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ABSTRACT 
Understanding the brain is a fascinating challenge, captivating the scientific community and the public alike.                             
The lack of effective treatment for most brain disorders makes the training of the next generation of                                 
neuroscientists, engineers and physicians a key concern. Over the past decade there has been a growing effort                                 
to introduce neuroscience in primary and secondary schools, however hands-on laboratories have been limited                           
to anatomical or electrophysiological activities. Modern neuroscience research labs are increasingly using                       
computational tools to model circuits of the brain to understand information processing. Here we introduce the                               
use of neurorobots - robots controlled by computer models of biological brains - as an introduction to                                 
computational neuroscience in the K-12 classroom. Neurorobotics has enormous potential as an education                         
technology because it combines multiple activities with clear educational benefits including neuroscience,                       
active learning, and robotics. We describe an introductory neurorobot workshop that teaches high school                           
students how to use neurorobots to investigate key concepts in neuroscience, including spiking neural                           
networks, synaptic plasticity, and adaptive action selection. Our do-it-yourself (DIY) neurorobot uses wheels, a                           
camera, a speaker, and a distance sensor to interact with its environment, and can be built from generic parts                                     
costing about $150 in under 4 hrs. Our Neurorobot App visualizes the neurorobot's visual input and brain                                 
activity in real-time, and enables students to design new brains and deliver dopamine-like reward signals to                               
reinforce chosen behaviors. We have tested the Neurorobot Workshop with high school students (n = 3                               
workshops, 9 students total) and have found that students were able to complete all exercises in under 3 hrs.                                     
In a post-workshop survey, students reported having gained the ability to develop neural networks that perform                               
specific functions, including goal-directed behavior and memory. Here we provide DIY hardware assembly                         
instructions, discuss our open-source Neurorobot App and demonstrate how to teach the Neurorobot                         
Workshop. By doing this we hope to accelerate research in educational neurorobotics and promote the use of                                 
neurorobots to teach computational neuroscience in high school. 
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1. INTRODUCING EDUCATIONAL NEUROROBOTICS 
Understanding the brain is necessary to understand ourselves, treat brain disorders and inspire new scientists.                             
Insights from neuroscience are also facilitating rapid progress in artificial intelligence (Hassabis et al., 2017;                             
Zador, 2019). Nevertheless, most students receive almost no education in neuroscience and the public’s                           
understanding of the brain is lacking (Dekker & Jolles, 2015; Fulop & Tanner, 2012; Sperduti et. al., 2012;                                   
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Labriole 2010; Frantz et al., 2009). The reasons cited are that the brain is perceived to be too complex, and that                                         
the tools needed to study it are too expensive and hard to use.  Although neuroscience is not yet an                                     
independent component of typical high school curricula, some schools are adopting neuroscience courses or                           
steering their biology or psychology classes in the direction of neuroscience to satisfy growing interest in the                                 
brain (Gage, 2019). 
 
An important cause of the increasing prominence and appeal of neuroscience in recent years is its powerful                                 
synergy with computer technology. Brain imaging and visualization techniques have given neuroscientists and                         
the public unprecedented access to the complex structures and dynamics of brains.  C omputer modelling is                             
enabling researchers to go beyond theorizing about brain function to actually implementing those functions  in                             
silico . Large networks of simple neurons connected by plastic synapses and subject to biologically-inspired                           
forms of learning can now perform feats of prediction and control previously thought to be the sole purview of                                     
the human brain, and increasingly permeate all aspects of digital life (Hassabis et al., 2017; Krizhevsky et al.,                                   
2012; Levine et al., 2018). Neurorobotics - the study of robots controlled by artificial nervous systems -                                 
leverages much of this synergy and is proving a powerful method for developing and validating computational                               
models of brain function (Krichmar et al., 2018; Falotico et al., 2017). 
 
Neurorobotics also has enormous and largely untapped potential as a neuroscience education technology                         
because it combines multiple activities with clear educational benefits. (1) Robotics is a highly motivating and                               
effective framework for teaching STEM in schools (Barker, 2012; Benitti, 2012; Karim et al., 2015), including to                                 
underrepresented students (Ludi, 2012; Rosen et al., 2012; Yuen et al., 2013; Weinberg et al. 2007). (2) The                                   
process of designing, testing and modifying neurorobot brains with interesting behavioral and psychological                         
capacities engages students in active learning, which has been shown to improve STEM outcomes (Freeman                             
et al., 2014), especially among disadvantaged students (Cervantes et al., 2015; Haak et al., 2011; Kanter &                                 
Konstantopoulos, 2010). (3) Finally, neurorobotics combines robotics and active learning with neuroscience, a                         
highly multidisciplinary subject that presents itself in a wide array of real-life situations and readily appeals to                                 
the public (Sperduti et al., 2012; Frazzetto & Anker, 2009). The aim of neurorobotics is convincing robotic                                 
embodiment of attention, emotion, decision-making and many other mental capacities that are inherently                         
interesting to students. Given user-friendly and affordable robot hardware, intuitive brain design and                         
visualization software, and well-researched curriculum, educational neurorobotics has the potential to                     
revolutionize neuroscience tuition, STEM education and the understanding of the brain. 
 
Educational neurorobotics is a small but growing area of research and development. Iguana Robotics                           
developed perhaps the first neurorobot for education - an inexpensive four-legged robot that uses capacitors                             
and resistors to emulate neural networks and move (Lewis & Rogers, 2005). Middle and high-school students                               
were readily motivated to modify these neural networks in order to change the robot’s gait, and demonstrated                                 
improved neuroscience attitudes as a result. NeuroTinker has more recently developed LED-equipped hardware                         
modules that emulate individual neurons and can be connected into small neural circuits and attached to                               
sensors and motors. Undergraduate students demonstrated improved understanding of neuroscience                   
concepts after using the modules (Petto et al., 2017). Robert Calin-Jageman’s Cartoon Network is an                             
educational neural network simulator that can connect via USB to the Finch Robot (BirdBrain Technologies                             
LLC), a mobile robot with temperature-, light- and touch sensors, motorized wheels, lights and buzzers. Cartoon                               
Network allows students to use different types of neurons and synapses to build neural circuits and control the                                   
Finch Robot, and generated promising results in workshops with undergraduates and teachers (Calin-Jageman,                         
2017; Calin-Jageman, 2018). Asaph Zylbertal’s NeuronCAD is a Raspberry Pi-based neurorobot that uses                         
simulated neurons to control motors and process input from a camera (Zylbertal, 2016) but the project’s                               
educational aims have not yet been implemented. Finally, Martin Sanchez at University Pompeu Fabra                           
organizes an annual educational neurorobotics project as part of the Barcelona International Youth Science                           
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Challenge (Sanchez, n.d.). We set out to expand on these promising developments in educational                           
neurorobotics and extend the range of brain functions and biologically-inspired neural networks students are                           
able to create and the ways in which these networks can be visualized, analyzed and modified. 
 
We have developed a neurorobot for high school neuroscience education that combines easy-to-use brain                           
simulation and brain design software with affordable, wireless, camera-equipped do-it-yourself (DIY) hardware.                       
Our DIY neurorobot is a mobile robot that uses wheels, a camera, a speaker and a distance sensor to navigate                                       
and interact with its environment. To keep hardware cost low while allowing students to leverage                             
compute-intensive graphical user interface, brain simulation and machine learning functionality we chose to                         
perform most computations on a wirelessly connected laptop that receives sensory input from the robot,                             
extracts sensory features, simulates user-defined Izhikevich-type neural networks (Izhikevich, 2003) and sends                       
commands back to the robot’s motors and speaker in real-time (Figure 1). The neurorobot consists of generic                                 
hardware components that can be purchased online at a total cost of about $150 and assembled in under 4                                     
hrs with a soldering iron and a glue gun. A parts list and assembly instructions are provided below. 
 

 
 
We have also developed an application that performs real-time visualization of the neurorobot’s brain and                             
visual input, and allows user-controlled delivery of dopamine-like rewards and other commands (Figure 2). The                             
app includes a brain design environment for building neural networks, either neuron-by-neuron and                         
synapse-by-synapse or by algorithmic definition of larger networks. The Neurorobot App is written in Matlab                             
and is available to download at  github.com/backyardbrains/neurorobot . Although we recommend using                     
neurorobot hardware, the app can run without it, and can use a normal webcamera to acquire visual input. 
  
To provide an initial assessment of the educational value of our neurorobot, we developed an introductory                               
Neurorobot Workshop for high school students (Figure 3). In this workshop, students are first familiarized with                               
the behavior of the Izhikevich neuron model and shown how to connect such neurons with synapses to                                 
produce goal-directed behavior (Braitenberg, 1986). Students then investigate Hebbian learning as they train                         
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their neurorobot to remember new visual stimuli. Finally, students explore action selection and reinforcement                           
learning by using a “dopamine button” to teach their robot how to behave in different sensory contexts. We                                   
tested the Neurorobot Workshop with high school students (n = 9) and found that students were able to                                   
complete all exercises in under 3 hrs. In a post-workshop survey, students reported having gained the ability to                                   
work with computational models of neurons and synapses, and to develop neural networks that perform                             
specific functions, including goal-directed behavior and memory (Figure 4). 
 
 
2. METHODS 
2a. Neurorobot hardware 
We developed our DIY neurorobot hardware design (Figure 1) with the aim of making neurorobotics accessible                               
and appealing to a wide range of learners and learning communities. To accomplish this, we sought to use                                   
affordable components that can be purchased online and easily assembled, while at the same time allowing                               
fast, wireless robot mobility, real-time processing of 720p video, audio communication, and simulation of                           
relatively large spiking neural networks. The neurorobot uses a plastic chassis with two motorized wheels and                               
a single swivel wheel. Double-sided tape was used to attach a 22000 mAh battery with 3 USB ports to the                                       
chassis. An UNO R3 controller with an Adafruit motor shield was affixed on top of the battery. A RAK5206 WiFi                                       
camera module was also attached on top of the battery with the camera attached to the forward-facing side of                                     
the battery. An 8 ohm speaker was taped to the side of the battery. A HC-SR04 ultrasonic distance sensor was                                       
attached to the forward-facing underside of the chassis with a glue gun. A SparkFun BlueSMiRF bluetooth                               
modem was attached to the chassis, next to the battery. Finally, to increase the robot’s appeal to high school                                     
students, a pair of sunglasses was attached and color-matched tape was used to decorate the front of the                                   
chassis. A wiring diagram and step-by-step assembly instructions are provided in the Supplemental                         
Information. 
 
The neurorobot’s UNO R3 controller firmware is written in C/C++ and is available to download at                               
github.com/backyardbrains/neurorobot . The controller communicates via the bluetooth modem with the                   
Neurorobot App, which runs on a dedicated laptop (Figure 1c). Every ~100 ms the controller looks for a 5 byte                                       
package from the laptop representing a speed (0-250) and direction (1 = forward, 2 = backward) for the left                                     
motor (bytes 1-2), a speed and direction for the right motor (bytes 3-4) and an output frequency for the speaker                                       
(31-4978 Hz, 8-bit resolution). If the package is available, motor and speaker states are updated accordingly. In                                 
the same 10 Hz cycle, the controller also uses the ultrasonic sensor to estimate the distance to the nearest                                     
object in front of the neurorobot and sends this distance to the laptop (range: 4-300 cm, 32-bit resolution). In                                     
parallel, the neurorobot’s RAK5206 WiFi camera module collects 720p color images at 10 frames per second                               
and sends them via WiFi to the dedicated laptop. We are currently developing a Matlab/C++ library that will                                   
allow the WiFi camera module to perform all wireless communication, obviating the need for the bluetooth                               
modem. 
 
2b. Neurorobot App 
We developed a Matlab-based app to enable students with no background in neuroscience or programming to                               
design spiking neural networks for the DIY neurorobot , and to visualize and interact with those neural networks                                 
in real-time. We chose to implement the Izhikevich neuron (Izhikevich, 2003), a spiking neuron model that                               
balances realistic-looking membrane potentials and spike patterns with relatively light compute load. The                         
Neurorobot App (Figure 2) simulates neurons at a speed of 1000 Hz as required by the Izhikevich formalism,                                   
while performing all other processes including audiovisual processing, plasticity and brain visualization at a                           
speed of 10 Hz. Synaptic connections between neurons can be either excitatory or inhibitory (measured in mV,                                 
range: -30 to 30 mV). Individual excitatory synapses can be made subject to Hebbian learning and will then be                                     
strengthened if their presynaptic neuron fires simultaneously with or just before their postsynaptic neuron. This                             
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synaptic reinforcement is subject to inverse exponential decay and disappears completely after a few minutes                             
unless the synaptic reinforcement is sufficiently strong (>24 mV) to form long-term memory. Hebbian learning                             
can furthermore be made conditional on simultaneous delivery of dopamine-like reward signal. 
 
To help students familiarize themselves with Izhikevich neurons the Neurorobot App features the Two Neuron                             
Simulator (Figure 2a), which simulates a pair of neurons connected by reciprocal excitatory synapses. Sliders                             
update the neuronal activity parameters, input noise and synaptic strengths of both neurons in real-time. The                               
Two Neuron Simulator can be launched from the Neurorobot App startup menu.  
 

 
 
In addition to simulating neurons and their synaptic connections, the Neurorobot App optionally implements                           
action selection functionality modeled on the dynamics of action selection in the basal ganglia (Grillner, 2006;                               
Seth et al., 2012;  Prescott et al., 2006; Bolado-Gomez & Gurney, 2013) . Each neuron is assigned a network ID                                     
during the brain design process and each such network is associated with a stochastically increasing level of                                 
‘drive’ which reflects the network’s likelihood of being selected by the basal ganglia. Only neurons with a                                 
selected network ID can fire spikes (i.e. control behavior). If the drive of a network crosses a threshold the                                     
network may be selected (the selection process is currently implemented algorithmically, not neuronally). If                           
selected, a network’s drive is significantly increased. While selected, the network will inhibit the drive of all                                 
other networks but will also slowly lose its own drive unless excitatory synaptic inputs or dopamine-like reward                                 
signals are provided. A special ‘medium spiny’ neuron type can be used to receive sensory and other neuronal                                   
inputs intended to modulate the drive of a specific network in different contexts, mirroring corticostriatal input                               
to the basal ganglia. Synaptic inputs onto a medium spiny neuron increase the drive of that neuron’s network                                   
proportionally. Network ID 1 is exempt from selection to allow for uninterrupted sensory and other neuronal                               
activity. 
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In the Neurorobot App, neurons and their connections are represented within a brain-shaped workspace (Figure                             
2b-d). The workspace is lined with icons representing camera input, distance input, audio input (not yet in use),                                   
motor output and sound output. Neurons are represented within this workspace as colored circles connected                             
by axons (black lines) that end in synapses (small rectangles or circles representing excitatory and inhibitory                               
synapses, respectively). 
 
The Neurorobot App has three modes of operation: startup, runtime and design. In startup mode (Figure 2b),                                 
students are able to load and preview different brains, and establish their robot’s WiFi and bluetooth                               
connections. In runtime mode (Figure 2c), students can visualize their robot’s visual input, brain activity and                               
brain structure in real-time, and send dopamine-like reward signals to the brain. Neuronal spikes are indicated                               
by black markers in a continually updated raster plot, and by the spiking cell body briefly turning green. The                                     
width of each line representing an axon indicates the absolute strength of that synaptic connection and is also                                   
updated in real-time. In design mode (Figure 2d), students are able to add individual neurons to the brain by                                     
selecting from a range of pre-specified neuron types with different firing properties, and connect them to other                                 
neurons by means of excitatory or inhibitory synapses with different strengths and plasticity rules. Students                             
can also assign neurons a range of sensory preferences (colors, objects, distances) and motor outputs (speed                               
and direction of movement, sound frequencies) by drawing axonal connections between neurons and the                           
various icons lining the brain-shaped workspace. Object recognition is accomplished using Matlab’s Deep                         
Learning Toolbox and requires a relatively high-performance graphics card. However, colors provide sufficient                         
sensory diversity for all exercises described in the Neurorobot Workshop below. Design mode also allows                             
students to add groups of neurons to the brain by algorithmically defining their properties (Figure 2d). The code                                   
needed to run the Neurorobot App is available at  github.com/backyardbrains/neurorobot and does not require                           
neurorobot hardware to run (see Supplemental Information). 
 
2c. Neurorobot Workshop 
We designed and performed a short Neurorobot Workshop with the aim of introducing students to our                               
neurorobot and providing an initial evaluation of its potential as a tool to teach computational neuroscience in                                 
high schools (Figure 3). Our protocol was approved by IntegReview IRB (March 21, 2018, protocol number                               
5552). The workshop was conducted on 3 occasions and involved a total of 9 high school students aged                                   
13-17. Each workshop involved 2-4 students, many of which were current or former members of the highly                                 
qualified FTC Team 9794 Wizards.exe. Each student also had their own laptop and robot to work with. These                                   
ideal conditions allowed us to focus on usability and less on issues of comprehension and miscommunication                               
that can arise in larger groups of less experienced students. None of the students were attending high schools                                   
with a dedicated neuroscience program or had other training in neuroscience. The workshop instructor (Dr.                             
Harris) used a separate laptop and robot to perform demonstrations. 1-2 parents or teachers attended each                               
workshop. Instructions for starting and using the neurorobot are provided in the Supplemental Information. 
 
The workshop began with the instructor providing a short introduction to the concept of brain-based robots.                               
Students then started the Neurorobot App by navigating to the app folder in Matlab and running the script                                   
neurorobot.m . Students began by accessing the Two Neuron Simulator (Figure 2a) and were taught to identify                               
spikes, reduce input noise, increase or decrease spike rate, and trigger postsynaptic spikes by varying synaptic                               
strength. The aim of this exercise was to familiarize students with spiking neurons, with the fact that neurons                                   
can be quiet or spontaneously active, and with the synaptic strength needed to reliably trigger spikes in a                                   
postsynaptic neuron. 
 
Students were then instructed to use the Neurorobot App to design a brain that would move forward in                                   
response to seeing a specific color. (This can be accomplished by adding a single neuron to the brain,                                   
assigning it a color preference, and extending axons to the forward-going motors on both sides of the robot.)                                   
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This required students to learn how to transition between the startup, runtime and design modes of the app, to                                     
add a neuron of the correct (i.e. quiet) type to the workspace, and to assign the neuron specific sensory inputs                                       
and motor outputs. Students were then encouraged to modify the brain so that the robot would spin around in                                     
response to seeing a different color, move backward in response to the distance sensor registering a nearby                                 
object, and to produce distinct tones during each behavior. The aim of this exercise was to familiarize students                                   
with the Neurorobot App and help them develop an understanding of how functionally distinct neural circuits                               
can co-exist in a single brain. 
 
Students were then encouraged to explore the various pre-configured brains available from the startup menu                             
(e.g. Figure 3a.i-iv), to try to understand how it is possible for many of them to generate distinct spontaneous                                     
behaviors in the absence of specific sensory inputs, and to incorporate some of the operative neural                               
mechanisms in their own brain designs. This required students to learn how to load different brains and                                 
analyse them in order to identify neuronal properties that contribute to spontaneous behavior (e.g.                           
spontaneously active or bursting neurons). Students were also introduced to the concept of a goal-directed                             
Braitenberg vehicle (Braitenberg, 1986; Figure 3a.ii) and to random neural networks generated by defining                           
neuronal and network properties probabilistically (Figure 3a.iv). 
 

 
 
In the second (and shorter) part of the workshop students were first introduced to Hebbian learning and                                 
synaptic plasticity. Student were instructed to load a pre-configured brain consisting of three neurons (‘Betsy’,                             
Figure 3b). Neuron 1 was responsive to green and projected a weak but plastic synapse to neuron 3. Neuron 2                                       
was responsive to red and projected a strong but non-plastic synapse to neuron 3. Neuron 3 produced a sound                                     
output. Thus, showing the robot a red object led to activation of neurons 2 and 3 and the sound output,                                       
whereas showing the robot a green object only activated neuron 1. The challenge was to train the neurorobot                                   
to produce a sound in response to seeing the green color alone. The instructor explained the concept of                                   
Hebbian learning and showed students how to reinforce the synapse connecting neurons 1 and 3 by presenting                                 
the robot with both red and green colors simultaneously. Students were then asked to plot the strength of the                                     
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plastic synapse in order to quantify how the duration of training (simultaneous stimulus presentation) affected                             
the rate of learning and subsequent forgetting. The aim of the exercise was familiarize students with Hebbian                                 
synaptic reinforcement, which depends on simultaneous activation of a pre- and a postsynaptic neuron, to                             
teach them how to read and plot synaptic strengths, and to introduce the idea that sufficient synaptic                                 
reinforcement can trigger long-term memory. 
 
Students were then introduced to the concepts of action selection and reinforcement learning (Figure 3c). The                               
instructor explained how the basal ganglia enables action selection in the vertebrate brain by selective                             
disinhibition of specific behavior-generating neural networks  (Grillner, 2006; Seth et al., 2012;  Prescott et al.,                             
2006; Bolado-Gomez & Gurney, 2013), and how this process is modulated by dopamine to promote behaviors                               
that lead to reward. Students were shown how this selection process is implemented in the Neurorobot App by                                   
means of neural network IDs, thresholded levels of network drive and the medium spiny neuron type (see                                 
Section 2b). Students were then instructed to load a preconfigured brain that produces three different                             
behaviors and can be conditioned using the dopamine button (‘Merlin’, Figure 3c). Students then trained the                               
brain to perform one of its three behaviors in response to seeing a specific color by showing the color to the                                         
robot, waiting for it to perform the desired behavior, and then using the dopamine button to reinforce the                                   
color-behavior association. 
 
At the end of the workshop, students completed an 8-question Likert-scale questionnaire designed to evaluate                             
the educational benefits of the workshop (Figure 4). The second part of the workshop was only enacted at the                                     
last workshop event (n = 3 students), and only students who participated in both parts of the workshop were                                     
asked to complete the survey. 
 
 
3. RESULTS 
3a. App speed and performance 
We perceived the stability and speed of the Neurorobot App to be critical to student engagement during the                                   
workshop. Early iterations of the Neurorobot App suffered from regular WiFi or bluetooth connection failures                             
(“crashes”) that often required a system restart and irritated students. The current version of the app is more                                   
stable. When crashes do occur the app reconnects automatically in 6-7 seconds. Crashes are typically                             
associated with trying to run 4 or more robots in close proximity, but the room and building in which the                                       
workshop takes place are also a factor. In the average workshop involving 5 simultaneously running                             
neurorobots, 4 will perform well, with only one or two suffering occasional crashes (approx. 4-5 per hour). 
 
The rendering speed of the Neurorobot App depends on the laptop used to run it. We found that laptops with                                       
1.1 GHz dual-core CPUs, 8GB RAM and internal graphics (4165 MB total memory, 128 MB VRAM) were not able                                     
to render the app at an acceptable rate. The rendering of buttons and execution of their associated functions in                                     
brain design mode were particularly affected, resulting in Matlab errors and crashes as students attempted to                               
start new processes before previously triggered ones had completed. We found that laptops with 2.80 GHz                               
quad-core CPUs, 16GB RAM and NVIDIA GeForce GTX 1060 graphics (11156 MB total memory, 2987 MB                               
VRAM)  were  able to render the app with only occasional delays. We used laptops with these specs, running                                   
Windows 10 and Matlab 2018a, in the workshops discussed here. 
 
The neurorobot app is configured to run at 10 Hz, with its Izhikevich neurons running at 1000 Hz. With these                                       
settings we were able to simulate brains of up to 200 neurons, more than 10 times the number of neurons                                       
needed to run the workshop exercises. Nevertheless, improving our code to allow real-time simulation of much                               
larger brains is a priority. We found that we had to use a slower rendering speed of 5 Hz when simulating larger                                           
brains or when using the Deep Learning Toolbox to perform object recognition. 
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The second persistent problem we encountered during workshops was color detection. In rooms with plenty of                               
natural light our neurorobots were easily able to recognize and distinguish between red, green and blue objects.                                 
However, rooms with limited or amber ceiling lights were difficult to work in, with detection of green and blue                                     
being particularly affected. In one case this problem was so severe that the workshop had to be interrupted                                   
and the students relocated to a different room. We are currently working to improve the color detection                                 
functionality of the Neurorobot App, and recommend testing a range of colored objects in the same room and                                   
lighting conditions in which work with the app is to take place. 
 

 
 
Two features of the brain design mode were not intuitive to students. First, the app assumed that the                                   
presynaptic origin of a synapse would be selected before its postsynaptic target. This was a natural way of                                   
establishing directed connections between pairs of neurons. However, it also meant that to make a neuron                               
responsive to sensory input, the sensory input icon had to be selected before the target neuron. Similarly, to                                   
enable a neuron to produce motor or speaker output, the neuron had to be selected before the output icon.                                     
Although these requirements may reinforce the concept of directed signal flow in neural networks, students                             
found the constraints frustrating. Students also found the process of modifying or deleting synapses                           
confusing. To create a synapse, students had to extend an axon from the presynaptic origin (e.g. a neuron) to                                     
the postsynaptic target (e.g. another neuron). However, modifying or deleting an existing synapse also required                             
students to extend an axon from the presynaptic origin to the postsynaptic target. Students repeatedly voiced                               
the opinion that clicking directly on an existing axon or synapse to edit its properties would be more intuitive.                                     
We are currently working to solve both these user interface issues. 
 
3b. Survey responses 
Students’ responses to the statement “The Neurorobot App did NOT work reliably” ranged from disagree to                               
neutral. This reflects the fact that the app is still at a prototype stage and subject to the “bugs” discussed                                       
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above. We are exploring several approaches to improve app performance, including open-sourcing our code                           
and implementing multi-core functionality. 
 
Students strongly agreed with the statement “I was able to control the activity of individual neurons by                                 
changing their properties”. This indicates that the use of the Two Neuron Simulator at the start of the                                   
workshop and subsequent encouragement of students changing the properties of neurons from quiet to                           
spontaneously active or vice versa during the workshop was successful. Students also agreed or strongly                             
agreed with the statements “I was able to design a brain to perform a specific behavior” and “I know how to                                         
use neurorobots to create and test neural networks”. This reflects the fact that all students were able to                                   
complete the first part of the workshop in which they designed a brain to perform different sounds and                                   
movements in response to seeing different colors. This exercise typically elicited many positive exclamations                           
as students saw their robots move for the first time. 
 
Students strongly agreed with the statement “I could clearly see the strength of a synapse change during                                 
learning”, confirming that students learned how to observe this core feature of memory formation. Students                             
also disagreed or strongly disagreed with the statement “I was NOT able to investigate how new memories                                 
form and disappear”. This reflects the fact that all students who participated in the second half of the                                   
workshop were able to train the brain Betsy to express a new color-behavior association. 
 
Students’ responses to the statement “I was able to use dopamine to teach my robot what to do” ranged from                                       
disagree to agree. This final part of the workshop is clearly the most conceptually demanding, as it requires                                   
students to understand the idea of ongoing selection between competing neural networks and the modulation                             
of this competition by sensory input and reward. To improve students’ understanding of this part of the                                 
workshop we have made three improvements: 1) neurons with the same network ID are now connected by                                 
dashed lines to indicate network membership; 2) medium spiny neurons are now larger than other neurons to                                 
indicate that they work differently; and 3) the color of medium spiny neurons now indicates their network’s level                                   
of drive (see Section 2b). We are also working to improve our presentation of this complex material. 
 
Finally, all students strongly disagreed with the statement “This workshop did NOT increase my interest in                               
neuroscience and the brain”, indicating that the workshop has a positive effect on students’ attitude towards                               
neuroscience. Two students also indicated in the open “Ideas for improvement” section of the survey that more                                 
background information about neurons and synapses, as well as a detailed workshop program, would have                             
been helpful. 
 
 
4. DISCUSSION 
Neurorobotics offer students a unique opportunity to learn neuroscience and computational methods by                         
building and interacting with embodied models of neurons and brains. To promote neurorobot-based                         
neuroscience tuition in schools and educational neurorobotics as an area of research, we have provided here                               
the instructions to build our DIY neurorobot, the Matlab-code of the associated Neurorobot App, and the                               
contents and results of a Neurorobot Workshop for high school students. We found that students enjoyed the                                 
Neurorobot Workshop, were generally able to understand and complete the exercises we presented, and                           
expressed competence and confidence in computational neuroscience in a post-workshop survey. 
 
Development of our educational neurorobotics platform is ongoing. In the near future we will remove the need                                 
for the bluetooth modem by conducting all serial communication via WiFi. This involves creating a new library                                 
for communication between Matlab and the RAK5206 WiFi module, as the HebiCam library we are currently                               
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using for this purpose only allows video transmission. We are also working on a lighter, fabricated hardware                                 
design with microphone, gyroscope and accelerometer input, motor encoders and multi-color LEDs. 
 
On the software side there are numerous near-term improvements that would improve usability, including tools                             
to edit neurons and synapses en masse, and methods for working with larger brains (e.g. zooming in and out,                                     
hiding different types of brain structure). An efficient search of the space of possible neural networks with the                                   
aim of discovering novel, engaging behavioral outputs would allow students to more quickly create and train                               
interesting brains in the classroom. Faster and richer sensory feature extraction would allow students to design                               
brains that can recognize and adapt to key features of their local environment. Perhaps the most important                                 
near-term goal is to expand the library of brains available to students, to include interesting, useful,                               
well-understood features such as retinotopy and place cells, and to develop creative pedagogic exercises to                             
introduce these brains to students. We are particularly interested in creating brains that make use of the                                 
dopaminergic neuron type, activation of which generates reward signal and enables reinforcement learning                         
without the need for the dopamine button. 
 
As researchers and educators exploring the still nascent field of educational neurorobotics we are faced with                               
numerous interesting questions.  What types of sensory features are most useful to students and how should                               
they be made accessible in the Neurorobot App? What types of neurons and neural circuits do students need to                                     
be able to deploy with a single click?  What types of exercises, brains and behaviors do students prefer to work                                       
with, and why? How should existing neurorobotics research and computational brain models be translated into                             
forms suitable for the K-12 classroom? How should educational neurorobotics be combined with project-based                           
learning? How can we make teachers confident about using neurorobots to teach neuroscience? And how                             
should neuromorphic hardware be incorporated into educational neurorobots? It's an exciting time to bring                           
neurorobots to the classroom! 
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