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Abstract 

Diverse algorithms can integrate transcriptomics with genome-scale metabolic models (GEMs) to build 

context-specific metabolic models. These algorithms rely on preprocessing - identifying a list of high 

confidence (core) reactions from transcriptomics. Studies have shown parameters related to 

preprocessing, such as thresholding of expression profiles, can significantly change model content. 

Importantly, current thresholding approaches are burdened with setting singular arbitrary thresholds for 

all the genes; thus, resulting in removal of enzymes needed in small amounts and even many 

housekeeping genes. Here, we describe StanDep, a novel heuristic method for preprocessing 

transcriptomics data prior to integration with metabolic models. StanDep clusters enzymes based on their 

expression pattern across different contexts and determines thresholds for each cluster using data-

dependent statistics, specifically standard deviation and mean. Hundreds of models for the NCI-60 cancer 

cell lines, human tissues, and C. elegans cell types were built using StanDep. These models were able to 

capture higher number of housekeeping genes and improved precision in predicting gene essentiality 

(CRISPR and RNAi) compared to models built using more established approaches. Our study also 

provides novel implications for understanding how cells may be dealing with context-specific and 

ubiquitous functions.  
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Introduction 

Genome-scale metabolic models (GEMs) provide mechanistic insights into an organism’s phenotype. 

Phenotype is strongly influenced by the expression of genes, proteins, and enzymes in an environmental 

condition. Thus, expression of these have been comprehensively quantified for many tissues and cell 

types (Uhlen et al., 2015; Cao et al., 2017; Han et al., 2018; Creecy and Conway, 2015), allowing the 

integration of these omics data with GEMs to answer diverse questions, spanning from the elucidation of 

molecular mechanisms (Lewis et al., 2010; Mardinoglu et al., 2014) to the identification of drug targets 

(Lewis and Abdel-Haleem, 2013; Shen et al., 2010; Kim and Lun, 2014); thus, the use of GEMs is 

common practice for studying context-specific behavior (i.e., tissue, cell type, environmental conditions, 

or other variations to which cells are exposed to) (Hyduke et al., 2013; Cimini et al., 2009; Machado and 

Herrgård, 2014). 

Manifestation of a phenotype requires not only expression of the genes but expression of proteins, post-

translational modifications, assembly of the enzymes, presence of reaction substrates, and reaction 

occurrence. Further, each of these processes may have component-specific (gene/protein) variability (Li 

and Biggin, 2015; Winter et al., 2004). Thus, predicting the phenotype from transcriptomic data alone is 

not trivial. However, recent studies have shown that, despite technological limitations in measuring omics 

data, transcription can explain larger variance in protein levels than previously thought (Li and Biggin, 

2015). Thus, making transcriptomic data a reasonable choice for building cell-type and tissue-specific 

models (Opdam et al., 2017) and resulting in the development of a wide array of algorithms to facilitate 

integration (Jerby et al., 2010; Wang et al., 2012; Agren et al., 2012; Becker and Palsson, 2008; Zur et 

al., 2010; Vlassis et al., 2014). However, many algorithms require that user must come up with a list of 

active genes or reactions. We refer to this step as preprocessing, and it involves various decisions and; 

among which thresholding has the largest influence on the content of the context-specific models (Opdam 

et al., 2017; Richelle, Joshi, et al., 2018).  

Different thresholding methods embed different assumptions about transcriptomics data into context-

specific models. Global thresholds, for example, assume that each gene is only used if its expression is 

above a common level (Becker and Palsson, 2008). Similarly, local thresholds (Richelle, Joshi, et al., 

2018) wherein a gene/enzyme with moderate expression is considered “on” if it is more highly expressed 

in one tissue, compared to others. These two paradigms assume genes are either active due to high 

expression or tissue specificity. However, many enzymes have different substrate binding and catalytic 

efficiencies, and their activities are needed at different levels (e.g., catabolism of glucose for energy vs. 

vitamin biosynthesis); there are also enzymes that vary little (e.g., housekeeping genes) (Eisenberg and 

Levanon, 2013) or highly (e.g. tissue-specific genes) (Winter et al., 2004) between samples. A recent 

study identified that variance in expression of genes could influence interpretation of transcriptomes 

across different species and organs (Breschi et al., 2016; Barbosa-Morais et al., 2012). Thus, treating all 

genes the same and defining a single threshold, in any method (local/global), may not capture the cellular 

phenotypic space accurately. Furthermore, these threshold values found for one study cannot be extended 

to other datasets due to lack of biological rationale. 
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To address the limitations of with global and local thresholding, we propose a novel heuristic approach, 

StanDep, which calculates thresholds and derives lists of core reactions. StanDep clusters enzymes based 

on their expression pattern across a variety of conditions. The method then calculates a threshold value 

for each cluster, followed by derivation of core reaction lists. Using StanDep, we generated lists of core 

reactions and built models; and compared them with those built using existing methods. We found that 

core reaction lists and models derived using our method accurately captured a large number of 

housekeeping genes and reactions that were considered as “off” by existing methods. We found that 

StanDep-derived models enjoyed high precision and high predictive capacity compared to existing 

methods without sacrificing accuracy. StanDep implementation, in its current state, worked best with 

fastCORE (Vlassis et al., 2014), mCADRE (Wang et al., 2012), and MBA (Jerby et al., 2010). Further, 

using StanDep, we also prepared and validated models of 32 human tissues and 27 C. elegans cell types 

to show that our method preserves cellular properties such as housekeeping genes (Eisenberg and 

Levanon, 2013) and essential genes (Aguirre et al., 2016; Meyers et al., 2017; Kamath et al., 2003; 

Doench et al., 2016). Thus, StanDep provides a novel approach to obtain more accurate context-specific 

models of metabolism from transcriptomics data. 

Results 

Existing thresholding methods remove many housekeeping reactions 

Housekeeping genes are required for cellular maintenance; therefore, these should be expressed across all 

cells under all conditions (for e.g. cancer cell lines, tissues, etc.). For existing thresholding methods 

(Richelle, Joshi, et al., 2018) to accurately capture cellular states, they must be able to select 

housekeeping reactions, i.e. reactions associated with housekeeping genes. To this end, we identified 

1000 housekeeping reactions associated with all metabolic housekeeping genes (Eisenberg and Levanon, 

2013) in Recon 2.2 (Swainston et al., 2016) (See Methods). We, then, converted expression values of 

genes in Recon 2.2 and two different datasets, i.e. CellMiner (Reinhold et al., 2012; Shankavaram et al., 

2009) and Klijn et al. (hereafter referred to as Klijn data) (Klijn et al., 2015), to enzyme expression values 

(See Methods). A list of core reactions was then calculated using the following three different 

thresholding methods: global (top 25th percentile), localT2 (top 25th percentile as upper and top 75th 

percentile as lower), and localT1 (top 75th percentile) (See Methods). We found that localT2 thresholds 

resulted in the core reaction lists with the largest fraction of housekeeping reactions retained, compared to 

localT1 and global thresholds (Table 1, Fig. S1). However, the best dataset-threshold combination (Klijn 

data with localT2) still eliminated more than 250 housekeeping reactions from the core lists. Thus, 

housekeeping genes, which produce essential enzymes, are poorly represented by existing thresholding 

methods. 

Table 1. Fraction of housekeeping reactions retained following application of different thresholds   

 Klijn, 2014 CellMiner 

Global 75th (global) 0.59 0.47 
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Local T2 (25th, 75th) (localT1) 0.74 0.67 

Local T1 25th (localT2) 0.53 0.50 

There are various issues with existing thresholding methods. First, all genes are assumed to have the same 

expression patterns, regulation, and efficiencies. This, however, is not true; gene expression is governed 

by transcriptional efficiency, transcription factors, organization of regulation machinery, etc. Second, 

existing methods require a user-defined threshold above which genes/reactions are considered on; 

however, without direct experimental evidence (which would anyway be context dependent) there is no 

way to determine an exact threshold above which a gene can be classified as active. Third, some genes are 

expressed at lower levels because the mRNAs are more stable,  the downstream cellular machinery 

involved in processing the gene products is more efficient, or their metabolic products are needed in 

lower quantities. A thresholding method dependent on a single arbitrary expression value may therefore 

exclude such genes. Fourth, genes such as housekeeping genes may be more consistently expressed across 

all cellular contexts as their gene products are required for cellular maintenance. However, the magnitude 

of expression of such genes may be high or low depending on their function or stability. Thus, there is a 

need for thresholding methods that consider not only the magnitude of the gene expression but also the 

patterns of variability in gene expression for every gene, or at least class of genes, across different cellular 

contexts. 

Magnitude alone is insufficient to capture housekeeping genes 

In the analysis above, we hypothesized that not only magnitude, but also patterns of variability in gene 

expression, is an important criterion for capturing genes required for cellular maintenance. To test this 

hypothesis, we clustered the patterns of expression variability for 1666 metabolic genes in Recon 2.2 

across NCI-60 cell lines from the Klijn dataset, using hierarchical clustering into 25 clusters (Fig. S2A; 

please see Methods section). We found that seven clusters were enriched in housekeeping genes. Cluster 

3 contained 53% of all housekeeping genes which represented >50% of the genes in the cluster (Fig. 1A). 

A similar analysis of the CellMiner data (Fig. S2B; see Methods and Supplementary text) revealed that 

some of the housekeeping genes were in a low-expression  cluster (Cluster 14, Fig. S2B); a phenomenon 

that was not observed in the Klijn dataset. This may explain why CellMiner consistently yielded fewer 

housekeeping reactions for all thresholding methods (Table 1).  

Though the housekeeping genes were expressed in all cancer cell lines, their absolute expression varied 

across the Klijn and CellMiner datasets. Thus, when calculating core reaction lists, magnitude alone led to 

exclusion of  housekeeping gene functions. All housekeeping genes, in either of the datasets, showed 

enrichment in low variation clusters across cell lines. Therefore, we hypothesized that accounting for 

standard deviation as a measure for gene-specific variability may more accurately select active gene or 

reaction sets including housekeeping genes, which would result in more accurate tissue or cell type-

specific metabolic models. 
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Figure 1: Enrichment analysis for presence of housekeeping genes in clusters of (A) Klijn et al. NCI-60 cancer cell line data and (B) 

CellMiner NCI-60 cancer cell line data. (A) Clusters 1, 3, 8, 11, 17, 19, and 22 are enriched for housekeeping genes. (B) Clusters 3, 7, 9, and 

14 are enriched for housekeeping genes. The bars show number of housekeeping genes (left y-axis). Clusters not enriched for housekeeping genes 

are shown by black bars, while clusters enriched in housekeeping genes are shown in blue bars. The red dots show the fraction of number of 

genes in each cluster are housekeeping genes (right y-axis). Significant enrichment set as a hypergeometric p-value ≤ 0.05. 

StanDep seeds core reaction lists with housekeeping reactions 

The limitations of current methods exemplified above show the way to more accurate methods, that is the 

inclusion of expression magnitude and variability across different contexts. Thus, we present StanDep, a 

novel thresholding method that considers both aspects of the datasets. To implement StanDep, we first 

converted gene expression data of the NCI60 cell lines (from Klijn et al.) to enzyme expression values 

(see Methods). We then clustered enzyme expression across all the cell lines (Fig. S3), and calculated 

cluster-specific thresholds to identify core reactions (Fig S3). Our formulation contained two terms: (a) 

the mean term, and (b) the standard deviation term (see Methods). Of the 4738 reactions with enzyme 

expression data, 187 reactions were deemed inactive in all cell lines. Meanwhile, on average, more than 
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80% of housekeeping reactions were deemed active  in each cell line (Fig. S4). Furthermore, many of the 

cell lines from similar cancer types cluster together based on enzyme selection (Fig. 2A) and core reaction 

lists (Fig. 2B). 

 

Figure 2: Properties StanDep-derived core reaction lists of Klijn et al. dataset and comparison with localT2-derived core reaction lists. 

(A) Jaccard similarity of enzymes selected using StanDep between 44 different NCI-60 cancer cell lines. The dendrogram on the left panel shows 

clustering of the cell lines based their Jaccard similarity ratios across all the other cell lines. The color of dendrogram lines and texts represent cell 

lines of same subtype clustered together (e.g., the purple cluster belongs to models of cancer cell lines of melanoma). (B) Jaccard similarity of 

reactions selected using StanDep between 44 different NCI-60 cancer cell lines. The dendrogram on the top panel shows clustering of the cell 

lines based on their Jaccard similarity ratios across all the other cell lines. The color of dendrogram lines and texts represent cell lines of the same 

subtype clustered together (e.g., the cyan cluster belongs to cancer cell lines of melanoma). The panel on the left shows the number of reactions 

selected in each of the cancer cell line models. (C) Violin map of comparison of reaction lists when compared to localT2 thresholding method. 

Red distributions show the distribution of reaction expression values in that cluster that were not present in StanDep-derived reaction lists but 

were present in localT2, while blue distributions show expression values for reactions in that cluster that were not present in localT2 but were 

present in StanDep. The opacity of the distribution represents the number of reaction-cell line pairs used to make the distributions. StanDep 

increases coverage for reactions that are expressed at low to medium expression levels as shown by larger coverage and opacity of the blue 

distribution for clusters 1 & 2. (D) StanDep-derived core reaction lists are compared with localT2-derived core reaction lists using the Jaccard 

similarity ratio. Almost all StanDep-derived core reaction lists are most similar to their localT2 derived counterparts with over 80% similarity. 

We then compared StanDep to other methods that use thresholds to identify core reactions (see Methods). 

The number of reactions in the StanDep-based core reaction lists was comparable to that of the localT2 
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method (Fig. S5). Though the core reaction lists for global thresholds are smaller, the similarity among 

cell lines is higher than StanDep and other methods (global, 0.64; localT2, 0.54, localT1, 0.34; and 

StanDep, 0.59). We then analyzed the reactions that differed between StanDep and the other methods. We 

found that StanDep favors reactions in clusters with more moderately expressed (11-100 FPKM) 

housekeeping reactions (Clusters 1 and 2; Fig. 2C, Fig. S6). By contrast, localT2 and global approaches 

favored reactions in clusters with fewer housekeeping reactions and reactions with higher expression 

(>100 FPKM) (Clusters 9 and 10; Fig. 2C, Fig. S6B). Further, we compared Jaccard similarity (J) 

between StanDep and existing methods across all cell lines and found that StanDep agreed more with 

localT2 (μJ = 0.80; Fig. 2D) compared to localT1 (μJ = 0.61; Fig. S7A) and global (μJ = 0.57; Fig. S7B). In 

addition, across methods, we found the core reaction lists for the same cell line to be more similar than 

that from a different cell line (black circles; Fig. 2D, Fig. S7). Altogether, the results suggest that StanDep 

seeds core reaction lists with housekeeping reactions that are not captured by existing methods, while 

showing largest similarity to the localT2 approach. 

 

Figure 3: Validation of (A) predictions of gene essentiality with CRISPR gene essentiality data from DepMap, and (B) model content 

with existing list of housekeeping genes and reactions. (A) Distribution of number of essential genes predicted (filled) and accurately predicted 

(unfilled) in models built using StanDep (red) and localT2 (green). (B) Distribution of fraction of housekeeping genes (unfilled) and reactions 

(filled) present in models built using StanDep (cyan) and localT2 (pink). Constrained models and unconstrained models predicted high and 

similar coverage for housekeeping reactions, but slightly lower and bimodal coverage for housekeeping genes, while predictive power for MBA-

like methods was higher than the other three methods. Constrained models can predict more essential genes than unconstrained models. 

mCADRE accurately predicted largest number of essential genes. 
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Figure 4: Cell types-specific distribution of 187 essential genes across pathways in StanDep-derived mCADRE models. Comparison with 

randomly permuted gene labels for presence of essential genes in the cell type models is presented in Fig S22. Large fraction of essential genes 

predicted are present in all cell types. 

Models extracted using StanDep accurately predict essential genes 

Using StanDep, we built hundreds of models by varying 4 model uptake/secretion constraint types (Jain 

et al., 2012) and 6 model extraction methods (MEMs) (Agren et al., 2012; Becker and Palsson, 2008; 

Jerby et al., 2010; Vlassis et al., 2014; Wang et al., 2012; Zur et al., 2010). We found that models built 

using similar MEMs clustered together (Fig. S8A). However, the presence/absence of constraints made 

little difference to the overall content of the models (Fig. S9A).  

One characteristic of an effective thresholding method would be to generate a list of core reactions that 

highly overlaps and contains the same number of reactions than the model, suggesting independence from 

the extraction method; a quality we here describe  as self-consistency. We then use a Jaccard dissimilarity 

test to compare the core reaction lists for different cell types generated by StanDep and localT2 to the 

reactions present in models generated using six extraction methods . For models extracted using 

fastCORE and mCADRE, localT2  and StanDep led to models of similar size (Fig. S10). However, core 

reactions identified using StanDep were more self-consistent than those identified using localT2 (Fig. 

S11B). Thus, models built using StanDep-derived core reactions had fewer unsupported reactions 

compared to localT2. Please see supplementary text for more information on model comparisons. 

A second attractive capability of a thresholding method would be to extract models that can accurately 

predict context-specific essential genes t (i.e. different cancer cell lines). To evaluate our StanDep-based 

NCI-60 models, we looked at the capacity of StanDep-derived models to predict previously reported 

essential genes (Aguirre et al., 2016; Doench et al., 2016; Meyers et al., 2017). StanDep-mCADRE 

models predicted essential genes more accurately (Wilcoxon, p-value = 7.57 x 10-4, Fig. 3A); while 

StanDep-fastCORE models predicted a higher number of essential genes (p-value = 5.36 x 10-6) than their 
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localT2 counterparts. Further, we also found that the prediction capacity (i.e. total number of predictions 

generated; left-tailed F-test, maximum p-value = 3.66 x 10-4 for MBA) and accuracy (maximum p-value = 

0.0396 for MBA) of localT2-derived models had higher variations than StanDep-derived models. Thus, 

both metrics (prediction capacity and accuracy) suggest that StanDep achieves better precision than 

localT2.  

A third sought-after aspect of a thresholding method would be to be able to extract models that effectively 

capture housekeeping genes and housekeeping reactions as defined  by Eisenberg and Levanon 

(Eisenberg and Levanon, 2013). Though the presence of housekeeping genes in localT2 and StanDep-

derived models was similar, StanDep-derived models included more housekeeping reactions than 

localT2-derived models (Fig. 3B) for mCADRE (Wilcoxon, p-value = 8.25 x 10-5), MBA (p-value = 1.49 

x 10-5), and GIMME (p-value = 1.56 x 10-5). Further, we found the ratio of housekeeping genes to 

housekeeping reactions captured in StanDep models was closer to 1 than localT2 models for all MEMs 

except fastCORE (Wilcoxon, maximum p-value = 0.0114 for INIT). A difference in the number of 

housekeeping genes and housekeeping reactions is not surprising because each gene can contribute 

several reactions. Nevertheless, the better match between genes and reactions suggest that StanDep 

facilitates better enzyme usage across housekeeping functions. Altogether, the analyses suggest that 

StanDep-derived models extracted using MBA-like MEMs (Robaina Estevez and Nikoloski, 2014) 

achieve better precision without sacrificing accuracy. 

Reconstruction of worm cell types reveal distinct cell-type biology 

Existing thresholding methods rely on a single cutoff for all genes; however, such thresholds are often 

chosen somewhat arbitrarily. StanDep avoids this by calculating thresholds from within the data. To 

demonstrate the general applicability of StanDep, we built cell-type specific models of a wild-type animal 

using a published GEM (Yilmaz and Walhout, 2016). In absence of exometabolomics data, we chose to 

build models using fastCORE and mCADRE as they performed better than other MEMs (Fig. S13). As 

our dataset, we used published whole-body single cell RNA-Seq data for C. elegans (Cao et al., 2017). As 

with the NCI-60 cell lines, we found that the StanDep-derived models displayed higher reaction similarity 

within the same cell type (𝜇J = 0.82) across extraction methods (Fig. S14) than cell type models (𝜇J = 

0.70), and the reaction content differed more than gene content (𝜇J = 0.91) among same cell type models. 

However, higher difference in reaction content than gene content is not surprising as our analysis of ratio 

of number of housekeeping genes to housekeeping reactions suggested different enzyme usage among 

fastCORE and mCADRE (Fig. 3). Nevertheless, given the high similarity in gene and reaction content 

across the two MEMs, our results suggest that when using StanDep-derived models have lower influence 

from extraction methods than the cell types.  

We then tested the ability of the StandDep-derived cell type-specific models of C. elegans to predict 187 

essential genes identified in a whole-body RNAi screen (Kamath et al., 2003) which were also present in 

the C. elegans GEM (Yilmaz and Walhout, 2016). For multicellular organisms, there are two levels of 

essentiality, organismal and cellular; thus, a gene might be essential for a cell type but not for the whole 

organism and vice versa. Therefore, due to the lack of availability of cell type-specific essential genes, we 
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tested the presence of these genes in our models. Interestingly, for both mCADRE and fastCORE cell 

type-specific models, we found that over 80% of animal-level essential genes were present in all models 

and had over 99% coverage across models of each MEMs (Fig. 4, Fig. S15). However, this is not 

surprising given that these are metabolic essential genes belonging to core cellular processes such as 

glycolysis, aminoacyl-tRNA biosynthesis, oxidative phosphorylation, citrate cycle, pentose phosphate 

pathway, amino acid metabolism etc. Thus, the majority of these genes should be expected to be present 

across all cell types.  

Interestingly, we found that reactions for 𝛽-oxidation, the second most represented pathway in animal-

level essential genes, are differentially localized across neuron models; for e.g. peroxisomal oxidase and 

acyltransferase activities are present in ciliated-sensory, touch-receptor, cholinergic, and canal-associated 

neurons but not in other-interneurons, oxygen-sensory and pharyngeal neurons. Recently, a study showed 

that peroxisomal 𝛽-oxidation is required in ciliated-sensory neurons for pheromone-induced dauer 

development (Park and Paik, 2017). In addition to enrichment of peroxisomal 𝛽-oxidation in neuronal cell 

types, we also found it was enriched in intestine, hypodermis, and rectum. Fatty acid 𝛽-oxidation is 

known to be important in the intestine and hypodermis (Park and Paik, 2017). This consistency with the 

cell-type specific models suggests that the models contain the distinct biology of different cell types 

despite their high inclusion rate amongst the animal-level essential genes. Supporting this notion, the 

presence of the 900 nonessential genes from Kamath et al. (Kamath et al., 2003) varied more widely 

among different models (Fig. S15B). Further supporting this notion, the reaction content similarity among 

models clustered similar cell types together (Fig. S14A). Thus, StanDep combined with either mCADRE 

or fastCORE yields models that capture phenotypically relevant aspects of cell type-specific metabolism. 

Discussion 

Several methods exist for extracting context-specific models by integrating transcriptomic data into the 

genome scale models (Wang et al., 2012; Agren et al., 2012; Vlassis et al., 2014; Zur et al., 2010; Jerby 

et al., 2010; Becker and Palsson, 2008). Identification of core reaction lists from omics data (which we 

refer here to as preprocessing), commonly precedes the application  of these methods. For preprocessing 

one applies a threshold to the transcriptomics dataset at a gene- or enzyme-level to decide if the gene or 

enzyme is expressed to sufficient levels to be considered active. Previous work identified thresholding as 

the most influential parameter impacting model content in context-specific models (Opdam et al., 2017; 

Richelle, Joshi, et al., 2018). However, it remains unclear how such thresholds be decided. Here, we 

present StanDep, a novel heuristic approach for determining thresholds. We made hundreds of models 

using StanDep and evaluated them against models constructed using an existing thresholding method 

(Richelle, Joshi, et al., 2018). 

We established that existing thresholding methods poorly capture housekeeping genes (Fig. S1). In part, 

because by only considering the absolute magnitude of expression, they disregard that housekeeping 

genes are also characterized by low variability (Eisenberg and Levanon, 2013, 2003). Further, fewer 

housekeeping genes are expressed at high levels (Fig. S2). Therefore, capturing housekeeping genes in all 
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models, built using existing thresholding methods, requires setting low threshold values. However, setting 

low thresholds leads to larger core reaction lists (Richelle, Joshi, et al., 2018), which may result in the 

ultimately higher false positives. StanDep overcomes this problem by making standard deviation, as a 

measure of variability, part of the equation to calculate thresholds.  

Recently, a multi-organism study identified that different subsets of genes have different patterns of 

transcriptional variation across organs and species (Breschi et al., 2016). Breschi et al. also showed that 

variability in expression of genes may have had significant impact on interpreting transcriptomes by 

treating all genes uniformly (Barbosa-Morais et al., 2012; Breschi et al., 2016). Model extraction methods 

typically build context-specific models by placing the connectivity delineated by the genome scale 

metabolic network on top of the core reaction lists. However, genome scale metabolic networks are 

known to have alternate pathways (Zanghellini et al., 2013), and an extraction method may favor 

selection of an incorrect one when lacking sufficient evidence within the core reaction list. Thus, treating 

all genes the same to derive core reaction lists could significantly impact the final model. StanDep avoids 

treating all enzymes the same by clustering genes based on the pattern of their own expression across 

multiple contexts and calculating a threshold for each cluster that is more likely to reflect the real 

ON/OFF status of any reaction across contexts. Importantly, StanDep-derived core reaction lists increased 

coverage of housekeeping reactions (Fig. S4) and added fewer unsupported reactions to the models when 

used with MEMs (Fig. S11). Further, StanDep, compared to localT2, showed increased precision without 

compromising accuracy across all extraction methods (Fig. 3A). Consistent with localT2-derived models, 

StanDep-derived mCADRE models performed well in predicting essential and housekeeping genes (Fig. 

3). This is consistent with our previously published findings across four cell lines (Opdam et al., 2017). 

Thus, StanDep can be adapted to work with existing context-specific extraction methods and used with 

diverse datasets. 

We benchmarked StanDep using NCI-60 cancer cell lines. However, the metabolism of cancer cells may 

be seen as examples of outliers within the spectrum of normal physiology, and hence easier to capture. 

Therefore, in this study, we also created models of human tissues (Fig. S17) and C. elegans cell types 

(Fig. 4) and show that they have large coverage of housekeeping and essential genes. Furthermore, we 

showed that StanDep can capture relevant aspects of cell type-specific metabolism, such as the presence 

of peroxisomal fatty acid 𝛽-oxidation in neurons, intestine, and hypodermis. However, when building 

animal-level models, these cell type-specific models will need to be stitched together in the context of the 

whole animal to understand presence of pathways in non-canonical cell types or tissues (for e.g. 

peroxisomal 𝛽-oxidation in rectum). Thus, novel algorithms are needed for stitching together such cell 

type-specific models. 

The comparisons made in this study between the model predictions and the experimentally-defined 

essential genes have broader implications on how different cellular processes may be correlated across 

different layers of regulation. Our results suggest that variability is globally determined and maintained 

across levels of regulation to define context-specific cellular function; otherwise, these transcriptomics-

based models could not accurately predict phenotypes. In other words, as cells move through different 

processes such as transcription, translation, post-translational modification, and so on, the biology of the 

cell would preserve the minimally necessary variability to maintain cell-specific functionalities 
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(phenotypes) and homeostasis, and that variability converges on the same players being regulated in 

similar way (i.e. in general, the most transcribed genes would not correspond to the fastest degraded 

proteins). Thus, maintenance of a specific pattern of variability across levels of regulation would be a 

strategy by which the genome reaches context-specific function and homeostasis. In addition to 

perturbation through genetic, chemical, physical or other means, this notion of restricted variability across 

levels of regulation, may be of consequence when cells in a multicellular organism differentiate and new 

specialized variabilities must be dynamically coordinated across levels of regulation. 
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METHODS 

Datasets used 

For this study, we used 2 sets of gene expression data for NCI60 cancer cell lines (Reinhold et al., 2012; 

Klijn et al., 2015), HPA gene expression data for tissues (Uhlen et al., 2015), and gene expression data 

for C. elegans cell types (Cao et al., 2017). For validating our models, we used a list of housekeeping 

genes (Eisenberg and Levanon, 2013), CRISPR data for 20 NCI60 cancer cell lines (Aguirre et al., 2016; 

Doench et al., 2016; Meyers et al., 2017), and RNAi phenotypic data for C. elegans (Kamath et al., 

2003). For further details on data extraction, please see supplementary methods. 

Data processing 

We selected genes that are part of the human metabolic reconstruction, Recon 2.2 (Swainston et al., 

2016). This included for NCI60 data, 1416 genes; for HPA data, 1661 genes out of 1673 genes in Recon 

2.2; and for C. elegans cell type data, 1248 genes were part of the global expression datasets and C. 

elegans GEM (Yilmaz and Walhout, 2016). We then converted gene expression values into enzyme 

expression values using gene mapping. Gene mapping involved extracting gene-protein-reaction (GPR) 

relationships from the model and calculating enzyme expression. The extraction of GPR was done using 

the COBRA function, GPRparser.m. For enzymes that have only one subunit, the value of enzyme 

expression is same as the value of gene expression. For multimeric enzymes, these relationships share an 

“AND” relationship; thus, the minimum value amongst genes part of the enzymes were set as enzyme 

expression value. The assumption for multimeric enzymes was that gene with lowest expression will 

govern the amount of functional enzyme expressed. It should be noted that we did not resolve OR 

relationships representing isoenzymes and allowed all functional enzymes to be represented in the 
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enzyme expression dataset. The enzyme expression data spanned 1325 enzymes (4133 reactions) for 

NCI60 data, 1792 enzymes for HPA data, and 2533 enzymes for C. elegans data.  

Hierarchical Clustering 

Clustering distribution patterns of gene expression 

We log10-transformed the calculated enzyme expression dataset and counted the number of samples 

expressed with each bin width. Bin width were set based on the log10-transformed minimum and 

maximum enzyme expression values. This resulted in a matrix with rows representing each enzyme, 

columns representing bins, the value within the matrix representing number of samples from the dataset 

which were expressed within each bin range. We then performed hierarchical clustering with Euclidean 

distance metric and complete linkage metric to cluster genes based on distribution pattern of gene 

expression. We also show the comparison between using other distance and linkage methods (Fig. S18, 

S20, Supplementary Results). 

Deciding number of clusters 

Clustering in our work is used as a tool to divide genes into categories based on distribution patterns of 

their expression across different conditions. These clusters are then responsible for generating their own 

threshold. Therefore, number of clusters were determined such that all pathway is enriched in at least one 

cluster. The pathways were extracted from the GEMs, Recon 2.2 (for NCI60 and human tissues) and 

iCEL1273 (for C. elegans cell types). Only pathways which contained at least one gene-associated 

reaction were considered. For the NCI60 Klijn et al. dataset, we used 26 and 25 clusters for enzyme 

expression and gene expression respectively; for NCI60 CellMiner dataset, we used 21 clusters; for HPA 

dataset, we used 19 clusters; and for C. elegans, we used 14 and 18 clusters for enzyme expression and 

gene expression data respectively. We also show the comparison of choosing different number of clusters 

(Fig. S19; Supplementary Results).  

Clustering core reaction sets or models 

For analysis of models, we calculated Jaccard similarity of reaction content across different models which 

were part of any given analysis. We then performed hierarchical clustering to see how tissues are 

grouped. Hierarchical clustering was performed with the Euclidean distance metric and complete linkage 

metric. The interpretation of clustering Jaccard similarity is that models that are most similar to each other 

are likely to be equally far from other models.  

Pathway enrichment 

Pathway enrichment was performed by calculating hypergeometric p-value (p-value < 0.05) for the 

number of enzymes belonging to a given pathway present within a given cluster. Pathway association of 

an enzyme was calculated based on pathway association of the reactions being catalyzed by an enzyme. 
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Identification of Core Reactions 

StanDep 

StanDep applies thresholds specific to each cluster of genes. In the StanDep threshold formulation, we 

included two terms: (i) standard deviation, and (ii) mean term. Fine-tuned expression level of genes is 

represented as the Standard deviation term; and is dependent on the difference between standard deviation 

of the cluster and the dataset. Lower standard deviation favors the selection of enzymes in all contexts 

while higher standard deviation term reflects context-specificity of the enzymes. The mean term, 

interpretation of second assumption, is dependent on the magnitude of the expression of enzymes in that 

cluster. In both cases, we used the difference between cluster and overall data to address inconsequential 

variations that maybe occurring in expression. The standard deviation is always positive but logarithmic 

mean may be negative and sometime be even quite large. Therefore, we introduced normalization to make 

the standard deviation term and mean term at par. The threshold for each cluster is given by the following 

equations: 

𝛩𝑐 = (𝜃𝑐 − 𝑚𝑖𝑛(𝜃𝑐)) ∗ 100/𝑚𝑎𝑥(𝜃𝑐 − 𝑚𝑖𝑛(𝜃𝑐)); 𝛩𝑐 ∈ [0,100] (1) 

𝜃𝑐 = 𝑓(𝜎𝑐) + 𝑔(𝜇𝑐); (2) 

𝑓(𝜎𝑐) = (𝜎𝑐 − 𝛥)/𝑚𝑎𝑥(𝜎𝑐 − 𝛥); (3) 

𝑔(𝜇𝑐) = −(𝜇𝑐 − 𝑴); (4) 

In the above set of equations, 𝚯c is the processed threshold value for a given cluster c; θc is the raw value 

of threshold for cluster c; 𝜎c is the standard deviation of the cluster c; Δ is the standard deviation of the 

dataset; 𝜇c is the mean of the cluster c; and M is the mean of the dataset. The equation is derived by 

penalizing cluster-specific thresholds based on: (i) how low the cluster mean is compared to the mean of 

the dataset; (ii) how far the standard deviation of the cluster is from the standard deviation of the dataset. 

The final normalization was done to ensure that the clusters-specific thresholds are between 0 and 100. 

The 𝚯 is the top percentile value of the cluster-specific data above which an enzyme in that cluster in a 

given context is qualified active. If the value of 𝚯c is 100, we set the threshold value of the cluster as the 

mean of the data. 
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The current published literature on the below thresholding methods does not address how the threshold 

values should be derived. Therefore, we used some of the most commonly used percentile values in 

previously published studies (Richelle, Joshi, et al., 2018; Opdam et al., 2017). 

Other thresholding methods 

We used three of the existing thresholding methods: (i) global, (ii) localT1, and (iii) localT2. The 

implementation for each of them was same as in a previous study(Richelle, Joshi, et al., 2018; Richelle, 

Chiang, et al., 2018). However, they have also been described in detail in supplementary methods.  

Constraining Pre-extraction Models and Model reduction 

Exometabolomic constraints 

Exometabolomic data of the NCI60 cell line were obtained from previous work (Jain et al., 2012) and 

further processed as previously described (Opdam et al., 2017). After processing, we added 23 new 

demand reactions, wherein each reaction is secreting a different metabolite. These were added to reflect 

the experimental observations by Jain et al. The biomass reaction was changed to one that contains 

precursor molecules from the one that contains macromolecules like DNA, RNA, protein, lipids, 

carbohydrate, and others. The replacement of the  biomass reaction was done to all the models. The global 

lower and upper bounds for all reactions except biomass and ATP demand were set to -1000 and 1000 

respectively. The lower bounds of the biomass reaction and ATP demand were constrained to relatively 

small values of the order of 1e-2 and 1.833 mmol gDW-1 h-1 (Kilburn et al., 1969) respectively. The cell 

line specific constraints on 78 demand and exchange reactions were applied on the modified Recon 2.2, 

followed by making flux consistent constrained genome-scale models for each of the cell lines. This was 

done by identifying and removing flux-inconsistent reactions using fastcc.m in COBRA Toolbox. The 

flux tolerance was always set to 1e-8. 

No constraints 

To make unconstrained models, we did not apply exometabolomic constraints but only applied 

constraints on lower bounds of biomass and ATP demand reaction as described above. The global lower 

and upper bounds were set to -1000 and 1000 respectively. This was followed by identifying and 

removing flux inconsistent reactions. The flux tolerance was always set to 1e-8.  

Semi constrained 

To make semi-constrained models, we applied directional constraints on demand and exchange reactions 

of each cell line, applied constraints on lower bounds of biomass and ATP demand as described above. 

The global lower and upper bounds were set to -1000 and 1000 respectively. This was followed by 

identifying and removing flux-inconsistent reactions. The flux tolerance was always set to 1e-8. 
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Relaxed constraints 

To make relaxed models, we constrained the direction of flow to 10 mmol gDW-1 h-1 on demand and 

exchange reactions as suggested by exometabolomic data. The order of magnitude of original constraints 

on these reactions was 1e-3 to 1e-6. The global lower and upper bounds were set to -1000 and 1000 

respectively. This was followed by identifying and removing flux-inconsistent reactions. The flux 

tolerance was always set to 1e-8. 

Implementation with model extraction methods (MEMs) 

In this study, we compared the models derived using localT2 and StanDep. This section describes the 

extraction of StanDep-derived models by tailoring each of the MEMs. Models derived using localT2 were 

not constructed in this study, rather we extracted those models from a previous study (Richelle, Chiang, et 

al., 2018). Therefore, for implementation of each of the extraction methods with these thresholding 

methods, please see the methods for that study.  

To construct models using 6 of the extraction methods these inputs were common to all: (i) a flux-

consistent Recon 2.2 genome-scale model was used, and (ii) epsilon, a.k.a. flux tolerance, was set to 1e-8. 

Inputs specific to a given MEM are described below. 

FASTCORE 

To construct models using FASTCORE (Vlassis et al., 2014), we used fastcore.m in the COBRA toolbox. 

Other inputs needed for the algorithm are requires core reaction lists. Please see above on how we 

identified them. The biomass reaction was manually added to the core reaction list. 

iMAT  

To construct models using iMAT (Zur et al., 2010), we used iMAT.m in the COBRA toolbox. Other 

inputs needed for the algorithm are: (i) core reactions (i.e., list of reactions identified to be active, 

including the biomass reaction) and (ii) non-core reactions, which are not part of core reactions (reactions 

not associated to a gene were not included in non-core reactions). 

MBA 

To construct models using MBA (Jerby et al., 2010), we used MBA.m in the COBRA toolbox. Other 

inputs needed for the algorithm are: (i) high expression set, list of reactions which are highly expressed 

and (ii) medium expression set, list of reactions which are moderately expressed. We generated 10% 

interval around threshold for each cluster. We defined high expression set as the list of reactions catalyzed 

by enzymes which are above 110% of the threshold value, and medium expression set as the list of 

reactions catalyzed by enzymes which are between 90% and 110% of the threshold value.  For instances 

where a reaction was present in both high and medium expression set, we interpreted it as at least enzyme 
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associated to the reaction being able to express at high levels. Thus, we put these reactions in high 

expression sets. The biomass reaction was given the highest value. 

mCADRE 

To construct models using mCADRE (Wang et al., 2012), we used mCADRE.m in the COBRA toolbox. 

Other inputs needed for the algorithm are: (i) ubiquity score (i.e., how often a reaction is expressed across 

samples of the same context); (ii) confidence scores quantifying level of evidence for a reaction to be 

present in the model; (iii) protected reactions; and (iv) since we did not protect any reactions, we set the 

functionality check to 0. To calculate ubiquity score ( Uc,i ), we calculated threshold distances ( Dc,i ), here 

defined as distance of a given enzyme expression ( xi,c ) in the context i from the threshold ( 𝚯c ) of the 

cluster c where the enzyme belongs. The threshold distances and ubiquity scores were calculated using 

the eqs (5-7). 

 

𝐷𝑐,𝑖 = 𝑥𝑖,𝑐 − 𝛩𝑐 (5) 

𝑖𝑓 𝐷𝑐,𝑖 > 0; 𝑈𝑐,𝑖 = 1 (6) 

𝑖𝑓 𝐷𝑐,𝑖 < 0; 𝑈𝑐,𝑖 = 1 − (𝐷𝑐,𝑖/𝑚𝑖𝑛(𝐷𝑐,𝑖)) (7) 

 

We used the ubiquity score to quantify how often an enzyme is expressed in samples of the same context. 

For isoenzymatic reactions, the reaction ubiquity score was set to the enzyme with maximum ubiquity 

score. For reactions which do not have an associated gene, the ubiquity score was set to -1. Since, we did 

not have confidence scores, we assigned a confidence of 0 to all reactions, as suggested in COBRA 

toolbox tutorial for mCADRE. However, we also tried using our list of core reactions as a binary vector 

specifying whether a reaction is in the core set and if it did not have any effect of the final model. The 

biomass reaction was manually assigned a ubiquity score of 1. The confidence score of 1 is associated 

with transcriptomics evidence and our metric ubiquity score already has this information. 

INIT 

To construct models using INIT (Agren et al., 2012), we used INIT.m in the COBRA toolbox. Other 

inputs needed for the algorithm are reaction weights, varying between -1 and 1. To calculate enzyme 

weights, we calculated the threshold distance for each enzyme as described previously, without 
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normalizing. Weights for all reactions catalyzed by an enzyme were same as the enzyme weight. Here, we 

used a different normalizing scheme. We scaled our threshold distances to a maximum threshold distance 

for any of the enzymes within the data. For isoenzymatic reactions, the weights of each enzyme were 

added. We set the weights for non-gene associated reactions to 0. The biomass reaction was manually 

assigned a weight of 1. 

GIMME 

To construct models using GIMME (Becker and Palsson, 2008), used GIMME.m in the COBRA toolbox. 

Other inputs needed for the algorithm are: (i) a reaction expression vector representing gene expression 

values associated with the reactions; and (ii) a threshold determining whether reaction expression is 

considered active. We calculated the reaction expression vector in the same way as we calculated enzyme 

weights for INIT. However, unlike INIT weights, we set the expression level of reactions that do not have 

a gene association to 0. The thresholds were set to 1. The biomass reaction was given a value of 1. 

Gene essentiality in NCI60 

NCI60 data 

To test our essentiality predictions of NCI60 models with CRISPR screen data, we downloaded pooled 

CRISPR knockout screen data from DepMap.org (Doench et al., 2016; Aguirre et al., 2016; Meyers et al., 

2017) for 20 NCI-60 cell lines. Essential genes were identified based on the CRISPR score. The CRISPR 

score was calculated as the ratio of abundance of single guide RNA (sgRNA) of a knock out after and 

before growth selection. A negative CRISPR score suggests a higher probability that the gene is essential. 

The accuracy was estimated using the percentage of predicted essential genes that have a negative score 

(Tobalina et al., 2016). We then used 1-tailed Wilcoxan rank sum test to identify if the CRISPR scores for 

genes predicted to be essential in the metabolic model and CRISPR scores of genes predicted to be non-

essential are coming from the same populations.  

RNAi phenotypic data 

To get the list of essential genes in C. elegans, we extracted genes that presented a Nonv or Gro RNAi 

phenotype. As described by the authors (Kamath et al., 2003), Nonv phenotype refers to all phenotypic 

classes that result in lethality or sterility (1170 essential genes); and Gro refers to phenotypic classes that 

result in growth defects, slow post-embryonic growth or larval arrest (276 essential genes). Out of these, 

the iCEL1273 (Yilmaz and Walhout, 2016) model contained 187 genes. Similarly, we found 900 non-

essential genes in iCEL1273. 
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