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Abstract 26 

Predictive coding (PC) theory posits that our brain employs a predictive model of the environment to infer 27 
the causes of its sensory inputs. A fundamental but untested prediction of this theory is that the same 28 
stimulus should elicit distinct precision weighted prediction errors (pwPEs) when different (feature-29 
specific) predictions are violated, even in the absence of attention. Here, we tested this hypothesis using 30 
functional magnetic resonance imaging (fMRI) and a multi-feature roving visual mismatch paradigm 31 
where rare changes in either color (red, green), or emotional expression (happy, fearful) of faces elicited 32 
pwPE responses in human participants. Using a computational model of learning and inference, we 33 
simulated pwPE and prediction trajectories of a Bayes-optimal observer and used these to analyze 34 
changes in blood oxygen level dependent (BOLD) responses to changes in color and emotional expression 35 
of faces while participants engaged in a distractor task. Controlling for visual attention by eye-tracking, 36 
we found pwPE responses to unexpected color changes in the fusiform gyrus. Conversely, unexpected 37 
changes of facial emotions elicited pwPE responses in cortico-thalamo-cerebellar structures associated 38 
with emotion and theory of mind processing. Predictions pertaining to emotions activated fusiform, 39 
occipital and temporal areas. Our results are consistent with a general role of PC across perception, from 40 
low-level to complex and socially relevant object features, and suggest that monitoring of the social 41 
environment occurs continuously and automatically, even in the absence of attention.  42 

 43 

Keywords: predictive coding; precision weighted prediction error; color perception; emotion recognition; 44 
perception; perceptual inference  45 

 46 

Highlights  47 

Changes in color or emotion of physically identical faces elicit prediction errors 48 

Prediction errors to such different features arise in distinct neuronal circuits 49 

Predictions pertaining to emotions are represented in multiple cortical areas 50 

Feature-specific prediction errors support predictive coding theories of perception 51 

  52 
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Introduction 53 

Predictive coding (PC) postulates that perceptual inference rests on probabilistic (generative) models of 54 
the causes of the sensory input (Rao and Ballard, 1999; Friston, 2005; Clark, 2015). The theory emphasizes 55 
the active nature of perceptual inference: in contrast to theories that view perception as a reactive, feed-56 
forward analysis of bottom-up sensory information (Hubel and Wiesel, 1965; Riesenhuber and Poggio, 57 
2000), PC regards the brain as actively predicting the sensory signal, based on a hierarchical probabilistic 58 
model of the causes of its sensory signals (Egner et al., 2010; Friston, 2010; Lochmann et al., 2012; Bogacz, 59 
2017). According to this theory, perception involves inferring the most likely cause of the sensory signals 60 
by integrating incoming sensory information at a given level in the hierarchy with predictions generated 61 
at the level above (Rao and Ballard, 1999; Lee and Mumford, 2003; Friston, 2005), where the latter derive 62 
from prior information. In this framework a unified perceptual representation of an object involves a set 63 
of hierarchical predictions that relate to the object’s different attributes, such as spatiotemporal 64 
coordinates but also intrinsic structure. At each hierarchical level, incoming signals from the level below 65 
are compared to predictions from the level above, and the ensuing prediction errors (PEs) are passed to 66 
the higher level in order to update predictions.  67 

PC thus offers a framework to describe how object representations emerge during hierarchical perceptual 68 
inference: segregation and integration of predicted lower-level and more abstract attributes take place in 69 
a probabilistic network bound together by passing messages between hierarchical levels that most 70 
effectively minimize perceptual PEs (Friston, 2005; Bogacz, 2017). In this framework, unexpected stimuli 71 
trigger PE responses which subside as stimuli become predictable, for example through repeated 72 
presentation.  73 

PC has become one of the most influential theories of perception, and many of its implications have been 74 
confirmed experimentally (e.g., Smith and Muckli, 2010; Wacongne et al., 2011; Kok et al., 2012a,b; 75 
Durschmid et al., 2016; Sedley et al., 2016; Ehinger et al., 2017; Gordon et al., 2017; Schwiedrzik and 76 
Freiwald, 2017). One central question about the implementation of PC is whether the same physical 77 
stimulus elicits separable feature-specific PE responses when distinct predictions about its various 78 
attributes exist, regardless whether such attributes are behaviorally relevant. To our knowledge, this has 79 
only been studied under attention (Jiang et al., 2016), but not for automatic processing, in the absence of 80 
attention and task-relevance. To answer this question, we used a roving standard paradigm (Fig.1A) to 81 
systematically manipulate predictions of two attributes of complex stimuli, the color and emotional 82 
expression of faces. Based on prior event-related brain potential (ERP) studies, we used a visual mismatch 83 
paradigm (for reviews, see Stefanics et al., 2014; Kremlacek et al., 2016) to study brain responses 84 
reflecting PEs and model updating processes elicited by unexpected changes in color  and facial emotion 85 
while participants engaged in a distractor task.  86 

We used the Hierarchical Gaussian Filter (HGF, Mathys et al., 2011; Mathys et al., 2014) to simulate belief 87 
trajectories of an ideal Bayesian observer. The HGF is a computational model that allows for inferring an 88 
agent’s beliefs and uncertainty about hidden states of the world that generate sensory information. The 89 
model tracks the beliefs of the agent about the probability of each stimulus feature and updates its 90 
inference as new information is presented trial-by-trial. The HGF implements a form of PC in the temporal 91 
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domain and has been used in multiple studies to investigate predictive processes in the brain (e.g., Iglesias 92 
et al., 2013; Schwartenbeck et al., 2015; Vossel et al., 2015; Auksztulewicz et al., 2017; Diaconescu et al., 93 
2017; Lawson et al., 2017; Powers et al., 2017; Adams et al., 2018; Katthagen et al., 2018; Stefanics et al., 94 
2018a). 95 

In this paper we used a similar experimental paradigm, computational modeling and analysis approach as 96 
in a previous single-trial EEG study that allowed us to study the time course of event-related brain 97 
potentials (ERP) to unexpected color and emotion changes associated with pwPEs (Stefanics et al., 2018a). 98 
In this previous study, we found that both kind of changes elicited brain responses that were better 99 
explained with pwPEs as parametric regressors than regressors encoding categorical stimulus changes in 100 
a general linear modeling (GLM) analysis. Here, we used fMRI to identify the brain regions associated with 101 
feature-specific predictions and pwPEs to human faces. Critically, our paradigm independently 102 
manipulated the color and emotional expression of face stimuli (Fig. 1B, C), allowing us to model 103 
predictions and pwPEs to violations of emotion expectations separately from predictions and pwPEs 104 
elicited by changes in color. This enabled us to study predictive processes pertaining to low versus high 105 
level object features for physically identical stimuli. 106 

Methods 107 

Ethics Statement  108 

The experimental protocol was approved by Cantonal Ethics Commission of Zurich (KEK 2010-0327). 109 
Written informed consent was obtained from all participants after the procedures and risks were 110 
explained. The experiments were conducted in compliance with the Declaration of Helsinki. 111 

Subjects  112 

Thirty-nine healthy, right-handed subjects participated in this experiment. One subject was excluded due 113 
to incomplete data, and three subjects’ data of one scanning day were lost during transfer due to a 114 
technical failure. The final sample comprised 35 subjects (mean age=23.06ys, sd=3.02ys, 15 females). All 115 
subjects had normal or corrected-to-normal vision.  116 

Paradigm  117 

Faces were presented in four peripheral quadrants of the screen (Fig. 1A) on a grey background with a 118 
fixation cross in the center. Each stimulus panel contained four faces of different identity expressing the 119 
same emotion. Stimulus duration was 200ms. The stimuli were presented after an inter-stimulus interval 120 
of 550ms during which only the fixation cross was present. A change detection task was presented at the 121 
central fixation cross. Roving paradigms have frequently been used to study automatic sensory 122 
expectation effects (Haenschel et al., 2005; Garrido et al., 2008; Costa-Faidella et al., 2011; Moran et al., 123 
2013; Auksztulewicz and Friston, 2015; Stefanics et al., 2018a,b). Here, we used a factorially structured 124 
multi-feature visual 'roving standard' paradigm to elicit PE responses by unexpected changes either in 125 
color (red, green), or emotional expression (happy, fearful) of human faces, or both. Importantly, this 126 
allowed us to study how brain responses to physically identical stimuli differed, depending on the degree 127 
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of expectations about color and emotion, respectively. A diagram of the transitions between stimulus 128 
types is shown in Fig. 1B.  129 

 130 

Fig. 1. Experimental design and eye-tracking results. A) Four individual photographs of the same color displaying the same 131 
facial affect were presented in each stimulus panel for 200ms in a roving standard paradigm. Each panel was followed by an 132 
empty grey screen presented for 550ms. The vertical and horizontal lines of the fixation cross occasionally flipped during this 133 
interstimulus interval. The subjects’ task was to press a button when the cross flipped. B) Schematic contingency table showing 134 
the four equally probable stimulus types (GF: green fearful, GH: green happy, RF: red fearful, RH: red happy faces). After 5-9 135 
presentations each stimulus type was followed by any of the other three types. Arrows indicate transitions with equal overall 136 
probability between stimulus types during the experiment. C) Schematic illustration of a stimulus sequence showing 137 
transitions between stimulus types. Note physically identical stimuli evoking different PEs depending on expectations 138 
established by prior stimulus context. D) Heatmap of normalized gaze position frequency overlaid on a stimulus panel. Warmer 139 
colors represent more frequent gaze position. Normalized histograms below and left to the heatmap show the same data 140 
projected onto the x and y axis, respectively. Faces were reproduced with permission of the Radboud Faces Database 141 
(www.rafd.nl). E) A graphical model of the Hierarchical Gaussian Filter with two levels. F) Model-based pwPE trajectories from 142 
one experimental block used as regressors in the GLM. 143 

Images were taken from the Radboud Faces Database (Langner et al., 2010). Ten female and ten male 144 
Caucasian models were selected based on their high percentage of agreement on emotion categorization 145 
(98% for happy, 92% for fearful faces). A Wilcoxon rank sum test indicated that categorization agreement 146 
on the emotional expressions did not differ between happy and fearful faces (Z=-0.63, p=0.53). To control 147 
low-level image properties, we equated the luminance and the spatial frequency content of grayscale 148 
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images of the selected happy and fearful faces using the SHINE toolbox (Willenbockel et al., 2010). The 149 
resulting images were used to create the colored stimuli.  150 

Behavioral task  151 

Similar to previous studies (e.g., Astikainen et al., 2009; Kimura et al., 2012; Müller et al., 2010; Stefanics 152 
et al., 2011, 2012, 2018a,b; Kreegipuu et al., 2013; Kuldkepp et al., 2013; Kovács-Bálint et al., 2014; Farkas 153 
et al., 2015) we used a behavioral task to engage participants’ attention and thus reduce attentional 154 
effects on the processing of face stimuli across participants. The task involved detecting changes in the 155 
length of the horizontal and vertical lines of a fixation cross presented in the center of the visual field. At 156 
random times, the cross became wider or longer (Fig. 1A), at a rate of 8 flips per minute on average. The 157 
cross-flips were unrelated to the changes of the unattended faces. The task was to quickly respond to the 158 
cross-flips with a right hand button-press. Reaction times were recorded.  159 

Eye-tracking  160 

Participants were explicitly asked to fixate at the cross in the center of the screen. To make sure that 161 
participants did not direct their overt attention to the face stimuli, we used an Eyelink 1000 eye-tracking 162 
system to record gaze position at 250 Hz during the experiment. After removal of intervals immediately 163 
before and after, as well as during blinks, heatmap of x-y data points for all subjects were plotted using 164 
the EyeMMV toolbox (Krassanakis et al., 2014). A Gaussian filter (SD=3 pixels) was applied to smooth the 165 
final image. The heatmap was normalized to have maximum value of 1, and gaze position histograms for 166 
x and y coordinates were plotted (Fig.1D). 167 

Data acquisition and preprocessing  168 

FMRI data was acquired on a Philips Achieva 3 Tesla scanner using an eight channel head-coil (Philips, 169 
Best, The Netherlands) at the Laboratory for Social and Neural Systems Research at the University of 170 
Zurich. A structural image was acquired for each participant with a T1-weighted MPRAGE sequence: 181 171 
sagittal slices, field of view (FOV): 256 × 256 mm2, Matrix: 256 x 256, resulting in 1 mm3 resolution.  172 
Functional imaging data was acquired in six experimental blocks. In each block 200 whole-brain images 173 
were acquired using a T2*-weighted echo-planar imaging sequence with the following parameters. 42 174 
ascending transverse plane slices with continuous in-plane acquisition (slice thickness: 2.5 mm; in-plane 175 
resolution: 3.125 x 3.125 mm; inter-slice gap: 0.6 mm; TR = 2.451 ms; TE = 30 ms; flip angle = 77; field of 176 
view = 220 x 220 x 130 mm; SENSE factor = 1.5; EPI factor = 51). We used a 2nd order pencil-beam 177 
shimming procedure provided by Philips to reduce field inhomogeneities during the functional scans. All 178 
functional images were reconstructed with 3 mm isotropic resolution. Functional data acquisition lasted 179 
approximately 1 hour. During fMRI data acquisition, respiratory and cardiac activity was recorded using a 180 
breathing belt and an electrocardiogram, respectively. 181 

We used statistical parametric mapping (SPM12, v6470; RRID: SCR_007037; Friston et al., 2007) for fMRI 182 
data analysis. First, functional images were slice time corrected, realigned to correct for motion and co-183 
registered with the subject's own anatomical image. Next, we normalized structural images to MNI space 184 
using the unified segmentation approach and applied the same warping to normalize functional images. 185 
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The functional images were smoothed with a 6 mm full-width at half maximum Gaussian kernel and 186 
resampled to 2 mm isotropic resolution. We used RETROICOR (Glover et al., 2000) as implemented in the 187 
PhysIO-Toolbox (Kasper et al., 2017) from the open source software TAPAS 188 
(http://www.translationalneuromodeling.org/tapas) to create confound regressors for cardiac pulsations, 189 
respiration, and cardio-respiratory interactions. These confound regressors were entered into the general 190 
linear model (GLM; see below). The data and code used in this study are available from the corresponding 191 
author, upon reasonable request. 192 

 193 

Modeling belief trajectories 194 

In order to include parametric regressors of precision weighted prediction errors (pwPE) in the GLM, we 195 
simulated trajectories of belief update in a generative model of perceptual inference, the Hierarchical 196 
Gaussian Filter (HGF; Mathys et al., 2011; 2014). We followed the approach described in details in 197 
Stefanics et al. (2018a) using the HGF toolbox version v2.2 contained in TAPAS 198 
(http://www.translationalneuromodeling.org/tapas). Briefly, we simulated the perceptual model of a 199 
two-level HGF for the input traces given by the two features of the face stimuli: color (red vs. green) and 200 
emotion (fearful vs. happy). Inversion of the HGF (Fig. 1E) infers the hidden states (x) of the world that 201 
generate the sensory input (u). The belief states are updated after each trial following a generic update 202 

rule:  The posterior mean 𝜇𝜇2
(𝑘𝑘) of state 𝑥𝑥2 at trial k changes its value according to a precision-weighted PE 203 

𝜀𝜀2
(𝑘𝑘), where the precision-weighting changes trial by trial and can be regarded as dynamic learning rate: 204 

𝜇𝜇2
(𝑘𝑘) − 𝜇𝜇2

(𝑘𝑘−1) ∝ 𝜀𝜀2
(𝑘𝑘)      (1) 205 

Note that the sigmoid transform of the tendency 𝜇𝜇2
(𝑘𝑘−1) constitutes the prediction (probability of 206 

observing an input 1 on trial k), while 𝜇𝜇2
(𝑘𝑘) is the tendency after it was updated according to the input on 207 

trial k. Here, we refer to 𝜇𝜇2
(𝑘𝑘) as prediction. For comparison, classical associative and reinforcement 208 

learning models (e.g., Rescorla and Wagner, 1972) follow a similar form but use a fixed learning rate: 209 

prediction(k) = prediction(k-1) + learning rate ⨯ PE     (2) 210 

For the simulations we assumed that color and emotion were processed by two separate, independent 211 
HGFs. However, we considered an interaction between color and emotion PEs within a GLM. Investigating 212 
possible interactions at the level of the perceptual model of the HGF would require establishing a novel 213 
version of the HGF that incorporates interactions between hidden beliefs, which was beyond the scope of 214 
our current study. We estimated the parameters of the model assuming an ideal Bayes-optimal observer 215 
(Mathys et al., 2011) that minimizes surprise of the incoming input stream. Figure 1F displays example 216 
traces of the absolute value of  𝜇𝜇2 and 𝜀𝜀2 which entered the GLM as described below. 217 

General linear model analysis 218 

The fMRI data was analyzed with two separate GLMs. One GLM included the gradually changing (absolute) 219 
pwPEs and “prediction strength” given by the absolute value of 𝜇𝜇2 derived from the HGF as modulatory 220 
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regressors while the other GLM incorporated a regressor representing categorical stimulus change. The 221 
latter served for comparison, implementing a simpler alternative than PC, i.e., change detection (CD; see 222 
Lieder et al., 2013). For the GLM based on the CD model, we included stick functions as parametric 223 
modulators for each stimulus on those trials when a change occurred in the stimulus sequence. The GLMs 224 
were estimated for each participant individually. The pwPE and prediction strength as well as the CD 225 
modulatory regressors were computed separately for color and emotion. In addition the GLM included 226 
modulatory regressors for red vs. green and happy vs. fearful, respectively. Hence, for each run of the 227 
experiment the design matrix included the following experimental regressors: i) a main regressor for the 228 
onset of each stimulus display, ii) two modulatory regressors encoding color (red = -1, green = 1) and 229 
emotion (happy = -1, fearful = 1), respectively, and iii) two modulatory regressors with the absolute pwPE 230 
(or CD) for color and emotion, and iv)  two modulatory regressors with the absolute value of the tendency 231 
(|𝜇𝜇2|) for color and emotion (only, in the case of the HGF based model). The modulatory regressors were 232 
mean centered and normalized to unit variance. In addition to these regressors of interest, button presses 233 
to cross-flips of the visual attention task were also included in the model. All regressors were convolved 234 
with a canonical hemodynamic response function (HRF). Movement regressors and physiological 235 
confounds were included in the first level GLM (Kasper et al., 2017) which was estimated for each 236 
participant individually. Please note that the sign of colors and emotions in ii) was arbitrarily chosen. 237 
Finally, in order to assess whether there was any interaction between color and emotion PEs, we fitted an 238 
additional GLM, where we included the Hadamard (element-wise) product of the color and emotion pwPE 239 
as an additional regressor.   240 

On the group level, we used F-tests to find regions whose response showed significant correlation with 241 
pwPE or stick regressors. The resulting statistical parametric maps (SPM) were family-wise error (FWE) 242 
corrected at the cluster level (p<0.05) with a cluster defining threshold (CDT) of p<0.001 (Woo et al., 2014; 243 
Flandin and Friston, 2017). We used probabilistic anatomical labels and cytoarchitectonic maps in the SPM 244 
Anatomy toolbox (v2.2c; RRID: SCR_013273, Eickhoff et al., 2005) to identify the anatomical 245 
areas/structures where we observed significant effects. We summarize activations in terms of anatomical 246 
labeling by reporting all local maxima within each cluster in Table 1. This provides an overview over the 247 
activations in terms of commonly used anatomical labels. 248 

Results 249 

Fixation and behavioral responses  250 

Gaze position data (Fig. 1D) confirmed that participants complied with task instructions and fixated the 251 
central fixation cross throughout the task. Thus, participants engaged in the detection task and were not 252 
overtly attending the faces. Mean reaction time to cross-flips was 484ms (standard deviation: 253 
SD=106.9ms), and mean hit rate was 78% (SD=7.34%).  254 

First-level GLMs 255 

We fitted two GLMs on the single-subject level, incorporating parametric regressors that represented two 256 
hypotheses about the decay of pwPE/prediction responses following a change in color of emotional 257 
expression of the faces. Similar to the model comparison procedure described in our previous study, our 258 
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original aim was to create a functionally defined mask of significant voxels showing PE responses under 259 
both models at the group level (Stefanics et al., 2018a). However, while similar activation clusters were 260 
obtained using the pwPE/prediction and CD regressors to color changes, significant clusters to changes in 261 
emotion were only found using the pwPE/prediction regressors. In other words, the beta estimates 262 
obtained using CD were not consistent enough across subjects to yield significant activation clusters at 263 
the group level. The lack of significant group-level results for the CD regressors prevented us from creating 264 
an unbiased mask comprising significant voxels for color and emotion (“logical AND” conjunction). 265 
Furthermore, the additional analysis which included the interaction (product) of color and emotion pwPE 266 
did not reveal any evidence for an interaction between the two. We thus restrict ourselves to reporting 267 
the results obtained at the group-level analysis using the HGF-based pwPE/prediction model. 268 

Effect of color pwPE  269 

A whole-brain analysis of color changes showed significant activation for color pwPE in fusiform areas (Fig. 270 
2A). Post hoc inspection of the contrast estimates (Fig. 2B) revealed an increased response to pwPE. 271 
Predictions pertaining to color did not yield significant activations. Detailed information about anatomical 272 
labels, cluster size, and MNI coordinates for the maxima of significant voxel clusters are listed in Table 1. 273 

 274 

Fig. 2. Effect of color pwPE. A) Top: Activation map (p<0.05 cluster-level whole-brain FWE corrected, with a CDT of p<0.001) 275 
overlaid onto the MNI152 standard-space T1-weighted average structural template. Slices show activation in the left fusiform 276 
gyrus (MNI-coordinates: [-30 -58 -14]. Bottom: Glass brain showing the results of the F-test.  B) Contrast estimates (arbitrary 277 
units) for color pwPEs in the left and right fusiform gyrus. Bars indicate 90% C.I. 278 

Effect of emotion prediction and pwPE  279 

A whole-brain analysis of emotion PEs showed significant effects in bilateral cerebellum, cuneus, lingual 280 
gyrus, precuneus, thalamus, and right supramarginal gyrus (extending into superior and middle temporal 281 
gyrus) as well as right posterior medial frontal cortex (Fig. 3A).  282 
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 283 

Fig. 3. Main effect of emotion pwPE. A) Top: Activation map (p<0.05 cluster-level whole-brain FWE corrected, with a CDT of 284 
p<0.001) overlaid onto the MNI152 standard-space T1-weighted average structural template. Slices show activations at 285 
coordinates [4, -45, -31] cutting through the right anterior precuneus. Bottom: Glass brain showing the results of the F-test 286 
(whole-brain FWE cluster-level corrected at p<0.05, with a cluster-defining threshold of p<0.001). B) Contrast estimates 287 
(arbitrary units) for the emotion pwPEs in the left and right cerebellum, left precuneus, right cuneus, lingual and supramarginal 288 
gyrus, thalamus, and posterior frontal cortex. Bars indicate 90% C.I. Note that bar plots are shown for illustration only. 289 
Statistical significance was assessed at the whole-brain level described above. 290 

 291 

We found significant activations pertaining to emotion predictions in three cortical clusters: two in 292 
bilateral fusiform gyri (extending into lingual gyri) and one in right the superior and middle temporal 293 
cortex (Fig. 4A). A post hoc analysis of the contrast estimates in these regions revealed that all areas 294 
showed a negative effect of emotion pwPEs (Fig. 3B) and predictions (Fig. 4B). 295 
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 296 

Fig. 4. Main effect of emotion prediction. A) Top: Activation map (p<0.05 cluster-level whole-brain FWE corrected, 297 
with a CDT of p<0.001) overlaid onto the MNI152 standard-space T1-weighted average structural template. Slices 298 
show activations at coordinates [24, -42, -8] cutting through the right fusiform gyrus. Bottom: Glass brain showing 299 
the results of the F-test (whole-brain FWE cluster-level corrected at p<0.05, with a cluster-defining threshold of 300 
p<0.001). B) Contrast estimates (arbitrary units) for the emotion prediction in the left and right fusiform gyrus, 301 
and right superior temporal gyrus. Bars indicate 90% C.I. Note that bar plots are shown for illustration only. 302 
Statistical significance was assessed at the whole-brain level described above. 303 
 304 

Discussion 305 

We used the Hierarchical Gaussian Filter, a computational model for learning and inference, to simulate 306 
belief trajectories of an ideal Bayesian observer presented with a sequence of face stimuli. The trial by 307 
trial update of internal hidden belief states in the HGF relies on precision weighted prediction errors. 308 
Traces of predictions and pwPEs pertaining to color and emotional expression of faces served as 309 
regressors in a GLM which yielded brain structures where activation showed a significant relationship to 310 
those computational quantities. We manipulated sensory expectations towards color and emotional 311 
expression of faces independently. Crucially, emotion and color pwPEs/predictions were evoked by 312 
physically identical stimuli; only the specific expectation (statistical regularity) that was violated on any 313 
given trial, differed between the two conditions. While our previous EEG study reported the scalp 314 
distribution and time-course of pwPE responses (Stefanics et al., 2018a), here we used fMRI to find BOLD 315 
correlates of pwPEs and predictions in generator structures. We found BOLD correlates of pwPEs to color 316 
changes in bilateral fusiform gyrus, whereas pwPEs to changes of emotional expressions activated a 317 
different set of areas including the bilateral cerebellum, lingual gyrus, precuneus, thalamus, and right 318 
supramarginal gyrus as well as right posterior medial frontal cortex. We observed activations pertaining 319 
to emotion predictions in bilateral fusiform and the right supramarginal gyrus (Fig. 5A). 320 
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 321 

Fig. 5. Overview of the results and PC framework for perceptual prediction errors. A) Colored areas mark main 322 
clusters related to color pwPEs (red), and emotion pwPEs (green). Note the dissociation of PEs for color and 323 
emotion changes. B) pwPE- and prediction-related activations for different sensory features arise and are 324 
updated, respectively, during Bayesian inference as properties of the hidden states that cause the sensory 325 
information dynamically change over time. Prediction and pwPEs to color and emotion are marked as in A), 326 
additional features are marked with grey. C) Schematic depicting functional segregation in the nervous system, as 327 
distinct features of the world are inferred and predicted by distinct neural structures specializing in the given 328 
features. Image of a model used in our study reproduced with permission of the Radboud Faces Database (Langner 329 
et al., 2010). 330 
 331 
According to recent hierarchical formulations of PC (Friston, 2005), creating and maintaining our internal 332 
model of the world is a process during which predictive object representations about the likely properties 333 
of the hidden objects are updated using precision-weighted PEs (e.g., Moran et al., 2013; Stefanics et al., 334 
2018a) that signals mismatch between the expectations based on prior information and the current 335 
sensory data (Fig. 5B). In the present study, the demonstration of activations correlated to pwPE in ventral 336 
visual areas as well as in emotion processing structures suggests a role for PC in color and emotion 337 
perception. Importantly, we manipulated stimulus sequences to induce automatic expectations about the 338 
occurrence of different stimulus features, using the same faces to elicit distinct emotion and color pwPEs. 339 
In line with our hypothesis, color and emotion pwPEs were reflected by activity in brain structures known 340 
to be dedicated to color and emotion processing. A hypothetical generalization of our results is shown in 341 
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Fig. 5C, which illustrates functional segregation of inferring hidden causes of sensory information for 342 
different features, including color and emotional expression of faces.  343 

Here, we studied predictions and pwPEs to unattended and task-irrelevant stimuli. We used a primary 344 
task independent of the facial stimuli to ensure that participants did not attend to the faces and verified 345 
their attentional focus by eye-tracking. Thus, predictions and pwPEs were elicited under an automatic 346 
recognition processes and minimized confounding variations in attentional contributions. 347 

It is important to note that due to the lack of significant group level results for the emotion stick regressor, 348 
we were not able to directly compare models using the approach presented in Stefanics et al. (2018a). 349 
Hence, we could not use model comparison to assess whether the pwPE or the stick regressor traces 350 
provided the formally better model. Notably, the latter are equivalent to a very quick adaptation without 351 
precision weighting. However, the second level results suggest that the representation of pwPEs is more 352 
consistent across subjects, leading to a significant group effect. In addition, while we use computational 353 
quantities to model neural activity in the GLM, our method (fMRI) does not allow us to make a direct 354 
statement about the neuronal implementation, e.g., neuronal fatigue, suppressive effects in single 355 
neurons, or network effects (e.g., Solomon and Kohn; 2014, Stefanics et al., 2016). Based on the current 356 
analysis it is not possible to reject some form of adaptation (e.g., fatigue) as a potential mechanism as 357 
opposed to a more general model based on hierarchical Bayesian inference. Thus, adaptation could be an 358 
alternative explanation of our findings.  359 

To our knowledge this is the first fMRI study using a Bayesian observer model to describe automatic 360 
predictions and pwPEs to violations of expectations to different features of the same objects, in the 361 
absence of focal attention and task-relevance. Both expectation based on stimulus probability and 362 
attention based on task-relevance have been suggested to modulate sensory PEs (e.g., Summerfield and 363 
de Lange, 2014; Auksztulewicz and Friston, 2015; Auksztulewicz et al., 2017). Attentional effects have 364 
been suggested to increase synaptic gain of PE coding neurons (Kok et al., 2012; Wyart et al., 2012; Jiang 365 
et al., 2013; Vossel et al., 2014; Auksztulewicz and Friston, 2015), whereas expectation effects manifest in 366 
reduced neuronal responses (Grotheer and Kovács, 2015; Auksztulewicz and Friston, 2016; Stefanics et 367 
al., 2018a,b). Recent formulations of PC suggest that attention serves to optimize precision estimates of 368 
specific PEs.  By increasing the weight that is put on PEs, the role of attention is to influence subsequent 369 
inference and learning (Friston, 2009; Feldman and Friston, 2010; den Ouden et al., 2012; Parr and Friston, 370 
2018).  Furthermore, a previous study also found that PEs spread across object features in the visual cortex 371 
(Jiang et al., 2016). Here, we extend these previous findings by showing that (i) pwPEs can also be elicited 372 
in spatially remote neural structures that specialize in the processing of distinct stimulus attributes and 373 
(ii) in the absence of attention. Notably, Jiang et al. (2016) studied PEs to attended and task-relevant 374 
random dot stimuli, while in our study face stimuli were task-irrelevant and not attended, as verified by 375 
eye tracking. The differences between our current and their results suggest that the role of focal attention 376 
in perception might not only be to enhance but also spread PEs across features at the object level (Jiang 377 
et al., 2016) which is in line with the feature-integration theory of attention (Treisman and Gelade, 1980). 378 
Thus, while the visual system likely represents statistical relationships across features and automatically 379 
structures them into objects (Müller et al., 2009, 2011), our results suggest that PEs to violations of specific 380 
features are processed mostly in different regions. Clusters in the cerebellum, thalamus, precuneus, 381 
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posterior medial frontal cortex, and right temporal areas were activated exclusively for predictions and/or 382 
pwPEs pertaining to emotions. However, activations in the fusiform gyrus for color and emotion showed 383 
some overlap (Fig. 5A). In addition, we could not find any evidence for an interaction between PEs for 384 
different features when they are task-irrelevant and unattended. However, we only considered an 385 
interaction between color and emotion PEs at the level of the GLM and did not investigate possible 386 
interactions at the level of the perceptual model of the HGF. This would require establishing a novel HGF 387 
that incorporates interactions between hidden beliefs. 388 

Color PEs  389 

Color processing involves the ventral visual pathway (Mesulam, 1998; Bartels and Zeki, 2000), where fMRI 390 
studies have shown strong color-related activations (Brewer et al., 2005; Solomon and Lennie, 2007; 391 
Barbur and Spang, 2008; Brouwer and Heeger, 2009). The location of the fusiform activation in our 392 
experiment is in agreement with “color-biased” regions in the ventral occipito-temporal cortex (Lafer-393 
Sousa et al., 2016). To our knowledge, there have been no previous investigations of color processing from 394 
a PC-related perspective. Our results suggest the importance of pwPEs, as a putative signature of PC, for 395 
color perception.  396 

Emotion PEs and predictions  397 

Facial emotions are non-verbal acts of communication that express emotional states and intentions, and 398 
are fundamental in social interactions (Fridlund, 1994; Frith, 2009). The social environment is not 399 
constant, and detecting changes in the emotional valence of facial expressions in our social space is 400 
important for socially successful behavior. Prior ERP studies (Susac et al., 2004; Kimura et al., 2012; Li et 401 
al., 2012; Csukly et al., 2013; Stefanics et al., 2012, 2018a; Astikainen et al., 2013; Fujimura and Okanoya, 402 
2013; Xu et al., 2018) suggest that emotional expressions are processed in a few hundred milliseconds 403 
and stored in predictive memory representations. We found emotion pwPEs in a set of areas including 404 
the bilateral cerebellum, precuneus, thalamus, right lingual and supramarginal gyrus, as well as right 405 
posterior medial frontal cortex. We observed activations pertaining to emotion predictions in bilateral 406 
fusiform and the right superior temporal gyrus. Details of significant clusters are provided in Table 1. This 407 
pattern of results (Fig. 5A) is in line with the notion that emotion processing involves a mosaic-like set of 408 
affective, motor-related and sensory components (Bastiaansen et al., 2009). More specifically, it 409 
demonstrates pwPE/prediction activations in areas that previous work identified as activated by the 410 
processing of emotional faces (Fusar-Poli et al., 2009; E et al., 2014; Adamaszek et al., 2017) and theory 411 
of mind tasks, in particular the Mind in the Eyes task (Schurz et al., 2014).  412 

In our current study we observed positive and negative betas for color and emotion pwPEs, respectively, 413 
which might reflect complementary neural mechanisms for predictive processing across distinct features. 414 
The notion that predictive coding across features can be mediated by qualitatively different mechanisms 415 
(Auksztulewicz et al., 2018) suggests domain-specific predictive signaling. As fMRI does not allow to 416 
measure detailed neural firing but rather represents the bulk signal of excitation and inhibition within a 417 
region (Logothetis, 2008), we cannot draw conclusions about specific mechanisms that could lead to this 418 
difference in the PE signal.  419 
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In summary, our findings demonstrate that the same physical stimulus can elicits separate feature-specific 420 
pwPE/prediction responses, depending on distinct predictions about its various attributes. This is in 421 
agreement with PC theories of perception. In future extensions of this work, models of effective 422 
connectivity could examine the signaling of pwPEs/predictions in cortical networks as postulated by PC.  423 
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Table 1. 604 

Contrast and Cluster Structure Cytoarchitectonic area Cluster max. (MNI) 
Main effects of color PEs    
Cluster 1 (326 voxels) L Fusiform Gyrus Area  FG3 -30 -58 -14 
 L Fusiform Gyrus Area  FG1 -28 -70 -8 
 L Fusiform Gyrus Area  FG3 -30 -54 -10 
Cluster 2 (212 voxels) R Fusiform Gyrus Area  FG3 32 -46 -20 
 R Fusiform Gyrus Area  FG3 30 -46 -12 
 R Fusiform Gyrus n.a. 26 -54 -12 
Main effects of emotion PEs    
Cluster 1 (1417 voxels) R Cuneus Area hOc3d [V3d] 10 -88 26 
 L Lingual Gyrus Area hOc1 [V1] -2 -78 -8 
 Cerebellar Vermis (4/5) n.a. -2 -64 0 
 R Lingual Gyrus Area hOc3v [V3v] 14 -66 -2 
 L  Cerebellum (Crus 1) Lobule VIIa crus I (Hem) -12 -88 -22 
 R Calcarine Gyrus Area hOc2 [V2] 10 -94 8 
 n.a. Area hOc1 [V1] 6 -82 -14 
 R Cuneus Area hOc2 [V2] 8 -94 14 
 L Lingual Gyrus Area hOc1 [V1] 2 -72 6 
 R Calcarine Gyrus Area hOc1 [V1] 18 -68 10 
 R Lingual Gyrus Area hOc3v [V3v] 18 -86 -14 
Cluster 2 (554 voxels) L Cerebellum (Crus 1) Lobule VIIa crusI (Hem) -40 -50 -32 
 L Cerebellum (VI) Lobule VI (Hem) -30 -64 -24 
 L Cerebellum (Crus 1) Lobule VIIa crusI (Hem) -42 -66 -30 
 L Cerebellum (VI) Lobule VI (Hem) -36 -54 -28 
 L Cerebellum (VI) Lobule VI (Hem) -24 -74 -20 
 L Cerebellum (Crus 1) Lobule VIIa crusI (Hem) -20 -80 -24 
 L Cerebellum (Crus 1) Lobule VIIa crusI (Hem) -22 -80 -32 
 L Cerebellum (Crus 1) Lobule VIIa crusI (Hem) -26 -80 -32 
Cluster 3 (511 voxels) R SupraMarginal Gyrus Area PF (IPL) 58 -38 26 
 R Middle Temporal Gyrus n.a. 56 -40 6 
 R Middle Temporal Gyrus n.a. 58 -42 8 
 R SupraMarginal Gyrus Area PFm (IPL) 64 -44 26 
 R Superior Temporal Gyrus Area PF (IPL) 66 -34 10 
 R Superior Temporal Gyrus Area PFm (IPL) 60 -42 20 
 R Middle Temporal Gyrus n.a. 52 -48 16 
 R Superior Temporal Gyrus n.a. 54 -44 14 
 R SupraMarginal Gyrus Area PFt (IPL) 54 -24 28 
 R SupraMarginal Gyrus n.a. 48 -42 32 
 R Superior Temporal Gyrus n.a. 62 -38 12 
Cluster 4 (380 voxels) L Precuneus n.a. -2 -54 54 
 L Precuneus n.a. 0 -56 60 
 R Precuneus Area 5M (SPL) 2 -50 58 
 L Precuneus n.a. -2 -54 48 
 R Precuneus n.a. 10 -60 42 
 R Precuneus n.a. 8 -58 50 
 L Midcingulate cortex Area 5M (SPL) 0 -38 52 
 L Midcingulate cortex n.a. -2 -38 44 
 L Midcingulate cortex n.a. -2 -44 42 
Cluster 5 (178 voxels) R Cerebellum (VI) Lobule VI (Hem) 34 -46 -30 
 R  Cerebellum (Crus 1) Lobule VIIa crus I (Hem) 44 -56 -28 
    R  Cerebellum (Crus 1) Lobule VIIa crus I (Hem) 40 -54 -30 
 R Cerebellum (Crus 1) Lobule VIIa crus I (Hem) 38 -52 -32 
 R  Cerebellum (Crus 1) Lobule VIIa crus I (Hem) 48 -60 -32 
 R  Cerebellum (Crus 1)* Area FG2   46 -62 -26 
Cluster 6 (162 voxels) R Cerebellum (Crus 1) Lobule VIIa crusI (Hem) 34 -80 -28 
 R Cerebellum (Crus 1) Lobule VIIa crusI (Hem) 28 -76 -34 
 R Cerebellum (VI) Lobule VI (Hem) 32 -72 -24 
 R Cerebellum (VI) Lobule VI (Hem) 36 -64 -26 
 R Cerebellum (Crus 1) n.a. 40 -76 -22 
Cluster 7 (130 voxels) L Thalamus*** Thalamus proper -2 -4 8 
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 R Thalamus Thal: Temporal 8 -22 10 
 R Thalamus Thal: Temporal 14 -28 10 
Cluster 8 (120 voxels) R Posterior-Medial Frontal** Supplementary motor cortex 6 2 58 
 R Posterior-Medial Frontal** Supplementary motor cortex 8 12 58 
 R Posterior-Medial Frontal n.a. 10 14 62 
Cluster 9 (107 voxels) n.a. n.a. 4 -36 2 
 Cerebellar Vermis (4/5) n.a. 4 -46 4 
 n.a. n.a. -2 -36 8 
Cluster 10 (79 voxels) R Lingual Gyrus n.a. 14 -48 -6 
 R Lingual Gyrus n.a. 18 -52 -6 
 R Lingual Gyrus n.a. 22 -48 -8 
 R Fusiform Gyrus n.a. 22 -46 -12 
    
Main effects of emotion PREDICTIONS    
Cluster 1 (1500 voxels) R Fusiform Gyrus Area hOc4v [V4(v)] 24 -64 -10 
 R Lingual Gyrus Area hOc3v [V3v] 22 -74 -10 
 R Lingual Gyrus n.a. 22 -56 -8 
 R Fusiform Gyrus Area  FG3 32 -54 -14 
 R Calcarine Gyrus Area hOc1 [V1] 12 -76 10 
 R Lingual Gyrus Area hOc1 [V1] 24 -56 -2 
 R Calcarine Gyrus Area hOc1 [V1] 20 -72 8 
 L Calcarine Gyrus Area hOc2 [V2] -16 -68 8 
 R Lingual Gyrus n.a. 24 -46 -10 
 R Lingual Gyrus Area hOc2 [V2] 10 -78 -2 
 L Calcarine Gyrus Area hOc1 [V1] -10 -66 8 
Cluster 2 (515 voxels) L Fusiform Gyrus Area FG1   -24 -62 -14 
 L Lingual Gyrus n.a. -22 -48 -8 
 L Lingual Gyrus n.a. -22 -52 -8 
 L Lingual Gyrus n.a. -20 -58 -8 
 L Fusiform Gyrus Area FG1   -28 -72 -12 
 L Fusiform Gyrus Area hOc4v [V4(v)] -22 -72 -14 
 L Fusiform Gyrus Area hOc4v [V4(v)] -30 -76 -12 
 L Lingual Gyrus Area hOc4v [V4(v)] -18 -70 -10 
Cluster 3 (147 voxels) R Superior Temporal Gyrus n.a. 54 -44 18 
 R Middle Temporal Gyrus n.a. 62 -40 2 
 R Middle Temporal Gyrus n.a. 58 -42 8 
 R SupraMarginal Gyrus Area PFcm (IPL) 54 -38 26 
 R SupraMarginal Gyrus Area PF (IPL) 66 -38 30 

 605 

Table 1. Assignment of activations to anatomical and cytoarchitectonic regions (Anatomy Toolbox, v2.2c). 606 
In order to characterize the anatomical locations of the cluster we report maxima within the clusters and 607 
their assignment to anatomical regions. If a maximum lies within a particular region, this means that the 608 
cluster extends into that anatomical region, but does not imply that the entire region is activated or that 609 
the entire cluster lies within that anatomical region. Whole brain analyses on the cluster level p<0.05 610 
(FWE-corrected) with a cluster defining threshold of p<0.001. Contrast estimates from structures in bold 611 
font are plotted in Figures 2-4. n.a.: these maxima were not assigned to any region. *The anatomy toolbox 612 
labelled this maximum as Cerebellum but assigned it to the fusiform area FG2. **The anatomy toolbox 613 
labelled this maximum as Posterior-Medial Frontal cortex but did not assign it. The anatomical label was 614 
corrected to Supplementary motor cortex based on Neuromorphometrics labelling in SPM. ***The 615 
anatomy toolbox did not label this maximum. The anatomical label of left Thalamus was added based on 616 
Neuromorphometrics labelling in SPM. 617 

 618 
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