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Maximizing the flow of students through the science, technology, engineering, and 

math (STEM) pipeline is important to promoting human capital development and reducing 

economic inequality1. A critical juncture in the STEM pipeline is the highly-cumulative 

sequence of secondary school math courses2–5. Students from disadvantaged schools are less 

likely to complete advanced math courses, but debate continues about why6,7. Here, we 

address this question using student polygenic scores, which are DNA-based indicators of 

propensity to succeed in education8. We integrated genetic and official school transcript data 

from over 3,000 European-ancestry students from U.S. high schools. We used polygenic 

scores as a molecular tracer to understand how the flow of students through the high school 

math pipeline differs in socioeconomically advantaged versus disadvantaged schools. 

Students with higher education polygenic scores were tracked to more advanced math 

already at the beginning of high school and persisted in math for more years. Molecular 

tracer analyses revealed that the dynamics of the math pipeline differed by school advantage. 

Compared to disadvantaged schools, advantaged schools tracked more students with high 

polygenic scores into advanced math classes at the start of high school, and they buffered 

students with low polygenic scores from dropping out of math. Across all schools, even 

students with exceptional polygenic scores (top 2%) were unlikely to take the most advanced 

math classes, suggesting substantial room for improvement in the development of potential 

STEM talent. These results link new molecular genetic discoveries to a common target of 

educational-policy reforms. 

Math matters for economic success. American students who take math courses beyond 

Algebra 2 are more likely to enroll in college, complete a STEM degree 2–4, and have better labor 

market outcomes5,9,10. Students from low-income families and schools are unlikely to take 

advanced math courses in secondary school, which impairs their entry to post-secondary STEM 
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education and ultimately to a STEM career6,7,11,12. There are, however, continuing debates about 

whether the underrepresentation of low-income students in STEM is due to the diminished 

resources available to their schools and families, or is rather due to those students having lower 

aptitude or interest in math7,13–16. Analyses that statistically control for traditional measures of 

student interest and ability might lead to biased conclusions about the effects of schools, because 

these traits can themselves be reciprocally influenced by previous educational experiences 7.  

Our project addresses the challenge of understanding how student characteristics intersect 

with school characteristics by using a measure of students’ likelihood to succeed in education that 

is derived from their DNA. A previous genome-wide association study (GWAS) of 1.1 million 

people identified hundreds of genetic variants associated with higher educational attainment8. 

These results can be used to calculate an education polygenic score (education-PGS)18–20, which 

is a genome-wide composite index of genetic variants associated with completing more years of 

school. The education-PGS predicts whether or not an individual completes college about as well 

as his/her family income does8. Moreover, unlike traditional measures of student aptitude, 

individual differences in genetic sequence are fixed at conception and cannot be changed by 

educational experiences.  

Polygenic scores can therefore be used as a molecular tracer to measure flows of students 

through the STEM pipeline and assess how these flows differ across schools. Just as a radiologist 

might administer a radioactive tracer to track the flow of blood within the body, researchers can 

use genetics as a molecular tracer to get a clearer image of how students progress through the 

twists and turns of a cumulative educational system. Here, we follow the curricular histories of 

students who vary in their genetic propensity to educational success and who attend secondary 

schools with varying levels of socioeconomic advantage. This approach offers a novel way of 

diagnosing the extent to which students who have high genetic propensities for success in 
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education leak out of the STEM pipeline by failing to advance in their mathematics training.    

In mapping the flow of students through the secondary school math curriculum, we focus 

on two dimensions of high school mathematics coursetaking—tracking and persistence. In some 

countries (e.g., Germany), students are tracked into different types of secondary schools at a 

discrete number of branch points. The U.S., in contrast, does not have a formal tracking system. 

Instead, students are offered curricular options that are differentiated by content and difficulty 

(e.g., Pre-Algebra vs. Algebra I vs. Algebra II). Students are informally tracked toward final math 

credentials via their course placement in the first year of secondary school (or earlier)21. As 

subsequent coursetaking hinges on successful completion of pre-requisites and mastery of 

cumulative content, students’ curricular decisions become strongly path-dependent21–23. Students 

additionally vary after the first year in whether they persist in their track throughout secondary 

school, move to a less-advanced track, or discontinue mathematics training entirely.  

First, we sought to validate the education-PGS as a molecular tracer by testing whether it 

predicted being tracked into a more advanced math class at the beginning of high school and 

whether it predicted persisting in math for longer. Next, we used the education-PGS to examine 

differences between schools in the flow of students through the STEM pipeline. Specifically, we 

focused on the difference between schools that served mainly students from well-educated families 

versus schools that served mainly students from families with less formal education. Some 

researchers have proposed that differences between schools in students’ academic achievement are 

an artifact of school differences in the concentration of students with high genetic propensities 

toward education16. However, students matched on education-PGS differ substantially in their 

rates of college graduation, depending on where they attended secondary school24. Moreover, 

school characteristics may interact with student genetics by constraining or expanding the range 

of opportunities for progression through an advanced curriculum. Two students with the same 
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education-PGS might, therefore, differ substantially in their progress through the STEM pipeline, 

depending on their school characteristics.  

Results 

Analyses used genetic and official school transcript data on N = 3,635 unrelated 

adolescents from the National Longitudinal Study of Adolescent to Adult Health (Add Health, see 

Methods; Supplementary Figure S1), who were enrolled in a U.S. high school in 1994-1995. 

We restricted analyses to European-ancestry participants to prevent inadvertently conflating 

genetic variation with racial or ethnic background. Previous analyses of national population 

patterns have revealed a fairly standardized sequence of math coursework, ranging from more 

basic courses like Pre-Algebra to more advanced courses like Calculus25,26. We used this sequence 

to categorize each participant’s math coursework across four years, based on information obtained 

from schools, including course catalogs, school information forms, and interviews with school 

administrators(Supplementary Table S2).  

At the beginning of secondary school (9th grade, age ~14 years), most students were 

enrolled in Algebra 1 (51%), but some students were tracked to less advanced (Pre-Algebra or 

below, 29%) or more advanced (Geometry or above, 20%) courses. A student’s final level of 

mathematics training was strongly dependent on 9th-grade course enrollment: 44% of those 

enrolled in Geometry or higher in 9th-grade ultimately completed Calculus, compared to only 4.2% 

of those enrolled in Algebra 1 and 1% enrolled in Pre-Algebra or lower level math class. Students 

with higher polygenic scores were more likely to be tracked into more advanced math courses in 

9th grade (Figure 1A, b = 0.583, SE = .034, p = 3.41 × 10-64, Supplementary Table S3).  
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Figure 1. Students with higher education-associated polygenic scores are tracked 
to more advanced math and persist for longer in math. Error bars represent 95% 
confidence intervals around the mean. 

 

 

Add Health participants with a higher education-PGS more often grew up in high-SES 

families and attended high-SES schools, as compared to participants with lower polygenic 

scores24,27. These gene-environment correlations raise the possibility that genetic associations with 

mathematics tracking could be due to clustering of students with higher polygenic scores in 

environmental contexts that better support math achievement. To address this possibility, we 

repeated our analysis of tracking in the 9th grade using measures of school-SES and family-SES as 

covariates (Methods, Supplementary Table S3). As expected, students from higher-SES families 

were tracked to more advanced math courses at the beginning of secondary school (b = 0.419, SE 

= 0.033, p < 2 × 10-16), as were students in higher-SES schools (b = 0.704, SE = 0.257, p = .0061). 
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However, including family-SES and school-SES as covariates attenuated the association between 

the education-PGS and mathematics tracking in the 9th-grade only by about 20% (attenuated from 

b = 0.583, SE = .034, to b = 0.461, SE = .036, p < 2 × 10-16, Supplementary Table S3). Note that 

the association with genetics was roughly comparable in magnitude to the association with family-

SES.   

As a stronger test of whether the genetic association with mathematics tracking was due to 

clustering of students with high education-PGS into certain schools, we repeated our analysis of 

9th-grade tracking yet again, this time using school-fixed-effects regression to compare students to 

their schoolmates28 (Supplementary Table S3). Comparing only students who were in Algebra 1 

or below, students with higher education-PGS were less likely, compared to their schoolmates, to 

be placed in a remedial track (Pre-Algebra or lower) than in Algebra 1 (b = 0.387, SE = .049, p = 

3.65 × 10-15). Similarly, comparing only students who were in Algebra 1 or above, students with 

higher education-PGS were more likely, compared to their schoolmates, to be placed in an 

advanced track (Geometry or higher) rather than in Algebra 1 (b = 0.587, SE = .059, p = 3.74 × 

10-23).  

What happens to students after the 9th-grade? Participants in this sample attended high 

school in the mid-1990s, when the average high school graduation requirement in U.S. states was 

2.4 years of math coursework29. Rates of math drop-out accelerated in later years of secondary 

school (9th-grade: 2.6%, 10th-grade: 5.2%, 11th-grade: 17.6%, 12th-grade: 44.7%; Supplementary 

Table S2). Once students dropped out of math, they tended to remain out of math coursework; 

only 8% of students enrolled in a math class after a year of no math. We summarized persistence 

across the four years of transcript follow-up as number of advancing steps in the math coursework 

sequence, ranging from zero to three. For example, a student who completed Algebra 1, Geometry, 

and Algebra 2, but who did not take a math course in the 12th-grade, took two advancing steps. 
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Students with higher education-PGS took more advancing steps (Figure 1B; b = 0.139, SE 

= .013, p < 2 × 10-16; Supplementary Table S4). We then repeated this analysis using a number 

of additional covariates.  As we observed for tracking, students from higher-SES families and who 

attended higher-SES schools were more likely to persist in math coursetaking across secondary 

school (family SES b = 0.120, SE = .014, p < 2 × 10-16; school SES b = 0.234, SE = .010, p = 

.018). But the education-PGS association with persistence was only modestly attenuated after 

accounting for family- and school-SES covariates (b = 0.096, SE = .014, p = 3.1 × 10-12). The next 

model also included 9th-grade course placement as a covariate. Students who were tracked to Pre-

Algebra or lower in the 9th-grade persisted less in math than those in Algebra 1 (b = -0.221, SE = 

.034, p = 8.2 × 10-11). In contrast, students in more advanced math tracks in 9th-grade (Geometry 

or higher) did not differ from those placed in Algebra 1 (b = -0.059, SE = .035, p = 0.087). 

Controlling for tracking in the 9th-grade, the education-PGS again remained associated with 

persistence (b = 0.087, SE = .014, p = 7.3 × 10-10).  

As with tracking, we repeated this analysis yet again using school fixed-effects to compare 

students to others in their school. Consistent with previous analyses, participants with higher 

education-PGSs took more advancing steps in their mathematics coursetaking than their 

schoolmates (b = 0.117, SE = .014, p = 1.69 × 10-17; Supplementary Table S4).  

We next analyzed persistence on a year-by-year basis. As shown in Figure 2, most students 

were enrolled in math in 9th-grade, and their mean education-PGS was the sample mean (i.e., zero). 

Few of these students dropped out of math in 10th-grade, but these early drop-outs had a low 

average education-PGS (less than 0.3 SD below the mean). The pace of attrition increased in 

subsequent years (note growth in size of the red dots), and students who continued to take any 

math class were an increasingly positively-selected group.  
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Figure 2. Genetic associations with persistence in math recur year-after-year. 
Error bars represent 95% confidence intervals. Size of the dots represents number of 
students enrolled or not enrolled in math in each year.  

 

 

We considered whether the education-PGS provided any novel information above and 

beyond what could be observed from students’ performance in math class. It did. This set of 

analyses focused on students who were enrolled in any math class in the 9th-, 10th-, and 11th-grades, 

and tested enrollment in any math class in the subsequent year. End-of-year grade point averages 

(GPAs; on a 4-point scale) in math were obtained from the school transcripts. At every year, 

students from higher-SES families, students attending higher-SES schools, and students who had 

higher math GPAs were more likely to enroll in math the subsequent year (Supplementary Table 

S5). After controlling for these covariates, a 1-SD increase in the education-PGS was still 

associated with 1.26 times greater odds of taking a math class in 10th-grade (95% CI = 1.06 – 1.51), 

1.15 times greater odds in 11th-grade (95% CI = 1.04 – 1.28), and 1.13 times greater odds in the 

12th-grade (95% CI = 1.04 – 1.23).  

Our analyses reveal genetically-stratified flows of students through the mathematics 

training pipeline. We visualized these flows using a “river plot” (Figure 3) 30. In the river plot, 

participants’ math courses (rows) are plotted by year of secondary education (columns). Courses 
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are ordered from most-advanced at the top of the graph to least-advanced at the bottom. The widths 

of the rivers (i.e., the edges connecting row-column nodes) indicate the number of students moving 

from one course to another. The color of the rivers represents the average education-PGS for 

students following a particular path (higher in blue, lower in orange). Overall, these results support 

the premise that the education-PGS can be used as a molecular tracer to evaluate how students 

flow through the STEM pipeline in secondary school.  

Figure 3. Student DNA can be used to visualize the flow of students through the 
high school math curriculum. Columns represent year of secondary school; rows 
represent mathematics course sequence ranging from least to most advanced. Width of 
the rivers connecting columns proportional to number of students. Shading of rivers 
represents the average education polygenic score for students in a particular course in 
a particular year, ranging from low (orange) to high (blue). 

 

 

We next conducted two analyses of how STEM pipeline dynamics varied by school 

advantage. First, we tested if the genetic association with tracking differed between high- and low-

SES schools using cumulative link models with product terms to capture interactions between 

school-SES and the education PGS. Students had higher returns to their genetic propensities for 
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educational attainment in higher-status schools (Figure 4A): Higher education-PGS predicted 9th-

grade tracking more strongly among students in higher-status schools than in lower-status schools 

(interaction b = 0.59, p =0.014; Supplementary Table S3). A student with an education-PGS of 

+1 (top 16th percentile) who is in a high-status school has a 33.1% probability of being tracked to 

Geometry in the 9th-grade (note horizontal gray line in Figure 4A). In order to have the same 

probability of being placed in Geometry, a student in a low-status school would need to have an 

education-PGS of +2.0 (top 2%). Robustness analyses using non-parametric LOESS and adjacent 

category logit models suggested similar patterns (see Supplementary Figure S2).  

Figure 4. (A) Students with high education-associated polygenic scores are more 
likely to be tracked into advanced math in advantaged schools than in 
disadvantaged schools. Fitted probabilities of being tracked to Geometry or higher in 
the 9th grade, based on cumulative link logit model. School status measured by percent 
of students whose mother graduated from high school. See Supplementary Table S3 for 
full model results. (B) (A) Students with low education-associated polygenic scores 
persist more in math in advantaged schools than in disadvantaged schools. Model-
implied number of advancing steps from 9th- to 12th-grade, based on Poisson model. At 
least 1 year of math beyond the 9th grade was compulsory in most U.S. states. See 
Supplementary Table S4 for full model results. 
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Second, we tested the interaction between education-PGS and school-SES in predicting 

number of advancing steps in math. There was a significant and negative interaction on 

mathematics persistence, such that low-PGS students were less likely to drop out of math in high-

status schools than in low-status schools (b = -0.304, SE = .091, p = 8.6 × 10-04; Supplementary 

Table S4). The interaction effect was similar when including 9th-grade tracking as a covariate (b 

= -0.281, SE = .091, p = .0036). Figure 4B shows how the number of advancing steps varied as a 

function of education-PGS in schools at the 0.25 quantile versus 0.75 quantile of school status. 

High-PGS students persisted about equally in their mathematics training regardless of school 

status. In contrast, students with an average or low education-PGS were particularly likely to drop 

out of math in low-SES schools. For example, students attending low-SES schools with an average 

education-PGS completed 1.6 advancing steps (note gray horizontal line in Figure 4B). However, 

in high-SES schools, a similarly low level of mathematics persistence is only seen in students at 

the very low end of the genetic distribution (education-PGS = -1.5, bottom 7%-ile).  

Our final analyses focused on school differences in whether or not a student completed 

Calculus, the most advanced course category in the 9-course sequence. Results from a logistic 

regression found that school-SES and the education-PGS each predicted taking Calculus, but they 

did not significantly interact (Supplementary Table S6). Students with an average education-PGS 

had nearly twice the chances of taking Calculus in a high-SES school (11%) than in a low-SES 

one (6%). Calculus was rare even among students with exceptional polygenic scores (top 2%, or 

+2 SD above the mean): High-PGS students had a 24% probability of taking Calculus in a low-

SES school and a 31% probability in a high-SES school.  

Discussion 

In summary, this study used data on student genetics as a molecular tracer to test how the 

flow of students through the high school math curriculum varied between disadvantaged versus 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/598532doi: bioRxiv preprint first posted online Apr. 5, 2019; 

http://dx.doi.org/10.1101/598532
http://creativecommons.org/licenses/by-nc-nd/4.0/


advantaged school contexts. There were three main findings. First, students with higher education 

polygenic scores tended to enroll in more advanced mathematics tracks in the 9th-grade, and they 

were more likely to persist in these tracks through the end of high school. Second, genetic 

associations with tracking and persistence were not explained by differences between schools or 

measured differences in family socioeconomic status. Third, the flows of students through the 

mathematics pipeline differed between high-SES and low-SES schools.  

Specifically, we saw evidence for both cumulative advantage and resource substitution31,32. 

When examining tracking in the 9th-grade, the returns to education-linked genetics were higher in 

high-status schools: Students with high polygenic scores were more likely to be tracked to 

advanced math classes in higher-status schools. At the same time, students with low polygenic 

scores were buffered from dropping out of math in high-status schools. The net result of these 

processes is that students in high-status schools had substantially better math credentials by the 

end of high school. This difference, we argue, are likely best understood in terms of school 

differences in resources and practices, rather than in terms of the genetic composition of their 

student bodies (cf 16). 

It is now well-established that educational attainment is heritable33 and can be predicted 

from an individual’s DNA34. What is less well-understood is how genetic differences between 

individuals lead to differences in educational outcomes. In order for genetics research to inform 

education policy and practice, greater knowledge is needed about the developmental and social 

processes that connect students’ DNA to their educational outcomes35. Indeed, because polygenic 

scores are largely “black boxes” that aggregate genetic variants with unknown biological 

functions, some scientists have insisted that genetic discoveries in the area of education have no 

policy implications whatsoever 6.  

However, our results directly connect these genetic discoveries to a common target of 
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educational reforms – math coursetaking in secondary school. In the U.S., many states and school 

districts have increased the number of mathematics courses required for high school graduation37, 

while others have enacted policies designed to push more students into accelerated math tracks38, 

standardize the procedures for deciding how students are tracked39, or eliminate tracking 

altogether40. More generally, the U.S. government spends an estimated $3 billion on programs 

intended to increase STEM degree attainment41.  

Who benefits the most from these policies and programs? Genetic technology has the 

potential to provide new insights into this question. For example, one previous study found that a 

U.K. educational reform, which increased the age at which students could leave school from 15- 

to 16-years-old, had larger effects on the physical health of people who were at genetic risk for 

obesity, thus mitigating genetically-associated health disparities42. Our results suggest that, in the 

context of high school math, the answer to “who benefits” might depend on the specific outcome 

of interest. To our knowledge, there is not enough genetic data available from current cohorts of 

students to begin to evaluate whether the panoply of local and national policies designed to 

improve student mathematics education intersects with genetic differences in a similar way, but 

this is an intriguing direction for future research.  

Integrating genetic information in educational research also has the potential to introduce 

a novel source of data for researchers and policymakers interested in estimating schooling effects 

on the distribution of student outcomes. Our results suggest that students with the same genetic 

predisposition can attain very different levels of mathematical training, depending on the school 

they attend. A persistent methodological problem for using student outcome data to evaluate 

educational quality is how to separate out the effects of teachers and schools from the effects of 

out-of-school variables. Family income, in particular, has received considerable attention as a 

potential confound for measures of school quality: Do students from “good” schools show better 
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performance because their schools provide high-quality instruction or because the schools have 

low rates of poverty (or because of some dynamic interaction between the two)43?  

Genetic information about students is as predictive of success in schooling as family 

income8, and genetic differences between students could similarly confound measures of school 

quality16,24. Indeed, one previous study in the U.K. found that value-added measures of teacher 

quality were correlated with the average education-PGS of students, suggesting that conventional 

models of educational quality that fail to consider genetic differences between students might lead 

to biased conclusions,44 whereas incorporating data on student genetics might help clarify the 

impact of schools: In this study, we examined only one school-level characteristic (proportion of 

students whose mothers graduated high school), so much work remains to be done to identify the 

characteristics of teachers, schools, and school districts that maximize the outcomes of students 

relative to others who have the same starting point in life with regards to their genetic propensity 

toward completing education. 

Finally, with the caveat that the Add Health data represents an earlier cohort of students, 

our results suggest that even advantaged school contexts squander an enormous amount of 

potential human capital. Out of students who both had exceptional polygenic scores (+2 SD above 

the Add Health sample mean or the top 2% of the population distribution) and attended high status 

high school, about 31% took Calculus by the end of high school, whereas only 24% of students 

who had the same score and attended low status schools took calculus. This deficit in advanced 

course-taking among students with exceptional genetic propensities for succeeding in education 

indicates a tremendous amount of squandered human potential. The pipeline is leaking badly. 

We acknowledge several limitations. First, the genetic predictor deployed here captures 

only a fraction of the genotypic variation relevant for education. Other variants (e.g., rare 

variants45) relevant for ultimate educational attainment might not operate through the processes 
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described here. Additionally, this genetic predictor is useful only for understanding individual 

differences between people of European ancestry, as the validity of education GWAS results has 

been established only for this segment of the population8. The extent to which results will 

generalize to other populations is uncertain, and none of our results is relevant to understanding 

disparities between ancestry groups46. Until equally well-powered polygenic scores are available 

for all major ancestry groups represented in U.S. schools, it will not be feasible to use genetic 

information for policy-relevant decisions. 

Second, previous studies have suggested that up to half of the polygenic score association 

with educational outcomes might operate indirectly, through the parental genotype shaping the 

quality of the environment provided to children, rather than directly through the biology of the 

child herself 47. Consequently, the association between genotype and math curricular choices might 

partially operate not through the genetically-influenced characteristics of the student herself, but 

through the genetically-influenced characteristics of her parents, such as the greater knowledge 

that college-educated parents have about how to navigate a differentiated curriculum48. 

Disentangling such indirect genetic effects49 from genetic effects that operate through the biology 

of the student will require larger samples of genetic relatives, such as parent-offspring trios50. We 

conducted an initial exploration of this question by comparing siblings raised in the same family 

(Supplement), but the relatively small number of sibling pairs with transcript data available in 

Add Health limits the definitiveness of our conclusions about the role of indirect genetic effects. 

Third, there is limited information on the educational histories of students prior to the 9th-

grade, but students’ secondary school experiences are, of course, shaped by their previous 

mathematics skill development and curricular choices. We suspect that the genetic associations 

with tracking in the 9th-grade partially reflects genetic variation in math skills that have been 

acquired prior to high school; however, the roles of attributes other than math ability, including 
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the constellation of personality and motivational factors referred to as “non-cognitive” skills, are 

also likely important51. We see potential hints of this here, as polygenic scores predict persistence 

in math even after controlling for the student’s math grades in the previous year. Other genetically-

influenced traits that are potentially influential for course placement are the student’s attention 

problems, behavioral and mental health difficulties, academic interests, motivations, and self-

concept, and ability to elicit support and investment from adults52–54.  

As sample sizes for GWAS continue to increase, more and more specific genetic variants 

associated with complex human phenotypes, like educational attainment, will continue to be 

identified. There are dangers associated with genetic research being used to justify an overly 

reductionistic or bio-deterministic account of educational outcomes55,56. However, we show here 

how DNA measures offer new opportunities for educational science. Specifically, we show that 

genetics can be used to identify leaks in the STEM pipeline and can refine our understanding who 

is benefitting (and who is not) from advantaged educational contexts. Integration of genetic data 

into educational research has the potential to accelerate knowledge about which educational 

contexts maximize success relative to a student’s starting point in life.  

Methods 

Sample 

The National Longitudinal Study of Adolescent to Adult Health (Add Health57) is a 

nationally-representative cohort drawn from a probability sample of 80 U.S. high schools and 52 

U.S. middle schools (in roughly 90 U.S. communities). Participating schools were representative 

of all U.S. schools in 1994–95 with respect to region, urban setting, school size, school type, and 

race or ethnic background.  

We constructed our analytic sample as follows (see also Supplementary Table S1). At 

Wave 1, data was collected for N = 20,369 respondents. At Wave 3, respondents of the Add Health 
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study, who were then 18-26 years old, were contacted and asked to give signed consent for the 

release of their official high school transcripts (AHAA58). Transcripts were collected regardless of 

whether the student graduated from high school. At Wave 4, biospecimens were collected for 

genome-wide genotyping (described in 27,59). Of those in the genetic sample, we focused on 

unrelated respondents of European ancestry, due to the problem of population stratification in 

diverse samples46,60. Transcripts (N = 12,032) and genetic samples (N = 5,045 of European origin) 

were collected for partially overlapping subsets of the Wave 1 respondents. Our analytic sample 

therefore consisted of 3,635 European ancestry respondents with both genotypic and transcript 

data.  

Descriptive statistics are contained in Supplementary Table S1. Compared to the full Add 

Health sample, our analytic sample had higher family SES, higher overall GPAs, and higher rates 

of postsecondary education. Missing information further reduced sample size in some analyses.  

Measures 

Polygenic score. Using results from the most recent educational attainment GWAS8, we 

constructed a polygenic score using all SNPs with reported effect sizes that are also in the Add 

Health genetic dataset and where the effect allele can be reliably matched to the allele reported in 

the Add Health genetic data. We residualized the PGS on the top 10 principal components of 

genetic ancestry and then standardized the PGS based on the full set of respondents in the genetic 

dataset (N = 5,045). A similar PGS has been used in previous work24,27. Genotyped respondents 

who were not in the transcript dataset had a mean education-PGS of -0.11, whereas the genotyped 

respondents with transcript data had a mean education-PGS of 0.04 (Supplementary Table S1).  

Transcript course-taking indicators. Course content information obtained from the 

schools was used to identify the level of each course on a student’s transcript and to assign it a 

Classification of Secondary School Courses code. These codes were used to develop an ordinal 
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indicator of the math course sequence, ranging from 0 (no math) to 9 (calculus). These indicators 

were developed by the AHAA project58,61 to be compatible with the 2000 National Assessment of 

Educational Progress High School Transcript Study62 and are based on population patterns of 

coursetaking as derived from the National Education Longitudinal Study of 198863. The 

percentages of students enrolled in each level at each year are in Supplementary Table S2. For 

analysis of 9th-grade coursetaking, math courses that focus on remedial skills (Basic/Remedial and 

General) were collapsed, as were math classes beyond Geometry (Algebra 2, Pre-Calculus, 

Advanced Math, and Calculus).  

Course grades.  Students’ final math course grades at each year were obtained from 

transcripts and coded on a 0-4 scale (0=F, 1=D, 2=C, 3=B, 4=A). If a student took the class 

pass/fail, withdrew, or received an incomplete, then his/her course grade is missing26. A 

cumulative GPA was also computed from these transcript-based grades. 

Family socioeconomic status. Family-of-origin socioeconomic status (SES) was indexed 

using the first principal component of parental education, job status, income, and the number of 

benefits received (loadings were 0.58, 0.43, 0.49, and 0.49 respectively); see 27 for additional 

information on this indicator. The family-SES variable was standardized with respect to the full 

Wave I sample; the current analytic sample was more advantaged than the full sample (M = 0.34, 

SD = 1.16).  

School socioeconomic status. We used an indicator of school status used previously24,64. 

Add Health administered an in-school survey to all students in participating high schools (N = 

90,118). This information was used to calculate the percentage of students at each school who 

report that their mother graduated high school.  

Analyses 

Our statistical models varied as a function of the outcome variable. For non-categorical 
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outcome variables (e.g., number of advancing steps), we fit baseline generalized linear models of 

the form: 

E(yij)=g-1(b0+b1PGSij+controls),    [Eqn 1] 

where i indexes school, j indexes individual, and an appropriate link function g is chosen given 

the distribution of the outcome y. For analyses of 9th-grade tracking, we fit ordered logistic 

regressions65. For analysis of persistence, we used Poisson regressions. We fit interaction models 

of the form: 

E(yij)=g-1(b0+b1PGSij+b2School Statusij+b3PGSij•School Statusij +controls).  [Eqn 2] 

For interaction models, we also included interactions between covariates and the key main 

effects, so as to guard against spurious findings from specification error66. Thus, in models 

examining interactions between the education-PGS and School Status (as in Figure 4), we also 

included interactions between PGS and sex, School Status and sex, PGS and birth year, and 

School Status and birthyear (see Supplementary Table S3). 

For our ordinal categorical outcomes (e.g., tracking in 9th-grade), we consider cumulative 

link models65. As used here, cumulative link models assert that: 

Pr(yijk≤j)=f(θj-( b0+b1PGSij+controls)),    [Eqn 3] 

where k in [0,1,…K] now indexes the category of the outcome y. We used a logit link, rendering 

this model equivalent to the proportional odds model 67. One key assumption of this model is that 

the effect of the predictors does not vary across categories. We therefore also present results 

from alternative models (e.g., adjacent-category logit models) as robustness checks, see 

Supplement.  
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