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Abstract 

 

Participant movement can deleteriously affect MR image quality. Further, for the 

visualization and segmentation of small anatomical structures, there is a need to 

improve image quality, specifically signal-to-noise ratio (SNR) and contrast-to-noise 

ratio (CNR), by acquiring multiple anatomical scans consecutively. We aimed to 

ameliorate movement artefacts and increase SNR in a high-resolution turbo spin-echo 

(TSE) sequence acquired thrice using non-linear realignment in order to improve 

segmentation consistency of the hippocampus subfields. We assessed the method in 

young healthy participants, Motor Neurone Disease patients, and age matched 

controls. Results show improved image segmentation of the hippocampus subfields 

when comparing template-based segmentations with individual segmentations with 

Dice overlaps N=51; ps < 0.001 (Friedman’s test) and higher sharpness ps < 0.001 in 

non-linearly realigned scans as compared to linearly, and arithmetically averaged 

scans.  
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1.  Introduction 

 

Imaging the subfields of the hippocampal formation with Magnetic Resonance Imaging 

(MRI) has garnered great interest in recent years. Characterising subfield tissue may 

elucidate susceptibility to – and provide more sensitive biomarkers for - 

neurodegenerative diseases including Alzheimer’s disease (AD) (Balachandar et al., 

2015; Boutet et al., 2014; Henry et al., 2011; Jacobsen et al., 2017; Kerchner et al., 

2012; La Joie et al., 2013; Maruszak & Thuret, 2014; Pluta, Yushkevich, Das, & Wolk, 

2012), as the subfields contain different cell types and functional properties (Duvernoy, 

Cattin, Risold, Vannson, & Gaudron, 2013). Increasing spatial resolution for MRI 

through improved acquisition and/or post-processing techniques improves 

segmentation of various tissue types or anatomical structures (Thomas et al., 2008). 

Consequently, there is a need to improve signal-to-noise ratio (SNR) of scans by going 

to higher field strengths (ultra-high field [UHF] MRI, 7T and above) and by acquiring 

multiple repetitions of the same scan in a single session, which leads to longer 

acquisition times.  

 

Previous UHF in vivo hippocampus subfield segmentation studies (for review, see 

Giuliano et al., 2017) have used dedicated T2-weighted Turbo-Spin Echo (TSE), 

Gradient Echo, or multi-echo sequences that, due to multiple refocusing 

pulses,  exhibit differing contrast signals and intensity characteristics for different 

tissue classes, and consequently the laminae of the hippocampus (Marques & Norris, 

2018; Winterburn et al., 2013). With higher field strengths and better coils comes the 

possibility of increasing the number of repetitions due to shorter scan times per 

acquisition. We have previously utilised three repetitions of a four minute TSE 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/597856doi: bioRxiv preprint 

https://doi.org/10.1101/597856
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

sequence (12 minutes total acquisition time) that cover the whole hippocampus with a 

high in-plane resolution of 0.4 mm2   x 0.4 mm2  and a 0.8 mm2  slice thickness. These 

acquisitions were combined to yield a minimum deformation average model for 

investigating hippocampus subfields (Jacobsen et al., 2017). The sequence was 

designed to be repeated thrice to both a) boost SNR and b) to be able to potentially 

discard one of the repetitions in case of participant movement. Unfortunately, finding 

the optimal realignment between these anatomical scans can be difficult due to 

gradient nonlinearities (Reuter, Rosas, & Fischl, 2010) especially at ultra-high field. 

Reuter et al. (2010) used rigid registrations for realignment of anatomical T1w scans 

in an intermediate space as rigid parts of the brain and skull are assumed to go 

unchanged in the short time between scan repetitions (save for rigid location changes). 

At higher fields strengths and resolutions, noise from movement interacts with gradient 

nonlinearities and may cause non-linear distortions in images unable to be corrected 

by affine registrations alone.  

 

Participant movement is more likely for long MRI scans and can deteriorate image 

quality (Kochunov et al., 2006), potentially leading to unusable scans due to movement 

artefacts, and subsequent increased costs. Further, patients with neurodegenerative 

disorders, elderly, young, and highly anxious participants, have a high propensity for 

movement in the scanner (Yushkevich et al., 2015). Previous work examining the 

benefits of motion correction in anatomical MRI have used either prospective or 

retrospective realignment techniques. Prospective techniques (Maclaren, Herbst, 

Speck, & Zaitsev, 2013) mainly utilise navigators and motion tracking devices to 

correct for motion online. Retrospective realignment techniques may take magnitude 
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data and attempt to estimate transformations between images to attain good 

registrations between them (e.g., Reuter et al., 2010), similar to fMRI realignment.  

 

In human neuroimaging with a supine patient position, rotation commonly occurs at 

the posterior of the head, resulting in rotation-related blurring and movement artefacts 

progressing in severity anteriorly (Maclaren et al., 2013). Blurring and ghosting 

artefacts are somewhat prevalent in imaging the hippocampus in vivo, which has 

tightly packed laminae and multiple tissue contrast signals that blur together causing 

partial volume effects. This motion is inherent to the longer acquisition times necessary 

to capture the structure of the hippocampus (Marrakchi-Kacem et al., 2016). Mitigating 

movement artefacts in image post-processing is therefore an important challenge to 

overcome in neuroimaging. 

 

Previous work (Bollmann, Bollmann, Puckett, Janke, & Barth, 2017) has shown that 

fMRI realignment can be completed using an iterative averaging model (or template) 

to account for movement in participants and decrease partial volume effects. We aim 

to utilise a similar approach on anatomical scans with high resolution in order to reduce 

partial volume effects and increase SNR. Due to the small size of the hippocampus 

and its laminar structure, partial volume effects can lead to misclassification of 

subfields. To ameliorate movement artefacts, boost SNR and sharpness, and improve 

image segmentation reliability and validity, we implemented a retrospective 

realignment technique that iteratively estimates non-linear transformations between 

multiple images to fit to an evolving model of anatomical consistency to attain 

improved segmentation results. 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/597856doi: bioRxiv preprint 

https://doi.org/10.1101/597856
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

In the present study, quantitative metrics for examination of the most effective 

registration technique were chosen based in part on the work of Fonov and Collins 

(2018). It was determined that, much like in the original MP2RAGE paper (Marques et 

al., 2010), a useful metric for examining the effectiveness of a registration technique 

was through measuring segmentation performance and consistency (as qualitative 

analysis of motion correction is not sufficient). Labelling the subfields of the 

hippocampus with automatic segmentation strategies is now feasible with software 

including Automatic Segmentation of Hippocampal Subfields (ASHS; Yushkevich et 

al., 2015), and Freesurfer (Iglesias et al., 2015) all able to segment hippocampal 

subfields of conventional T1w and dedicated T2w TSE scans in multi-contrast 

approaches. 

 

We aimed to explore the effectiveness of our technique in healthy controls (HCs) and 

patients with Motor Neurone Disease (MND) by assessing registration consistency. 

Intuitively, image registration algorithms are more successful in images with more 

refined details, higher sharpness, and better SNR. Therefore, greater registration 

consistency will occur between participants if the registration procedure is more 

effective. If the technique is robust to movement, between-subject registrations will 

converge more readily due to increased boundary delineation and SNR increases. 

Thus, we hypothesised that each participant’s non-linearly realigned (1: Non-Linear) 

registration procedure would produce higher segmentation consistency than a linear 

procedure (similar to fMRI realignment; 2: Linear) or a simple averaging procedure (3: 

Average). This is based on the assumption that automatic segmentation algorithms 

rely on high SNR/CNR and good boundary delineation to function reliably. Finally, due 

to reduced movement artefacts and higher SNR after processing, we expect that non-
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linear realignment would produce the sharpest images compared to linear realignment 

or simple averaging. 

 

 2.  Methods 

 

Using a 7 T whole-body research scanner (Siemens Healthcare, Erlangen, Germany), 

with maximum gradient strength of 70 mT/m and a slew rate of 200 mT/m/s and a 7T 

Tx/32 channel Rx head array (Nova Medical, Wilmington, MA, USA)  we acquired a 

2D TSE sequence (Siemens WIP tse_UHF_WIP729C. Variant: tse2d1_9, TR: 

10300ms, TE: 102ms, FA: 132°, FoV: 220mm, voxel size of 0.4 x 0.4 x 0.8mm3 Turbo 

factor of 9; iPAT (GRAPPA) factor 2) thrice of a slab aligned orthogonally to the 

hippocampus in three ‘groups’: 11 patients diagnosed with MND (Age, M=59.36, 

SD=7.65), 11 age-matched control participants (HCs, M=60.23, SD=7.65), and 29 

young healthy participants (YHPs, M=26.31, SD=0.66) for a total of 51 participants in 

order to test the robustness of the realignment on a wide range of participants in terms 

of age (reflected by a different brain anatomy) and movement probability (patient vs. 

healthy). An anatomical whole-brain T1w  was acquired using a prototype MP2RAGE 

sequence (WIP 900) (Marques et al., 2010; O’Brien et al., 2014) at 0.9mm isotropic 

voxel size was also acquired (TR/TE/TIs = 4300ms / 2.5ms / 840ms, 2370 ms). 

 

All TSEs were pre-processed by resampling to 0.3mm isotropic, bias field corrected 

using N4 (Tustison et al., 2010), skull stripped using the co-registered T1w as an initial 

mask after usage of ROBEX (Iglesias, Liu, Thompson, & Tu, 2011), and intensity 

normalised between two percent-critical thresholds using NiftiNorm 

(https://github.com/thomshaw92/nifti_normalise), a Nifti implementation of mincnorm 
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from the medical imaging network common data toolkit (Vincent et al., 2016). To 

assess registration and segmentation consistency, we tested three different 

approaches (or ‘methods’; Figure 1): we performed no additional realignment and 

averaged the slabs arithmetically using ANTs AverageImage (1. Average). We also 

registered TSEs linearly by: i) concatenating images in time using FSL (Jenkinson, 

Beckmann, Behrens, Woolrich, & Smith, 2012), ii) estimating affine registrations 

between each image using FSL’s MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 

2002) and iii) averaging the image in the time dimension (2. Linear). Third, we 

performed non-linear registrations using ANTs’ (Avants, Tustison, & Song, 2010) SyN 

(Avants, Epstein, Grossman, & Gee, 2008) registration (Figure 1), with the three TSE 

scans being iteratively deformed using antsMultivariateTemplateConstruction2.sh into 

a minimum deformation average (MDA) template containing only anatomically 

consistent features (3. Non-Linear). This method involves averaging the TSE scans to 

an intermediate space, and registering the individual TSEs to the intermediate space. 

The average of these transformations is applied to the intermediate template and the 

model is updated iteratively. We used the default settings and three iterations for the 

non-linear registrations. We deactivated the ANTs laplacian sharpness filter for fair 

comparison between realignment methods.  

 

Individual YHPs, HCs and MNDs for each method were independently co-registered 

to a group-and-method-specific MDA template using ANTs to yield nine group-and-

method templates (e.g., MND-Linear, HC-Non-Linear, YHP-Average, etc.). Each 

template was constructed with identical parameters. These nine group-and-method 

templates and each individual’s realigned TSE (for each method) and their 

corresponding MP2RAGE scan were labelled using ASHS, which requires both T1w 
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and T2w inputs, (Yushkevich et al., 2015) in native space then warped to their common 

group-method template space (Figure 1). Segmentation consistency was derived by 

examining Dice overlaps of segmentation labels between group-method template 

labels and individual volume labels (subject-to-template overlaps). Sharpness of 

images was measured to describe brain structure delineation by calculating the 

median of the derivative of a Gaussian applied to the TSE at 1mm FWHM as described 

in Fonov and Collins (2018). We provide all the code for this project at 

https://github.com/thomshaw92/NonLinRegImprovesSegAcc. 

 

 

 

Figure 1. Sagittal and coronal views of the alignment in the hippocampus after the 

three realignment procedures (Non-Linear, Linear, Average) for the method-templates 

(left, labelled) and a representative YHP subject that benefited from the non-linear 

realignment technique (right). Views capture the left hippocampus, and both 

hippocampi for coronal single-subject view. Edges of the template ASHS 

segmentations have been superimposed as coloured lines. 
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For validation, all TSEs were rated manually using adapted methods from Backhausen 

et al. (2016) and Jones and Marietta (2012), with the criteria of i) Image sharpness 

(including artefacts), ii) Ringing, iii) Contrast-to-Noise Ratio (CNR; subcortical 

structures), and 4) CNR (GM and WM). Two raters (NTA: senior research radiographer 

with 30 years medical imaging experience, and TBS: six years research experience in 

medical imaging) rated all participants on a scale from 1-3, with 1=pass, 2=check, and 

3=fail for quality assurance of scans and to assess motion artefacts before post-

processing. A weighted average that favoured ratings of sharpness and subcortical 

CNR was used to summarise the findings. Intraclass correlation (ICC) estimates and 

their 95% confidence intervals were calculated using SPSS Statistics Package Version 

25 (SPSS Inc, Chicago, IL) based on a mean-rating (k=2), absolute agreement, 2-way 

mixed-effects model. 

 

3.  Results 

 

Figure 2 shows a single-subject example of registration results for the TSEs. Sharper 

edges and more subfield information is available in the Non-Linear method, followed 

by Linear, and no information available in Average. When there is limited movement, 

small differences can be observed between the three methods.  
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Figure 2.  Left to right: Average, Linear, and Non-Linear realignment examples from 

single participants with high movement (top) and limited movement (bottom) with 

ellipses over the right hippocampus (coronal plane); blue arrows denote a common 

vessel. 

 

Collapsing across groups, Dice overlap scores (Figure 3) were found to be significantly 

different between all groups, (Friedman test p < 0.001). Significantly higher overlaps 

for Non-Linear with its method template were found compared to both Linear and 

Average, and comparing Linear to Average, independently (N=51; ** = ps < 0.001, 

Wilcoxon rank sum tests). 
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Figure 3. Violin plot for the three realignment methods (Non-Linear, Linear, Average) 

of Dice overlap scores between individual subject TSEs and its respective method-

template, collapsed over the three groups (MND, HC, YHP). ** = ps < 0.001, Wilcoxon 

rank sum tests). 

 

Sharpness (Figure 4) was significantly higher for Non-Linear compared to Linear and 

Averaging (p < 0.001, Friedman test). Significant differences were found between the 

three registration techniques, with Non-Linear performing better than Linear, and 

Averaging, independently (* = ps < 0.05). There was no significant difference between 

Average and Linear realignment (p = .982, Wilcoxon rank sum test).  
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Figure 4. Violin plot for the three realignment methods of sharpness scores of 

individual subject TSEs, collapsed over the three groups. * = ps < 0.05, Wilcoxon rank 

sum test.  

 

Examining group differences, it was found that MND and HC groups individually did 

not show significant differences in sharpness scores between any of the three 

methods, though the same pattern of results was found for Dice overlaps in MND 

and HCs individually as when we collapsed across groups (i.e., Non-Linear > Linear 

> Average). The YHP group alone showed the same (significant) pattern of 

sharpness and Dice overlap results as when collapsing across groups. 

 

To assess the performance of the methods at mitigating motion artefacts, manual 

ratings for quality assurance were first checked for inter-rater reliability. High inter-rater 
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reliability was found, with an overall ICC of .824, 95% confidence intervals = .778 - 

.861. Individual criteria ICCs were also in the high (.75+) range. We found that the 

MND and the older aged HCs performed worse in their motion rating scores than YHPs 

(Figure 5). MND and HCs had more ringing and other artefacts, worse CNR in both 

subcortical structures and between WM and GM boundaries, and lower sharpness. 

We also observed 8 YHP participants with anatomical variations including 

hippocampal cysts and incomplete hippocampal inversions. We observed severe 

neurodegeneration in MND patients.  

 

Figure 5. Quality assurance of TSEs for YHPs, HCs, and MND patients. Average 

ratings (from 1-3) with standard error of the mean are shown for the four assessed 

criteria and weighted average.   
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Interestingly, in a subset of participants (N=1 for MND, and N=8 for YHP) participants, 

Linear and/or Average registration techniques out-performed Non-Linear for Dice 

overlap. A case-by-case analysis of these participants was performed. In eight of these 

cases, there was an overall Dice failure (Dice = < 0.7) for template overlaps for all 

methods (i.e., Linear and Average included). We found five of the nine participants 

contained either anatomical variability (e.g., incomplete hippocampal inversion, cysts) 

that caused mislabelling in all conditions, which suggests Linear or Average performed 

better by chance in these participants. In the four remaining under-performing Non-

Linear participants, we found little or no movement (e.g., in YHPs). Most of the 

participants in the YHP group had no adverse motion artefacts before processing. 

Figure 1 shows examples of labelled method templates and corresponding labelled 

subject TSEs. 

 

4. Discussion 

 

We investigated the influence of different realignment strategies for repeated high-

resolution images of the hippocampus and found that Non-Linear realignment out-

performs Linear and Average registrations for improving segmentation consistency for 

the hippocampus on a group level. This improves the robustness of brain image 

segmentation and mitigating the effects of motion artefacts in high-resolution 

anatomical MRI. We found that non-linear registration assists in registration 

consistency between individuals and a representative group average compared to 

other averaging techniques. It was hypothesised that greater registration consistency 

would occur between participants if the registration procedure is more effective and 

the between-subject registrations would consequently converge more readily due to 
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increased boundary delineation. The results largely reflect that Non-Linear 

realignment is a suitable technique on the whole for increasing image sharpness, 

which leads to better segmentation consistency. We suggest that participant motion 

during high-resolution hippocampus acquisitions is mitigated by non-linear 

realignment.  

 

Studying individual participants, Linear and Average registration techniques 

occasionally out-perform Non-Linear in participants with little or no movement, but only 

in YHPs. From examining these ‘failed’ cases, it is apparent that non-linear 

realignment may have only modest effects when there is no movement, image 

artefacts, or CNR issues. It was found that in most of the cases where Non-Linear was 

an under-performer in segmentation accuracy, Average and Linear techniques also 

failed in terms of Dice overlap. These cases are visible in Figure 3 and fall in the lower 

range of Dice scores. In the remaining cases where only modest benefits of non-linear 

realignment are observed, we propose that compounding interpolation errors during 

the realignment process and regularisation errors are responsible for the poor 

performance in these participants. Multiple non-linear registrations to an intermediate 

space require multiple interpolation steps in the Non-Linear method. It is possible that 

participants with minimal movement were adversely affected by (the largely 

unnecessary) non-linear registrations. In most participants where Linear or Average 

out-performed Non-Linear, we note the anatomical variability of five participants that 

influenced the segmentation of the participants. We found three incomplete 

hippocampal inversions, and two participants with large hippocampal cysts, which 

negatively impacted the segmentation consistency in all three methods. These 

aberrations in anatomy were not reflected in the overall templates and therefore Dice 
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overlaps were negatively affected by aberrations in the labelling. In MND patients, we 

found many anatomical abnormalities. However, the MND group also showed the 

largest movement-related artefacts. The segmentation failures evident in this group 

were mitigated by the non-linear registrations. 

 

In participants with severe motion artefacts, non-linear realignment showed its 

greatest utility, with much of the information lost to partial volume effects or motion 

artefacts being reclaimed through the technique. Older aged and diseased populations 

may also show decreased contrast (Wisse, Biessels, & Geerlings, 2014). Our results 

show consistent and improved automatic segmentation can be achieved in older aged 

and diseased populations using non-linear registrations, which are notoriously difficult 

to obtain. MND and HCs, who generally have more motion artefacts, showed the most 

improvement for segmentation consistency with non-linear realignment, strengthening 

this case. However, we found no significant differences in sharpness in the MND group 

between methods. This may suggest difficulties resolving SNR and contrast decreases 

in older age groups.  

 

Non-linear registrations (especially ANTs SyN) incur a high computational cost. At 

higher resolution, these computational costs may be prohibitive. The symmetrical 

condition of the registration does not necessarily need to be fulfilled in order for the 

realignment to be successful. Therefore, other non-linear registration platforms 

including Greedy (Xie et al., 2018) or VolGenModel (Janke & Ullmann, 2015) should 

be explored in future works. 
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Measuring segmentation consistency is not a direct measurement of any realignment 

technique’s effectiveness, and the overlap resulting from registrations may not provide 

a true representation of segmentation accuracy. Here, we report on segmentation 

consistency, though consistency may have been more reliably derived through manual 

segmentations. Our measure of image sharpness offers convergent validity to the 

measure of image segmentation, as sharpness was found to be highest in the Non-

Linear condition. Image sharpness largely reflects the smoothness of anatomical 

boundaries, with higher sharpness denoting better delineation between anatomical 

structures. Hippocampus segmentation relies on the distinction between anatomical 

landmarks such as Cornu Ammonis 1 and Dentate Gyrus (as separated by the granule 

cell layer). These features can clearly be seen, e.g., in Figure 2, and we are therefore 

confident our measure of segmentation consistency is meaningful.  

 

We conclude that hippocampus image segmentation can benefit from non-linear 

registrations when participant motion is an issue. It is proposed that due to the high 

computational cost, non-linear realignment be used judiciously in participants with high 

inter-scan motion, as determined by metrics such as sharpness or qualitative 

assessment. In participants with no discernible motion artefacts (a rare occurrence in 

12 minute acquisitions), it is suggested that linear realignment be used. 
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