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Abstract 
 
Understanding how genetic regulatory variation affects gene expression in different T cell states 
is essential to deciphering autoimmunity. We conducted a high-resolution RNA-seq time course 
analysis of stimulated memory CD4+ T cells from 24 healthy individuals. We identified 186 
genes with dynamic allele-specific expression, where the balance of alleles changes over time. 
These genes were four fold enriched in autoimmune loci. We found pervasive dynamic 
regulatory effects within six HLA genes, particularly for a major autoimmune risk gene, HLA-
DQB1. Each HLA-DQB1 allele had one of three distinct transcriptional regulatory programs. 
Using CRISPR/Cas9 genomic editing we demonstrated that a single nucleotide variant at the 
promoter is causal for T cell-specific control of HLA-DQB1 expression. Our study in CD4+ T 
cells shows that genetic variation in cis regulatory elements may affect gene expression in a 
lymphocyte activation status-dependent manner contributing to the inter-individual complexity 
of immune responses. 
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Main text 
 
Genetic studies have identified an enrichment of autoimmune risk alleles in memory CD4+ T 
cell-specific regulatory elements(1–3). Memory CD4+ T cells are essential orchestrators of 
immune response. Hence, it is crucial to study how genetic variation affects their gene 
expression patterns to unravel the complex dynamics of regulation. Previous studies on activated 
T cells analyzed a limited number of cell states and genes(4–9), and an understanding of how 
gene expression levels are influenced by genetic regulatory variation in multiple physiological 
states is lacking. In this study, we investigated activation-dependent genetic regulatory effects in 
memory CD4+ T cells by studying dynamic allele-specific expression that changes with time in a 
high resolution RNA sequencing time series. 

 
Studying allele-specific expression (ASE) of genes can enable the detection and characterization 
of context-specific cis regulatory effects (10, 11). In a pilot experiment, we stimulated memory 
CD4+ T cells from two genotyped individuals of European ancestry (fig. S1) with anti-
CD3/CD28 beads. We ascertained gene expression at 0, 2, 4, 8, 12, 24, 48 and 72 hours after 
stimulation using deep mRNA sequencing (Fig. 1A). Using a logistic regression framework, we 
identified dynamic ASE (dynASE) events (Methods) at heterozygous SNPs. These dynASE sites 
are those where the imbalance of the two expressed alleles is time dependent. First, for each 
heterozygous site in an individual, we merged counts from all time points and identified 1,484 
sites with evidence of significant ASE (intercept P < 2.8x10-6=0.05/17,743 tests, Bonferroni 
threshold). Next, for those sites we assessed time-dependent ASE effects by fitting a second 
order polynomial model. To account for over-dispersion of allelic counts, we incorporated 
sample-to-sample variability with a random intercepts effect. We observed 64 dynASE events in 
these two individuals (P < 3.7e-03, <5% FDR) in 60 SNPs, in 37 genes. In an independent 
experiment for the same two individuals, we observed that these dynASE sites had strong 
evidence of replication (~70% of events had P < 0.05), and a high correlation of effects for time 
(Spearman rho: 0.92 and 0.86) and time squared (Spearman rho: 0.51 and 0.68; fig S2-3).  
 

Next, we assayed an additional 22 individuals of European descent using the same experimental 
set-up to obtain data in a total of 24 healthy subjects (fig. S1). Principal component analysis on 
gene expression levels showed that the 200 samples separated by time (Fig. 1B, fig. S4), and 
gene clustering identified expected activation and repression clusters (fig. S5, Methods). To 
identify ASE, we queried a total of 225,924 events, representing 38,890 unique SNPs in 8,322 
genes and some in transcribed intergenic regions (3%) (fig. S6). We observed a total of 15,268 
ASE (P < 2.4e-07) events (2,147 genes). We then tested each of these events for dynASE and 
observed 561 significant events (P < 3.2e-03, <5% FDR), representing 356 SNPs in 186 genes 
and seven intergenic sites (Fig. 1C, Table S1). We found that 74% of our dynASE genes have 
been reported to have an eQTL in resting T cells (4, 5, 8), with an enrichment for T cell specific 
eQTLs (fig. S7). This indicates that we captured and expanded upon known cis regulatory 
genetic effects. Fig. 1D shows examples for SNPs in the genes F11R and CXCR5, where the 
reference and alternative alleles were dynamically regulated in time. These genes are critical for 
the migration of T cells across transendothelial membranes and within lymphoid tissues, 
respectively. Particularly, CXCR5 expression is important for T follicular helper cell localization 
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in germinal centers. Interestingly, gene expression changes were coordinated with allelic 
imbalance changes over time (Fig. 1E). Hence, dynamic allelic imbalance suggests complex and 
continuous regulation during T cell activation affected by genetic variation. Consistent with this, 
dynASE genes were enriched for “immune response” function (P = 2.9e-09), even with respect 
to the genes with significant overall ASE (P = 2.5e-05, Methods). 
 

Strikingly, we observed 182 dynASE events within the MHC locus (Fig 1C), with 15 events in 
HLA-DQB1 (examples in fig. S8, Table S1), which harbors most of the genetic risk for type 1 
diabetes (T1D) and celiac disease (12, 13). HLA-DQB1 is part of the HLA class II genes, that are 
typically expressed in antigen presenting cells, and present antigen to CD4+ T cells to coordinate 
immune response. In human T cells, these genes are recognized as activation markers. Their 
expression is well characterized in T cells from the synovial fluid and tissue of rheumatoid 
arthritis patients, and in blood from patients with a variety of autoimmune disorders (14–18). 
Literature suggests that T cells themselves may also present viral and self-peptides to alter 
immune responses (19–21). However, further investigation is needed to confidently establish the 
function of HLA class II genes in T cells. 

 
To better understand the relationship between HLA classical alleles (a combination of multiple 
coding variants) and regulatory variation, we performed high resolution typing of HLA-DQB1, 
HLA-DRB1, HLA-DQA1, HLA-A, HLA-B, and HLA-C, for all 24 individuals in our dataset (see 
Methods). To robustly identify dynASE in this highly polymorphic region, we built an HLA-
personalized genome for each individual (Fig. 2A) by adding the cDNA allelic sequences for 
each HLA allele to the reference genome. We then quantified the number of uniquely mapped 
reads to each HLA allele per individual. Among the 48 HLA-DQB1 ~780bp sequences, there 
were 14 HLA-DQB1 4-digit classical alleles. Our unique HLA-personalized genome strategy 
allowed us to quantify expression of individual HLA-DQB1 alleles taking advantage of >20 
SNPs in four exons (Fig. 2B, replication fig. S9). Our study underscores the importance of using 
a genotype-based personalized genome strategy to quanity cis regulatory effects within the HLA 
region. 
  

Using allelic counts over the four exons of HLA-DQB1, we determined that most (15/24) 
individuals have significant dynASE for HLA-DQB1 (P < 0.002 = 0.05/24 tests). For example, 
Figure 2C depicts profiles of allelic expression levels for three individuals, with their respective 
allelic fraction patterns over time.  

 
Clustering of allelic expression profiles revealed that HLA-DQB1 4-digit classical alleles 
clustered together more than expected by chance (permutation P < 0.001, fig. S10), suggesting 
cis regulatory effects segregate with HLA-DQB1 classical coding alleles. These allelic profiles 
could be grouped into three transcriptional groups (Fig. 2D, shown also with PCA on fig. S11). 
We named these three HLA-DQB1 cis regulatory programs based on their expression dynamics: 
Late-Spike, Constant-Low, and Fluctuating (Fig. 2D). To our knowledge, the identification of 
three distinct transcriptional profiles in HLA-DQB1 expression over time is the first description 
of such complex and variable regulation in any gene.  
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To confirm that the drastic mRNA up-regulation in the Late-Spike cis regulatory program 
affected cell-surface protein expression levels, we isolated memory CD4+ T cells from an 
independent cohort. We specifically recruited five homozygous individuals for HLA-DQB1 
classical alleles with the Late-Spike cis regulatory program, and five homozygous individuals for 
HLA-DQB1 classical alleles with Constant-Low or Fluctuating cis regulatory programs (fig. 
S12). As predicted, we observed that HLA-DQ cell surface expression on HLA-DQ+ cells was 
significantly higher in individuals with the Late-Spike haplotype (P = 0.03, Wilcoxon test, Fig. 
2E, fig. S13). 
 

We then sought to identify the genetic variant driving the Late-Spike cis regulatory program with 
genetic and epigenetic fine-mapping tools. We called SNP genotypes and 4-digit classical HLA 
alleles in 2,198 fully sequenced genomes (Methods). We identified SNPs in tight linkage 
disequilibrium (LD) with the Late-Spike HLA-DQB1 classical alleles, that together represent 
what we henceforth call the Late-Spike haplotype (Methods). While most of the SNPs in highest 
LD with this haplotype (r ≥ 0.98) were within the HLA-DQB1 gene (89%), only six were 
intergenic (fig. S14A). An eQTL analysis in the 24 individuals of our initial cohort (Fig. 1) 
confirmed that these 6 intergenic SNPs explained 76% of HLA-DQB1 expression variance at 72 
hours (P = 3.8e-08, fig. S14B). We assayed and identified open chromatin regions with ATAC-
seq in memory CD4+ T cells after 72 hours of stimulation (Methods). In the HLA-DQB1 locus, 
the highest peak was located at the promoter and overlapped with SNP rs71542466 (Fig. 3C, fig. 
S15). From published ChIP-seq data, this SNP overlapped promoter and enhancer associated 
chromatin marks in primary memory CD4+ T cells (Fig. 3C) (22), as well as binding peaks for 
HLA class II regulators: RFX5 (23) (in LCLs) and the co-activator CIITA (24) (B cells; fig S15).  

  
We hypothesized that amongst the 6 intergenic SNPs of the Late-Spike haplotype, rs71542466 
located 39bp from the transcription start site of HLA-DQB1 is causal. To test this, we employed 
CRISPR/Cas9 editing in the HLA class II expressing T cell line, HH (Methods). First, we 
designed guide RNAs to cut near the 6 SNPs (fig. S16A) in order to assess the regulatory 
potential of each region. We observed that only editing near rs71542466 caused a significant 
decrease in HLA-DQ expression (Fig. 3D, fig. S16B). Next, we applied targeted base-editing to 
rs71542466 in order to convert the reference C allele to the alternative G allele. We predicted 
that HH T cell line clones homozygous for the rs71542466 reference allele should have lower 
HLA-DQB1 expression than base-edited clones with the alternative allele. We identified 7 clones 
homozygous for the alternative G allele, 7 clones homozygous for the reference C allele, and one 
clone with a 104bp deletion (fig. S17). As predicted, HLA-DQB1 was higher in alternative clones 
as measured by real-time PCR (P = 0.003, Fig. 3E). We also noted that after extended culture, 
surviving alternative allele clones had higher expression of HLA-DQ protein as measured by 
flow cytometry (P = 0.03, Fig. 3E). These results confirmed that the rs71542466 promoter SNP 
changes HLA-DQB1 expression in the expected direction in HH T cell lines, indicating that it at 
least partially accounts for the Late-Spike cis regulatory program. 
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After identifying the causal regulatory variant driving condition-dependent HLA-DQB1 
expression, we considered whether this effect is T cell-specific. We observed that our Late-Spike 
regulatory rs71542466 SNP (rSNP) was not in LD with reported eQTL SNPs for HLA-DQB1 in 
B cell derived lymphoblastoid cell lines (LCLs), monocytes, and resting and infected 
macrophages (Table S2, r2≤0.27) (5, 8, 25–27). In fact, our rSNP had no association with 
expression of HLA-DQB1 in resting macrophages (P = 0.81), in macrophages infected with 
Listeria (P = 0.31) or with Salmonella (P = 0.86) (27).  
 

To confirm the function and specificity of the Late-Spike rSNP, we applied luciferase assays and 
Electrophoretic Mobility Shift Assays (EMSA) in three cell-lines; HLA-DQ negative Jurkat E6-1 
T cells, and HLA-DQ positive HH T cells and Daudi B cells (fig. S18). EMSAs showed that only 
HH T cells had an allele specific band; we observed binding of nuclear extract proteins for the 
reference (C/C) but not the alternative (G/G) allele (Fig. 3F, fig. S19), suggesting that a 
repressor complex may bind to prevent upregulation of HLA-DQB1. Consistent with the base 
editing experiments, luciferase assays showed an increase in luminescence in the alternative 
(G/G) allele in HH T cells but not in Daudi B cells (Fig. 3G). Additionally, we stimulated 
primary B cells from the 5 homozygous individuals for the Late-Spike alleles and 5 homozygotes 
for the Fluctuating or Constant-Low alleles and did not observe fold change differences in HLA-
DQ cell surface expression at 24 hours (P = 0.3, Wilcoxon test, fig. S20).  
 

Intriguingly, within the HLA, dynamic gene regulation was not unique to HLA-DQB1. We 
observed dynASE in 5 other HLA genes. Within HLA class II genes, HLA-DRB1 had significant 
dynASE in 9 individuals (P < 2.1e-03, Bonferroni threshold), and HLA-DQA1 in 6 (P < 2.2e-03, 
Bonferroni threshold). Within HLA class I genes, HLA-B and HLA-C had significant dynASE in 
12 individuals (P < 2.4e-03 and P <2.5e-03, Bonferroni threshold, respectively), and HLA-A in 6 
(P < 2.2e-03, Bonferroni threshold). However, for these 5 genes, the magnitude of change in 
allelic fraction across time was more modest than for HLA-DQB1 (fig. S21). We observed that in 
a subset of Late-Spike HLA-DQB1 haplotypes, the HLA-DRB1 allele that is in phase on the same 
chromosome also followed a Late-Spike pattern of expression (fig. S22A). This suggests 
potential promoter interactions between HLA-DQB1 and HLA-DRB1, consistent with promoter 
capture HiC data (fig. S22B) (28, 29). 
 

We found that 31 of our dynASE genes outside of the MHC were within autoimmune disease 
loci, including UBASH3A and IL10 (Fig. 4D). We evaluated whether dynASE genes were 
significantly enriched in autoimmune disease loci using a stringent strategy where we compared 
the number of dynASE genes observed within risk loci and those found in 1000 null sets of loci 
across the genome (Methods). We found that dynASE genes are significantly enriched for risk 
loci for ankylosing spondylitis (OR = 5.7, P = 0.008), celiac disease (OR = 5.4, P = 0.004), 
vitiligo (OR = 5, P = 0.004), type 1 diabetes (OR = 4.5, P = 0.002), inflammatory bowel disease 
(OR = 3.7, P = 0.001), rheumatoid arthritis (OR = 3.6, P = 0.005), and multiple sclerosis (OR = 
3.1, P = 0.003), but not for non-immune mediated diseases (Fig. 4E). We compared these 
enrichments to non-dynASE events prior to stimulation (those with ASE at 0 hours only) and to 
published eQTLs for resting CD4+ naïve T cells (8). We observed that our dynASE genes, 
spanning up to 8 different cellular states, had the highest enrichment for autoimmune disease 
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genes (Fig. 4F). We found similar results when we assessed enrichment of polygenic heritability 
in the regions around these genes versus the rest of the genome using stratified LD score 
regression (fig. S23).  
 

In this study, we showed that allelic imbalance in expression is highly context-dependent and 
very sensitive to the time after stimulation of memory CD4+ T cells. In most cases, there was a 
dominant allele that gradually increased or decreased its expression dominance with time (e.g. 
UBASH3A, CXCR5). We suspect that these cases are a consequence of a single regulatory 
complex interacting with a single genetic variant altering gene expression; where the status of the 
regulatory complex may vary dependending on the environmental context. However, in many 
instances, we observed that the allele that was dominant switched over time (e.g. HLA-DQB1, 
F11R), which raises the possibility of multiple regulatory variants or complexes. For example, 
we identifed distinct driving variants for HLA-DQB1 at 0 and 72 hours after stimulation (LD 
r2=0.01, Table S2). Overall, this widespread dynamic allelic imbalance across the genome 
illustrates the continuously changing regulatory landscape of genes during T cell activation. 
 

We found that dynASE genes were highly enriched in autoimmune disease loci. This indicates 
that for many autoimmune disease genes, the risk allele may affect the expression of its target 
gene under very specific conditions. Indeed, this has already been shown for an autoimmune risk 
variant in an enhancer regulating IL2RA that affects its expression in a time-dependent manner, 
and the delay of expression by the risk allele leads to a preferential polarization of T cells into an 
inflammatory subtype (Th17) instead of the regulatory population (Treg) (30). These results may 
explain why investigators have found limited shared genetic effects between autoimmune 
susceptibility variants  and eQTL variants at resting state (3, 7, 31), despite the presence of 
autoimmune susceptibility variants in regulatory elements (1–3, 32).  
 

Intriguingly, we identified the most dramatic T cell and condition dependent cis regulatory 
variation within a major autoimmune disease gene: HLA-DQB1. This raises the question of 
whether, and to what extent, genetic regulatory variation controlling HLA gene expression could 
affect disease susceptibility or disease penetrance, as has been highlighted for other loci and 
traits (33). For most autoimmune diseases, the MHC region is the major contributing locus to 
disease risk. We and others have shown that specific amino acid changes in the peptide binding 
grove of HLA-DQB1 and HLA-DRB1 explain the majority, albeit not all, of the risk assigned to 
the MHC region in T1D and rheumatoid arthritis (12, 34). In this study, three of the four Late-
Spike HLA-DQB1 classical alleles are protective for T1D (OR 0.045-0.732), while the other two 
regulatory programs represent a mixture of risk and protective alleles (12). Detailed analyses on 
large sample sizes will be needed to disentangle the regulatory effects from the strong amino 
acid effects. While amino acid changes causing differential antigen display may be the primary 
autoimmune mechanism at the HLA locus, our data underscores the possibility that expression 
levels of HLA class II may also play a crucial and unappreciated role (35, 36). Over the past 
several decades, there has been literature suggesting variation in expression among different 
HLA alleles (26, 37–39)  – but to date the idea that this regulation changes with cell-state has not 
been established. It is well known that positive selection has resulted in dramatic coding 
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variation within most HLA genes. Our results suggest that the same positive selection may also 
have favored regulatory variation in HLA-DQB1 and other HLA genes. 

 
Broadly, class II expression has been well-characterized as a marker for both late activation in 
CD4+ T cells and suppressive capacity in T regulatory cells (40–42). However, the exact 
mechanisms and functional implications remain to be defined. Our work shows that not only do 
CD4+ T cells express high levels of HLA Class II, but that its expression is regulated in a cell-
type specific manner and varies between individuals. This suggests that during immune 
responses, expression of HLA II on CD4+ T cells is dynamically controlled and may be 
important to modulating function.  

 
Overall, by using both computational and experimental tools, we identified and validated highly 
context-specific genetic regulatory effects in stimulated memory CD4+ T cells and confirmed a 
causal variant in a key autoimmune gene. This work provides a framework for future studies to 
identify and validate relevant disease genes and variants.  
 

Methods 
 
Study design 

The goal of this study was to characterize cell state-dependent regulatory effects in memory 
CD4+ T cells to obtain new insights into autoimmune disease mechanisms. In initial experiments, 
we observed the most dramatic dynamic allele-specific expression effects in HLA-DQB1. To 
investigate this phenomenon in an optimal way, we recruited individuals heterozygous for 
common HLA-DQB1 classical alleles (characterized by a combination of coding single 
nucleotide alleles), with highly divergent alleles (at least a 20 mismatch differences between the 
two alleles). We used the de-identified genome-wide genotypes available from the individuals at 
the Genotype and Phenotype (GaP) Registry at The Feinstein Institute for Medical Research, to 
impute HLA classical alleles with SNP2HLA (43) and select individuals. The GaP Registry 
provided de-identified cryopreserved PBMCs from 24 donors with no autoimmune disease, 20-
50 years old, and of European ancestry. Donors provided fresh, de-identified human peripheral 
blood mononuclear cells (PBMCs); blood was collected from subjects under an IRB-approved 
protocol (IRB# 09-081) and processed to isolate PBMCs. The GaP is a sub-protocol of the 
Tissue Donation Program (TDP) at Northwell Health and a national resource for genotype-
phenotype studies (44). HLA classical alleles were subsequently experimentally confirmed with 
HLA typing (see below). 

 
Similarly, for the protein level validation experiments, we recruited through the GaP 

Registry individuals homozygous for HLA-DQB1 classical alleles pertaining to the Late-Spike 
regulatory program (N = 5) or other programs (N = 5). These individuals were also between 20 
to 50 years old, with no reported autoimmune disease, and of European ancestry.  

 
Memory CD4+ T cell stimulation time course 

PBMCs were thawed and resuspended in pre-warmed complete RPMI (cRPMI) (RPMI 
1640, supplemented with 10% heat inactivated FBS, and 1% non-essential amino acids, sodium 
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pyruvate, HEPES, L-Glutamine, Penicillin & Streptomycin, and 0.1% β-mercaptoethanol). 
Memory CD4+ T cells were isolated by magnetic selection (Miltenyi, Memory CD4+ T cell 
Isolation Kit human). Cells were counted, washed in cRPMI, and resuspended at a concentration 
of two million cells per ml. One million cells per well were plated in sterile 48 well plates 
(Corning). The cells were rested at 37°C overnight. Twelve hours after the beginning of the rest 
marked the first time point, T = 0 hours. At this time, cells were spun down and resuspended in 
350 µL of RLT lysis buffer (Qiagen) containing β-mercaptoethanol and stored in a sterile 
Eppendorf tube at -80°C. To the remaining wells, 500 µL cRPMI with human T-Activator 
CD3/CD28 Dynabeads (Gibco) were added to each well at a ratio of 2 cells : 1 bead. Cells were 
collected at 2, 4, 8, 12, 24, 48, and 72 hours after stimulation. Once all cell pellets were 
collected, resuspended in RLT and frozen, the mRNA was isolated using a RNeasy mini kit 
(Qiagen). RNA concentration was measured using Implen’s cuvette based UV/Vis 
spectrophotometer. The purified RNA samples were stored at -80°C until submitted for 
sequencing at the Broad Institute in Cambridge, MA. 

 
Library construction and RNA sequencing 

Total RNA was quantified using the Quant-iT™ RiboGreen® RNA assay kit and 
normalized to 5 ng/µL. Following plating, 2 µL of ERCC controls (using a 1:1000 dilution) were 
spiked into each sample. An aliquot of 200 ng for each sample was transferred into library 
preparation which uses an automated variant of the Illumina TruSeq™ stranded mRNA sample 
preparation kit. Briefly, oligo dT beads were used to select mRNA from the total RNA sample 
followed by heat fragmentation and cDNA synthesis. The resultant cDNA was then dual-indexed 
by ‘A’ base addition, adapter ligation using P7 adapters, and PCR enrichment using P5 adapters. 
After enrichment, libraries were quantified using Quant-iT PicoGreen (1:200 dilution). After 
normalizing samples to 5 ng/µL, the set was pooled and quantified using the KAPA library 
quantification kit for Illumina sequencing platforms. The entire process was performed in 96-
well format and all pipetting performed by either Agilent Bravo or Hamilton Starlet.  

 
Pooled libraries were normalized to 2 nM and denatured using 0.1 M NaOH prior to 

sequencing. Flowcell cluster amplification and sequencing were performed according to the 
manufacturer’s protocols using either the HiSeq 2000 or HiSeq 2500. Each run used 101 bp 
paired-end reads with eight-base index barcodes. Data was de-multiplexed and aggregated using 
the Broad Picard pipeline. Libraries were sequenced at a mean depth of 41 million fragments 
(read pairs), median 37 million, and minimum 24 million fragments. 

  
Gene expression analyses 

We mapped reads to the hg19 reference genome with subread v1.5.1(45) (with parameters: -
u -Q -D 100000 -t 0 -T 4) and quantified expression levels using featureCounts (with parameters: 
-T 4 -Q 20 -C -s 2 -p -P -D 100000) and GENCODE (46) v19 annotation. We removed two 
outliers, one had >50% of PCR duplicates and <60% of reads assigned to genes, the other one 
had less than 19,000 genes detected and less than 98% of common genes detected (common 
genes are those detected in at least 95% of samples; fig. S4). We considered expressed genes 
with log2(tpm+1) > 2 in at least 20 samples. For PCA we took 1,070 genes with standard 
deviation > 1 and mean expression > 3 log2(tpm+1), we scaled gene to mean zero and variance 
one and performed PCA with the R (47) function prcomp . For gene clustering, we used k-means 
on the scaled mean expression per gene. Six clusters captured 70% of between group over total 
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sum of squares; increasing k, the predefined number of clusters, had minor incremental 
improvements. Enrichment of MsigDB hallmarks v6.2 (48, 49) was performed with the enricher 
function of the R package clusterProfiler (50). 

  
Variant genotyping, imputation and filtering 

Individuals were genotyped genome-wide using the Genome Screen Array (GSA) assaying 
647K SNPs. For pre-imputation QC, we used plink v1.90b3w (51) to filter out variants with 
missing call frequencies greater than 0.05, Hardy Weinberg Equilibrium (HWE) threshold P < 
1e-05, MAF 0.03, keeping a total of 339,333 variants. We imputed variants into the 1000 
Genomes reference panel (52) using SHAPEIT v2.r837 (53) and IMPUTE2 v2.3.2 (54). We 
filtered out variants with info score < 0.9, multiallelic, HWE threshold P < 1e-05, non-
polymorphic within our 24 individuals, and with MAF <1% in Europeans of the 1000 Genomes 
reference panel, and indels. This yielded a total of 5,144,453 SNPs. When selecting heterozygous 
SNPs per individual, we further required a genotype probability > 0.9; a total of ~1.5M 
heterozygous SNPs per individual remained. 

  
Dynamic allele-specific expression analysis 

We used subread v1.5.1 to align reads to the hg19 reference genome and filtered out reads 
with mapping quality < 10. We used WASP (55) to filter out reads that had mapping bias at 
heterozygous sites and to remove duplicates. For quantifying allele counts at heterozygous sites, 
we used GATK (56) v3.8 ASEReadCounter (with parameters --minMappingQuality 10, --
minBaseQuality 10, -U ALLOW_N_CIGAR_READS), and followed recommended best 
practices (57). For initial QC (fig. S6), for each sample we took all heterozygous sites with at 
least 10 reads (6,496-44,864 sites per sample). The mean coverage across sites per sample 
ranged from 50-127. All samples had >95% of both alleles observed at included heterozygous 
sites. The mean reference fraction was close to 0.5 for all samples (mean 0.5098, range from 
0.5045 to 0.5159). For a given heterozygous site, the reference fraction refers to the number of 
reads with the reference allele divided by the total number of reads overlapping the site. Allelic 
imbalance is the distance to 0.5 reference fraction (i.e. absolute value of: the reference fraction 
minus 0.5). 

  
To identify sites with dynamic ASE, we used a nested approach using a logistic regression 

framework on a per individual, per heterozygous site basis, with the lme4 (58) R package. Each 
read is encoded according to the following: 1 if it contains a reference allele or 0 if it contains the 
alternative allele. For each time course per individual, we included sites with at least 20 reads in 
at least 4 time points and required that both reference and alternative alleles are seen in all 
included samples. First, we identified sites with evidence of ASE by merging data from all time 
points and testing if the intercept is significantly different from zero (assuming a standard normal 
distribution and using a z-test) and used a Bonferroni threshold to determine significance (0.05 
divided by the number of tests). Then, we tested which of these sites had ASE that changes with 
time by fitting a second order polynomial model, coding time point 1 through 8 (or maximum 
number of time points) and scaling to mean zero variance one. We controlled for overdispersion 
of allelic counts due to technical or biological sample to sample variability (59) by incorporating 
a random intercept effect, coding sample ID as a factor. We tested for the effects of time by 
performing a likelihood ratio test between the two nested models using R anova function. The 
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null model H0 and alternative model H1 for a given SNP i in a given individual j are detailed 
below: 

H0: !" ( !
!!!)i,j = α + µi,j 

H1: !" ( !
!!!)i,j = α + µi,j + β1t + β2t2 

Where ! is the probability of observing the reference allele, α is the intercept, µ is the 
random intercept effect across samples, t is time, and β is the effect of time on the log-odds of 
observing the reference allele. We calculated the FDR per test using the qvalue R package (60), 
and called significant all events with q<0.05 (<5% FDR), unless otherwise stated. 

 
Functional enrichment for dynASE genes was performed using the C5 genesets from 

MsigDB, which are composed of GO biological processes (c5.bp.v6.2). Enrichment with respect 
to all tested genes or all genes with significant ASE (over all merged time points) was tested with 
the enricher function, of the clusterProfiler R package, which is based on the hypergeometric 
distribution.  

  
HLA typing 

Purified DNA from the 24 individuals was sent to the NHS Blood and Transplant, UK, 
where HLA typing was performed. Next generation sequencing was done for HLA-DQB1, HLA-
A, HLA-B, HLA-C, and for HLA-DRB1. PCR-SSOP was done for HLA-DQA1 in all individuals, 
and for HLA-DRB1 in 6 individuals for which limited DNA was available. These typing 
methods yielded classical allele calls for the six genes at 4 to 8-digit resolution. 

  
Allele-specific expression in HLA genes 

To prepare an HLA personalized genome for each individual we first took the HLA 6-digit 
classical allele calls for each of the 6 HLA genes (12 alleles total) and downloaded from the IPD-
IMGT/HLA database (61) the corresponding cDNA sequence. Next, we added the 12 cDNA 
sequences to the hg19 reference genome, each encoded as a separate chromosome. We masked 
with Ns the exonic regions corresponding to the cDNA sequences. We indexed the genome for 
subread usage.  

 
For each individual, we aligned per sample the reads to the HLA-personalized genome with 

subread (with parameters: -u -Q -D 100000 -t 0 -T 4). We removed PCR duplicates with Picard 
Tools v1.119. We counted the number of uniquely mapped reads to each HLA allele with 
featureCounts (with parameters: -T 4 -Q 40 -p) using a personalized gtf annotation file per 
individual.  

 
To identify dynASE for each HLA gene, we used the same statistical approach mentioned 

above. Instead of using allele counts for a single SNP, we used counts for the whole cDNA per 
HLA allele (usually encompassing 3-4 exons, 552-1119 bp). To compare HLA allelic expression 
levels between samples, we normalized the HLA allele counts by library size and cDNA size 
(FPKM). For the two individuals for which we had full time course replicates, we used the mean 
of the FPKM values.  
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For testing whether allelic profiles of HLA-DQB1 4-digit classical allele groups are more 
similar to each other than expected by chance, we calculated the sum of squares within 4-digit 
allele groups, and total sum of squares (observed values). Then, we permuted the 4-digit allele 
groups 10,000 times, and repeated the sum of squares calculations (fig. S10). For this analysis, 
we excluded four allelic profiles with 4-digit alleles that were present only once in our 48 allelic 
profiles (DQB1*04:02, DQB1*06:01, DQB1*06:09 and DQB1*05:03). 

 
For HLA-DQB1 allelic profile grouping with k-means clustering and PCA, we removed the 

12 hour time point due to its high number of missing values (caused by an insufficient number of 
cells obtained for some individuals), and further excluded another 2 individuals with missing 
values, resulting in a total of 44 allelic profiles (2x22 individuals). For both of these analyses we 
used log2(FPKM+1) values. Three clusters captured 64% of the variation in our data, defined by 
the ratio of between group sum of squares and total sum of squares. Two clusters captured a 
significantly lower amount of between group variability (37%), and four clusters (70%) had a 
modest increase from three. PCA was performed on allelic expression profiles with prcomp with 
center = TRUE, and independently showed that the three clusters identified with k-means 
separate well (fig. S11).  

 
HLA-DQ protein level validations on memory CD4+ T cells and B cells 

Ten additional individuals were recruited through the GaP Registry (see Study Design). 
Five individuals were homozygous for Late-Spike alleles: one for DQB1*05:03 and four for 
DQB1*05:01. Five individuals were homozygous for alleles in the other two cis regulatory 
programs (Constant-Low, and Fluctuating): one for DQB1*03:02, one for DQB1*02:01, one for 
DQB1*02:02 and two for DQB1*03:01. PBMCs were thawed and put immediately in warm 
cRPMI. For analysis of memory CD4+ T cells, cells were washed twice and isolated as before 
using a magnetic selection kit (Miltenyi, Memory CD4+ T cell Isolation Kit human). Isolated 
cells were then rested overnight at a concentration of 1 million/mL in 48 well plates and 
stimulated the next day with anti-CD3/CD28 dynabeads at a ratio of 2 cells:1 bead. T cells were 
assayed for expression of HLA-DQ by flow cytometry on day 0 (unstimulated) and days 1, 3, 
and 7. For all samples, cells were isolated, washed twice in PBS, and stained with Zombie Violet 
Live/Dead (Biolegend) for 30 minutes on ice. After staining, cells were washed and Fc receptors 
blocked with FcX True Stain (Biolegend) for 15 minutes on ice followed by staining with 
directly conjugated antibodies: PE anti-HLA-DR (Biolegend, Clone: L243), APC anti-HLA-
DP(Leinco Technologies, Clone: B7/21), FITC anti-HLA-DQ(Biolegend, Clones: HLADQ1 or 
Tu169), BV711 anti-CD25(Biolegend, Clone: M-A251), and PE-Cy7 anti-CD4(Biolegend, 
Clone: OKT4). Cell were stained for 30 minutes on ice, washed twice, and samples analyzed on 
a BD LSR Fortessa. For B cells, 0.5 million total PBMCs in cRPMI were stimulated with a 
cocktail of CpG (2006, 0.35 µM), CD40L (1 µg/mL), anti-Ig (10 µg/mL), and rhIL-21 (20 
ng/mL) in 48 well plates for 0 and 1 day. As before, all samples were isolated, stained with 
Live/Dead, and Fc receptors blocked. Cells were then stained for 30 minutes on ice with PE anti-
HLA-DR (Biolegend, Clone: L243) , APC anti-HLA-DP (Leinco Technologies, Clone: B7/21), 
FITC anti-HLA-DQ (Biolegend, Clones: HLADQ1 or Tu169), PeCy7 anti-IgD (Biolegend, 
Clone: IA6-2), BV510 anti-CD27 (Biolegend, Clone: O323), BV605 anti-CD3(Biolegend, 
Clone: OKT3), BV785 anti-CD38 (Biolegend, Clone: HB-7), BV650 anti-CD19(Biolegend, 
Clone: HIB19), PerCP-Cy5.5 anti-CD45R0 (Biolegend, Clone: UCHL1), BUV496 anti-CD4 
(BD Biosciences, Clone: SK3). As before, data was collected on a BD LSR Fortessa. All data 
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was processed using Flowjo, gated as shown in the supplement, and channel values exported for 
analysis.  

 
Regulatory variant fine-mapping 

To look for genetic variants in LD with the Late-Spike haplotype, we called Single 
Nucleotide Variants (SNVs), small INsertions and DELetions (INDELs) and classical HLA 
variants using whole genome sequences of 2,244 healthy volunteers recruited from the Estonian 
Genome Project (62, 63) sequenced at 25x. We performed high-resolution (G-group) HLA 
calling of three class-I HLA genes (HLA-A, -B and -C) and three class-II HLA genes (HLA-
DRB1, -DQA1 and -DQB1) using the HLA*PRG algorithm (64). We called SNVs and INDELs 
using GATK version 3.6 according to the best practices for variant discovery (65). In total we 
called 246,505 variants in the extended MHC region (29-34 Mb on chromosome 6, NCBI Build 
37). 

 
To check if any SNVs are in high LD with the Late-Spike haplotype, we first used the 

Estonian reference panel and restricted our analyses to individuals who carried the alleles present 
in our 24 individuals (N = 2,198). Namely, there were 58 individuals with two HLA-DQB1 
alleles (at 4-digit resolution) pertaining to the Late-Spike haplotype (i.e. DQB1*05:01, 05:02, 
05:03 or 06:01), 616 with one Late-Spike haplotype allele, and 1,524 individuals with zero Late-
Spike haplotype alleles. To filter out possible false-positive variants, we next restricted the 
analyses to SNPs with minor allele frequency (MAF) ≥ 0.05 and within 1 Mb region of the HLA-
DQB1 gene (N = 27,210). Next, we computed the Pearson correlation between Late-Spike 
haplotype dosage (0, 1 or 2) and individual SNP genotypes. Refseq gene annotations were used 
to determine start and end of HLA-DQB1, HLA-DRB1 and HLA-DQA1. 

 
For the eQTL analyses within our cohort we used log2(FPKM+1) gene expression values 

for HLA-DQB1 (the sum of FPKM of both alleles from each individual) at a given time point and 
looked for association of expression with SNPs (with MAF 5%) within 1Mb of the TSS using 
Pearson correlation. 

  
ATAC-seq experiments and data processing 

Memory CD4+ T cells from one new PBMC donor from the GaP Registry were purified and 
cultured as described above for 72 hours with anti-CD3/CD28 stimulation beads. Post 
stimulation, the cells were harvested and washed with PBS. Cells were then resuspended in 
500µL of a freshly prepared 1% formaldehyde solution (Thermo Scientific) and fixed for 10 
minutes. The fixation reaction was subsequently quenched with the addition of 2.5 M glycine for 
5 minutes. The sample was spun to remove the fixative and washed in PBS. The solution was 
carefully decanted and the resulting pellet was frozen. For open chromatin library preparation, 
two samples, one of 50,000 cells and another of 10,000 cells, were resuspended in 1 mL of cold 
ATAC-seq resuspension buffer (RSB; 10 mM Tris-HCl pH 7.4, 10 mM NaCl, and 3 mM MgCl2 
in water). Cells were centrifuged at max speed for 5 min in a pre-chilled (4°C) fixed-angle 
centrifuge. After centrifugation the supernatant was carefully aspirated. Cell pellets were then 
resuspended in 50 µL of ATAC-seq RSB containing 0.1% NP40, 0.1% Tween-20, and 0.01% 
digitonin by pipetting up and down three times. This cell lysis reaction was incubated on ice for 
3 min. After lysis, 1 mL of ATAC-seq RSB containing 0.1% Tween-20 (without NP40 or 
digitonin) was added, and the tubes were inverted to mix. Nuclei were then centrifuged for 5 min 
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at max speed in a pre-chilled (4°C) fixed-angle centrifuge. The supernatant was removed and 
nuclei were resuspended in 50 µL of transposition mix (66) 2.5 µL transposase (100 nM final), 
16.5 µL PBS, 0.5 µL 1% digitonin, 0.5 µL 10% Tween-20, and 5 µL water) by pipetting up and 
down six times. Transposition reactions were incubated at 37°C for 30 min in a thermomixer 
with shaking at 1,000 rpm. Reactions were cleaned up with Qiagen columns. Libraries were 
amplified as described previously (67). 

 
Libraries were paired-end sequenced with an Illumina NextSeq 500 with read length of 150 

bp. Reads were mapped to the hg19 reference genome with subread. Uniquely mapped reads 
with mapping quality > 10 were selected, and PCR duplicates were removed with Picard tools. 
Peaks on chromosome 6 were called with MACS2 (with parameters --nomodel -q 0.1).  

 
Cell lines 

HH cutaneous T cell lines (ATCC: CRL-2105), Jurkat E6-1 (ATCC: TIB-152), and Daudi 
(ATCC: CCL-213, provided by Dr. Michael Brenner), were all cultured in complete RPMI as 
previously described.  

 
Bulk CRISPR/Cas9 editing 

To investigate regulatory regions around HLA-DQ, the nearest sgRNA to the SNP of 
interest was selected using Deskgen online tools (www.deskgen.com). Distances of designed 
sgRNA to the nearest SNP are shown in fig. S16. To confirm the sequence of the region, 
genomic DNA around HLA-DQB1 was PCR amplified and Sanger sequenced using the primers: 
5’-TCGGGTCTCTGAATCCCACT & 5’CAGGACCCAGGAAATGCTTCT, and 
5’GGAGCTCTGCCATTTGTCCT & 5’TGACTCTGCTTCCTGCACTG. CRISPR/Cas9 RNP 
complexes were assembled as previously described(68). Briefly, 40 µM Cas9 protein (QB3 
Mircolabs) was mixed with equal volumes of 40 µM modified sgRNA (Synthego) and incubated 
at 37°C for 15 minutes to form ribonuclear protein (RNP) complexes. HH cells were 
nucleofected with 2µL of RNPs in an Amaxa 4D nucleofector (SE protocol: CL-120). Cells were 
immediately transferred to 24 well plates with pre-warmed media and cultured. After 7-10 days, 
HLA-DQ expression was assessed by flow cytometry. Editing was confirmed by PCR 
amplifying genomic DNA around HLA-DQB1 and sequences analyzed by Tracking of Indels by 
Decompostiion (TIDE) analysis (tide.deskgen.com).  

 
sgRNA target sequences with PAM bolded 
rs28451423 - TGTGAAATCAACTTGACTCTAGG,  
rs71542466 - GCTGATTGGTTCTTTTCCGAGGG,  
rs72844401 - AATGCCTCGGGGATTTTGAGAGG,  
rs4279477 - AGAACTTTGCTCTTCTCCCCAGG,  
rs71542467 - GAGCTGAAGAACGAATGCCTCGG,  
rs71542468 - GCTGAAGAACGAATGCCTCGGGG 
 
CRISPR/Cas9 base-editing of rs71542466 in HH cells 

For generation of base-edited cell lines, HH cells were nucleofected with RNPs using 
sgRNA targeting near rs71542466 and asymmetrical ssDNA donors as previously described 
(69). Modified cells were grown for 7-10 days then single cell sorted using a BD Aria II into 96 
well U bottom plates. After 2-3 months of outgrowth, DNA from surviving clones (194/1200) 
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was isolated using DNA quick extract solution (Lucigen) following a modified protocol. Briefly, 
100 µL of cell culture was spun down, washed once with PBS, and then re-suspended in 20 µL 
of DNA extraction solution. Solution was heated in a thermocycler to 65°C for 15 minutes, 68°C 
for 15 minutes, 98°C for 10 minutes, and stored at 4 degrees. After DNA extraction, solution was 
diluted 1:20 and 5 µL used in a standard 50 µL PCR reaction using Q5 enzyme (NEB). PCR 
products were Sanger sequenced and analyzed using SnapGene to identify SNP corrected clones 
(7/192), wildtype HH clones (7/192), and a single (1/194) insertion / deletions clone. Sequences 
are shown in fig. S17.  

 
HDR sequence  

ACAGCTCGGACCTGATGGATCTGATGTACCTGGCAGAAAGAATAAAAACCTG
TGGATGTTTCCGTGAGTGGCAGGATTGGATGGTCGCTCGGAAAAGAACCAATCAG
CACTGGAGCTGAAGGACCTC 

 
Real-time PCR and flow cytometry analysis of HH clones 

For analysis of HLA-DQB1 expression on HH WT (C/C) and ALT (G/G) clones, RNA was 
extracted from clones using a Monarch Total RNA extraction kit (NEB). cDNA was synthesized 
using MaximaH RT (NEB) enzyme following manufacturer’s protocol and oligoDT primers. 
cDNA was diluted 1 in 4 with HLA-DQB1 (Assay ID:Hs00409790) and actinB (Assay 
ID:Hs01060665) probes and Taqman MasterMix (Thermofisher). Samples were run on an 
ARIAmx qPCR machine (Agilent) and data analyzed with Aria 1.5 (Agilent) software. 
Expression is represented as 2-delta(HLA-DQB1 Ct - ActinB Ct). For analysis of protein expression, clones 
that survived after 3-4 months of culture were washed with PBS and stained with FITC anti-
HLA-DQ  (Biolegend, Clone: HLADQ1) for 30 minutes on ice and cell surface expression 
assessed by flow cytometry. Data was analyzed using Flowjo and Graphpad PRISM.  

 
Electrophoreitc Mobility Shift Assays 

EMSAs were performed using the LightShift Chemiluminiscent EMSA Kit (Thermo 
Scientific). Single-stranded biotinylated oligonucleotides and complementary sequences 
corresponding to 31 nucleotides (15 nucleotides flanking the SNP of interest) were purchased 
from Eurofin Genomics and annealed by heating at 95°C for 5 minutes followed by a ramp down 
(-1°C/ minute) to room temperature (20°C).  

 
Nuclear extract from Jurkat, HH, and Daudi cells was isolated using the NE-PER nuclear 

and cytoplasmic extraction kit (Thermofisher Scientific) with slight modification. 20 million 
cells were spun down, washed twice with PBS, and used in the protocol with half volumes of 
NER buffer. All buffers contained protease inhibitors (Thermofisher). Protein extracts were then 
dialyzed using a membrane with a molecular weight cut-off of 12–14 kDa (Spectrum Spectra) 
against 1 L of dialysis buffer (10 mM Tris pH 7.5, 50 mM KCl, 200 mM NaCl, 1 mM 
dithiothreitol, 1 mM phenylmethane sulfonyl fluoride, and 10% glycerol) for 16 h at 4°C with 
slow stirring. The protein concentration was measured using the Pierce BCA protein assay kit 
(Thermo Scientific). 
 
The standard binding reaction contained 2 µL of 10× Binding Buffer, 2.5% glycerol, 5 mM 
MgCl2, 0.05% NP40, 50 ng Poly(dI:dC), 20 fmol biotin-labeled probe, and 10-20 µg of nuclear 
extract in a final volume of 20 µL. For competition, a 200-fold molar excess (4 pmol) of 
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unlabeled probe was added. 
 
Binding reactions were incubated at room temperature for 30 min and loaded onto a 6% 
polyacrylamide 0.5× Criterion precast TBE gel (Biorad). After sample electrophoresis and 
transfer to a nylon membrane, DNA was crosslinked for 10 min, and biotinylated probes detected 
by chemiluminescence followed by film exposure. Original films and replicated are presented in 
a fig. S19. 

 
List of probes: 
Alt A CAGGATTGGATGGTCGCTCGGAAAAGAACCA 
Alt B TGGTTCTTTTCCGAGCGACCATCCAATCCTG 
Ref A CAGGATTGGATGGTCCCTCGGAAAAGAACCA 
Ref B TGGTTCTTTTCCGAGGGACCATCCAATCCTG 
 

Luciferase assay 
A double-stranded oligonucleotide containing the SNP of interest (31nt + restriction 

enzyme sites) was ordered and annealed as described above. Probes and the luciferase reporter 
vector pGL3 promoter (Promega) were digested with BglII (NEB) for 1 h at 37°C, and the 
linearized vector was simultaneously dephosphorylated with alkaline phosphatase (NEB). 
Digestion products were purified with the Gel Extraction Kit (Thermofisher) from 1% agarose 
gels. Ligation was then performed in a ratio of 1:50 (vector:insert) with T4 DNA ligase (NEB) at 
room temperature for one hour and then transformed into NEB10 competent cells (NEB). 
Plasmids from independent colonies were isolated using a plasmid DNA minikit and Sanger 
sequenced to identify correctly inserted clones. 
 
3 × 105 Jurkat, HH, and Daudi cells were nucleofected with 0.9 µg of pGL3-Promoter vector 
along with 0.1 µg of pRL-TK Renilla luciferase vector (Promega) in 16 well strips in a 4D 
nucleofector with the following protocols and buffers in 20 µL of total volume: Jurkat, SE 
buffer, CL-120 protocol; HH, SE buffer, CL-120 protocol; Daudi SF buffer, CA-137 protocol. 
After nucleofection, 180 µL of complete RPMI was added and cells cultured in 96 well flat 
bottom plates (Falcon). After 48 hours, cells were spun down, resuspended in 75 of fresh 
complete media, and luciferase/renilla activity measured using the Dual-Glo Luciferase Assay 
System (Promega). Firefly luciferase activity was expressed as relative luciferase units (RLU) 
after correction for Renilla luciferase activity. Data were normalized to those cells transfected 
with empty pGL3-Promoter vector. Each dot represents an independent nucleofection reaction.  
 
Autoimmune disease enrichment analyses 

We downloaded SNPs from the GWAS catalogue on July 17, 2018. We selected SNPs with 
P < 5e-08 for 11 autoimmune diseases and 3 non-immune mediated diseases that served as a 
negative control (schizophrenia, type 2 diabetes, coronary heart disease). We used SNPsea to 
capture genes within disease loci based on LD and recombination interval information (70). We 
then assessed how many of the dynASE genes overlap genes in disease loci for each disease 
(observed overlap). To assess whether this overlap represented a significant enrichment, for each 
disease we created 1000 null sets of N random regions in the genome (N = number of disease 
loci), which were matched by the number of genes per locus (within 15% of each disease locus). 
We then calculated the ratio of observed overlap with the mean overlap of our 1000 null sets 
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(fold enrichment). We calculated the P-value as: (number of null overlaps larger than observed 
overlap + 1)/1001 (71). We took the same approach for genes with significant ASE at 0 hours (N 
= 501), and eQTL genes of naïve T cells reported by the Blueprint Consortium (N = 5,688) (8). 

  

We carried out a heritability enrichment analysis using GWAS summary statistics and stratified 
LD score regression (S-LDSC) (32) for six autoimmune diseases and three non-immune 
mediated diseases. For each gene category described above (dynASE, 0 hours ASE, naive T 
eQTL), we separately created functional annotations consisting of all SNPs within +/- 100 kb of 
each gene. We define enrichment of an annotation as the proportion of heritability explained by 
the annotation divided by the proportion of the common (MAF ≥ 0.05) SNPs included in the 
annotation. To test for enrichment significance, S-LDSC tests if the per-SNP heritability is 
greater in the functional annotation than outside of the functional annotation. Standard errors 
around the enrichment mean are computed by using a block jackknife of 200 equally-sized 
adjacent blocks of SNPs genome-wide. Then, we compute a z-score to test for significance. 
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Fig. 1. Dynamic allele-specific expression during T cell activation. (A) Study design. (B) Principal Component 
Analysis on top 1070 most variable genes. Shown are PC1 and PC2 scores for the 200 samples colored by time 
point. (C) Plot showing position across the genome of dynamic allele-specific expression (ASE) events, with y-axis 
indicating FDR. In red, highlighted examples. (D) Examples of dynamic ASE events in three genes. For each time 
point, we show allele counts for the SNP (top) and fraction of reads with the reference allele (bottom). (E) Spearman 
correlation coefficient between gene expression levels (in log2 scale) and SNP allelic imbalance (distance to 0.5 
reference fraction) across time (top), and specific example (bottom). Red dot indicates start of trajectory (0 hour 
time point). 
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Fig. 2. HLA-DQB1 dynamic allele-specific expression at mRNA and protein levels. (A) Scheme of HLA-
personalized pipeline and study design for allelic expression quantification in highly divergent HLA-DQB1 alleles 
within each individual. (B) HLA-DQB1 allele counts for an individual over time. (C) Normalized allelic expression 
for HLA-DQB1 (top, in log2 scale), and allelic fraction (bottom) for three individuals. (D) Heatplot shows 
normalized allelic expression levels (in log2 scale) for each of the 48 HLA-DQB1 alleles in our cohort. Allelic 
profiles were clustered into three cis Regulatory Programs, for which the average expression profile is shown on the 
right with a black line, and total expression area occupied by all alleles in that cluster is shown with the colored 
ribbon. (E) Left panel shows normalized allelic mRNA expression levels (in log2 scale). Middle panel shows protein 
levels (median fluorescence intensity of HLA-DQ+ CD4+ memory T cells) for 5 homozygous individuals for alleles 
within the Late-Spike regulatory program (blue) and 5 homozygous individuals for alleles in Constant-Low or 
Fluctuating programs (yellow). Right panel shows log2 fold change in HLA-DQ MFI between day 0 and day 7. P-
value from Wilcoxon one-tailed test. 
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Fig. 3. Validation of causal variant for Late-Spike cis regulatory program. (A) Location of 6 fine-mapped non-
coding SNPs around HLA-DQB1. Tracks showing open chromatin regions (ATAC-seq) or regions marked by 
histone modifications (ChIP-seq). (B) CRISPR/Cas9 cuts at or near six fine-mapped SNPs in HH T cell lines. Left, 
experiment scheme. Middle, representative example of HLA-DQ expression levels. Right, HLA-DQ median 
fluorescence intensity relative to control, for each of the 6 SNPs, in triplicate. (C) Validation of causal SNP 
rs71542466 with CRISPR/Ca9 and ssDNA oligo HDR template. Left, experiment scheme. Middle, mRNA HLA-
DQB1 quantification with qPCR Taqman assay for 7 wild type (WT, CC genotype), and 7 SNP edited (ALT, GG 
genotype) expanded clones for rs71542466, as well as a cell line clone with an indel at the same target position. 
Right, HLA-DQ protein levels measured with flow cytometry. N = 5 WT and 4 ALT clones. (D) Electrophoretic 
Mobility Shift Assay using nuclear extract of three cell lines, with biotin labeled probes with reference (REF) or 
alternative (ALT) alleles for rs71542466. (E) Luciferase assay in three cell lines. Cntrl, control. REF, reference 
allele. ALT, alternative allele. All P-values from Mann-Whitney one-tailed test. 
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Fig. 4. Non-MHC dynamic allele-specific expression genes are enriched in autoimmune disease 
loci. (A-B) DynASE examples for two autoimmune disease genes. (C) Fold enrichment of 
dynASE genes (blue) in risk loci for autoimmune diseases and 3 non-immune mediated diseases, 
using 1000 null sets of loci matched by number of loci per disease and number of genes per 
locus. Same for genes with significant ASE at 0 hours (green), and naive T cell eQTL genes 
(pink). Filled circles mark permutation P < 0.01, empty circles mark permutation P > 0.01. 
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Fig. S1. Individuals of European ancestry. Principal component analysis performed on 8,772 LD pruned 
SNPs with MAF of 5% from 2,238 individuals from the GaP Registry, and 2,504 individuals from the 1,000 
genomes project. Shown are only the 24 GaP individuals that were recruited for the present RNA-seq study 
(black), and all the 1,000 genome individuals of European (blue), African (yellow), East Asian (red), South 
Asian (pink) and Ad Mixed American (purple) ancestries.
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Fig. S2. Replication of dynamic ASE in two pilot individuals. (A) For dynamic ASE events significant in 
replicate A of individual TB03072560, the P-values (left panel) and beta for time (middle) and time squared 
(right) were checked in replicate B. (B) Same as for (A) but for individual TB03073798.
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Fig. S3. Replication examples of dynamic ASE in two pilot individuals. Examples of dynamic ASE 
events significant in replicate A of individual TB03072560 (A), and replicate A of individual TB03073798 
(B). Shown are allelic counts for heterozygous SNP (left) and reference fraction over time (right) for 
replicate A (top panels) and replicate B (bottom panels).
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Fig. S4. RNA-seq data summary and quality check. (A) Histograms showing the number of sequenced 
fragments (read pairs) per library. Right panel is a zoom in of left panel, with median (red, 37M) and mean 
(blue, 41M) indicated. (B-D) Histograms showing percent of mapped fragments (B), percent of fragments 
assigned to exons (C) and number of genes detected (>=1 mapped fragment, D) per library. (E) Histogram 
showing the fraction of common genes detected per sample. Common genes defined by being detected in 
>95% of samples.
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Fig. S5. Six gene expression clusters show activated and repressed genes and pathways. Scaled 
log2(tpm+1) gene expression levels for genes pertaining to each of the four activation clusters (red) and two 
repression clusters (blue) detected through k-means clustering. Central line indicates mean expression per 
cluster. Ribbons around the central line show the 2.5 and 97.5 percentiles of expression among all genes in 
the cluster. Indicated in each plot are pathways significantly enriched for genes in the cluster.
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A

Fig. S6. Allele specific expression data summary and quality check. (A) Histograms showing the refer-
ence fraction distribution of a typical sample. Included are all heterozygous sites with at least 10 reads 
(left), and requiring both alleles seen (right). Histograms showing per sample, the number of sites with at 
least 10 reads (B), and then within, sites with at least 10 reads: the proportion of both alleles seen (C), the 
mean reference fraction (D) and mean coverage (E).
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Fig. S7. Dynamic ASE genes are enriched for T cell specific eQTL genes. Overlapping fraction of 
dynamic ASE genes (5% FDR) with Blueprint-reported eQTL genes identified in naive T cells but not 
monocyte or neutrophils (T cell), in monocytes but not T cells or neutrophils (Monocyte), and in neutrophils 
but not T cells or monocytes (Neutrophil).
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Fig. S8. Dynamic ASE in HLA-DQB1 SNPs. Allele counts (left panel) and the correspoinding reference 
fraction over time (right panel) for two heterozygous SNPs in HLA-DQB1 for individual TB03074401 (A) 
and TB03073148 (B).
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Fig. S9. Allelic fraction replication in HLA gene quantifications. Allelic fraction across time for the 3 
HLA class II genes (A) and 3 HLA class I genes (B), for the two pilot individuals with full time course 
replicates. Replicate A in black, replicate B in blue.
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Fig. S10. HLA-DQB1 4-digit allele groups have similar allelic profiles among each other. Histograms 
showing distribution of (A) sum of squares within 4-digit classical allele groups, and (B) sum of squares 
within 4-digit classical allele groups over total sum of squares, for 10,000 permutations of 4-digit classical 
alleles on HLA-DQB1 allelic expression profiles. Red line indicates observed value. 
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Fig. S11. Pincipal component analysis of HLA-DQB1 allelic profiles over time. PCA performed for 48 
HLA-DQB1 allelic profiles of 24 individuals (log2(FPKM+1) values over time, colored by 4-digit 
classical HLA-DQB1 allele (A), and by the k-means cluster to which they belong (B). Average allelic 
expression was computed for samples with replicates. Twelve hour time point was removed because of high 
number of missing values. 
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Fig. S12. Representative flow cytometry staining of stimulated T cells from PBMCs. Memory CD4+ T 
cells from a healthy donor homozygous for a Late-Spike allele stimulated with anti-CD3/CD28 microbeads 
for 7 days, and gated as shown to measure median flourescence intensity of HLA-DQ. 
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Fig. S13. Percent HLA-DQ+ cells within CD4+ memory T cells over time. In blue, individuals homozy-
gous for Late-Spike alleles. In yellow, individuals homozygous for Constant-Low or Fluctuating alleles.
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Fig. S14. Mapping variants associated with Late Spike haplotype. (A) Pearson correlation coefficient 

between SNP genotypes and Late-Spike haplotype dosage. Orange vertical lines indicate location of 

HLA-DRB1, HLA-DQB1 and HLA-DQA1 genes, where dots are colored pink. Right plot is zoomed in on 

HLA-DQB1 region to show top SNPs. (B) HLA-DQB1 gene expression levels (log2(FPKM+1)) for individ-

uals separated by their rs71542466 genotype.
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Fig. S15. Epigenomic landscape around HLA-DQB1. IGV read pileup tracks for ATAC-seq performed on 
50K or 10K cells on CD4+ memory T cells stimulated for 72 hours with anti-CD3/CD28 microbeads, 
ChIP-seq from published data for RFX5 in LCLs, and for CIITA in B cells.
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Fig. S16. Genomic location of nearest gRNAs to identified SNPs and representative flow cytometry 
plot of CRISPR-Cas9 edited HH cells. (A) Location of SNPs (red colored nucleotides) is shown in 

reference to the nearest exon (blue colored nucleotide) both upstream and downstream of HLA-DQB1. The 

nearest gRNA sequences are highlighted with their corresponding colors (rs71542466 - dark green, 

rs71542467 - light purple, rs71542468 - purple, rs72844401 - beige/orange, rs4279477 - blue, rs28451423 - 

light green). Alignments were plotted using SnapGene(v3.2.1).  (B) Representative staining of HLA-DQ of 

modified HH cells with corresponding CRISPR-Cas9 complexes. Cells were stained 7-10 days after 

modification as a bulk population.
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Fig. S17. Sanger sequencing alignment of HH reference and base-edited clones reveal seamless 
editing. gDNA from expanded clones was sequenced and aligned to the reference (hg38) and visualized 
using SnapGene(v3.2.1). Red colored nucleotide indicates the location of the rs71542466 SNP. Highlighted 
red nucleotides indicate mismatches from the reference and yellow coloured nucleotides indicate 
unresolved/heterozygous sequences. 
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Fig. S18. Expression of HLA-DQB1 on Jurkat, HH and Daudi cells. (A) Histograms showing the cell 
surface expression of HLA-DQ as measured by flow cytometry. (B) Expression of HLA-DQB1 as measured 
by real-time PCR. Each dot represents an independent RNA extraction (N = 3). 
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Fig. S19. Independent EMSAs identifying a specific binding band in HH cells. EMSA asays were 
performed on three independently isolated nuclear extractions to validate the presence of a specific nuclear 
binding band in the REF allele. 20pmol of biotinylated probe was mixed with 10-15ug of nuclear extract in 
each independent replicate. 
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Fig. S20. Representative flow cytometry staining of stimulated B cells from PBMCs and fold change 
of HLA-DQ. (A) Representative plot of stimulated B cells from Late-Spike control PBMCs. Cells were 
stimulated with anti-Ig, CD40L, rhIL-21, and CpG(2006) for 1 day. (B) Summary of median flourescence 
intensity fold change in HLA-DQ expression from day 0. Each dot represents an individual.
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Fig. S21. Dynamic ASE betas in HLA genes. Distributions of beta for time (A) and time squared (B) per 
HLA gene.
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Fig. S22. HLA-DQB1 and HLA-DRB1 haplotypes and chromosomal interactions. (A) Three individuals 
with HLA-DQB1 Late-Spike haplotype that have an HLA-DRB1 Late-Spike-like allelic expression profile. 
Alleles on one chromosome indicated on the left (Late-Spike haplotype), and alleles on the other chromo-
some indicated on the right (other haplotype) on plot titles.  (B) Promoter capture HiC interactions for 
HLA-DRB1 (red). Image adapted from www.chicp.org, data comes from Javierre et al Cell 2016. 
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Fig. S23. Disease heritability enrichment for genes with different types of regulatory effects.  Heritabil-
ity enrichment calculated with GWAS summary statistics and stratified LD score regression. Gene annota-
tions include gene +/- 100kb.
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Cell-type and condition Study Read mapping 
method SNP ID SNP chr6 position SNP position 

relative to TSS 
r2 with 
rSNP 

48-72 hrs stimulated CD4+ 
memory T cells present HLA-personalized 

genome rs71542466 32634505 -39 1.00 

resting CD4+ memory T cells present HLA-personalized 
genome rs9276831 32832033 -197567 0.01 

umbilical cord T cells Gencord 2, Gutierrez-
Arcelus et al, 2013 reference genome rs115867015 32603487 30979 0.27 

naïve T cells Blueprint, Chen et al. 2016 reference genome rs3129719 32661779 -27313 0.05 

LCLs Geuvadis, Aguiar et al., 
2018 

HLA-personalized 
genome rs9274688 32636900 -2434 0.06 

LCLs (secondary eQTL) Geuvadis, Aguiar et al., 
2018 

HLA-personalized 
genome rs3134978 32651477 -17011 0.04 

LCLs Geuvadis, Lappalainen et 
al, 2013 reference genome rs9274660 32636434 -1968 0.27 

LCLs Gencord 2, Gutierrez-
Arcelus et al, 2013 reference genome rs115867015 32603487 30979 0.27 

LCLs GTEx Consortium, 2017 reference genome rs17612907 32620852 13614 0.26 

macrophages (resting and 
infected) Nedelec et al., 2016 reference genome rs3135190 32667946 -33480 0.06 

monocytes Blueprint, Chen et al. 2016 reference genome rs3129758 32584625 49841 0.18 

Table S2. Reported eQTLs for HLA-DQB1 and LD with the Late-Spike regulatory SNP  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/599449doi: bioRxiv preprint 

https://doi.org/10.1101/599449

