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Abstract

E�cient unbiased data analysis is a major challenge for laboratories handling

large �ow and mass cytometry datasets. We present EmbedSOM, a non-linear

embedding algorithm based on FlowSOM that improves the analysis by provid-

ing high-performance embedding method for the cytometry data. �e algorithm

is designed for linear scaling with number of data points, and speed suitable for

interactive analysis of millions of cells without downsampling. At the same time,

the visualization quality of single cell distribution within cellular populations and

their transition states is competitive with the current state-of-the-art algorithms.

We demonstrate EmbedSOM properties on two use-cases, showing bene�ts of us-

ing the interactive algorithm speed in supervised hierarchical dissection of cell

populations, and the scalability improvement by e�ciently processing very large

datasets.

Keywords: �ow cytometry, mass cytometry, automated analysis,

high-dimensional data, embedding, clustering

Preprint submi�ed to bioRχiv April 8, 2019

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 8, 2019. ; https://doi.org/10.1101/496869doi: bioRxiv preprint 

https://doi.org/10.1101/496869
http://creativecommons.org/licenses/by-nc/4.0/


1. Introduction15

�e ever-increasing size and dimensionality of data generated by �ow and

mass cytometry experiments drive interest in simplifying data analysis. Em-

ploying the usual repetitive manual gating, exploration and back-gating tech-

niques is tedious if the sample count is high, and becomes imprecise on complex

data. During the past decade, a multitude of automated analysis methods have20

been introduced, including various unsupervised clustering and phenotyping al-

gorithms, and embedding methods. Comprehensive reviews of the algorithms

are available [19, 27, 10, 11].

�e preferred method to display cytometry datasets is embedding, in which

cells are arranged into a 2-dimensional picture showing populations of agglomer-25

ated cells with similar properties. �is provides a straightforward way to inspect

the relative population sizes, their contents, and the presence of various features

including major subpopulations, intermediate cell states and trajectories of their

development. �e performance of available embedding algorithms is constantly

being improved. For example, the widely used tSNE [24] has formed the basis30

for faster ASNE [17] and HSNE [16], and was further improved in OptSNE and

FItSNE [3, 14] and accelerated using GPU by Chan et al. [5]. Other methods in-

clude SWNE, scvis, largevis [29, 6, 8], and the relatively new UMAP [15] that

speci�cally aims to provide be�er, faster embedding than tSNE. Despite these

developments, two key objectives have not been met:35

• �e embedding algorithm should be able to process the data of volumes

common in cytometry quickly, ideally within seconds, to allow interactive

data inspection;

• algorithm processing time should scale linearly with the number of cells,

to be able to keep up with the increasing sizes of datasets without down-40

sampling.

We introduce EmbedSOM, a new embedding algorithm that is designed to

satisfy these two requirements. �e algorithm uses a self-organizing map (SOM)

that describes the multidimensional cell space. SOMs have been successfully

used for classifying this space into clusters — for example, FlowSOM [25] uses45

SOM vertices as cluster centers to classify the cells into clusters that form a basis

for further analysis. �e SOM additionally approximates a section of a smooth
2-manifold embedded in the multidimensional space in a manner such that the

cells are uniformly distributed in its neighborhood. EmbedSOM uses this addi-

tional information to compute the embedding by ��ing a projection of each cell50
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onto this manifold, and transforming the projection coordinates to 2-dimensional

SOM-relative coordinates.

�e performance-oriented design of EmbedSOM di�ers substantially from

other commonly used embedding methods. Most importantly, the usual time-

consuming iterative optimization of single cell positions in the embedding is re-55

placed by relatively fast manifold approximation by SOM training. Additionally,

the separation of the SOM-training from other stages of the algorithm intro-

duces �exibility that allows precise manipulation of separate embedding proper-

ties, such as reliable alignment of cell populations in the embedding even with

substantially di�erent samples, and easy optimization of the embedding layout.60

Here, we describe the properties of the EmbedSOM algorithm, mainly as re-

sults of benchmarking it against other embedding algorithms on several datasets.

In addition to evaluating performance, our benchmark also assessed how well

the embedding displays di�erent cell populations present in manual gating of

published datasets. We further demonstrate the performance properties of Em-65

bedSOM on two analyses of large multi-sample datasets. In the �rst, the em-

bedding is used to provide a visual guide for interactive FlowSOM-assisted cell

population dissection, which makes the analysis more accessible for scientists,

and vastly improves both precision and data throughput when compared with

traditional manual gating. In the second, we demonstrate the scalability and re-70

source e�ciency by embedding and analyzing a dataset of 24 million cells. In

both cases, we use the connection to the underlying FlowSOM information to

provide a synoptic view of the multi-sample population di�erences.

2. Results

2.1. EmbedSOM provides superior embedding speed75

�e main distinctive feature of EmbedSOM is its computational e�ciency. A

dataset of common size (approximately 300k cells and 20 markers) can be mapped

by the SOM and embedded in less than a minute; the GPU-accelerated versions of

the algorithms deliver the same result in seconds. Generally, embedding datasets

with millions of cells and several dozen markers is possible in minutes using80

common o�ce hardware. Moreover, since the major SOM-training part of the

required computation is shared with FlowSOM, EmbedSOM visualization adds

only minor computational complexity to work�ows that already use FlowSOM.

�antitative measurements of the speed advantage on the benchmark com-

putations are displayed in Figure 1a. �e results con�rm the expected perfor-85

mance scaling gap between UMAP and EmbedSOM, caused by di�erent algo-
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rithm design. Generally, UMAP and tSNE are very e�cient for high-dimensional

data with a low data point count, because they remove the dimensionality over-

head early in the process but require more than linear amount of computation

to optimize the �nal data point positions. �e performance of both EmbedSOM90

stages is linear in the number of data points, but the dimensionality overhead is

present throughout almost the entire computation as another linear factor.

EmbedSOM bene�ts from this trade-o� when applied to high-volume �ow

and mass cytometry data that are physically limited to dozens of dimensions.

Conversely, UMAP remains faster on low-volume datasets with more than hun-95

dreds of dimensions. For example, the raw single-cell RNA sequencing data must

be pre-processed (e.g. reduced to principal components) in order to deliver com-

parable results with SOM-based algorithms [7].

Overall, the performance scaling di�erence is best illustrated by the compu-

tation time required for running work�ows used later in the article: Embedding-100

assisted dissection of 1 million cells (Section 2.3) takes less than 5 minutes of

computation with EmbedSOM; but more than 1 hour with UMAP. Embedding of

the 24 million cells from Pregnancy dataset (Section 2.4) can be �nished faster

than in 1 hour with EmbedSOM, but requires around 2 days with UMAP.

2.2. EmbedSOM visualization quality is competitive with other algorithms105

�e quality of visualization was measured by quantifying the contents of k-

neighborhoods in the embedding, and comparing it to the published manual gat-

ing of the same datasets. Optimally, the embedding algorithms should not mix

cells from di�erent identi�ed populations in the same area of the resulting pic-

ture. To assess that, we measured k-NN (k nearest neighbor) entropies and k-NN110

purities of the embedded benchmark datasets (see Section 4.2.3 for de�nitions

of the measures used, and supplementary Section S4 for description of testing

datasets). Results are shown in Figure 1b. All algorithms provided visualizations

of comparable quality, and we consider the slight disadvantage of EmbedSOM to

be a reasonable trade-o� for the performance gain.115

�e quality di�erence between EmbedSOM, UMAP and tSNE, most visible in

the more interspersed part of the data, arises from the design of the algorithms.

Speci�cally, neither UMAP nor tSNE aim to preserve local linearity of the trans-

formation, which allows them to take apart the clusters with noisy data and at-

tach the residual noise to nearest clusters. �is makes the embedding arguably120

more visually appealing by creating well-de�ned, undistorted borders, and at the

same time improves the k-NN-based measures by reducing the chance of a cell

from a di�erent population occurring in a k-neighborhood.
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a. Embedding performance comparison

b. Cluster separation benchmark

c. Distance preservation benchmark

d. EmbedSOM vs. UMAP output (SamusikAll dataset, 841k cells)
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Figure 1: Benchmark of EmbedSOM properties compared to other embedding methods. a. Per-

formance comparison, purposefully plo�ed using linear scales to aid realistic depiction of speed

and scaling di�erence. b.,c. Comparison of qualitative properties of embedding. Values of Pear-

son correlation of original vs. embedded distances are reported in corresponding plots in c.

d. Side-by-side comparison of EmbedSOM and UMAP output on SamusikAll dataset. Both

methods escaped planar topology limitations by bridging clusters (developing erythrocytes over

monocytes in case of EmbedSOM, and over developing pDCs in case of UMAP). High-variance

cell distributions are displayed di�erently — EmbedSOM retains relative variance in the sample,

UMAP creates population-like cluster artifacts (labeled with A) or a�aches the sca�ered cells to a

larger cluster (B). EmbedSOM calculation took 2.5 minutes, giving 15× speedup over 38 minutes

required by UMAP.
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Figure 1c shows comparison of original vs. embedded distances of cell pairs,

which can be used to interpret how faithfully the algorithms reproduce small-125

and large-scale distances in the data. �is measure has also been used by Becht

et al. [2]. Results are summarized as Pearson correlations of original and embed-

ded distances, labeled as ρ in each plot.

�e distance preservation plots show one possible origin of the worse perfor-

mance of EmbedSOM in k-NN-style metrics, most visible on Samusik datasets.130

Optimization of single cell positions used by tSNE and UMAP necessarily pro-

duces be�er separation of the complicated cluster structure, at the cost of intro-

ducing high quantization (in case of UMAP) and sca�ering (tSNE) of the embed-

ded distances.

While the observed cluster separation may be desirable if the embedding is135

expected to approximate the population boundaries, it may be inappropriate if

the population environment is relevant for analysis. For example, tight packing

of cells impairs the possibility to observe the natural population density distri-

bution or to �lter out noise manually. �e di�erences can be clearly observed

in the embeddings of the complete SamusikAll dataset in Figure 1d. �e present140

artifact clusters (marked with A) and cells a�ached to borders of other clusters

(marked with B) are highly undesirable in many situations, such as analysis of

development trajectories.

On the other hand, compaction of the noise can bring up various high-

variance data, such as the population of developing granulocytes displayed by145

UMAP in Figure 1d. EmbedSOM displays this population correctly as connecting

the progenitors with basophils and eosinophils without the gap (neutrophils are

not present since they are excluded from SamusikAll dataset), but the limitations

of planar topology cause it to be displayed in overlay with other populations and

thus not easily visible (see Figure S4).150

Such properties of the algorithms are best interpreted as di�erent balances

in failure modes, which can guide the choice of optimal algorithm for speci�c

visualization requirements: Compacting the residual or unexplained noise is de-

sirable for providing a clean display of the data for publication. On the contrary,

almost-immediate availability of all information about very large datasets, in-155

cluding the (o�en informative) noise, is more important for producing compre-

hensive graphics for high-throughput analyses.

2.3. Fast embedding augments supervised hierarchical dissection analysis
Manual and supervised analysis tools and algorithms are usually required to

provide quick feedback to user actions, in order to be practical and avoid un-160
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a. View of aggregated mice samples (1 million events, embedding time 1m 20s)
Doublets Dead cells

T cells

NK cells

b. Dead cells, debris, and uninteresting events removed (555k cells, 41s)
Doublets

c. NK, CD4 and CD8 cell populations (240k cells, 25s)

d. CD4 subpopulations (102k cells, 18s)

Resting Effector

Tregs

Thelpers

e. Statistical view

Less effector cellsMore resting cells

Altered
Tregs

Figure 2: Hierarchical sample dissection assisted by EmbedSOM view, as described in Section 2.3.

Total run times for EmbedSOM and FlowSOM metaclustering are reported in parentheses. �e

user advanced from the view of all cells (a) by progressively reducing the examined cell subset

to a selection of metaclusters generated at each level (the selection is displayed as arrows). �is

was used to remove dead cell and debris (b) and reduce the live cells to T and NK cells (c).

Internal distribution of CD4 T cell subpopulations (already noticeable in the density plot in c)

is further explored in the last levels of dissection (d). Direct visualization of statistical testing

results of the demonstration experiment (e) shows color-coded changes of cell count in respective

subpopulations.
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necessary work�ow delays. Delivering the embedding performance su�cient

for use in interactive tools is the main aim of EmbedSOM. In this section, we

show that EmbedSOM integrates into typical supervised analysis and improves

its throughput and precision.

For demonstration, we augment the usual hierarchical gating-like dissection165

by using results from high-dimensional unsupervised analysis. While embedding

has been already used for hierarchical sample dissection [23] as a way to provide

highly informative and comprehensible overview of the high-dimensional data

that can precisely guide the analysis, EmbedSOM improves the analysis perfor-

mance by removing unnecessary delays and interruptions required for computa-170

tion on large datasets. Moreover, quickly interleaved user input and computation

phases facilitate easier and faster exploration of the datasets.

�e work�ow is constructed as follows: FlowSOM is used internally for clus-

tering the cells, but the user is only presented with the results in EmbedSOM

embeddings, which provides a more cell-centric way to look at FlowSOM out-175

put. �e presented layout of cell populations corresponds to the positions of the

clusters in the grid-view output of FlowSOM [25, Fig. 1 (ii) and 2], but, as a main

improvement, the cells are distributed in a way that retains the local topology

and variance in the sample. Consequently, the population shapes and density

distributions (which would otherwise disappear in the view of FlowSOM star180

plots) are observable similarly as in the usual two-dimensional dot-plots.

Cell population dissection is realized by user selection of FlowSOM metaclus-

ters from the embedding. �at is both more natural to scientists who are used to

the prevalent dot-plot view, and less prone to various statistical and bias-derived

errors, since human choice is restricted to a discrete and reproducible selection185

of FlowSOM clusters that have previously been proven to capture the respective

cell populations very precisely [27]. �e selected metaclusters are used either as

�nal identi�ed populations, or as a basis for further hierarchical dissection pro-

cess that continues by re-clustering and re-embedding of the selected cell subset

(see Section 4.2.4).190

We used this work�ow to dissect samples from a study of newly generated

transgenic mouse model that was screened for changes against the respective

wild-type. �e work�ow is displayed in Figure 2: First, all compensated samples

(n = 11, see Section S1 for animal details and staining) from a 14-dimensional

dataset were aggregated and subjected to clustering and embedding. �e user195

was let to choose clusters of interest from the view of all events (Figure 2a), which

was used to remove the dead cells and debris to get a clean picture of a subset

of live cells (Figure 2b), then to further re�ne the selection to T cell and NK cell
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populations (Figure 2c), and, following the gating hierarchy from Figure S1, to

display the CD4 T cell population (Figure 2d). �e last level uses the MST-based200

embedding layout for improved cluster separation (see Section S2).

A�er the dissection, the identi�ed subpopulations were used for statistical

testing of the experiment outcome. For that purpose, we exploited the correspon-

dence of EmbedSOM embedding with the underlying FlowSOM cluster structure

to display FlowSOM-derived statistical information directly in the embedding. In205

particular, we found it practical to quickly display the signi�cant changes in the

contents of FlowSOM clusters by color-coding the embedding with the results

of bulk statistical testing, as seen in Figure 2e. �is information can be used to

guide the precise statistical testing accordingly (see Section 4.2.4 for description).

On the testing laptop, the total computational time required to process the210

aggregated sample of 1 million cells was less than 4 minutes, which we consider

to be a reasonable overhead for interactive work�ow. �e whole EmbedSOM-

assisted analysis, including the time required for human input, was �nished in

a fraction of time that was required for the corresponding manual dissection,

and resulted in the same observation of decrease in e�ector CD4 T helper cells215

(p ≤ 0.05 in manual analysis), increase in resting CD4 T helper cells (p ≤ 0.08),

decrease in e�ector C4 Treg cells (p ≤ 0.02) and increase in resting CD4 Treg

cells (p ≤ 0.02).

2.4. High-throughput embedding allows improved statistical display of data
�e original aim of EmbedSOM was to simplify visualization of di�erences220

in high-volume multi-sample data.

We demonstrate this functionality in Figure 3, on a mass-cytometry dataset

from recent study by Aghaeepour et al. [1]. �e data were collected from 18

women where the whole-blood samples were collected in 4 time points during

and a�er pregnancy (early, mid- and late-pregnancy, and 6 weeks postpartum).225

All samples were measured in unstimulated state as well as stimulated with LPS,

IFN-α and IL-2+IL-6, with total 36 markers used for studying immune system

function and regulation. A selection of 112 samples used for this demonstra-

tion (cca. 39 million cells) was gated to single/leukocyte/non-erythrocyte/non-

platelet; the �nal dataset contained approximately 24 million cells.230

SOM-style analysis and embedding can process this amount of cells e�-

ciently without any required downsampling. �e nature of both EmbedSOM

stages allow the data to be processed as a stream; consequently, memory re-

quirements of SOM training and embedding are constantly low, regardless of

9
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a. Pregnancy dataset (gated to 24M single leukocytes)

Neutrophils

Dendritic
cells

Monocytes

B cells

NKs

NKTs

CD8 T cellsCD4 T cells

MAPKAPK2+
neutrophils

STAT3+
neutrophils

inactive
neutrophils

STAT3/5+
CD4 T cells

b. Statistical testing outcome

c. Magnified CD8+NKT populations

CD8 T cells

CD8mid
NKTs

CD8–
NKTs

STAT5+
CD8 T cells

STAT5+
NKTs

STAT3+
NKTs

Figure 3: Application of EmbedSOM to large data. a. Selection of surface marker expression and

signaling molecule activation displayed the embedding of 24 million cell events in Pregnancy

dataset. Colors are blended as gradients; cells that do not express any selected markers are dis-

played as gray. b. High number of processed cells allows more precise statistical testing on all

subpopulations: dataset is displayed at di�erent time points (le�) and di�erent stimulations at

3
rd

trimester (right) compared to all other respective states and colored accordingly to the sig-

ni�cance of the di�erence. c. Magni�ed view of the upper-right corner of the whole embedding

reveals small changes in the CD8 and NKT populations.
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dataset size. Exploiting this data streaming technique, we were able to embed all235

24 million cells in under 1 hour on an o�ce-grade laptop computer.

Technically, all cells were processed individually, but the design of the algo-

rithm guaranteed correct positioning of the cells in the embedded populations.

�is property of EmbedSOM can be used to reliably produce correctly aligned

embeddings even from highly di�erent cell samples.240

High cell count in the whole dataset is bene�cial for obtaining precise results

from statistical hypothesis testing. We have applied this testing on the contents

of FlowSOM clusters, and highlighted the statistically signi�cant changes in the

embedding. Similar bulk visualization of the cluster di�erences has been already

used in other algorithms, such as di�cyt [26, Figure 2c,g] and Cytofast [4, Fig-245

ure 2]. Our approach additionally exploits the aforementioned correspondence

between FlowSOM mapping and EmbedSOM embedding, which improves the

presentation of results by directly connecting the statistical information with re-

spective small areas in the embedding. In result, the plo�ing method produces a

quickly comprehensible output regardless of the of the high number of individual250

statistical tests.

�e resulting signi�cance plots of the Pregnancy dataset (Figure 3b) allow

straightforward observation of relative sample changes, and the plots of time de-

velopment and stimulation-induced changes reproduce various �ndings from the

original article [1]: �e plot of time development shows the rapid post-partum255

decline of subpopulations of neutrophils, additionally it identi�es a similar trend

in monocytes. Stimulation-induced changes are clearly observable in cell popu-

lations of CD4 and CD8 T cells, which move to corresponding STAT3
+

or STAT5
+

regions (in agreement with the results of Tanabe et al. [20]), and in populations of

neutrophils and monocytes, which, depending on the type of stimulation, move260

accordingly to MAPKAPK2
+

or STAT3
+

regions.

Individual cells start to become apparent only a�er magnifying the embed-

ding in Figure 3c, which also gives a clear view of small NKT cell activation

di�erences in IL-2+IL-6 and IFN-α stimulation.

3. Discussion265

EmbedSOM alleviates the long-standing unavailability of scalable, fast non-

linear embedding algorithm for single-cell cytometry data. In its current version,

it extends the usefulness of commonly available hardware for running analyses

and producing visualizations of high-volume datasets. Here, we draw a�ention

to algorithm and benchmark details, and possible directions for future research.270
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3.1. Benchmarking methodology
Currently, there is no single accepted methodology for benchmarking the

quality of embedding algorithms. In this work, we use the benchmark mea-

sure of k-NN population label entropies and purities (see Section 4.2.3 for de�ni-

tion). Other available measures include e.g. the Kullback-Leiber (KL) divergence275

of distance distribution, various measures derived from similarity between k-

neighborhoods of a data point in high-dimensional vs. embedding space (used

e.g. by Becht et al. [2]), and the NPE and residual variance (used by Konstorum

et al. [11]).

We made the choice of the k-NN-based purity and entropy measures due to280

our focus on high-throughput cytometry data, for which neither the KL diver-

gence minimization nor k-neighborhood preservation is the primary desired fea-

ture. Cells typically form relatively dense populations of a single cell type with

broad range of accepted di�erence in speci�c gene expression (e.g., cells with a

0.1% di�erence in marker expression are usually considered the same). �erefore,285

algorithms should aim to separate the cells that are expected to belong to di�er-

ent populations, which is described by the k-NN measures, rather than a�empt

to preserve the irrelevant inner structure of such populations, which is required

to produce a high similarity of k-neighborhoods and low KL divergence.

3.2. Hierarchical dissection of cell populations290

�e work�ow demonstrated in Section 2.3 serves as a valuable alternative

to the commonly used manual gating strategies. Apart from the improvement

in precision and reproducibility, the computational assistance avoids the need

to manually draw gates, which is especially convenient if applied to multiple

samples at once and connected with automated analysis of their properties. For295

instance, the signi�cance plots (Figure 2e) provide a compound view of data from

many samples aggregated in an easy-to-inspect image of relevant statistical in-

formation, which can quickly guide the statistical analysis to the most diverging

parts of the data. A similar presentation of the sample statistics has already been

proposed in di�cyt [26] and successfully used for prediction of responses to im-300

munotherapy [12].

3.3. Trajectories and noise
�e smoothness and local linearity of the EmbedSOM projection are valuable

aids in visualizing transitions between di�erent cell populations and their states.

As discussed in Section 2.2, this comes as a trade-o� — the embedding is unable to305

completely separate cell populations from surrounding noise and debris if these
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are not separable in high-dimensional space, but the same property causes it to

never disrupt a trajectory that connects populations. �is is prominent especially

with MST-based EmbedSOM layouts (see Figure S3). At the same time, local

linearity improves the depiction of cell density, which simpli�es distinguishing310

populations and trajectories of interest from noise.

Computational trajectory inference is a topic of recent research [18]; in the

future we aim to exploit the results of Wolf et al. [28] to improve the trajectory

depiction in EmbedSOM.

Finally, even though the perception of 2-dimensional depiction and separa-315

tion of individual populations is highly subjective, we believe that the resulting

similarity of EmbedSOM embeddings to the usual dot-plot projections used for

manual gating will simplify interpretation of the results by scientists.

4. Experimental procedures and methods

4.1. Data and so�ware availability320

EmbedSOM is available from https://bioinfo.uochb.cas.cz/embedsom.

Repositories with source code are hosted by GitHub.

�e benchmarking data were selected from public-domain datasets that pre-

viously have been used for benchmarking other algorithms [13]. �e dataset

used for demonstration of large-scale embedding and sample di�erence visual-325

ization (Pregnancy dataset) was taken from the study of Aghaeepour et al. [1],

selected based on the availability of time-series, multi-sample data with di�erent

measured perturbations. A summary of all datasets used in this work is provided

in Section S3.

For the analysis of embedding quality, we reused the manual gating provided330

in the Levine and Samusik datasets. �e datasets were pre-processed as in the

original article [13], ungated cells were excluded from benchmarking. �e visual

di�erences between resulting embedded samples can be observed in Figure S6.

�e benchmark of performance scaling (Section 2.1) was run on cells and

markers that were sampled randomly from the Pregnancy dataset.335

Figure Figure 1d is produced from all cells (including the ungated cells)

present in SamusikAll dataset. �e displayed population annotations are di�er-

ent from the original published gating; we have extended the annotation to also

provide information about cells not classi�ed in the original analysis.

For demonstration of the hierarchical dissection technique in Section 2.3, we340

used original data from transgenic mouse spleens. A detailed description of the

experiment and methods is available in Section S1.
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Multidimensional data Trained SOM Embedded data Optimized layout

Figure 4: Overview of the EmbedSOM embedding process, shown on three synthetic Gaussian

clusters in 3-dimensional space. From le�: �e cells in multi-dimensional space are used to

train a SOM that describes their distribution; embedding then smoothly �ts the content of multi-

dimensional space to a �at version of SOM. Finally, result can be quickly optimized by changing

embedding parameters and SOM layout (in the picture, the lengths of grid edges are optimized to

match values in the corresponding U-matrix), and e�ciently recomputing only the last algorithm

stage.

4.2. Method details
4.2.1. Embedding algorithm

�e geometric interpretation of EmbedSOM is similar to elastic maps [9]345

or simpli�ed topographic manifold projections [21]. �e basic idea (Figure 4)

is shared with ViSOM algorithm [30] — the �rst algorithm stage is conducted

by any applicable SOM implementation (e.g. FlowSOM) to provide a map of

the multi-dimensional space; EmbedSOM improves the second stage by using a

smooth approximation of the 2-dimensional projection reconstructed from sim-350

pler, more robust projections to 1-dimensional a�ne spaces. �at approach is less

prone to graphical artifacts that arise from using small SOMs on topologically

complicated high-dimensional data, and escapes the dimensionality-induced

crowding e�ect by avoiding interpretation of distances in the multidimensional

space.355

�e projection process in the second stage of the algorithm is separate for

each cell, which directly results in the stream-processing behavior of the algo-

rithm, and, in turn, linear computational time requirements and low memory

consumption. �is independence of individual cell positions in the second algo-

rithm stage allows very simple multi-sample population alignment in the embed-360

ding; at the same time it is a basis for the e�cient processing required to process

datasets even larger than the 24 million cells in Section 2.4.

Mathematical description of the algorithm is available in supplementary Sec-

tion S2 together with implementation details.
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4.2.2. Algorithm parameters365

�e major parameters of EmbedSOM include the SOM-training se�ings

(shared with FlowSOM), EmbedSOM projection parameters Smooth, k and Ad-

just, and the embedded SOM layout (see Section S2 for additional details about

parameter interpretation and embedding layouts).

Correct setup of the SOM training has been previously discussed by Van Gassen370

et al. [25], who recommend training 10×10 SOM. We recommend using a slightly

larger SOM size to provide a smoother manifold for the projection approxima-

tion. Accordingly, we used 24×24 as a default throughout this work. �e SOM

size should be increased for samples with large number of individual small cell

subpopulations — good embedding of a population requires it to be mapped by375

at least one SOM vertex.

In our experience, projection parameter values of Smooth ∈ [−2, 2], k ∈
[15, 50] and Adjust ∈ [0.5, 2] provided good results, and se�ing Smooth = 0,

k =
√

SOM vertices, Adjust = 1 was a good default for all data we tested.

Visual di�erences between various parameter se�ings are shown in Figure S3.380

For embedding, the algorithm uses a straight la�ice-style SOM layout by de-

fault, but, as shown in Figure 4, any supplied layout is acceptable (examples can

be found in Figures S3 and S6). In fact, Figure 1d uses this possibility to optimize

the SOM layout to be�er match the distances in U-matrix of the SOM [22] and

improve the visual quality of the result; Figure 2d uses a layout similar to the385

MST display as known from FlowSOM [25, Figure 4], to provide well-separated

display of compacted CD4 subpopulations. Because of the small amount of data

involved in the layout optimization (usually at most hundreds of SOM vertices),

even very sophisticated layout algorithms may be used for the purpose with neg-

ligible impact on embedding performance.390

4.2.3. Benchmark setup
In the benchmark, the manual gating information required for obtaining

the KNNE and KNNP metrics was obtained from publicly available expert man-

ual gating. We measured the entropy and purity of the cell population labels

(i.e. manually assigned populations) in the k-nearest neighborhoods of the em-395

bedded cells.

First, the data from each dataset were embedded by tSNE, UMAP and Embed-

SOM, using information from all relevant markers. To compare with a linearity-

preserving method, we also calculated 2-dimensional PCA projections.

We de�ned k-NN entropy as the standard information entropy of the pop-400

ulation label values in a k-neighborhood, and k-NN purity as a probability that
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a random cell selected from a k-neighborhood belongs to the same population

as the neighborhood center. �ese measures implicitly capture the amount of

high-entropy noise and number of the misplaced cells in the embedding. Both

measures were calculated for all neighborhoods of size k = 100 in a sample of405

10,000 cells from each embedding. Individual values for the cell neighborhoods

were plo�ed as reliability distributions to aid comparison.

Comparison of original vs. embedded cell distance distributions was per-

formed on the same sample; the methodology is the same as in other studies [2].

We used the UMAP implementation from Python package umap-learn410

version 0.3.7 and tSNE implementation from R package Rtsne version 0.13

with default parameters: UMAP was run with n neigbors=15, min dist=0.1,

n components=2with 200 epochs and Euclidean metric. t-SNE was run with per-

plexity set to 30, θ = 0.5, η = 200, on 1000 iterations with momentum scaling

from 0.5 to 0.8. For EmbedSOM, we used 24×24 SOMs built with PCA-based ini-415

tialization from FlowSOM (initf=Initialize PCA), layout of embedding was

optimized according to U-matrix (emcoords=’som’); other EmbedSOM param-

eters were le� at default values.

Performance measurements were collected on an Intel® Core™ i7-4790K

CPU@4.00GHz and nVidia® GeForce® GTX 1060 GPU.420

4.2.4. Work�ow details
Cell population dissection was performed using Di�SOM package (see Sec-

tion S3) as such: At each level, the work�ow-supporting so�ware has created

a 24×24 SOM on a sample from all cells analyzed at that level, embedded it to

plot marker expressions, and computed FlowSOM metaclustering for user-based425

selection. �e user was allowed to change the parameters of SOM training and

embedding to optimize the view. A�er examining the output, the user has se-

lected metacluster numbers for further exploration. �e same analysis was then

iteratively repeated for the cells in the selected subset.

For comparison, a manual data analysis of the dataset used in Section 2.3 was430

performed using FlowJo so�ware (FlowJo, LLC). �e full gating strategy can be

viewed in Figure S1.

To generate signi�cance plots (as seen in Figure 3b and Figure 2e), cell counts

in SOM clusters in all samples were �rst normalized as percentages of the entire

displayed population. �e percentages were grouped according to the experi-435

ment (e.g. wild-type vs. transgenic samples), and the groups were subjected to

two one-sided Mann-Whitney tests. �e testing measured the viability of the

hypotheses of lower and higher relative cell abundance in the sample groups.
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�e resulting pairs of p-values were used for color-labeling contents of the cor-

responding clusters in the plot.440
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