignments, if present, are given in the form A.r, where A denotes an atom name and r a residue number.

Table of consensus chemical shifts

The consolidation of the chemical shift assignments from individual assignment runs into consensus chemical shifts is documented in the MethylFLYA output file consol.tab, which contains the final methyl assignment results. The beginning of an example consol.tab file is given below.

Atom	Residue	Ref	Shift	Dev	Extent	inside	inref		
QD1	ILE	2		0.739		300.0	100.0	0.0	strong
CD1	ILE	2		16.246		300.0	99.9	0.0	strong
QD1	ILE	5		0.843		300.0	37.1	0.0	
CD1	ILE	5		12.874		300.0	62.7	0.0	
QD1	LEU	6	0.755	0.756	-0.001	300.0	99.5	100.0	strong=
QD2	LEU	6	0.891	0.891	0.000	300.0	96.4	97.0	strong=
CD1	LEU	6	23.060	23.065	-0.005	300.0	98.3	98.3	strong=
CD2	LEU	6	25.480	25.557	-0.077	300.0	96.8	97.0	strong=

The first three columns in the file list the atom type, residue type, and residue number for each assigned atom. When a reference assignment is known, the value of the known reference chemical shift is listed in the fourth column. The consensus chemical shift (i.e. the MethylFLYA result) is given in the fifth ("Shift") column. When applicable, its deviation from the reference assignment is given in the 'Dev' column in ppm. The 'Extent' column refers to the number of individual assignments runs, in which an assignment for the given atom was obtained. Given that a hundred
calculations are run at each of three distance cutoffs, the consolidation runs over 300 individual calculations. The next two columns 'inside' and 'inref' respectively specify the percentage of assignments for this atom in the (300) individual runs that agree (within the chemical shift tolerance specified in the init.cya file) with the consensus or reference assignment, respectively. The final column indicates whether an assignment is 'strong' (i.e. confident). For the calculations in this paper, assignments are classified as strong if and only if the percentage in the 'inside' column is 80% or more. When a reference assignment is known, a ' $=$ ' is appended to the last column if the MethylFLYA assignment match the reference assignment (within the chemical shift tolerance), or '!' if the two assignments differ by more than the chemical shift tolerance.

