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Abstract 

Background: The epigenetic regulation through post-translational modification of histones, 

especially methylation is well conserved, while DNA methylation is variable, being very low or 

absent in Drosophila melanogaster. Though there are several insect genomes sequenced, an 

analysis with a focus on their epigenetic repertoire is limited. We have compared the histone 

methyltransferases and the demethylases in the genome of Drosophila melanogaster, Aedes aegypti 

(Diptera), the pea aphid Acyrthosiphon pisum, the triatomid bug Rhodnius prolixus (Hemiptera), the 

honeybee Apis mellifera (Hymenoptera), the silkworm Bombyx mori (Lepidoptera) and the red flour 

beetle Tribolium castaneum (Coleoptera). 

Results: We identified 38 clusters consisting of arginine, lysine methyltransferases and 

demethylases using OrthoFinder. To eliminate false positives, we designed a method based on 

identifying highly conserved domain within each class designated as the high priority domain.  Out 

of the 9 arginine methyltransferases, Art2, Art6 and Art9 are identified in D.melanogaster only. We 

observe copy number variation between the genomes; A.pisum has nine copies of eggless gene 

(H3K9me3 methyltransferase), which can be correlated with the switch between parthenogenesis 

and sexual reproduction. Other than the high-priority domains, these proteins contain shared and 

unique domains that can mediate protein-protein interaction. Phylogenetic analysis indicates that 

the there is a broad conservation within the members of a class while duplication and divergence is 

observed in LSD1.  

Conclusion: This meta-analysis provides a method for reliable identification of epigenetic 

modifiers of histones in newly sequenced insect genomes. Similar approach can be taken for other 

classes of genes.  
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1. Background 

The post-translational modification (PTM) of histones especially at the N-terminal tail of histone is 

a pivotal step in epigenetic regulation during development to maintain the transcriptional status of 

the genes [1]. It contributes to the regulation of gene expression either by creating sites for the 

recruitment of specific factors or by modification of the existing sites to abolish the previous 

interactions [2].  

The different types of modifications that exist on histones include methylation, acetylation, 

phosphorylation, ribosylation, succinylation, malonylation, and biotinylation [3, 4, 5, 6]. According 

to the “histone code hypothesis” the various post-translational modifications coexist in different 

combinations leading to distinct effect on gene expression [7]. The overall charge on the basic 

histone proteins can be changed by acetylation or phosphorylation that affects the interactions 

between histones and DNA. The combined effect of all the post-translational modifications brings 

about a change in the chromatin structure and function during development, growth, differentiation 

and homeostasis [8, 9]. Histone methylation is one of the well-studied PTMs, for which the 

essential three components, the writers, readers and the erasers have been identified [10].   

 

Insects, the ancient group of animals which probably appeared 360 to 400 million years ago are 

highly diverged, occupying a prime position in the history of epigenetic phenomenon because of the 

diversity of polyphenisms [11]. As compared to the mammals, insects have shorter generation 

times, morphologically distinct development stages and high fecundity which is influenced by 

environmental stimulus and regulated by epigenetic mechanisms that are conserved [12]. Out of the 

various histone modifications known in insects, the histone methylation plays an important role; the 

methylated histones, as major players in the regulation of gene transcription, have been implicated 

in repression through heterochromatin, promoter regulation and the propagation of repressive state 

by DNA methylation [13].  
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The histone methyltransferases exhibit specificity for the histone paralogs as well as the residues 

they modify. The arginine methyltransferases modify histone H2A and H4 at arginine3 (R3), and 

H3 at positions R2, R8, R17 and R26 [14]. Lysine methyltransferases are known to modify the 

lysine residues at various positions in the histone H1, H2, H3 and H4 [15]. The members of protein 

arginine methyltransferase family catalyse the methylation of arginine in both cytoplasmic and 

nuclear proteins [16]. The histone H3K4, H3K36, and H3K79 methylation are known to be gene 

activation marks, whereas H3K9, H3K27 and H4K20 methylation gene repressive marks [17, 18]. 

Histone lysine methylation has important functions in biological processes like heterochromatin 

formation, regulation of transcription, cell cycle, genome stability and nuclear architecture [18]. It is 

a crucial modification that does not alter the charge of lysine residues thereby having minimal effect 

on the DNA-histone association. It serves as a platform for recruiting epigenetic reader-proteins 

which help in activating or repressing transcriptional activity [19].  

Initially, methylation of histones was considered to be irreversible but in the recent years several 

histone demethylase families have been identified which can erase methyl marks, resulting in the 

reversion of the methylation effect and thus demonstrating the dynamic nature of histone 

methylation [20]. The histone demethylases are found in large protein complexes in association 

with histone deacetylases, histone methyltransferases and nuclear receptors which have an impact 

on the chromatin state and all chromatin-templated processes such as transcription, DNA 

replication, recombination and repair [21, 22]. They are involved in gene activation or repression by 

either actively detaching methyl group from H3K4 via the activity of its amine oxidase domain, 

using FAD as a cofactor [23] or demethylating H3K36 through their JmjC domain [24]. The 

demethylases also act on specific residues of specific histones like modifying the histone H3 at 

positions K4, K9, K27 and K36 [25]. 

 

In the light of the pivotal role of histone methylation, genome analysis with a focus on epigenetic 

tool kit is limited. We have analysed the histone methyltransferases and demethylases present in 
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insect genomes. The representative insects considered for analysis is with the major consideration 

of the availability of well-annotated genome sequence and those that have been studied from the 

angle of their interaction with humans or as models for understanding fundamental biological 

process. We have considered the fruit fly Drosophila melanogaster, Aedes aegypti (Diptera), the 

pea aphid Acyrthosiphon pisum, the triatomid bug Rhodnius prolixus (Hemiptera), the honeybee 

Apis mellifera (Hymenoptera), the silkworm Bombyx mori (Lepidoptera) and the red flour beetle 

Tribolium castaneum (Coleoptera).  D.melanogaster is a well-known model organism that has led to 

the discovery of several fundamental phenomena and is used to generate human disease models. 

Aedes aegypti is a vector for yellow fever, dengue, chikungunya and Zika fever [26]. Acyrthosiphon 

pisum is a sap-sucking insect and a model for the study of symbiosis, development, and host plant 

specialization. Rhodnius prolixus is the principal triatomine vector of the Chagas disease, having 

birds, rodents, marsupials, sloths and reptiles as host and implicated in the transmission of 

transposons among themselves and also to some of its vertebrate hosts, like, squirrel monkeys and 

opossum [27], Apis mellifera is the eusocial insect, has a well-structured social system and also is 

used in studies of pesticide toxicity, to assess non-target impact of commercial pesticides. Bombyx 

mori is an economically important insect, being a primary producer of silk. Tribolium castaneum is 

a pest particularly of food grains, and a model organism for food safety research. We have focused 

on histone methyltransferases and demethylases, as the number of genes assigned for this function 

is large among the various epigenetic players. We take into consideration that the study is dictated 

by the annotation of the genomes that is available in the public domain. In the present analysis we 

have designed an approach to identify the histone methyltransferases and demethylases in the 

genome with high confidence. We identified high-priority domains within each class that lead to 

exclusion of false positives and the identification of potential novel genes involved in epigenetic 

regulation. We also identified the functional domains in addition to the essential domains.  
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2. Materials and Methods 

Identification of orthogroups in the proteome: All the protein sequences from Drosophila 

melanogaster, Aedes aegypti, Acyrthosiphon pisum, Rhodnius prolixus, Apis mellifera, Bombyx mori 

and Tribolium castaneum were retrieved from UniProtKB [28]. OrthoFinder (version 2.2.6) [29] 

was used to identify cluster of orthologous genes. To generate a non-redundant list of Uniprot IDs 

for histone methyltransferases (arginine and lysine) and demethylases from Drosophila the 

following sources were used: keyword based literature search, the Flybase and Uniprot. This list 

was used to identify the relevant orthoclusters for the three classes of proteins of the selected insect 

genomes.  We also mapped duplications in selected orthogroups or orthoclusters. We devised an 

additional approach to mine novel genes in these classes that are designated either as hypothetical 

or uncharacterised proteins. Interproscan [30] was used to identify the conserved domains for each 

gene.  

Phylogenetic analysis of curated orthogroups: The inferred amino acid sequences of each of the 

arginine, lysine methyltransferases and the demethylases were aligned separately with MAFFT 

version 7 L-INS-i [31]. The data set comprised of 49 arginine, 115 lysine methyltransferases and 

100 demethylases. Alignment was obtained in the CLUSTAL format. Phylogenetic trees were 

drawn with these alignments with default parameters. Tree file without terminal node number in the 

Newick format was used for drawing tree and colour coded using the software Rainbow Tree [32, 

33]. The whole proteome based species tree generated by OrthoFinder was used for comparison. 

The complete workflow for the analysis is given in Figure 1. 

3. Results and Discussion 

Retrieval of curated methylases and demethylases orthoclusters 

From OrthoFinder we obtained 62086 Orthoclusters. Using Uniprot IDs and keyword based 

searches 38 clusters for histone arginine, lysine methyltransferases and the demethylases were 

identified by manual curation (Table 1). The filtered data comprised 16 clusters of lysine 

methyltransferases and 10 clusters of the nine arginine methyltransferases in Drosophila.  
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Table 1:  The clusters for histone methyltransferases and the demethylases in the various 

representative species after curation along with the number of homologs for each insect in the 

cluster  

Gene classes 

Cluster Id Gene 

D
ro

m
e 

A
ed

ae
 

A
cy

pi
 

R
ho

pr
 

A
pi

m
e 

B
om

m
o 

Tr
ic

a 

Arginine methyltransferase 

OG0002188 Art1 3 4 1 1 1 2 1 
OG0039667 Art2 1 0 0 0 0 0 0 
OG0005477 Art3 2 2 1 0 1 1 1 
OG0005011 Art4 2 1 1 2 1 1 1 
OG0003597 csul 2 1 3 1 1 1 1 
OG0039564 Art6 1 0 0 0 0 0 0 
OG0005665 Art7 1 2 1 1 1 1 1 
OG0006772 Art8 1 1 2 1 0 1 1 
OG0037197 Art9 1 0 0 0 0 0 0 
OG0034922 Art9 1 0 0 0 0 0 0 

Lysine methyltransferase 

OG0005036 ash1 1 3 1 1 1 1 1 
OG0001312 Set2 2 2 2 1 1 1 1 
OG0002757 gpp 2 3 1 1 1 1 1 
OG0005364 Mes-4 2 1 1 0 2 1 1 
OG0003336 Set1 1 2 3 1 1 1 1 
OG0004408 trx 1 3 1 0 1 1 1 
OG0004364 upSET 1 2 1 0 1 1 1 
OG0001050 trr 1 2 1 1 1 1 1 
OG0007760 CG4565 2 0 1 1 1 1 0 
OG0002855 CG32732 1 0 1 1 1 0 0 
OG0004410 E(z) 2 2 1 1 1 1 1 
OG0005525 PR-Set7 2 1 1 1 1 1 1 
OG0001618 egg 1 1 9 0 1 1 1 
OG0001971 Suv4-20 5 2 2 1 1 1 1 
OG0002230 Su(var)3-9 3 3 3 0 1 2 0 
OG0004417 G9a 3 0 1 1 1 0 1 

Demethylases 

OG0001983 LSD1 3 1 2 2 1 2 2 
OG0003534 Kdm2 3 2 1 1 1 1 1 
OG0003630 Kdm3 1 2 2 1 1 1 2 
OG0000470 Kdm4 7 3 11 1 1 1 1 
OG0002894 lid 2 1 1 1 1 3 1 
OG0005370 Jarid2 2 2 1 0 1 1 1 
OG0002774 Utx 4 2 1 1 1 1 1 
OG0005513 NO66 2 1 1 1 1 1 1 
OG0006891 Kdm8 2 1 1 1 0 1 1 
OG0005067 CG43320 1 2 1 2 1 1 1 
OG0004994 PSR 2 2 1 1 1 1 1 
OG0009638 Phf8-like 0 0 0 0 1 1 1 

Drome: Drosophila melanogaster, Aedae: Aedes aegypti, Acypi: Acyrthosiphon pisum, Rhopr: 

Rhodnius prolixus, Apime: Apis mellifera, Bommo: Bombyx mori, Trica: Tribolium castaneum. 

 

Art9 is identified only in D. melanogaster and the two isoforms (99.2% identity), were grouped into 

two singleton clusters as additional 53 amino acids are present at the N-terminal in one of them.  As 
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against the nine arginine methyltransferases in Drosophila, only six were identified in Aedes, 

Acyrthosiphon, Bombyx and Tribolium while only five arginine methyltransferases were identified 

in Rhodnius and Apis genome. Art2, Art6 and Art9 methyltransferases are present in 

D.melanogaster but were absent in all other insects. No redundancy in activity has been reported 

for the methyltransferases with respect to the position of methylation at various residues and human 

arginine methyltransferases (PRMT) have non-overlapping properties and are thought to be 

involved in different cellular processes [34]. 

 

For lysine methyltransferases (KMT) Drosophila, Aedes and Apis contained all 16 KMTs while two 

or more clusters were absent in all other insects. Rhodnius genes were represented in only eleven 

clusters. The lysine methyltransferases do show redundancy as clusters comprising the Set2, 

CG4565 and CG32732 enzymes are responsible for methylating H3 at K36 with CG32732 as the 

only protein which has both H3K4 and H3K36 methylation activity [35]. RNA interference-

mediated (RNAi) suppression of Drosophila Set2 leads to the lack H3K36 methylation, suggesting 

its crucial role in depositing this activating modification [36].  

 

The histone demethylases were represented by 12 clusters. The Kdm4 (lysine demethylase) clusters 

show co-existence of the closely related members-Kdm4a and Kdm4b genes which are essential for 

mediating the ecdysteroid hormone signalling and are biologically redundant [37]. The trend shown 

by the cluster of methyltransferases is also followed in this class with Rhodnius proteins 

represented in least number of clusters.  

 

The clustering in OrthoFinder is based on the identity in sequence of amino acids. However this 

may not represent the presence of the relevant functional domain in the protein. Therefore the data 

was curated to exclude the false positive members from the clusters based on the presence of certain 

domains. The reliable signature for a given functional class was identified in Drosophila proteins as 
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High-priority domains. The domain(s) that was present at high frequency in each class of protein 

was identified (Figure 2).  For example, S-adenosyl-L-methionine-dependent methyltransferase 

domain is present in 9/9 genes in Drosophila, while PH domain like is present in 2/9 cases. Thus we 

selected the SAM-dependent MTase domain as the high priority domain for Arginine 

methyltransferase while the SET domain with or without the Pre-SET or Post-SET domain is the 

high priority domain for the lysine methyltransferases. Demethylases have the JmjC and/or the 

JmjN as the high priority domain. Based on this criterion, the output of OrthoFinder was filtered 

and the overall false positive rate was observed to be 8.2%. On the same criteria 37% of the 

members in the clusters qualify as putative methyltransferases or demethylases. This is a stringent 

criterion and there is a chance that a putative methyltransferase gene may get excluded, as 8 false 

positives were identified in Drosophila. While this can be due to partial sequence being present in 

the database, the genes identified based on this criterion could be a confirmed 

methyltransferase/demethylase.  False positive cases for different insect proteomes are provided in 

Additional File 1 A. While analysing the proteins further, we observed that only 54.51 % of the 

proteins have well defined functions (known or already annotated proteins) while 37.29 % are novel 

which are annotated either as uncharacterized or hypothetical proteins (Additional File 1 B). Thus 

by this exercise we have been able to functionally classify a considerable number of proteins 

previously termed as uncharacterized. 

 

We also observed paralogs, described as the same genes/proteins within the genome of a species, 

derived from a common ancestor gene through duplication events. A.pisum and A.aegypti showed 

maximum number of paralogs while rest of the insects show a little or no duplication in the 

methyltransferases and the demethylases (Table 2). A.pisum genome is known to be duplicated for 

the chromatin modifiers [38].  The highest number of paralogs appearing in A.pisum corresponds to 

the Kdm4a/b and the eggless/SETDB1genes having 11 and 9 copies respectively.  
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Table 2: The number of paralogs for the methyltransferase and demethylase genes in the various 

representative species.   

 

Orthocluster Gene 

D
ro

m
e 

A
ed

ae
 

A
cy

pi
 

R
ho

pr
 

A
pi

m
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B
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m
o 

T
ri

ca
 

OG0002188 Art1 0 2 0 0 0 0 0 
OG0005011 Art4 0 0 0 2 0 0 0 
OG0003597 csul 0 0 3 0 0 0 0 
OG0005665 Art7 0 2 0 0 0 0 0 
OG0006772 Art8 0 0 2 0 - 0 0 
OG0001312 Set2 0 0 2 0 0 0 0 
OG0003336 Set1 0 0 3 0 0 0 0 
OG0004408 trx 0 2 0 - 0 0 0 
OG0004410 E(z) 0 2 0 0 0 0 0 
OG0001618 egg 0 0 9 - 0 0 0 
OG0001971 Suv4-20 0 0 2 0 0 0 0 
OG0002230 Su(var)3-9 0 0 3 - 0 0 - 
OG0001983 LSD1 0 0 2 2 0 2 2 
OG0003630 Kdm3 0 2 2 0 0 0 0 
OG0000470 Kdm4 2 2 11 0 0 0 0 
OG0002894 lid 0 0 0 0 0 2 0 
OG0002774 Utx 0 2 0 0 0 0 0 
OG0005067 CG43320 0 2 0 0 0 0 0 
OG0004994 PSR 0 2 0 0 0 0 0 

 
The numerals indicate the number, 0 represents absence of paralogs (single copy of the gene 

present) and – the absence of the homolog. Drome: Drosophila melanogaster, Aedae: Aedes 

aegypti, Acypi: Acyrthosiphon pisum, Rhopr: Rhodnius prolixus, Apime: Apis mellifera, Bommo: 

Bomby- mori, Trica: Tribolium castaneum. 

 

The Drosophila eggless/dSetdb1 protein is responsible for trimethylation of H3K9 and is essential 

for viability and fertility [39, 40]. It is required at multiple stages of oogenesis, maintenance and 

differentiation of Germline and Follicle Stem Cells. It  is involved in piRNA cluster transcription 

and Dpp (Decapentaplegic) signalling during oogenesis, expression of specific long non-coding 

RNAs, apoptosis-related gene regulation, and silencing of key spermatogenesis gene Phf7 [41, 42, 

43]. The gene eggless along with the sxl (sex determining) gene preserves the female fate by 

conferring the repressive mark H3K9me3 on Phf7 gene, a histone reader that associates with 

H3K4me2 and pilots the male sexual program in the germ line [44]. A.pisum undergoes cyclic 
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parthenogenesis (10-30 generations) followed by a single sexual cycle. The switch between these 

two modes of reproduction is unclear but considering the role of Setdb1 in maintaining female 

identity its involvement in parthenogenesis cannot be ruled out. Therefore the presence of high 

number of eggless in A.pisum could be associated with the switching of the mode of reproduction. 

The switch is also known to be sensitive to environmental signals like photoperiod and temperature 

[45]. It is interesting to speculate that epigenetic alteration leading to altered gene expression forms 

an interphase between environment and the genotype.  

 

The Kdm4 family of demethylases is highly conserved. It removes di- and tri-methyl groups from 

H3K9 and H3K36 in Drosophila, C.elegans, and mice. Drosophila KDM4 is required for 

maintaining the normal structure and function of heterochromatin, essential for spatial arrangement 

of repetitive elements, and is involved in Position effect variegation (PEV). It is important for 

double strand break (DSB) movement in heterochromatin and its loss leads to a delay in DSB repair 

and an increase in homologous recombination (HR) repair at heterochromatic DSBs. KDM4 

specifically promotes demethylation of H3K9me3 and H3K56me3 at heterochromatic DSBs [46, 

47, 48]. The biologically redundant members KDM4a and KDM4b are essential for ecdysteroid 

hormone signalling in Drosophila [37]. The loss of KDM4 leads to development arrest due to 

increased silencing marks at H3K9me2, 3 and the transcriptional activation of ecdysone response 

genes [37]. Increased titres of ecdysone in A.pisum leads to activation of Br-C complex and 

ultimately contributes to formation of wingless offspring. As wingless is more favoured phenotype 

under normal conditions as opposed to stressed conditions (eg aphids high density) where  asexual 

adult females form winged morphs instead of wingless by altering the developmental fate of the 

embryos [49], high copy number of Kdm4 could be correlated to wing polyphenism. The above two 

examples also show that epigenetics is present at the interface of environment and genotype 

interaction. 
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Domain architecture  

We analysed the occurrence and sharing of domains other than the high-priority domains in a given 

methyltransferase/ demethylase in the different genomes (Table 3). The domains involved in 

protein-protein interaction like the bromodomain, Zinc finger domain, SWIRM domain are present 

in both lysine methyltransferases and demethylases, though not all the domains are shared by the 

genes in all the genomes we have analysed. The PRMT5 oligomerization domain is present in 

PRMT5 of the genomes analysed. Art8 of Rhodnius has methyltransferase Fkbm domain. The 

function of this domain is unknown in Rhodnius, but the known function of such a domain in 

Streptomyces is in a specific methylation step in the biosynthesis of the immunosuppressant. One 

can speculate similar function of reduction of inflammation in the host during its blood meal, as 

known for the bioactive molecules in the saliva of Rhodnius [50]. Another domain we find only in 

Ash1 of Rhodnius is the Ubiquitin system component Cue domain which is involved in the binding 

of ubiquitin conjugating enzymes to epigenetic complexes. The Set2Rpb1 interacting domain is 

found in Set2 of several genomes and is implicated in coupling histone H3 K36 methylation with 

transcription elongation [51]. The presence of RNA recognition domain in Set1/SetD1 gene in most 

of the genomes analysed is relevant as it marks transcription start site [52].  

The methyltransferases and demethylases have acquired domains (in addition to the catalytic 

domains), that are important for interactions either with other proteins or with RNA/DNA. This will 

facilitate the formation of different complexes in various combinations to generate complexes of 

unique composition that can be targeted to specific sites to bring about the repression or activation 

through epigenetic modifications (Maini et al. under review).  In addition, they may interact with 

proteins relevant for their interaction with environmental signals depending upon their habitat.  
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Table 3.  The conservation of various functional domains in the methyltransferases and the 

demethylases. The domain names are taken from Interproscan. 

 
Genes Domains D
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Arginine  
methyltransferases 

Art4 Histone-arginine MT CARM1, N-terminal - - - + + + + 
Art8 Methyltransferase Fkbm - - - + 0 - - 

Lysine 
methyltransferases  

ash1 Bromodomain - + + + + + + 
ash1 Ubiquitin system component Cue - - - + - - - 
Set2 WW domain + + - - + - + 
Set2 Set2 Rpb1 interacting domain (SRI) + + + - + - + 
Mes-4 Zinc finger, PHD-finger + - + 0 + - + 
Mes-4 Zinc finger, RING-type - + + 0 + - - 
Set1/Setd1 RNA recognition motif domain + + + 0 + - + 
upSET Zinc finger, PHD-finger + - + 0 + + - 
upSET Zinc finger, PHD-type + - + 0 + + + 
trr FY-rich, N- Terminal + + + + + - + 
trr FY-rich, C- Terminal + + + + + - + 
trr Zinc finger, PHD-finger - - - - + - + 
trr Zinc finger, PHD-type - - + + + - + 
trr extended PHD (ePHD) domain + + + + + - + 
CG32732 Rubisco LSMT, substrate binding domain + 0 + - 0 0 0 
E(z) Tesmin/TSO1-like CXC domain + + + + + - + 
E(z) SANT/Myb domain + - + + + - + 
egg Tudor domain - + + 0 + - - 
Suv4-20 Chromo/chromo shadow domain - - + - - - - 
Suv4-20 Pre-SET domain - - + - - - - 
Suv4-20 Chromo domain - - + - - - - 
Su(var)3-9 Chromo domain subgroup - - - 0 - + 0 

Demethylases 

Su(var)3-3 SWIRM domain + + + - + + + 
Kdm2/ JHDM1 F-box domain + + + - + + + 
Kdm2/ JHDM1 Zinc finger, PHD-type - - - - + + - 
Kdm4A/4B  Zinc finger, PHD-type - - - + + - - 
Kdm4A/4B  Zinc finger, PHD-finger - - - + - - - 
Kdm4A/4B  Extended PHD (ePHD) domain - - - - + - - 
Kdm4A/4B Tudor domain - - - - + - - 
Kdm4A/4B Lysine-specific demethylase 4, Tudor domain - - - - + - - 
lid Zinc finger, PHD-type  + + - + + + + 
lid Zinc finger, PHD-finger  + + - + + + + 
lid Lysine-specific demethylase-like domain  + + - + + + + 
lid Zinc finger, RING type  - - - - - + - 
Jarid2 ARID DNA-binding domain + + + 0 + - + 
Jarid2 Zinc finger, C5HC2-type + + - 0 + - + 
Utx Tetratricopeptide repeat containing domain + + + + + + - 

Drome: Drosophila melanogaster, Aedae: Aedes aegypti, Acypi: Acyrthosiphon pisum, Rhopr: 

Rhodnius prolixus, Apime: Apis mellifera, Bommo: Bombyx mori, Trica: Tribolium castaneum.+ 

indicates presence , -absence and 0 homolog not found. 
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Evolutionary relationships 

On comparison with total proteome phylogram (Additional File 2), arginine methyltransferases, 

lysine methylatransferases and demethylases showed variation in terms of evolutionary 

relationships among insect species of different orders. The species belonging to the same order 

showed high conservation among themselves than those belonging to different orders with some 

exceptions. 

Although for majority of arginine methyltransferases of the dipterans, Drosophila and Aedes 

showed more conservation among themselves than that of other insects, Art3 and Art1 were 

exceptions, suggesting their variability among the arginine methyltransferases (Figure 3). On the 

other hand Acyrthosiphon and Rhodnius belonging to same order show less conservation 

suggesting the epigenetic tool kit though conserved can still accumulate species specific variation. 

Lysine methyltransferases showed considerable deviation from the phylogenetic tree derived from 

the complete proteome (Figure 4). On analysing each protein it was interesting to note that even 

species of the same order like Diptera (Drosophila and Aedes) and Hemiptera (Acyrthosiphon and 

Rhodnius) branched together only 25% and 12.5% times respectively. These finding suggests that 

lysine methyltransferases are more species specific.  

Similarly histone demethylases were highly variable than complete proteome phylogenetic tree with 

some proteins showing more conservation in terms of insect orders than others. One interesting 

example among demethylases is LSD1, the only amine oxidase demethylase in insects which had 

multiple homologs present in a given organism which show divergence, thus suggesting a 

duplication event followed by divergence (Figure 5). In Acyrthosiphon, Rhodnius, Bombyx and 

Tribolium except Dipterans (Drosophila, Aedes) and Hymenopterans (Apis) two copies of this 

protein diverge into two branches. This could either represent a loss of protein in these orders or 

duplication of the same in other insects. Duplication and divergence of this protein could reflect 

their tissue specific or developmental stage specific expression or divergence leading to non-histone 

substrate targeting or the variation in the interaction with environmental signals. 
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4. Summary 

The protein coding capacity of the insect genomes appears to be inadequate to achieve the 

complexity of these systems. One of the ways in which this is compensated can be attributed to 

globally acting epigenetic modifiers. This machinery can utilize limited repertoire of protein coding 

genes in different combinations and various contexts, in addition to the regulation by non-coding 

RNA, to achieve unique outcomes. The epigenetic regulation is recognized as an important player 

in maintaining this diversity of functions. Here, we analysed the genomes of the insects of order 

Diptera, Hemiptera, Hymenoptera, Lepidoptera and Coleoptera for the epigenetic modifiers. 

Histone modifications play crucial role in maintaining epigenetic status of an organism; the most 

common role played by the methyltransferases. The proteins having different domains can be 

implied in functions other than histone methylation, reflecting the additional functions that they 

may carry out as perhaps moonlighting activity.  

The diversity in the domain architecture therefore could be a reflection of gain/loss of additional 

functions, also contribute to their participation in different functional complexes. Thus epigenetic 

modifiers are important contributors to the economy of the genomes with reference to their coding 

capacity. The current analysis will serve as a resource for mining epigenetic modifiers from whole 

genome data.  
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Figure legends: 

Figure1. Workflow followed for the in silico analysis of histone methyltransferases and 

demethylases   

Figure 2. The frequency of occurrence of the domains in Drosophila. The three classes of enzymes 

used for domain identification are shown in the figure. The percentage of occurrence of each 

domain is plotted on the Y-axis, # - high priority domains.  

 

Figure 3.  Phylogenetic tree for the arginine methyltransferases. The coloured lines indicate 

proteins from different insects as specified in the inset.  Drome: Drosophila melanogaster, Aedae: 

Aedes aegypti, Acypi: Acyrthosiphon pisum, Rhopr: Rhodnius prolixus, Apime: Apis mellifera, 

Bommo: Bombyx mori, Trica: Tribolium castaneum. 

 

Figure 4. Phylogenetic tree for the lysine methyltransferases. The coloured lines indicate proteins 

from different insects as specified in the inset.  Drome: Drosophila melanogaster, Aedae: Aedes 

aegypti, Acypi: Acyrthosiphon pisum, Rhopr: Rhodnius prolixus, Apime: Apis mellifera, Bommo: 

Bombyx mori, Trica: Tribolium castaneum 

 

Figure 5. Phylogenetic tree for demethylases. The coloured lines indicate proteins from different 

insects as specified in the inset.  Drome: Drosophila melanogaster, Aedae: Aedes aegypti, Acypi: 

Acyrthosiphon pisum, Rhopr: Rhodnius prolixus, Apime: Apis mellifera, Bommo: Bombyx mori, 

Trica: Tribolium castaneum. 
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Additional files: 

 

Gulati et al Additional File 1.docx Additional File 1: Different Insect proteomes showing A. False 

positive rates B: Novel proteins  

 

 

Gulati et al Additional File 2.tiff Additional File 2. Phylogenetic tree obtained from OrthoFinder 

for the whole proteome of the seven species used in the study. Drome: Drosophila melanogaster, 

Aedae: Aedes aegypti, Acypi: Acyrthosiphon pisum, Rhopr: Rhodnius prolixus, Apime: Apis 

mellifera, Bommo: Bombyx mori, Trica: Tribolium castaneum 
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