Linking Allele-Specific Expression And Natural Selection In Wild Populations

Romuald Laso-Jadart^{1,6*}, Kevin Sugier¹, Emmanuelle Petit², Karine Labadie², Pierre Peterlongo³, Christophe Ambroise⁴, Patrick Wincker^{1,6}, Jean-Louis Jamet⁵, Mohammed-Amin Madoui^{1,6*}

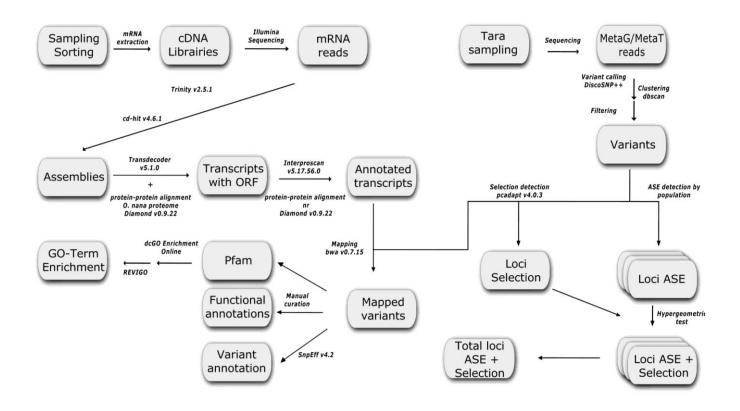
¹Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.

²CEA, Genoscope, Institut de Biologie François Jacob, Université Paris-Saclay, Evry, 91057, France.

³Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes.

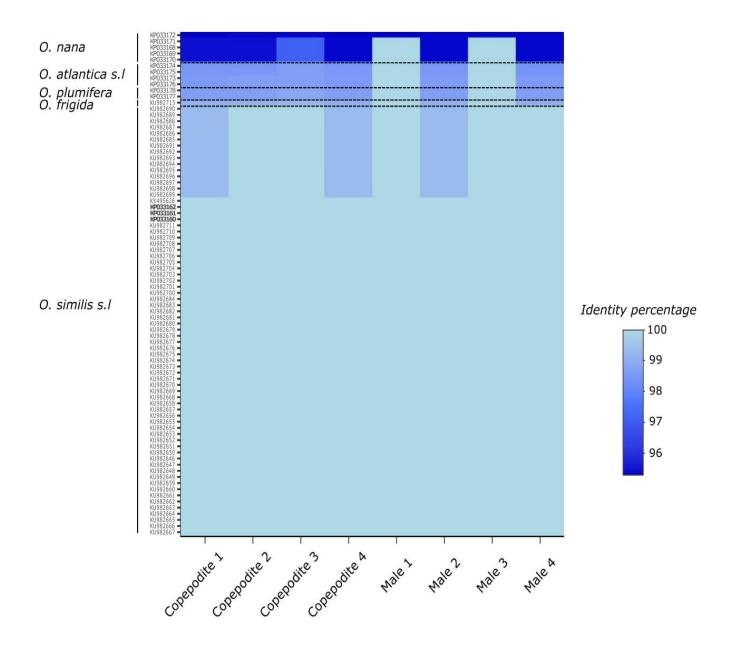
⁴LaMME, CNRS, Univ Evry, Université Paris-Saclay, Evry, France

⁵Université de Toulon, Aix-Marseille Université, CNRS/INSU/IRD, Mediterranean Institute of Oceanology MIO UMR 110, CS 60584, 83041 Toulon cedex 9, France.

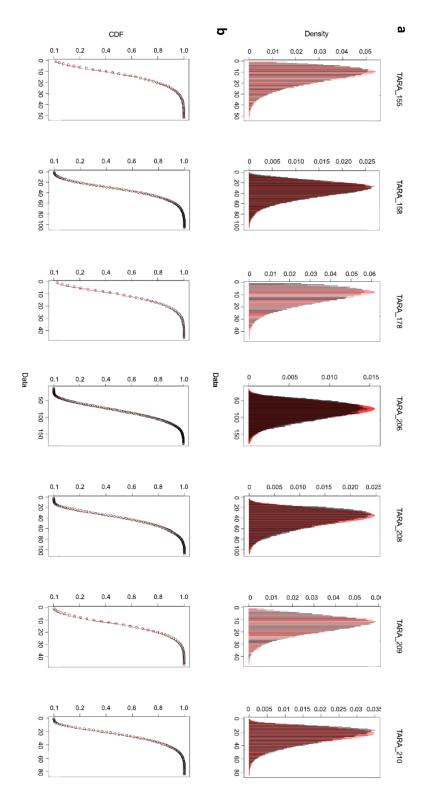

⁶Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016 Paris, France

*Corresponding authors. Emails: <u>rlasojad@genoscope.cns.fr</u> & <u>amadoui@genoscope.cns.fr</u>

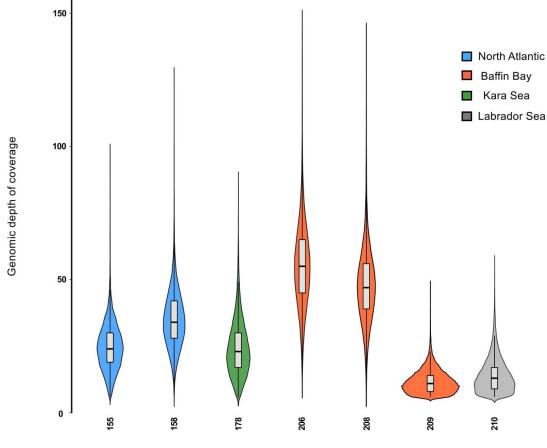
Supplementary figures


Supplementary Figure 1: Method pipeline overview
Supplementary Figure 2: Validation of taxonomic assignation4
Supplementary Figure 3: <i>Oithona similis</i> depth of coverage of biallelic loci in seven <i>Tara</i> Oceans samples
Supplementary Figure 4: Metagenomic coverage distribution of the seven <i>Tara</i> Oceans samples
Supplementary Figure 5: Genomic differentiation of Arctic Seas Oithona similis populations.7
Supplementary Figure 6: Allele-specific expression detection
Supplementary Figure 7: Functional analysis of <i>Oithona similis</i> transcripts targeted by ASE and selection
Supplementary Table 1: Oithona similis Mediterranean transcriptomes summary10
Supplementary Table 2: <i>Tara</i> Oceans and <i>Oithona similis</i> Mediterranean transcriptomes samples accession numbers
Supplementary Table 5: Variant annotation by SNPeff
References13

Supplementary Figure 1: Method pipeline overview

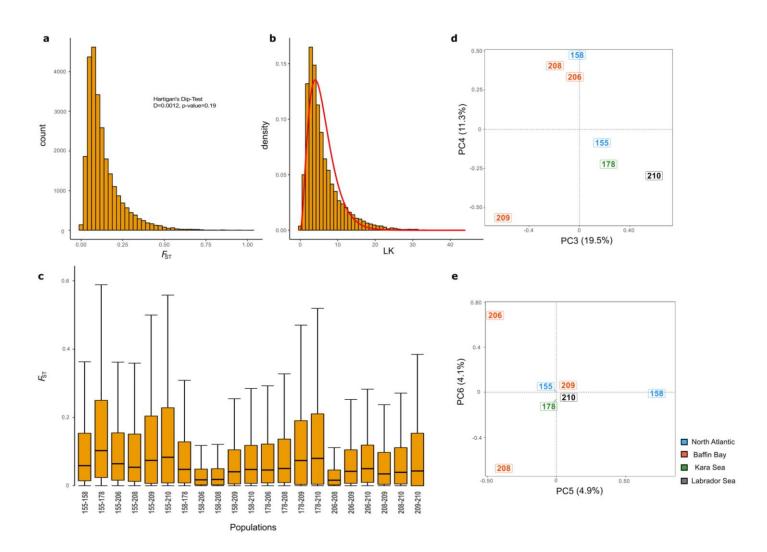

Supplementary Figure 2: Validation of taxonomic assignation. In rows are

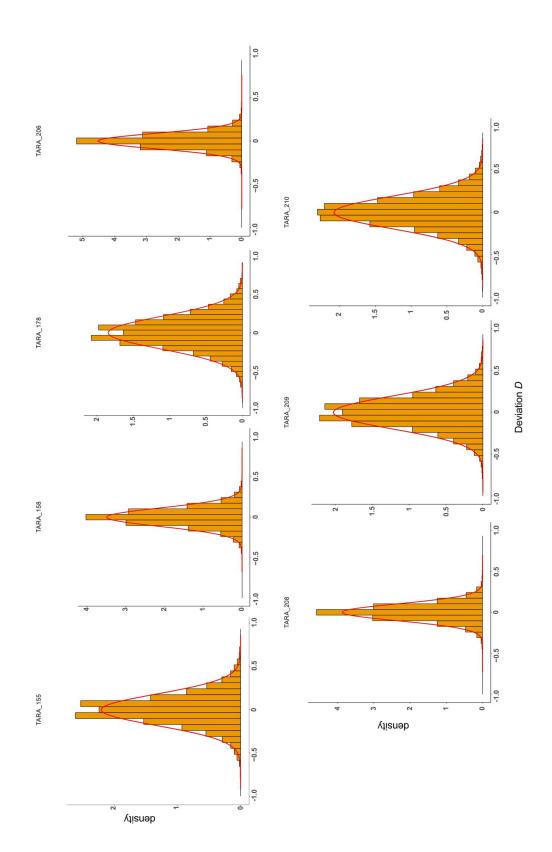
represented the 82 accession numbers of *Oithona* species 28S sequences. In bold, type localities of *O. similis* as described in Cornils et al., 2017. In columns are represented ribosomal read sets of the eight individuals.



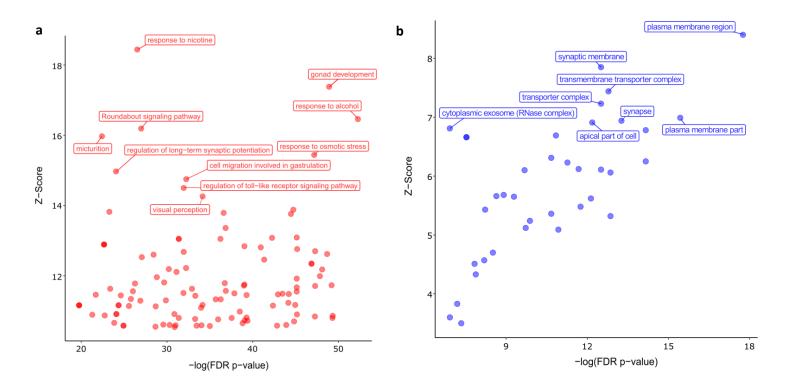
Supplementary Figure 3: Oithona similis depth of coverage of biallelic

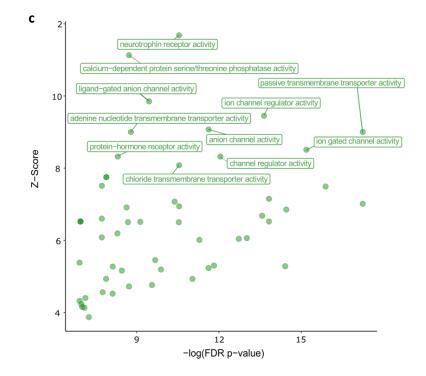
loci in seven *Tara* **Oceans samples.** In red is represented the theoretical depth of coverage. In black is represented the observed depth of coverage. **a**, Comparison of coverage distribution. **b**, Comparison of the cumulative distribution functions.


Supplementary Figure 4: Metagenomic coverage distribution of the seven *Tara* **Oceans samples.** Genomic depth of coverage distributions of the set of 25,768 variants obtained after filtering, by populations.


Populations

Supplementary Figure 5: Genomic differentiation of Arctic Seas *Oithona similis* populations.


The three computations are based on the B-allele frequency matrix of the seven populations. **a**, Global F_{ST} distribution. **b**, LK distribution ². The red line represents the χ^2 theoretical distribution (df = 6). **c**, Pairwise- F_{ST} distributions. **d** and **e** Principal Component Analysis from *pcadapt* ³ respectively displaying PC3 against PC4 and PC5 against PC6.



Supplementary Figure 6: Allele-specific expression detection. Red lines represent normal distribution estimated from the data.

Supplementary Figure 7: Functional analysis of *Oithona similis* **transcripts targeted by ASE and selection.** The axes correspond to statistical metrics computed by *dcGO Enrichment*. Are highlighted the most significantly enriched terms in **a**, Biological Process GO-terms, **b**, Cellular Component GO-terms, **c**, Molecular Functions GO-terms.

Supplementary Table 1: Oithona similis Mediterranean transcriptomes summary.

		Cope	podite		Male			
	1	2	3	4	1	2	3	4
Number of reads	18,052,409	21,048,656	19,129,821	17,624,872	17,823,526	19,237,768	18,292,442	13,933,841
Number of transcripts	81,802	82,811	131,747	83,244	117,951	79,938	115,170	79,038
Number of transcripts with ORF prediction	20,389	20,963	42,404	20,746	38,580	19,488	34,179	20,482

Supplementary Table	e 2: Tara Oceans and	Oithona similis	Mediterranean	transcriptomes sam	ples accession numbers

Sampling	Туре	Latitude	Longitude	Number of reads	Submission accession	Study accession	Sample accession	Experiment accession	Run accession
Tara Oceans	TARA_155 MetaG	54.5305	-16.9377	182,925,026	-	-	-	-	
Tara Oceans	TARA_155 MetaT	54.5505	-10.9577	179,585,384	-	-	-	-	
Tara Oceans	TARA_158 MetaG	67.1675	0.2177	138,512,807	-	-	-	-	
Tara Oceans	TARA_158 MetaT			168,629,428	-	-	-	-	
Tara Oceans	TARA_178 MetaG	77.1604	73.2057	207,442,505	-	-	-	-	
Tara Oceans	TARA_178 MetaT	//.1004	15.2051	170,190,939	-	-	-	-	
Tara Oceans	TARA_206 MetaG	70.9618	-53.603	223,300,333	-	-	-	-	
Tara Oceans	TARA_206 MetaT	70.9018	-55.005	189,447,541	-	-	-	-	
Tara Oceans	TARA_208 MetaG	60 1136	51 5086	223,058,371	-	-	-	-	
Tara Oceans	TARA_208 MetaT	69.1136 -51.5086		184,221,525	-	-	-	-	
Tara Oceans	TARA_209 MetaG	64 7127	52 0106	181,915,803	-	-	-	-	
Tara Oceans	TARA_209 MetaT	64.7127 -53.0106		178,106,374	-	-	-	-	
Tara Oceans	TARA_210 MetaG	61.5442	-55.9865	182,303,005	-	-	-	-	
Tara Oceans	TARA_210 MetaT	01.3442	-33.9803	179,419,896	-	-	-	-	
Toulon	Transcriptome Copepodite 1	43.1001	5.9482	17,823,526	ERA1801976	ERP114539	ERS3342094	ERX3282627	ERR3255855
Toulon	Transcriptome Copepodite 2	43.1001	5.9482	19,237,768	ERA1801976	ERP114539	ERS3342094	ERX3282628	ERR3255856
Toulon	Transcriptome Copepodite 3	43.1001	5.9482	18,292,442	ERA1801976	ERP114539	ERS3342094	ERX3282629	ERR3255857
Toulon	Transcriptome Copepodite 4	43.1001	5.9482	13,933,841	ERA1801976	ERP114539	ERS3342094	ERX3282630	ERR3255858
Toulon	Transcriptome Male 1	43.1001	5.9482	18,052,409	ERA1801976	ERP114539	ERS3342094	ERX3282631	ERR3255859
Toulon	Transcriptome Male 2	43.1001	5.9482	21,048,656	ERA1801976	ERP114539	ERS3342094	ERX3282632	ERR3255860
Toulon	Transcriptome Male 3	43.1001	5.9482	19,129,821	ERA1801976	ERP114539	ERS3342094	ERX3282633	ERR3255861
Toulon	Transcriptome Male 4	43.1001	5.9482	17,624,872	ERA1801976	ERP114539	ERS3342094	ERX3282634	ERR3255862

Supplementary Table 5: Variant annotation by SNPeff.

SNPeff prediction	Variants under ASE	Variants under selection	Variants under ASE & selection	Total	
Missense	54* (12.4%)	66 * (12.6 %)	15 (9.9%)	2529 (9.8%)	
Synonymous	170 (39.1%)	213 (40.8%)	59 (38.8%)	11999 (46.6%)	
Start lost	0	0	0	4 (0.02%)	
Stop gained	1 (0.2%)	0	0	4 (0.02%)	
Stop retained	0	0	0	2 (0.01%)	
3'UTR	75 (17.2%)	111* (21.3%)	31 (20.4%)	4480 (17.4%)	
5'UTR	80 (18.4%)	79 (15.1%)	29 (19.1%)	4110 (16%)	
5'UTR premature start	12 (2.8%)	16 (3.1%)	3 (2%)	778 (3%)	
No Transdecoder Hit	23 (5.3%)	20 (3.8%)	8 (5.3%)	1142 (4.4%)	
Not mapped	20 (4.6%)	17 (3.3%)	7 (4.6%)	720 (2.8%)	
TOTAL	435	522	152	25768	

References

- Cornils, A., Wend-Heckmann, B. & Held, C. Global phylogeography of Oithona similis s.l. (Crustacea, Copepoda, Oithonidae) – A cosmopolitan plankton species or a complex of cryptic lineages? *Mol. Phylogenet. Evol.* **107**, 473–485 (2017).
- 2. R.C., L. & J., K. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. *Genetics* **74**, 175–195 (1973).
- 3. Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: an R package to perform genome scans for selection based on principal component analysis. *Mol. Ecol. Resour.* **17**, 67–77 (2017).