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List of Symbols 

(∎  denotes subscript to indicate phenotypic P, (additive) genetic A, or environmental E) 

P phenotypic value of a trait 

𝐴   breeding value of a trait 

𝐸   environmental (residual) effect of a trait  

𝜌∎𝑥,𝑦
   correlation between traits x and y (population parameter) 

𝐻𝑥,𝑦    coheritability between traits x and y (population parameter) 

𝐸𝑥,𝑦    coenvironmentability between traits x and y (population parameter) 

𝑟∎𝑥 ,𝑦
  sample correlation between trait x and trait y   

ℎ𝑥
2   narrow-sense heritability of trait x (sample estimator) 

𝑒𝑥
2   environmentability of trait x  ( 1 − ℎ𝑥

2 ) (sample estimator) 

ℎ𝑥,𝑦   coheritability of trait x and trait y (sample estimator) 

𝑒𝑥 ,𝑦    coenvironmentability of trait x and trait 𝑦 (broad-sense) (sample estimator) 

휀𝑥 ,𝑦    coenvironmentability of trait x and trait 𝑦 (narrow-sense) (sample estimator) 

𝜖    error term of regression model 

𝐶∎𝑥,𝑦
 covariance between trait x and trait 𝑦 (population parameter) 

𝑠∎𝑥,𝑦
    covariance between trait x and trait 𝑦 (sample estimator) 

𝑉∎𝑥
  variance of trait x (population parameter) 

𝑠∎𝑥

2  ,  𝜎∎𝑥

2  sample variance of trait x  

x , y character, trait, phenotype 
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1  Characteristics of the population 
 

1.1  The  base  population 
 

Consider a population consisting of a large number of individuals that have a known genetic structure. 

The phenotype of the individuals can be specified by a number of observable, measurable, variable 

phenotypic traits or characters, which are subject to genetic and environmental influences.  The 

population is therefore assumed to be an infinite, multivariate population. 

 

1.2  Population  parameters 
 

The traits exhibit phenotypic variability. There is a fraction of the trait’s phenotypic variability that can 

be attributed to all genetic contributions (additive, dominant, epistatic, maternal, paternal effects), and 

is measured by the population-level broad sense heritability.  In addition, the additive component of the 

genetic variance is due to the average effects (additive effects) of the alleles. Since each parent 

transmits a single allele per locus to each offspring, the phenotypic resemblance among relatives is 

subject to the average effect of the single alleles.  In this context, the additive genetic fraction of the 

phenotypic variance of the trait is the population-level narrow-sense-heritability ( 𝒉𝟐 ).   

The strength of a linear association between two phenotypic characters measured in the individuals of 

the population can be quantified by the phenotypic correlation between traits x and y ( 𝜌𝑃𝑥,𝑦  ). The 

phenotypic correlation between two traits in the population is modelled as the sum of the underlying 

population-level coheritability (𝐻𝑥𝑦)  and coenvironmentability (𝐸𝑥𝑦) coefficients.                

From a bivariate normal distribution with standard deviations  𝜎𝑥 = √𝑉𝑃𝑥𝑦  ,  𝜎𝑦 = √𝑉𝑃𝑦  , and the 

correlation coefficient  𝜌𝑃𝑥,𝑦  , which can be expressed as  

𝜌𝑃𝑥,𝑦  ≡  
𝐶𝑃𝑥,𝑦

√𝑉𝑃𝑥 ∙ 𝑉𝑃𝑦

= 
𝐶𝐴𝑥,𝑦

√𝑉𝑃𝑥 ∙ 𝑉𝑃𝑦

 + 
𝐶𝐸𝑥,𝑦

√𝑉𝑃𝑥 ∙ 𝑉𝑃𝑦

 

Which is the sum of the population-level coheritability 𝐻𝑥,𝑦, 

𝐻𝑥𝑦 = 
𝐶𝐴𝑥,𝑦

√𝑉𝑃𝑥 ∙ 𝑉𝑃𝑦
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And population-level coenvironmentability 𝐸𝑥,𝑦 

𝐸𝑥,𝑦 = 
𝐶𝐸𝑥,𝑦

√𝑉𝑃𝑥 ∙ 𝑉𝑃𝑦

 

We further assume that some of these traits, say a pair of  x  and  y, are under genetic control of alleles 

(in multiple loci) that affect (influence) both of them in varying (direct positive, negative, synergistic, 

antagonistic) degrees, causing a stable population-level genetic correlation between the traits x and y 

 ( 𝜌𝐴𝑥,𝑦  ). 

𝜌
𝐴
 ≡  

𝐶𝐴𝑥,𝑦

√𝑉𝐴𝑥 ∙ 𝑉𝐴𝑦

 

Here we are cognizant that the sign of the phenotypic and genetic correlation may not necessarily be 

the same as the sign of the genetic correlation. The population-level environmental correlation( 𝜌𝐸𝑥,𝑦  ) 

is 

𝜌
𝐸
 ≡  

𝐶𝐸𝑥,𝑦

√𝑉𝐸𝑥 ∙ 𝑉𝐸𝑥,𝑦

 

 

Phenotypic correlation, coheritability and coenvironmentability are population-

based and population-dependent parameters. 
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2   Characteristics of the sample 
 

Population parameters can only be calculated from the omniscient set of all observations of a 

population.  However, estimator equations are used to estimate population parameters based on a 

collection of observations measured from a finite set of individuals drawn without observational bias 

from the whole population.   

We draw a random sample of 𝑛 individuals from a population.  Phenotypic characters are measured on 

these sampled individuals.  Looking at two characters at the time, say  𝑥 and𝑦, we consider a random 

bivariate sample (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1 , … , 𝑛  taken from a continuous bivariate population, whose joint 

distribution is denoted as a bivariate normal𝑓𝑋,𝑌(𝑥, 𝑦), and the marginal distribution of the traits are 

𝑋~𝑁(𝜇𝑋 , 𝜎𝑋
2)  and𝑌~𝑁(𝜇𝑌 , 𝜎𝑌

2).    

The purpose of this section is to briefly decompose the phenotypic statistics into its observational 

components of variance, namely the additive genetic, environmental and genetic x environment  

interaction terms. 
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2.1  The  phenotypic  value 
 

The phenotype is constituted by characteristics (e.g., characters, features, traits) observed in an 

organism.  It is considered to be the realization of influences exerted by genotypic (𝐺) and 

environmental (𝐸) factors. The phenotypic value P is a random variable obtained by measuring an 

individual’s metric character, and can be represented as the sum of the genotypic value 𝐺, and all 

environmental values 𝐸   

𝑃 = 𝐺 + 𝐸 

The genotypic value can be further subdivided into a sum of random variable, namely  additive genetic 

component (or the breeding value) 𝐴; and a non-additive (𝑁𝐴) component made of dominance 

deviations 𝐷 (interaction of alleles in a locus), and epistatic effects 𝐼 (interaction between alleles of 

different loci).   

 

 

 

 

 

 

 

 

 

 

 

 

Note:  In regard to the classical partitioning of the genetic variance (𝑉𝐺) of quantitative traits in terms of 

the additive (𝑉𝐴),  dominance (𝑉𝐷), and interlocus epistatic interactions (𝑉𝐼), sometimes, erroneously, 

gives an appearance that a relationship exist with the homonymous mode of gene action (i.e. additive 

gene action, dominant gene action, or epistatic gene action).  This classical  𝑉𝐺 = 𝑉𝐴 + 𝑉𝐷 + 𝑉𝐼  

decomposition and the modes of gene action of genes do not possess a oneto-one relationship to each 

other, and the partition cannot be used to support any specific underlying genetic architecture (Huang 

and Mackay 2016). 

𝑃 =       𝐴  +    𝐷   + (𝐴𝐴 + 𝐴𝐷 + 𝐷𝐴 +𝐷𝐷 + 𝐴𝐴𝐴 +⋯) + (𝐸𝑔 + 𝐸𝑠) +  (𝐴 ∙ 𝐸) 

𝑃 =      𝐴   +    𝐷   +                                   𝐼                                  +           𝜖    

𝑃 =      𝐴   +                                       𝑁𝐴                                         +         𝜖 

𝑃 =                                                   𝐺                                                +          𝜖 

𝑃 =      𝐴   +                                                                 𝑬               

                                                                                                                                                         general     specific 

 

 

                               dominance                                        epistatic   
                                 genetic                                           interactions 
 

 

                                                                            non-additive 
                                                                                genetic 

 

                                                                           genetic                                                                    environmental 

 

 

            additive                                                      environmental  and  non-additive genetic 
        genetic 
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𝐸(𝑃𝑥) = �̅�𝑥 =
∑ 𝑃𝑥𝑖
𝑛
𝑖=1

𝑛
 

.2-1a. The phenotypic value                       

                                                                                𝑃 = 𝐴 + 𝐸  

                                       

.2-1b.  The phenotypic mean                       

 

.2-1c. Decomposition  of  the  phenotypic  mean                    

  𝐸(𝑃𝑥) = �̅�𝑥 = 𝐸(𝐴𝑥 + 𝐸𝑥) =
∑ (𝐴𝑥 𝑖+𝐸𝑥 𝑖 )
𝑛
𝑖=1

𝑛
=

∑ 𝐴𝑥 𝑖
𝑛
𝑖=1

𝑛
+

∑ 𝐸𝑥 𝑖
𝑛
𝑖=1

𝑛
= �̅�𝑥 + �̅�𝑥   
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2.2  The  sample  phenotypic  variance 
 

The sample phenotypic variance of a specified trait  𝑥  is 𝑠𝑃𝑥
2 ,  which becomes an estimator of the 

population parameter  𝑉𝑃𝑥  .  The variance is defined as the expected value of the square of deviations 

from the mean. 

𝑉𝑃𝑥 = 𝑉𝑎𝑟(𝑃𝑥) = [ 𝐸(𝑃𝑥 − 𝐸(𝑃𝑥) ]
2 = 𝐸(𝑃𝑥

2
)− [ 𝐸(𝑃𝑥) ]

2
 

It is generally biased due to the finite sample count and when the population mean is unknown (which 

for this reason it is estimated by the sample mean).  This introduces an underestimation bias.  The 

Bessel’s correction is used here by placing in the denominator (𝑛 − 1) rathern than  𝑛.    The sample 

phenotypic variance 

 

 

 

 

 

 

 

 

 

 

 

 

After some rearrangement 

𝑠𝑃𝑥
2  =  [

1

𝑛−1
∑ 𝐴𝑥𝑖

2 − 
𝑛�̅�𝑥

2

(𝑛−1)
 𝑛

𝑖=1 ]  +  [
1

𝑛−1
∑ 𝐸𝑥𝑖

2𝑛
𝑖=1 −

𝑛 �̅�𝑥
2

(𝑛−1)
] + [

2∑ 𝐴𝑥𝑖𝐸𝑥𝑖
𝑛
𝑖=1

𝑛−1
 −

2 𝑛 �̅�𝑥�̅�𝑥

(𝑛−1)
]   

 

 

𝑠𝑃𝑥
2 =

1

𝑛−1
 ∑ (𝑃𝑥𝑖 − �̅�𝑥)

2𝑛
𝑖=1   

       =
1

𝑛−1
 ∑ (𝑃𝑥𝑖

2 − 2�̅�𝑥𝑃𝑥𝑖 + �̅�𝑥
2
)𝑛

𝑖=1   

       =
1

𝑛−1
 ∑ 𝑃𝑥𝑖

2 − 2
1

𝑛−1
�̅�𝑥 ∑ 𝑃𝑥𝑖

𝑛
𝑖=1

𝑛
𝑖=1 +

𝑛

𝑛−1
�̅�𝑥
2  

       =
1

𝑛−1
 ∑ 𝑃𝑥𝑖

2 − 2
𝑛

𝑛−1
�̅�𝑥

∑ 𝑃𝑥𝑖
𝑛
𝑖=1

𝑛

𝑛
𝑖=1 +

𝑛

𝑛−1
�̅�𝑥
2  

       =
1

𝑛−1
 ∑ 𝑃𝑥𝑖

2 − 2
𝑛

𝑛−1
�̅�𝑥

2𝑛
𝑖=1 +

𝑛

𝑛−1
�̅�𝑥
2  

       =
1

𝑛−1
 ∑ 𝑃𝑥𝑖

2 − 
𝑛

𝑛−1
�̅�𝑥

2𝑛
𝑖=1   

       =
1

𝑛−1
 ∑ (𝐴𝑥+𝐸𝑥)2 − 

𝑛

𝑛−1
(�̅�𝑥 + �̅�𝑥)

2𝑛
𝑖=1   

𝑠𝑃𝑥
2 = 

1

𝑛−1
∑ 𝐴𝑥𝑖

2 + 
2∑ 𝐴𝑥𝑖𝐸𝑥𝑖

𝑛
𝑖=1

𝑛−1

𝑛
𝑖=1  +  

1

𝑛−1
∑ 𝐸𝑥𝑖

2 − 𝑛
𝑖=1

𝑛

𝑛−1
(�̅�𝑥

2
+ 2𝐴𝑥𝐸𝑥 + �̅�𝑥

2
)  
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The sample phenotypic variance, therefore, is partitioned as follows: 

 

  

𝑠𝑃𝑥
2 =

1

𝑛 − 1
 [∑�̅�𝑥

2 − 𝑛 �̅�𝑥
2

𝑛

𝑖=1

] + 
1

𝑛 − 1
 [∑�̅�𝑥

2 − 𝑛 �̅�𝑥
2

𝑛

𝑖=1

] + 
2

𝑛 − 1
 [∑ 𝐴𝑥𝑖𝐸𝑥𝑖

𝑛

𝑖=1
− 𝑛�̅�𝑥  �̅�𝑥] 

   𝑠𝑃𝑥
2 =              𝑠𝐴𝑥

2                +                𝑠𝐸𝑥
2              +                   2 𝑠𝐴𝐸𝑥

2   

  .2-2.  The sample phenotypic variance                                                                                                   

 

                    sample additive genetic  variance               sample environmental variance                 sample variance of the interaction                        

.                  = sample  variance of breeding values                                                                                  between breeding values and                                                                                                                                      

.                                                                                                                                                                        environmental values 
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2.3  The  sample  phenotypic  covariance 
 

The sample phenotypic covariance between the phenotypic value of trait 𝑥 and the phenotypic value of 

trait y , 𝑠𝑃𝑥,𝑦,  is the estimator of the population parameter, 𝐶𝑃𝑥,𝑦  .  The covariance is a measure of joint 

variability of two random variables, which are the phenotypic values for trait  𝑥,  𝑃𝑥 and trait 𝑦, 𝑃𝑦.  The 

covariance is defined as the expected product of the deviations of the phenotypic values from their 

corresponding expected values.  

𝐶𝑃𝑥,𝑦 = 𝐶𝑜𝑣(𝑃𝑥, 𝑃𝑦) = 𝐸[𝑃𝑥 − 𝐸(𝑃𝑥)][𝑃𝑦 − 𝐸(𝑃𝑦)] = [𝐸(𝑃𝑥𝑃𝑦) − 𝐸(𝑃𝑥)𝐸(𝑃𝑦)] 

A sample of size 𝑛 is drawn from a population of the random variable pair (𝑃𝑥 , 𝑃𝑦) such each observation 

(𝑃𝑥𝑖 , 𝑃𝑦𝑖) for 𝑖 = 1,… , 𝑛, is drawn with equal probability  𝑛−1 , and employing the Bessel’s correction, 

sample phenotypic covariance is: 

 

 

 

 

 

 

 

 

 

 

 

 

  

𝑠𝑃𝑥,𝑦 =  
1

𝑛−1
 ∑ (𝑃𝑥𝑖 − �̅�𝑥)(𝑃𝑦𝑖 − 𝑃𝑦)

𝑛
𝑖=1   

         =  
1

𝑛−1
 ∑ (𝑃𝑥𝑖𝑃𝑦𝑖 − 𝑃𝑥𝑖

𝑛
𝑖=1 �̅�𝑦 − �̅�𝑥𝑃𝑦𝑖 + �̅�𝑥�̅�𝑦)  

         =  
1

𝑛−1
 ∑ (𝑃𝑥𝑖𝑃𝑦𝑖 − 𝑃𝑥𝑖

𝑛
𝑖=1 �̅�𝑦 − �̅�𝑥𝑃𝑦𝑖 + �̅�𝑥�̅�𝑦)  

         =  
1

𝑛−1
 [∑ 𝑃𝑥𝑖𝑃𝑦𝑖 − ∑ 𝑃𝑥𝑖

𝑛
𝑖=1

𝑛
𝑖=1 �̅�𝑦 − ∑ �̅�𝑥𝑃𝑦𝑖

𝑛
𝑖=1  +  ∑ �̅�𝑥�̅�𝑦

𝑛
𝑖=1 ]  

         =  
1

𝑛−1
 [∑ 𝑃𝑥𝑖𝑃𝑦𝑖 − 

𝑛

𝑛
∑ 𝑃𝑥𝑖
𝑛
𝑖=1

𝑛
𝑖=1 �̅�𝑦 − 

𝑛

𝑛
∑ �̅�𝑥𝑃𝑦𝑖
𝑛
𝑖=1  + 𝑛�̅�𝑥�̅�𝑦 ]  

         =  
1

𝑛−1
 [∑ 𝑃𝑥𝑖𝑃𝑦𝑖 − 

𝑛
𝑖=1 𝑛�̅�𝑥�̅�𝑦 −  𝑛�̅�𝑥�̅�𝑦  + 𝑛�̅�𝑥�̅�𝑦 ]  

 

𝑠𝑃𝑥,𝑦 = 
1

𝑛 − 1
 [∑𝑃𝑥𝑖𝑃𝑦𝑖 − 

𝑛

𝑖=1

𝑛�̅�𝑥�̅�𝑦 ] 

.2-3. The  sample  phenotypic  covariance   
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2.4  Decomposition  of  the  sample  phenotypic  covariance 
 

The sample phenotypic covariance 𝐶𝑃𝑥𝑦  between traits x and y can be thought to be the sum of an 

additive genetic covariance  𝐶𝐴𝑥𝑦  , an environmental, residual covariance term, 𝐶𝐸𝑥𝑦 , and interaction 

terms 𝐶𝐴𝑥𝐸𝑦  and 𝐶𝐴𝑦𝐸𝑥. Thus, 𝐶𝑃𝑥𝑦 = 𝐶𝐴𝑥𝑦  + 𝐶𝐸𝑥𝑦.  The genetic covariance 𝐶𝐴𝑥𝑦  of two traits is a 

component of the sample phenotypic covariance that represents the joint measure of genetic 

association between two traits. 

A quantitative genetic model of the value P of trait is assumed to be the sum of an additive genetic 

value A  and an environmental, residual value  E,  thus  𝑃 = 𝐴 + 𝐸.   

𝑠𝑃𝑥,𝑦 = 
1

𝑛 − 1
 [∑𝑃𝑥𝑖𝑃𝑦𝑖 − 

𝑛

𝑖=1

𝑛�̅�𝑥�̅�𝑦  ] 

Replacing the corresponding 𝑃 = 𝐴 + 𝐸 for each trait, we obtain  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑠𝑃𝑥,𝑦 =  
1

𝑛 − 1
 [∑(𝐴𝑥𝑖+ 𝐸𝑥𝑖)(𝐴𝑦𝑖+ 𝐸𝑦𝑖) − 𝑛

(�̅�𝑥 + �̅�𝑥)

𝑛

𝑛

𝑖=1

(�̅�𝑦 + �̅�𝑦)

𝑛
 ]  

= 
1

𝑛 − 1
 [∑(𝐴𝑥𝑖𝐴𝑦𝑖 + 𝐴𝑥𝑖𝐸𝑦𝑖 + 𝐴𝑦𝑖𝐸𝑥𝑖 + 𝐸𝑥𝑖𝐸𝑦𝑖) −

(�̅�𝑥 + �̅�𝑥)(�̅�𝑦 + �̅�𝑦)

𝑛

𝑛

𝑖=1

   ] 

     =  
1

𝑛 − 1
 [∑𝐴𝑥𝑖𝐴𝑦𝑖

𝑛

𝑖=1

+ ∑𝐸𝑥𝑖𝐸𝑦𝑖

𝑛

𝑖=1

+ (∑𝐴𝑥𝑖

𝑛

𝑖=1

𝐸𝑦𝑖 + ∑𝐴𝑦𝑖𝐸𝑥𝑖

𝑛

𝑖=1

)−  𝑛�̅�𝑥𝑖�̅�𝑦𝑖 −  𝑛�̅�𝑥�̅�𝑦 −  𝑛�̅�𝑦�̅�𝑥 −  𝑛�̅�𝑥�̅�𝑦] 

𝑠𝑃𝑥,𝑦 = 
1

𝑛 − 1
 [∑(𝐴𝑥𝑖𝐴𝑦𝑖

𝑛

𝑖=1

 −  𝑛�̅�𝑥�̅�𝑦) + ∑(𝐸𝑥𝑖𝐸𝑦𝑖

𝑛

𝑖=1

−  𝑛�̅�𝑥�̅�𝑦)      

+    (∑(𝐴𝑥𝑖

𝑛

𝑖=1

𝐸𝑦𝑖 −  𝑛�̅�𝑥�̅�𝑦) + ∑(𝐴𝑦𝑖𝐸𝑥𝑖

𝑛

𝑖=1

 −  𝑛�̅�𝑦�̅�𝑥) ] 
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6 ] 

        

 

 

  

phenotypic  covariance 

 

sample genetic  covariance 

between the breeding values of                  

traits 𝑥 and 𝑦 

 

 

 

sample covariance between 

environmental  deviations  of 

traits  𝑥 and 𝑦 

 

sample  covariance of the GxE 

interaction of breeding values 

of trait 𝑥 and the 

environmental deviations of 

trait 𝑦 

 

sample  covariance of  the  GxE 

interaction of breeding values 

of trait 𝑦 and the 

environmental deviations of 

trait 𝑥  

 

𝑠
𝐴
𝑥
,𝑦                         

ad
d

itive
  ge

n
etic         

co
varian

ce 

𝑠
𝐸
𝑥
,𝑦                         

en
viro

n
m

en
tal         

co
varian

ce 

 =   
1

𝑛 − 1
 ∑(𝐴𝑥𝑖𝐴𝑦𝑖

𝑛

𝑖=1

 −  𝑛�̅�𝑥�̅�𝑦)                                   𝑠𝐴𝑥𝑦  

+ 
1

𝑛 − 1
∑(𝐸𝑥𝑖𝐸𝑦𝑖

𝑛

𝑖=1

−  𝑛�̅�𝑥�̅�𝑦)                                        𝑠𝜖𝑥𝑦  

+ 
1

𝑛 − 1
∑(𝐴𝑥𝑖𝐸𝑦𝑖 −  𝑛�̅�𝑥�̅�𝑦)

𝑛

𝑖=1

                                      𝑠𝐴𝑥𝐸𝑦  

+ 
1

𝑛 − 1
∑(𝐴𝑦𝑖𝐸𝑥𝑖 −  𝑛�̅�𝑦�̅�𝑥)

𝑛

𝑖=1

                                      𝑠𝐴𝑦𝐸𝑥  

.2-4. Decomposition  of  the  sample  phenotypic  covariance between  traits  x  and  y .                                     

1

𝑛−1
 [∑ 𝑃𝑥𝑖𝑃𝑦𝑖 − 

𝑛
𝑖=1 𝑛�̅�𝑥�̅�𝑦  ]                                                 𝑠𝑃𝑥𝑦     
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2.5  The  sample  phenotypic  correlation 
 

The sample phenotypic correlation between two traits 𝑥 and  , 𝑟𝑃𝑥,𝑦 , is the estimator of the population 

parameter 𝜌𝑥,𝑦  also referred as the Pearson product-moment correlation coefficient, or Pearson's 

correlation coefficient, or simply "the correlation coefficient". It is obtained by dividing the covariance of the 

two variables by the product of their standard deviations.  

 The population correlation coefficient 𝜌𝑃𝑥,𝑦 between two random variables, namely trait 𝑥 and trait  𝑦 

with expected values 𝐸(𝑃𝑥) and 𝐸(𝑃𝑥) and variances 𝑉𝑃𝑥  and 𝑉𝑃𝑦 is defined as 

 

𝜌𝑃𝑥,𝑦 = 𝐶𝑜𝑟𝑟(𝑃𝑥  , 𝑃𝑦) =
𝐶𝑃𝑥,𝑦

√𝑉𝑃𝑥  𝑉𝑃𝑦

=
𝐸[𝑃𝑥 −𝐸(𝑃𝑥)][𝑃𝑦 −𝐸(𝑃𝑦)]

√𝑉𝑃𝑥  𝑉𝑃𝑦

 

for  −1 < 𝜌𝑃𝑥,𝑦 < 1 

 

If  𝜌𝑃𝑥,𝑦 = ±1,  then the phenotypic characters 𝑃𝑥 and 𝑃𝑦 are linearly related. 

If the phenotypic characters 𝑃𝑥 and 𝑃𝑦 are linearly related, then 𝜌𝑃𝑥,𝑦 = ±1.   

Suppose (𝑃𝑥 , 𝑃𝑦), (𝑃𝑥𝑖 , 𝑃𝑦𝑖), 𝑖 = 1,… , 𝑛  constitute a sample of 𝑛 independent and identically 

distributed (i.i.d) random vectors drawn from a bivariate normal distribution of phenotypic values of 

trait x (𝑃𝑥) and trait y (𝑃𝑦) whose population-level phenotypic correlation parameter is 𝜌𝑃𝑥,𝑦. The trait 

means are �̅�𝑥 and �̅�𝑦, variances 𝑠𝑃𝑥
2  and 𝑠𝑃𝑦

2 .  The sample phenotypic correlation   𝑟𝑃𝑥,𝑦   of traits 𝑥 and 𝑦 

is defined as the sample phenotypic covariance 𝑠𝑃𝑥,𝑦   divided by the product of their standard 

deviations 𝑠𝑃𝑥𝑠𝑃𝑦 = √𝑠𝑃𝑥
2  𝑠𝑃𝑦

2 .   

 

 

 

 

 

See section 3.2.1 for a path analytical treatment of the phenotypic correlation. 

A discussion about the Fisher’s and Pearson’s formulations, and properties associated to them is 

elaborated by Plata (2006). 

    𝑟𝑃𝑥,𝑦  =
𝑠𝑃𝑥,𝑦

√𝑠𝑃𝑥
2 𝑠𝑃𝑦

2
=

1
𝑛 − 1 

[∑ 𝑃𝑥𝑖𝑃𝑦𝑖 − 
𝑛
𝑖=1 𝑛�̅�𝑥�̅�𝑦]

√ 1
𝑛 − 1

[∑ 𝑃𝑥𝑖 − �̅�𝑥
𝑛
𝑖=1 ]

2
 √

1
𝑛 − 1

[∑ 𝑃𝑦𝑖 − �̅�𝑦
𝑛
𝑖=1 ]

2
 

 

.2-5. The  sample  phenotypic  correlation 
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2.6  Decomposition  of  the  sample  phenotypic  correlation 
 

The sample phenotypic correlation can be decomposed in an analogous as the sample phenotypic 

covariance.   

    𝑟𝑃𝑥,𝑦  =

1
𝑛−1

 ∑ (𝐴𝑥𝑖
𝐴𝑦𝑖

𝑛
𝑖=1  − 𝑛�̅�𝑥�̅�𝑦)+ 

1

𝑛−1
∑ (𝐸𝑥𝑖𝐸𝑦𝑖
𝑛
𝑖=1 − 𝑛𝐸𝑥𝐸𝑦)+ 

1

𝑛−1
∑ (𝐴𝑥𝑖𝐸𝑦𝑖− 𝑛𝐴

̅𝑥𝐸𝑦)+ 
1

𝑛−1
∑ (𝐴𝑦𝑖𝐸𝑥𝑖− 𝑛𝐴

̅𝑦𝐸𝑥)
𝑛
𝑖=1

𝑛
𝑖=1

√ 1

𝑛−1
[∑ 𝑃𝑥𝑖− �̅�𝑥

𝑛
𝑖=1 ]

2
 √

1

𝑛−1
[∑ 𝑃𝑦𝑖− �̅�𝑦

𝑛
𝑖=1 ]

2
  

 

 

 

 

 

 
 

 

 

 

  

휀𝑥,𝑦 =

{
 
 

 
 

𝑠𝐸𝑥,𝑦 

√𝑠𝑃𝑥
2  𝑠𝑃𝑥

2

.

√(1 − ℎ𝑥
2)(1 − ℎ𝑦

2) 𝑟𝐸𝑥,𝑦

 

Sample phenotypic correlation 

Sample  coheritability           

ℎ𝑥,𝑦 = {

𝑠𝐴𝑥,𝑦 

√𝑠𝑃𝑥
2  𝑠𝑃𝑥

2

.

√ℎ𝑦
2ℎ𝑥

2 𝑟𝐴𝑥,𝑦

   

 

Sample (narrow-sense)                          
coenvironmentability  

 

genotype x environment                                         

interaction  component          

𝑎𝑥𝑒𝑦 =

{
 

 
𝑠𝐴𝑥𝐸𝑦 

√𝑠𝑃𝑥
2  𝑠𝑃𝑥

2

.

√ℎ𝑥
2(1 − ℎ𝑦

2) 𝑟𝐴𝑥𝐸𝑦

 

genotype x environment                                          

interaction component                       

  𝑎𝑦𝑒𝑥 =

{
 

 
𝑠𝐴𝑦𝐸𝑥  

√𝑠𝑃𝑥
2  𝑠𝑃𝑥

2

.

√(1 − ℎ𝑥
2)ℎ𝑦

2  𝑟𝐴𝑦𝐸𝑥

 

e
xy    co

en
viro

n
m

en
tab

ility (b
ro

ad
-sen

se) 

    𝑟𝑃𝑥,𝑦  =       

      
     1
𝑛−1

 ∑ (𝐴𝑥𝑖
𝐴𝑦𝑖

𝑛
𝑖=1  −  𝑛�̅�𝑥�̅�𝑦)

√
1

𝑛−1
[∑ 𝑃𝑥𝑖

2− �̅�𝑥
2𝑛

𝑖=1 ]  √ 1
𝑛−1

[∑ 𝑃𝑦𝑖
2− �̅�𝑦

2𝑛
𝑖=1 ] 

 

+ 
 
1

𝑛−1
∑ (𝐸𝑥𝑖

𝐸𝑦𝑖
𝑛
𝑖=1 −  𝑛�̅�𝑥�̅�𝑦)

√
1

𝑛−1
[∑ 𝑃𝑥𝑖

2− �̅�𝑥
2𝑛

𝑖=1 ]  √ 1
𝑛−1

[∑ 𝑃𝑦𝑖
2− �̅�𝑦

2𝑛
𝑖=1 ] 

 

+  
 
1

𝑛−1
∑ (𝐴𝑥𝑖𝐸𝑦𝑖−  𝑛�̅�𝑥�̅�𝑦)𝑛
𝑖=1

√
1

𝑛− 1
[∑ 𝑃𝑥𝑖

2− �̅�𝑥
2𝑛

𝑖=1 ]  √ 1
𝑛−1

[∑ 𝑃𝑦𝑖
2− �̅�𝑦

2𝑛
𝑖=1 ] 

 

+  

1
𝑛−1

∑ (𝐴𝑦𝑖𝐸𝑥𝑖−  𝑛�̅�𝑦�̅�𝑥)𝑛
𝑖=1

√
1

𝑛− 1
[∑ 𝑃𝑥𝑖

2− �̅�𝑥
2𝑛

𝑖=1 ]  √ 1
𝑛−1

[∑ 𝑃𝑦𝑖
2− �̅�𝑦

2𝑛
𝑖=1 ] 

 

.2-6. Components  of  the  sample  phenotypic  correlation           
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2.7  The sample coheritability 
 

The sample coheritability  ℎ𝑥,𝑦  between two traits 𝑥 and 𝑦 is the genetic component of the sample 

phenotypic correlation  𝑟𝑃𝑥,𝑦  , and is an estimator of the population coheritability ( 𝐻𝑥,𝑦  ) which is 

defined as the ratio of the additive genetic covariance between the characters x and y divided by the 

geometric mean of the phenotypic  variances of the traits. 

The population coheritability is defined as 

𝐻𝑥,𝑦  =
𝐶𝐴𝑥,𝑦 

√𝑉𝑃𝑥  𝑉𝑃𝑦

 

The sample coheritability is defined as the sample genetic covariance divided by the geometric mean of 

the sample phenotypic variances. 

   

 

 

 

 

 

 

The following statements provide a notion on the meaning of the sample coheritability. 

  The coheritability is the fraction of the phenotypic correlation of two traits that can be attributed to 

additive genetic effects. 

  The coheritability is the proportion of the total phenotypic variability of two traits that is due to 

joint/common/shared genetic causes. 

  The coheritability is the relative contribution of shared genetics in determining the phenotypic association 

of two traits. 

  The coheritability measures the extent to which resemblance among relatives in regard to two traits in 

comparison to unrelated individuals of the same species, is due to common heredity. 

 

    ℎ𝑥,𝑦  =
𝑠𝐴𝑥,𝑦 

√𝑠𝑃𝑥
2  𝑠𝑃𝑦

2
= 

1
𝑛 − 1

[ ∑ 𝐴𝑥𝑖𝐴𝑦𝑖
𝑛
𝑖=1 − 

∑ 𝐴𝑥𝑖  . ∑ 𝐴𝑦𝑖 
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
  ]

√
1

𝑛 − 1
[∑ 𝑃𝑥𝑖 − �̅�𝑥

𝑛
𝑖=1 ]

2
 √

1

𝑛 − 1
[∑ 𝑃𝑦

𝑖
− �̅�𝑦

𝑛
𝑖=1 ]

2

 

.2-7. sample  coheritability                                                                                                                                       

 

For  −1 < ℎ𝑥,𝑦 < 1 
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2.8  The  sample  coenvironmentability 
 

The sample coenvironmentability  𝑒𝑥,𝑦  between traits 𝑥 and 𝑦 is the residual, environmental 

component of the sample phenotypic correlation 𝑟𝑃𝑥,𝑦  , and is an estimator of the population 

coheritability ( 𝐸𝑥,𝑦  ). 

The population coenvironmentability is defined as 

𝐸𝑥,𝑦  
=

𝐶𝐸𝑥,𝑦 

√𝑉𝑃𝑥  𝑉𝑃𝑦

 

 

It is generally assumed that the genetic and environmental interaction effects between the breeding 

values of one trait and the environmental effects of another are negligible.  These effects, if not 

explicitly formulated, will be added with the environmental covariance.  Therefore, we can partition the 

numerator into a genetic covariance and a residual environmental covariance component, as follows: 

The narrow-sense coenvironmentability is a measure of the shared effects of environmental deviations 

acting upon both traits. 

         휀𝑥,𝑦 = √(1 − ℎ𝑥
2)(1 − ℎ𝑦

2) 𝑟𝐸𝑋,𝑦  

 

 

  

           휀𝑥,𝑦 =
𝑠𝐸𝑥,𝑦 

√𝑠𝑃𝑥
2  𝑠𝑃𝑥

2

 =
 
1

𝑛 − 1
∑ (𝐸𝑥𝑖𝐸𝑦𝑖
𝑛
𝑖=1 −  𝑛�̅�𝑥�̅�𝑦)

√
1

𝑛 − 1
[∑ 𝑃𝑥𝑖 − �̅�𝑥

𝑛
𝑖=1 ]

2
 √

1

𝑛 − 1
[∑ 𝑃𝑦

𝑖
− �̅�𝑦

𝑛
𝑖=1 ]

2

 

.2-8a. The  sample narrow-sense  sample  coenvironmentability  
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The broad-sense coenvironmentability is the combined effect of the narrow-sense 

coenvironmentability plus the interaction effects of the breeding values of a trait with the 

environmental effect of the other.  Broad-sense coenvironmentability measures the degree to which the 

joint phenotypic variability of two traits is determined by all sources of variation excluding the additive 

genetic variation. 

𝑒𝑥,𝑦 =    √(1 − ℎ𝑥
2)(1 − ℎ𝑦

2) 𝑟𝐸𝑋,𝑦  + √ℎ𝑥
2(1 − ℎ𝑦

2) 𝑟𝐴𝑥𝐸𝑦 + √(1 − ℎ𝑥
2)ℎ𝑦

2  𝑟𝐴𝑦𝐸𝑥 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

The broad-sense coenvironmentability included not only (narrow-sense) coenvironmentability, but in 

addition the interaction terms between genetic effects of one-trait and the environmental effects of the 

other.  They are often assumed as being non-existent or negligible.  Yet, statistically these components, 

if different than zero, may add “noise” to the estimators.  In that case, it is expected that the interaction 

would inflate the (co-)environmental component.   This addition of interaction effects on the 

coenvironmentability would cause increase in its magnitude and possibly surpassing the magnitude of 

the coheritability. Partitions (See section 6.2) where this may occur are 𝑆+3 and 𝑆−3.  Thus though 

environmental effects affect all phenotypic correlations, they have a preponderant influence over the 

coheritability in these particular partitions.  

sample broad-sense 

coenvironmentability   𝑒𝑥,𝑦  

sample  coenvironmentability                                 

(narrow-sense)                           

휀𝑥,𝑦  
= √(1 − ℎ𝑥

2)(1 − ℎ𝑦
2) 𝑟𝐸𝑋,𝑦  

  

genotype x environment                                                    

interaction  component 𝐴𝑥𝐸𝑦         

 𝑎𝑥𝑒𝑦 = √ℎ𝑥
2(1 − ℎ𝑦

2) 𝑟𝐴𝑥𝐸𝑦 

 

genotype x environment                                            

interaction  component  𝐴𝑦𝐸𝑥        

 𝑎𝑦𝑒𝑥 = √(1 − ℎ𝑥
2)ℎ𝑦

2  𝑟𝐴𝑦𝐸𝑥   

𝑒𝑥,𝑦 =      

                      
 
1

𝑛 − 1
∑ (𝐸𝑥𝑖𝐸𝑦𝑖
𝑛
𝑖=1 −  𝑛�̅�𝑥�̅�𝑦)

√ 1
𝑛 − 1

[∑ 𝑃𝑥𝑖 − �̅�𝑥
𝑛
𝑖=1 ]

2
 √

1
𝑛 − 1

[∑ 𝑃𝑦𝑖 − �̅�𝑦
𝑛
𝑖=1 ]

2
 

               +  
 
1

𝑛 − 1
∑ (𝐴𝑥𝑖𝐸𝑦𝑖 −  𝑛�̅�𝑥�̅�𝑦)
𝑛
𝑖=1

√ 1
𝑛 − 1

[∑ 𝑃𝑥𝑖 − �̅�𝑥
𝑛
𝑖=1 ]

2
 √

1
𝑛 − 1

[∑ 𝑃𝑦𝑖 − �̅�𝑦
𝑛
𝑖=1 ]

2
 

               +  

1
𝑛 − 1

∑ (𝐴𝑦𝑖𝐸𝑥𝑖 −  𝑛�̅�𝑦�̅�𝑥)
𝑛
𝑖=1

√ 1
𝑛 − 1

[∑ 𝑃𝑥𝑖 − �̅�𝑥
𝑛
𝑖=1 ]

2
 √

1
𝑛 − 1

[∑ 𝑃𝑦𝑖 − �̅�𝑦
𝑛
𝑖=1 ]

2
 

.2-8b.  The  sample broad-sense  sample  coenvironmentability                                                               
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3  Equivalent formulae of the sample coheritability   
 

3.1  Expressions of the sample coheritability   
 

The value of an individual’s phenotype (P) is determined by additive genetic (A) and environmental (E) 

effects, such that P = A + E.  This simple decomposition holds also at the population level for variances 

(𝑠2), and covariances (𝐶) between characters  x  and  y. We can therefore apply this decomposition to a 

bivariate dataset of measurements of two characters from a number of individuals sampled from a 

population and calculate an additive genetic covariance (𝑠𝐴𝑥,𝑦).  All the rest constitutes the 

environmental covariance (𝑠𝐸𝑥,𝑦) which includes environmental effects together with non-additive 

genetic variation, 

𝑠𝑃𝑥,𝑦 =  𝑠𝐴𝑥,𝑦  +   𝑠𝐸𝑥,𝑦 

To standardize, both sides are divided by the square root of the product of phenotypic variances of each 

character, and using observational variance components symbols, we obtain  

𝑠𝑃𝑥,𝑦

√𝑠𝑃𝑥
2  𝑠𝑃𝑦

2
 =   

𝑠𝐴𝑥,𝑦

√𝑠𝑃𝑥
2  𝑠𝑃𝑦

2
+ 

𝑠𝐸𝑥,𝑦

√𝑠𝑃𝑥
2  𝑠𝑃𝑦

2
  

 

 

 

 

 

 

 

 

 

 

 

 

ℎ𝑥𝑦 =  
𝑠𝐴𝑥,𝑦

√𝑠𝑃𝑥
2  𝑠𝑃𝑦

2
 

 Expression  I. 

The ratio of the sample genetic covariance and the bivariate phenotypic variability 

(i.e., geometric mean of the sample phenotypic variances) 

for  𝑠𝑃𝑥
2 > 0 , 𝑠𝑃𝑦

2 > 0 
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ℎ𝑥𝑦 = 
𝑠𝐴𝑥,𝑦

√𝑠𝑃𝑥
2  𝑠𝑃𝑦

2
= 

𝑠𝑃𝑥,𝑦

𝑠𝑃𝑥,𝑦

𝑠𝐴𝑥,𝑦

√𝑠𝑃𝑥
2  𝑠𝑃𝑦

2
= 

𝑠𝐴𝑥,𝑦

𝑠𝑃𝑥,𝑦

𝑠𝑃𝑥,𝑦

√𝑠𝑃𝑥
2  𝑠𝑃𝑦

2
 

ℎ𝑥𝑦 = 
𝑠𝐴𝑥,𝑦

𝑠𝑃𝑥,𝑦
 𝑟𝑃𝑥,𝑦    

 Expression  III. 

Multiplying the numerator and denominator of Expression I by the phenotypic 

covariance , we obtain: 

 

where  𝑠𝑃𝑥,𝑦 ≠ 0.   

Notice that only under extreme and rare circumstance when the phenotypic 

correlation 𝑟𝑃𝑥,𝑦 = 1 will the ratio of genetic and phenotypic covariance become a 

valid expression of the coheritability,  ℎ𝑥𝑦 = 
𝑠𝐴𝑥,𝑦

𝑠𝑃𝑥,𝑦
 , otherwise its range is from −∞ 

to +∞. (a version of this formulation is presented by Yamada 1968). 

ℎ𝑥𝑦 = 
√𝑠𝐴𝑥

2  𝑠𝐴𝑦
2

√𝑠𝐴𝑥
2  𝑠𝐴𝑦

2
 
𝑠𝐴𝑥,𝑦

√𝑠𝑃𝑥
2  𝑠𝑃𝑦

2
= √ℎ𝑥

2 ℎ𝑦
2  𝑟𝐴𝑥𝑦 

 Expression  II. 

Rearranging Expression I by multiplying and diving by the geometric mean of the 

additive genetic variances we obtain: 

for 𝑠𝑃𝑥
2 > 0 , 𝑠𝑃𝑦

2 > 0  
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Expressions IV  and V involve the use of a regression parameter  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝛽.𝑃𝑦𝑃𝑥 =
𝑠𝑃𝑥,𝑦

𝑠𝑃𝑥
2  

 Expression  IV. 

In the model    𝑃𝑦 = 𝛽𝑜 + 𝛽.𝑃𝑦𝑃𝑥
𝑃𝑥 +  𝜖  + ,  𝛽.𝑃𝑥𝑃𝑦 ,  

𝛽.𝑃𝑦𝑃𝑥  represents the regression coefficient of independent phenotypic value  𝑃𝑥 on 

dependent phenotypic value 𝑃𝑦,  

which can be related to the phenotypic correlation using the following relationship 

𝑟𝑃𝑥,𝑦 = 𝛽.𝑃𝑦𝑃𝑥

√𝑠𝑃𝑥
2

√𝑠𝑃𝑦
2

    

Then, replacing this form of the phenotypic correlation in Expression III, the 

coheritability is 

ℎ𝑥,𝑦 =
𝑠𝐴𝑥,𝑦

𝑠𝑃𝑥,𝑦
𝛽
.𝑃𝑦𝑃𝑥

√𝑠𝑃𝑥
2

√𝑠𝑃𝑦
2
     

𝑟𝑃𝑥,𝑦 = 𝛽.𝑃𝑥𝑃𝑦

√𝑠𝑃𝑦
2

√𝑠𝑃𝑥
2

 

 Expression V. 

In the regression model  𝑃𝑥 = 𝛽𝑜 + 𝛽.𝑃𝑦𝑃𝑥
𝑃𝑦 +  𝜖 ,  

𝛽.𝑃𝑥𝑃𝑦  represents the regression coefficient of independent phenotypic value  𝑃𝑦 on 

dependent phenotypic value  𝑃𝑥, then 

Then, replacing this form of the phenotypic correlation in expression III, the 

coheritability is 

ℎ𝑥,𝑦 =
𝑠𝐴𝑥,𝑦

𝑠𝑃𝑥,𝑦
𝛽
.𝑃𝑥𝑃𝑦

√𝑠𝑃𝑦
2

√𝑠𝑃𝑥
2
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These expressions reduce to the heritability if the traits are the same x = y . 

Notice that in all forms, a coheritability value equal to zero implies that the genetic covariance is zero.  

The additive genetic variances, present in the denominator of the genetic correlation, cannot become 

zero since it would leave it undefined.  Thus, the heritabilities cannot assume the value of zero.  This 

shows that the coheritability estimator may, depending on the numbers involved, sometimes display 

numerical instability. 

At this point the reader may wonder why we bother to spell out several mathematically equivalent 

formulations in a variety of variables and equations. The reasons for this are that (1) within a 

quantitative theoretical framework, it shows relationships among a variety of variables, thus providing 

conceptual insight among them.  (2) The different expressions entail different implicit assumptions 

about what entities are related to each other.  Third, some forms are more easily calculated than others, 

thus creates expressions that function more conceptually and others more operationally. 

 

 

 

  

ℎ𝑥,𝑦 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝑠𝐴𝑥,𝑦

√𝑠𝑃𝑥
2  𝑠𝑃𝑦

2
                                                                𝑠𝑃𝑥

2 ≠ 0 ,  𝑠𝑃𝑦
2 ≠ 0  

√ℎ𝑦
2ℎ𝑥

2 𝑟𝐴𝑥,𝑦                                                                                               

  
𝑠𝐴𝑥,𝑦

𝑠𝑃𝑥,𝑦
 𝑟𝑃𝑥,𝑦                                                                               𝐶𝑃𝑥,𝑦 ≠ 0

    

𝑠𝐴𝑥,𝑦
𝑠𝑃𝑥,𝑦

𝛽
.𝑃𝑦𝑃𝑥

√𝑠𝑃𝑥
2

√𝑠𝑃𝑦
2
                                          𝑠𝑃𝑥,𝑦 ≠ 0, 𝑠𝑃𝑦

2 ≠ 0  

𝑠𝐴𝑥,𝑦

𝑠𝑃𝑥,𝑦
𝛽𝑃𝑥𝑃𝑦

√𝑠𝑃𝑦
2

√𝑠𝑃𝑥
2

                                                   𝑠𝑃𝑥
2 ≠ 0, 𝑠𝑃𝑥,𝑦 ≠ 0  

 

 Equivalent Expressions of Coheritability  Summary. 
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3.2  Path Analysis 
 

Path analysis is a mathematical method that attempts to model the relationship among correlated 

variables.  The path analysis begins with a path diagram that considers two types of variables. 

Endogenous variables such as the phenotypic trait (P) are measurable and observed. They are 

represented enclosed in squares.  Exogenous variables which genetic (A) , as well as the environmental 

(E) variables, cannot be directly observed or measured, and are enclosed in circles.  

The path diagram involves arrows, either singled-headed or double-headed.  A single-headed arrow 

indicates simply statistical predictability of a latent variable to the observed variable, with no 

commitment made about causality. In this sense  𝐴𝑥  →  𝑃𝑥    denotes that the individual differences in 

exogenous variable 𝐴 may influence endogenous variable 𝑃, even when all other variables that predict 𝑃 

are taken into account.  Double-headed arrows indicate a correlation between exogenous  variables, e.g.  

 𝐴𝑥  ↔  𝐴𝑦    However, a double-headed arrow can never be used between endogenous variables.   

Path coefficients quantify the magnitude of a direct prediction.  For example, the term √ℎ𝑥
2  on the 

single-headed arrow between  𝐴𝑥   and  𝑃𝑥   in figure 3.2.1  is a path coefficient that quantifies the 

additive genetic influences exerted by genotype 𝐴𝑥   on the phenotypic trait 𝑃𝑥 .  In figure , the additive 

genetic correlation measure the strength of a linear association between breeding values of trait x and 

trait y, thus  𝐴𝑥  ↔  𝐴𝑦  possess a quantifiable  𝑟𝐴𝑥𝑦.  The model provides no assumptions as to the 

source of the association.   

  



. 

. 
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3.2.1  The phenotypic correlation 

 

The phenotypic value of a trait is influenced by the (additive) genetic factors and the residual, 

environmental factors.  The phenotypic correlation between traits 𝑥 and 𝑦, therefore, is the 

sum of the coheritability path and the (broad-sense) coenvironmentability path (cf. Sections 2.7 

and 2.8) 

                                                                      

Figure  3.2.1.  Path diagram relating two exogenous variables, namely, the phenotypic traits (𝑃𝑥 , 𝑃𝑦) to 

their corresponding additive genetic effects (𝐴𝑥 , 𝐴𝑦), and environmental influences (𝐸𝑥 , 𝐸𝑦), 

respectively. The path coefficient associated to a single headed arrow connecting a genotype A and its 

phenotypic trait 𝑃 is equal to the square root of heritability,  √ℎ2 . Double headed arrows represent 

correlation coefficients.  For the sake of completeness, genotype by environment covariance is 

considered.  

Therefore, the phenotypic correlation becomes: 

 

 

 

 

 

The last line invokes equation [ 2-6 ]. 

P x P y

Ex Ey

Ax Ay

𝑟𝐴𝑥𝑦

𝑟𝐸𝑥𝑦

 

𝑟𝑃𝑥,𝑦 = √ℎ𝑥
2ℎ𝑦

2  𝑟𝐴𝑥,𝑦 + √(1 − ℎ𝑥
2)(1 − ℎ𝑦

2) 𝑟𝐸𝑥,𝑦 + √ℎ𝑥
2(1 − ℎ𝑦

2) 𝑟𝐴𝑥𝐸𝑦 +√(1 − ℎ𝑥
2)ℎ𝑦

2  𝑟𝐴𝑦𝐸𝑥  

.3-2-1.  Decomposition of the sample phenotypic correlation 

 

      𝑟𝑃𝑥,𝑦 =           ℎ𝑥,𝑦       +                    휀𝑥,𝑦                   +              𝑎𝑥𝑒𝑦           +             𝑎𝑦𝑒𝑥  

 



. 

. 
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3.2.2   Type B coheritability of one trait expressed in different environments 

 

In field trials, breeders are interested in measuring the intensity of the interaction of the 

environment and the genotype.  The correlation between the breeding values of a trait 

measured in two distinct localities can be considered as two distinct traits (Falconer 1952), 

whose genetic correlation is denoted as Type B-genetic genetic correlation (𝑟𝐵 𝑥1,𝑥2) (coined by 

Burdon 1977).   

In this sense, environment can represent a locality (site 1, site2,…), sex (male, female), 

generation (parental, progeny).  The same rationale applies if considering distinct ages or 

ontogenic stages (juvenile, adult), intrinsic conditions (normal, affected), etc. 

An important consideration is not only to have 𝑟𝐵 𝑥1,𝑥2, but also the phenotypic correlation of 

the phenotypic values of both characters expressed in the environments. This would allow to 

estimate the Type B coenvironmentability. 

 

Figure 3.2.2.  Type B genetic correlation between the breeding values of a trait measured in localities 1  

and 2. 𝐴𝑝 is denotes by the genetic component determined in environment  𝑝 (𝑝 = 1,2), 𝐸𝑐 is the 

common environment, 𝐸𝑠 the specific environment. [Adapted from Falconer (1952)]. 

 

 

  

P x1 P x2

𝐸 1 𝐸 2

𝐴𝑥1 𝐴𝑥2
𝑟 𝐵𝑥1,𝑥2 

𝑟𝐸𝑥1,𝑥2

𝐸 1 𝐸 2

ℎ𝐵𝑥1 ,,𝑥2 = √ℎ𝑥1
2 ℎ𝑥2

2  𝑟𝐵𝑥1 ,,𝑥2 

.3-2-2.  Type B coheritability of the same trait x in two environments (named 1 and 2) 

 



. 

. 
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3.2.3  Multiple regression 

 

The graph below represents a  path diagram expressing a multiple linear regression equation with one 

outcome variable, 𝑟𝑃𝑥,𝑦, and two predictors, namely the coheritability ℎ𝑥,𝑦 and the coenvironmentability 

𝑒𝑥,𝑦.  The model is   

 

                                         

 

where 𝜖  is a residual term with a mean of zero. There are four single-headed arrows pointing into the 

phenotypic correlation 𝑟𝑃𝑥,𝑦 , whose path coefficients are 𝜷𝒐, 𝜷𝟏, 𝜷𝟐, and 1 corresponding to the four 

summands on the right hand side of regression equation. In a general linear model, the intercept 𝜷𝒐  is  

estimated using a column of ones.  For this reason, a constant is denoted by a triangle that maps onto 

that column of ones.  

 

                                        
Figure 3.2.3  Path diagram of a multiple regression where the phenotypic correlation is the dependent 

variable.  The coheritability and coenvironmentability are the independent predictor variables. 

 

 

For simplicity of presentation in Figure 3.2.3, the two predictor variables ℎ𝑥,𝑦  and 𝑒𝑥,𝑦  have means of 

zero. If  ℎ𝑥,𝑦   and 𝑒𝑥,𝑦    had nonzero then single-headed arrows would be drawn from the triangle to 

ℎ𝑥,𝑦   and from the triangle to 𝑒𝑥,𝑦  . There are double-headed variance arrows for each of the variables 

ℎ𝑥,𝑦  , 𝑒𝑥,𝑦  , and 𝜖 on the right hand side of the equation, representing the variance of the predictor 

variables, 𝑉ℎ  , 𝑉𝑒 and residual variance 𝑉𝜖 respectively. The constant has, by convention, a nonzero 

variance term fixed at the value 1.0. While this double-headed arrow may seem counterintuitive since it 

is not formally a variance term, it is required in order to provide consistency to the path tracing rules 

described below. In addition, there is a double-headed arrow between ℎ𝑥,𝑦    and 𝑒𝑥,𝑦    that specifies the 

potential covariance, 𝐶ℎ𝑥,𝑦 ∙ 𝑒𝑥,𝑦  between the predictor variables. 

𝑟𝑃𝑥,𝑦

ℎ𝑥,𝑦 𝑒𝑥,𝑦 𝜖

𝛽                 𝛽1 𝛽2 1

𝑉ℎ                                                        𝑉𝑒

𝑉𝜖1

1

𝐶ℎ,𝑒

 

 

𝑟𝑃𝑥,𝑦 = 𝜷𝒐  +  𝜷𝟏 ∙ ℎ𝑥,𝑦  +  𝜷𝟐 ∙ 𝑒𝑥,𝑦    +  1𝜖  



. 

. 
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3.3  Sampling  variance  approximation 
 

The Delta method involves a first order approximation of a Taylor series expansion of the function and 

then taking the expectation of according to Taylor’s Theorem (see Appendix 6). 

 

3.3.1  Sampling variance of the phenotypic correlation 
 

The sampling variance of the phenotypic correlation in terms of its components coheritability and 

coenvironmentability can be defined as: 

𝑉𝑎𝑟 (𝑟𝑃𝑥,𝑦) = 𝑉𝑎𝑟(ℎ𝑥,𝑦 + 𝑒𝑥,𝑦) = 𝑉𝑎𝑟(ℎ𝑥,𝑦) + 𝑉𝑎𝑟(𝑒𝑥,𝑦) + 2𝐶𝑜𝑣(ℎ𝑥,𝑦  , 𝑒𝑥,𝑦) 

The last term can be calculated as: 

𝐶𝑜𝑣(ℎ𝑥,𝑦  , 𝑒𝑥,𝑦) =  
1

2
[ 𝑉𝑎𝑟 ( 𝑟𝑃𝑥,𝑦) −  𝑉𝑎𝑟(ℎ𝑥,𝑦) − 𝑉𝑎𝑟(𝑒𝑥,𝑦) ]. 

 

The sample phenotypic correlation is defined in equation [ 2-5 ]  

 

 

 

 

 

                                                                                                                                                                            

For details, see Appendix 6. 

 

  

𝑉𝑎𝑟 (𝑟𝑃𝑥,𝑦) = 
1

4
𝑟𝑃𝑥,𝑦
2  [4

𝑉𝑎𝑟(𝑠𝑃𝑥,𝑦)

𝑠𝑃𝑥,𝑦
+
𝑉𝑎𝑟(𝑠𝑃𝑥

2 )

𝑠𝑃𝑥
2 +

𝑉𝑎𝑟(𝑠𝑃𝑦
2 )

𝑠𝑃𝑦
2                                                       

− 4
𝐶𝑜𝑣 (𝑠𝑃𝑥,𝑦 , 𝑠𝑃𝑥

2 )

𝑠𝑃𝑥,𝑦𝑠𝑃𝑥
2 − 4

𝐶𝑜𝑣 (𝑠𝑃𝑥,𝑦 , 𝑠𝑃𝑦
2 )

𝑠𝑃𝑥,𝑦𝑠𝑃𝑦
2 + 2

𝐶𝑜𝑣(𝑠𝑃𝑥
2 , 𝑠𝑃𝑦

2 ) 

𝑠𝑃𝑥
2 𝑠𝑃𝑦

2 ] 

 .3-3-1.    Sampling variance of the phenotypic correlation   𝑟𝑃𝑥,𝑦   

 

                             



. 

. 
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3.3.2  Sampling variance and standard error of the coheritability  estimator                           

 

Based on Robertson’s  (1959) approximation of the variance of the genetic correlation, it is possible to 

derive an approximation to the sampling variance of the coheritability as a function of the genetic 

correlation, the sampling variance of the heritabilities, as follows 

 

 

 

 

the right-hand side of the equation becomes    ℎ𝑥
2ℎ𝑦

2  𝑉𝑎𝑟 (𝑟𝐴𝑥,𝑦) = 𝑉𝑎𝑟 (√ℎ𝑥
2ℎ𝑦

2  𝑟𝐴𝑥,𝑦) = 𝑉𝑎𝑟(ℎ𝑥,𝑦). 

Therefore, 

 

 

 

 

 

 

 

 

 

Another way to approximate the sampling variance of the coheritability is to use the Delta method 

 

 

            

 

 

𝑉𝑎𝑟 (ℎ𝑥,𝑦  ) ≈  (1 − 𝑟𝐴𝑥,𝑦
2 )

2

 

√𝑉𝑎𝑟(ℎ𝑥
2) ∙  𝑉𝑎𝑟(ℎ𝑦

2)

2 
= (1 − 𝑟𝐴𝑥,𝑦

2 )
2

 
𝑆𝐸(ℎ𝑥

2) ∙  𝑆𝐸(ℎ𝑦
2)

2
 

.3-3-2a.  Sampling variance of the coheritability estimator ℎ𝑥,𝑦   (as an extension of the Robertson’s   

approximation of the sampling variance of the genetic  correlation)       

𝑉𝑎𝑟 (ℎ𝑥,𝑦  ) ≈  
1

4
 (ℎ𝑥,𝑦)

2
 [  
𝑉𝑎𝑟 [ℎ𝑥

2]

(ℎ𝑥
2)2

 +  
𝑉𝑎𝑟 [ℎ𝑦

2] 

(ℎ𝑦
2)

2 +  
4 𝑉𝑎𝑟 [𝑟𝐴𝑥,𝑦]

𝑟𝐴𝑥,𝑦
2                                                         

+                                 +
2 𝐶𝑜𝑣 [ℎ𝑥

2 , ℎ𝑦
2]

ℎ𝑥
2 ℎ𝑦

2 +
4 𝐶𝑜𝑣 [ℎ𝑥

2 , 𝑟𝐴𝑥,𝑦]

ℎ𝑥
2  𝑟𝐴𝑥,𝑦

 +
4 𝐶𝑜𝑣 [ℎ𝑦 

2 ,  𝑟𝐴𝑥,𝑦]

ℎ𝑦
2   𝑟𝐴𝑥,𝑦

  ] 

.3-3-2c.  Sampling variance of the coheritability estimator ℎ𝑥,𝑦   (Delta Method, see Appendix 6 )       

 

𝑆𝐸(ℎ𝑥,𝑦) =  √ 𝑉𝑎𝑟 (ℎ𝑥,𝑦  ) =  (1 − 𝑟𝐴𝑥,𝑦
2 ) √

 𝑆𝐸(ℎ𝑥
2) ∙  𝑆𝐸(ℎ𝑦

2)

2
 

.3-3-2b.   Standard error (SE) of the coheritability estimator ℎ𝑥,𝑦   (as an extension of the Robertson’s   

approximation of the sampling variance of the genetic  correlation)       

           𝑉𝑎𝑟 (𝑟𝐴𝑥,𝑦) ≈ (1 − 𝑟𝐴𝑥,𝑦
2 )

2

 

√𝑉𝑎𝑟(ℎ𝑥
2) ∙  𝑉𝑎𝑟(ℎ𝑦

2)

2 ℎ𝑥
2ℎ𝑦

2  

ℎ𝑥
2ℎ𝑦

2𝑉𝑎𝑟 (𝑟𝐴𝑥,𝑦) ≈ (1 − 𝑟𝐴𝑥,𝑦
2 )2  

√𝑉𝑎𝑟(ℎ𝑥
2) ∙  𝑉𝑎𝑟(ℎ𝑦

2)

2 
 

 



. 

. 
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3.3.3  Sampling variance of the coenvironmentability estimator 

 

 

 

 

 

 

 

 

For details, see Appendix 6. 

 

 

 

  

    𝑉𝑎𝑟 (𝑒𝑥,𝑦  )    ≈

≈  
1

4
(𝑒𝑥,𝑦)

2
 [ 

𝑉𝑎𝑟 [ℎ𝑥
2]

(1 − ℎ𝑥
2 )

2 + 
𝑉𝑎𝑟 [ℎ𝑦

2]

(1 − ℎ𝑦
2 )

2 +  4
 𝑉𝑎𝑟 (𝑟𝐸𝑥,𝑦)

(𝑟𝐸𝑥,𝑦)
2

+                  + 2
𝐶𝑜𝑣 [ ℎ𝑥

2 , ℎ𝑦
2  ]

(1 − ℎ𝑥
2 )(1− ℎ𝑦

2 )
−  4

 𝐶𝑜𝑣 [ ℎ𝑥
2 , 𝑟𝐸𝑥,𝑦  ]

(1 − ℎ𝑥
2 ) 𝑟𝐸𝑥,𝑦

−  4
𝐶𝑜𝑣 [ ℎ𝑦

2  , 𝑟𝐸𝑥,𝑦  ]

(1 − ℎ𝑦
2) 𝑟𝐸𝑥,𝑦

 ] 

.3-3-3.   Sampling variance of the coenvironmentability estimator   𝑒𝑥,𝑦  (Delta Method) 

 



. 

. 
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3.3.4  Sampling variance of the heritability estimator 

 

 

 

 

 

For details, see Appendix 6.  

   𝑉𝑎𝑟 ( ℎ2) ≈   (ℎ2)
2
 [  
𝑉𝑎𝑟 [𝑉𝐴]

(𝑉𝐴)2
 +  

𝑉𝑎𝑟 [𝑉𝑃]

(𝑉𝑃)2
 +  2

𝐶𝑜𝑣 [𝑉𝐴, 𝑉𝑃]

𝑉𝐴 𝑉𝑃
 ] 

.3-3-4.   Sampling variance of the heritability estimator  ℎ2 =  
𝑉𝐴

𝑉𝑃
      (Delta Method)                                                                                                          



. 

. 
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3.3.5  Sampling variance and standard error of the genetic correlation estimator 

 

The relationships presented in this section correspond to the formulae of Robertson (1959).   For 

extensive review on the topic of the sampling variance of the genetic correlation, see Visscher (1998) 

and Koots and Gibson (1996). 

 

 

 

 

 

 

 

 

 

 

  

𝑉𝑎𝑟 (𝑟𝐴𝑥,𝑦) ≈ (1 − 𝑟𝐴𝑥,𝑦
2 )

2

  

√𝑉𝑎𝑟(ℎ𝑥
2) ∙  𝑉𝑎𝑟(ℎ𝑦

2)

2 ℎ𝑥
2ℎ𝑦

2 = (1 − 𝑟𝐴𝑥,𝑦
2 )

2

  
𝑆𝐸(ℎ𝑥

2) ∙  𝑆𝐸(ℎ𝑦
2)

2 ℎ𝑥
2ℎ𝑦

2  

.3-3-5a. Sampling variance of the genetic correlation estimator (from Robertson 1959 approximation) 

𝑆𝐸(𝑟𝐴𝑥,𝑦) = √𝑉𝑎𝑟 (𝑟𝐴𝑥,𝑦) ≈ √(1 − 𝑟𝐴𝑥,𝑦
2 )

2

 
𝑆𝐸(ℎ𝑥

2) ∙  𝑆𝐸(ℎ𝑦
2)

2 ℎ𝑥
2ℎ𝑦

2 = (1 − 𝑟𝐴𝑥,𝑦
2 )√

𝑆𝐸(ℎ𝑥
2) ∙  𝑆𝐸(ℎ𝑦

2)

2 ℎ𝑥
2ℎ𝑦

2  

.3-3-5b. Standard error of the genetic correlation estimator (from Robertson 1959 aproximation) 



. 
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4   Distribution of the sample correlation coefficient 
 

4.1  Derivation of the distribution of the sample correlation coefficient 
 

This section succinctly elaborates on the distribution of the sample phenotypic correlation in the case 

when the correlation parameter 𝜌 is zero, and nonzero. 

4.1.1  Distribution of  𝒓 when 𝝆 is zero 

 

When 𝜌 = 0, the three variates  𝑟 ,  𝑠𝑥
2  and  𝑠𝑦

2 are a completely independent set, since  𝑠𝑥
2 and  𝑠𝑦

2 are 

functions of separate sets of independent variates and are therefore mutually independent.  Further 

details can be found elsewhere ( Fisher  1928, Kym  1968, Chance 1986). 

 

 

 

 

 

  

𝑓𝑟(𝑟|𝜌 = 0 , 𝑛) =  
𝛤 (

𝑛 − 1
2

)

𝜋
1
2 𝛤 (

𝑛 − 2
2

)
(1 − 𝑟)

𝜂−4
2  𝑑𝑟                                − 1 ≤  𝑟 ≤  +1   

 

.4-1-1. Distribution of the sample correlation coefficient when 𝝆 = 𝟎 

 

 



. 

. 
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4.1.2  Distribution  of  𝒓  when  𝝆  is nonzero 

 

The exact density function of the sample correlation coefficient 𝑟 was originally obtained by Fisher 

(1915, 1928), following a geometric argument  For ease of exposition, I present an exegesis of the 

derivation of the distribution the work by Hotelling (1950) (whose equation numbers are kept in this 

section for easy reference) .For purposes of this explanation we will use 𝜂 = (𝑛 − 1), where 𝑛 is the 

sample size. 

The sample variances follow a chi-square distribution 

 

 

 

 

 

 

 

 

Multiplying together the independent probability density functions of the correlation coefficient (when 

𝜌 = 0), the sample variance for trait 𝑥, and the sample variance for trait 𝑦.   

 

 

 

 

 

 

 

 

 

 

Equation 10   Distribution of the sample variances 

  sample variance                            .           chi-square distribution of the sample variance                 . 

𝑠𝑥
2 =

∑(𝑥𝑖−�̅�)
2

𝜂
   ,                       

𝜂𝑠𝑥
2

𝜎𝑥
2  ~ 𝜒𝜂

2                    𝑓 𝑥 (
𝜂𝑠𝑥

2

2
) =

(
𝜂𝑠𝑥
2

2
)

𝜂
2
−1

𝑒
−
𝜂𝑠𝑥
2

2

𝛤 (
𝜂

2
)

 𝑑 (
𝜂𝑠𝑥

2

2
) 

 

𝑠𝑦
2 =

∑(𝑦𝑖−�̅�)
2

𝜂
   ,                       

𝜂𝑠𝑦
2

𝜎𝑦
2  ~ 𝜒𝜂

2                    𝑓 𝑦 (
𝜂𝑠𝑦

2

2
) =

(
𝜂𝑠𝑦
2

2
)

𝜂
2
−1

𝑒
−
𝜂𝑠𝑦
2

2

𝛤 (
𝜂

2
)

𝑑 (
𝜂𝑠𝑦

2

2
) 

 

=
1

𝜋
1
2 𝛤 (

𝜂 − 1
2

)  𝛤 (
𝜂
2
)
(1 − 𝑟2)

𝜂−3
2  𝑑𝑟 .  

𝜂
𝜂−2
2 𝑠𝑥

2(
𝜂−2
2

)
𝑒− 

𝜂𝑠𝑥
2

2

2
𝜂−2
2

 (
2𝜂𝑠𝑥
2

𝑑𝑠𝑥)  
𝜂
𝜂−2
2 𝑠𝑦

2(
𝜂−2
2

)
𝑒− 

𝜂𝑠𝑦
2

2

2
𝜂−2
2

 (
2𝜂𝑠𝑦
2

𝑑𝑠𝑦) 

=
(1 − 𝑟2)

𝜂−3
2  𝑑𝑟

𝜋
1
2 𝛤 (

𝜂 − 1
2

)  𝛤 (
𝜂
2
)
 .  
𝜂
𝜂−2
2

  +  
𝜂−2
2

 + 1 + 1  𝑠𝑥
𝜂−2+1  𝑠𝑦

𝜂−2+1  𝑒− 
𝜂
2
 (𝑠𝑥

2 + 𝑠𝑥
2)

2
𝜂−2
2

 + 
𝜂−2
2

𝑑𝑠𝑥  𝑑𝑠𝑦 

                                                                                 Equation 2                                              Equation 10 

                                                                         𝑓𝑟(𝑟|𝜌 = 0 , 𝜂)            ∙                𝑓 𝑥 (
𝜂𝑠𝑥

2

2
)         ∙            𝑓 𝑦 (

𝜂𝑠𝑦
2

2
)                               

 

  𝑔(𝑟, 𝑠𝑥 , 𝑠𝑦|𝜌 = 0) 𝑑𝑟 𝑑𝑠𝑥  𝑑𝑠𝑦 = [
𝛤(

𝜂

2
)

 𝜋
1
2  𝛤(

𝜂−1

2
)

(1 − 𝑟2)
𝜂−3

2  𝑑𝑟][
(
𝜂𝑠𝑥
2

2
)

𝜂
2
−1

𝑒
−
𝜂𝑠𝑥
2

2

𝛤 (
𝜂

2
)

 𝑑 (
𝜂𝑠𝑥

2

2
)] 

[
 
 
 (𝜂𝑠𝑦

2

2
)

𝜂
2
−1

𝑒
−
𝜂𝑠𝑦
2

2

𝛤 (
𝜂

2
)

 𝑑 (
𝜂𝑠𝑦

2

2
)

]
 
 
 

  

 



. 

. 
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After some rearrangement, we obtain: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider two random variables  𝑋~𝑁𝑜𝑟𝑚𝑎𝑙(0,1) and 𝑌~𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

We assume that each (𝑥, 𝑦) datum has a bivariate normal probability density  

 

 

Multiplying the independent probability density functions assumed for each bivariate datum, it yields 

the joint distribution of the  2𝜂  observations which is written with the help of equations 10 and 11.          

                                                          

=
(1 − 𝑟2)

𝜂−3
2  𝑑𝑟

 𝜋  
1
2 𝛤 (

𝜂 − 1
2 )  𝛤 (

𝜂
2)
 .
 𝜂𝜂   𝑒− 

𝜂
2
 (𝑠𝑥

2 + 𝑠𝑥
2)(𝑠𝑥𝑠𝑦)

𝜂−1

2𝜂−2
 𝑑𝑠𝑥  𝑑𝑠𝑦  𝑑𝑟 

Equation 11   The joint distribution of 𝒓 , 𝒔𝒙 , 𝒔𝒚 

𝑔(𝑟, 𝑠𝑥 , 𝑠𝑦|𝜌 = 0) 𝑑𝑟 𝑑𝑠𝑥  𝑑𝑠𝑦 = 
𝜂𝜂   (1−𝑟2)

𝜂−3
2  

 𝜋
1
2  2𝜂−2 𝛤(

𝜂−1

2
) 𝛤(

𝜂

2
)
 .  𝑒− 

𝜂

2
 (𝑠𝑥

2 + 𝑠𝑥
2)(𝑠𝑥𝑠𝑦)

𝜂−1 𝑑𝑠𝑥  𝑑𝑠𝑦 𝑑𝑟           

Equation 12   Proof that the denominator     𝜋
1

2 𝛤 (
𝜂−1

2
)  𝛤 (

𝜂

2
)2𝜂−2  =  𝜋(𝜂 − 2)!   

   Let    (𝜂 − 1) = 𝑚 

                        𝜂 = 𝑚 + 1 

Then                           𝜋
1

2 𝛤 (
𝑚

2
)  𝛤 (

𝑚+1

2
) 2𝑚−1 

The product of the gamma functions 

                                      𝛤 (
𝑚

2
)𝛤 (

𝑚+1

2
) =

 𝜋
1
2 𝛤(𝑚)

2𝑚−1  

                             𝜋
1

2  
 𝜋
1
2  𝛤(𝑚)

2𝑚−1  2𝑚−1 = 𝜋
1

2  𝜋
1

2 𝛤(𝑚) = 𝜋(𝑚 − 1)!  = 𝜋 (𝜂 − 2)!  

            𝑓𝑋,𝑌(𝑥, 𝑦) =
1

2𝜋(1−𝜌2)
1
2

 𝑒
{− 

1

2(1−𝜌2)
  (𝑥2 − 2𝜌𝑥𝑦 +𝑦2)}

𝑑𝑥 𝑑𝑦              
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Since we know that  �̅� = �̅� = 0, the following relationships can be use to replace terms of ∑𝑥𝑖
2, ∑𝑥𝑖  𝑦𝑖, 

and ∑𝑦𝑖
2. 

 

 

 

 

 

We obtain 

 

 

 

which becomes 

 

 

 

 

When 𝜌 varies, the joint probability elements of  𝑟, 𝑠𝑥 ,  𝑠𝑦  varies in proportion to the density of 

equation 15. 

The derivation of the joint probability distribution of   𝑟, 𝑠𝑥 ,  𝑠𝑦 , 𝜌   for 𝜌 = 0 

 

 

                            =
1

2𝜋𝜂(1 − 𝜌2)
1
2
𝜂
 𝑒
− 

𝜂
2(1−𝜌2)

 (∑𝑥𝑖
2 − 2𝜌 ∑𝑥𝑖𝑦𝑖 + ∑  𝑦𝑖

2 )
𝑑𝑥𝑖𝑑𝑦𝑖 

𝜑(𝑟, 𝑠𝑥 , 𝑠𝑦 , 𝜌)   = ∏ 𝑓𝑋𝑌𝑖(𝑥, 𝑦) = 
𝜂
𝑖=1

∏
𝜂

2𝜋𝜂(1−𝜌2)
1
2
𝜂
 𝑒
{− 

1

2(1−𝜌2)
  (𝑥𝑖

2 − 2𝜌𝑥𝑖𝑦𝑖 + 𝑦𝑖
2)}
𝑑𝑥𝑖𝑑𝑦𝑖

𝜂
𝑖=1   

𝑠𝑥
2 =

∑(𝑥𝑖−�̅�)
2

𝜂
         →    ∑(𝑥𝑖 − �̅�)2 = 𝜂𝑠𝑥

2                                        → ∑𝑥𝑖
2 = 𝜂𝑠𝑥

2        

𝑟 =  
∑(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)

𝜂 𝑠𝑦 𝑠𝑥
 →    ∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�) =  𝜂 𝑠𝑦 𝑠𝑥  𝑟                 →  ∑𝑥𝑖 𝑦𝑖 = 𝜂 𝑠𝑦 𝑠𝑥  𝑟        

𝑠𝑦
2 =

∑(𝑦𝑖−�̅�)
2

𝜂
        →    ∑(𝑦𝑖 − �̅�)2 = 𝜂𝑠𝑦

2                                        →  ∑ 𝑦𝑖
2 = 𝜂𝑠𝑦

2        

Equation 14    

    𝜑(𝑟, 𝑠𝑥 , 𝑠𝑦 , 𝜌)𝑑𝑥1𝑑𝑦1 𝑑𝑥2𝑑𝑦2… 𝑑𝑥𝜂𝑑𝑦𝜂  =  ∏ 𝑓𝑋𝑌𝑖(𝑥, 𝑦) 
𝜂
𝑖=1  

𝜑(𝑟, 𝑠𝑥 , 𝑠𝑦 , 𝜌) =∏𝑓𝑋𝑌𝑖(𝑥, 𝑦) = 

𝑛

𝑖=1

=
1

2𝜋𝜂(1 − 𝜌2)
𝜂
2

 𝑒
− 

𝜂
2(1−𝜌2)

 (𝑠𝑥
2−2𝜌𝑟𝑠𝑥𝑠𝑦+ 𝑠𝑦

2)
𝑑𝑥1𝑑𝑦1…  𝑑𝑥𝑛𝑑𝑦𝑛 

Equation 15     Joint distribution of  𝒓 , 𝒔𝒙 , 𝒔𝒚 , 𝝆 



. 
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The distribution of 𝑟 is found by integrating (16) with respect to  𝑠𝑥  and  𝑠𝑦  from 0 to positive infinity.  

For this purpose the following transformation is useful.   

Put 

 

 

 

 

The Jacobian is 

 

 

 

 

det 𝐽  =  
1

2
𝛼
1
2 𝑒− 

1
2
𝛽  
1

2
𝛼
1
2 𝑒  

1
2
𝛽  − (

1

2
𝛼
1
2 𝑒  

1
2
𝛽  [−1]

1

2
𝛼
1
2 𝑒− 

1
2
𝛽)  =  (

1

4
+ 
1

4
)  =   

1

2
 

 

 

 

   𝑓(𝑟 , 𝑠𝑥 , 𝑠𝑦) =
[ 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 15 ]

[ 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 15 𝑤ℎ𝑒𝑛 𝜌 = 0 ]
[ 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 11 ] 

 

   𝑓     =
𝜑(𝑟, 𝑠𝑥 , 𝑠𝑦 , 𝜌)𝑑𝑥1𝑑𝑦1…  𝑑𝑥𝑛𝑑𝑦𝑛

𝜑(𝑟, 𝑠𝑥 , 𝑠𝑦 , 0)𝑑𝑥1𝑑𝑦1…  𝑑𝑥𝑛𝑑𝑦𝑛
 𝑔(𝑟, 𝑠𝑥 , 𝑠𝑦) 𝑑𝑠𝑥  𝑑𝑠𝑦  𝑑𝑟  

       =

1

2𝜋𝜂(1 − 𝜌2)
𝜂
2

 𝑒
− 

𝜂
2(1−𝜌2)

 (𝑠𝑥
2−2𝜌𝑟𝑠𝑥𝑠𝑦+ 𝑠𝑦

2)
 

1
2𝜋𝜂  𝑒

− 
𝜂
2
 (𝑠𝑥

2 + 𝑠𝑦
2) 

  (1 − 𝑟2)
𝜂−3
2  

𝜋
1
2  𝛤 (

𝜂 − 1
2

)  𝛤 (
𝜂
2
)
 .
 𝜂𝜂 𝑒− 

𝜂
2
 (𝑠𝑥

2 + 𝑠𝑦
2)(𝑠𝑥𝑠𝑦)

𝜂−1

 2𝜂−2
𝑑𝑠𝑥  𝑑𝑠𝑦𝑑𝑟 

Equation 16  The joint probability distribution of   𝒓,  𝒔𝒙 ,  𝒔𝒚 , 𝝆   for 𝝆 = 𝟎 

 𝑓(𝑟 , 𝑠𝑥 , 𝑠𝑦) =
𝜂𝜂  

𝜋 (𝜂−2)!
(1 − 𝜌2)− 

𝜂

2 (1 − 𝑟2)
𝜂−3

2  𝑒
{− 

𝜂

2(1−𝜌2)
 (𝑠𝑥 

2− 2𝜌𝑟𝑠𝑥𝑠𝑦 + 𝑠𝑦
2)}
 (𝑠𝑥𝑠𝑦)

𝜂−1 𝑑𝑠𝑥  𝑑𝑠𝑦  𝑑𝑟    

𝑠𝑥 = 𝛼
1
2 𝑒− 

1
2
𝛽 

𝑠𝑦 = 𝛼
1
2 𝑒  

1
2
𝛽    

Note that  𝒔𝒙𝒔𝒚 = 𝜶 

 

Note that  𝒔𝒙𝒔𝒚 = 𝜶 

 

 𝐽 =  
𝛿(𝑠𝑥 , 𝑠𝑦)

𝛿(𝛼, 𝛽)
 =

[
 
 
 
 
 
𝛿𝑠𝑥
𝛿 𝛼

𝛿𝑠𝑥
𝛿 𝛽

𝛿𝑠𝑦

𝛿 𝛼

𝛿𝑠𝑦

𝛿 𝛽]
 
 
 
 
 

=

[
 
 
 
 
𝛿

𝛿 𝛼
(𝛼

1
2 𝑒− 

1
2
𝛽)

𝛿

𝛿 𝛽
(𝛼

1
2 𝑒− 

1
2
𝛽)

𝛿

𝛿 𝛼
(𝛼

1
2 𝑒  

1
2
𝛽)

𝛿

𝛿 𝛽
(𝛼

1
2 𝑒  

1
2
𝛽)

]
 
 
 
 

 

                            =

[
 
 
 
 
1

2
𝛼
1
2 𝑒− 

1
2
𝛽 −

1

2
𝛼
1
2 𝑒− 

1
2
𝛽

1

2
𝛼
1
2 𝑒  

1
2
𝛽 1

2
𝛼
1
2 𝑒  

1
2
𝛽

]
 
 
 
 

 

 

 



. 

. 
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Now working in the exponential part of equation 16 

 

 

 

 

 

 

 

 

 

 

 

 

Working on the differentials 𝑑𝑠𝑥  𝑑𝑠𝑦   of equation 16. 

 

 

 

 

 

 

 

 

 

 

 

{− 
𝜂

2(1 − 𝜌2)
 (𝑠𝑥 

2 −  2𝜌𝑟𝑠𝑥𝑠𝑦  +  𝑠𝑦
2)} 

                                                 

= {− 
𝜂

2(1 − 𝜌2)
 ((𝛼

1
2 𝑒− 

1
2
𝛽)

 

2

−  2𝜌𝑟 (𝛼
1
2 𝑒− 

1
2
𝛽) (𝛼

1
2 𝑒  

1
2
𝛽)  + (𝛼

1
2 𝑒  

1
2
𝛽)

2

)} 

                             =  − 
𝜂

2(1 − 𝜌2)
 (𝛼𝑒−𝛽 − 2 𝜌𝑟𝛼 +  𝛼𝑒𝛽) 

                            =  − 
𝜂 𝛼

(1 − 𝜌2)
 (
𝑒−𝛽 + 𝑒𝛽

2
−
2 𝜌𝑟

2
) 

                            =  − 
𝜂 𝛼

(1 − 𝜌2)
 (cosh𝛽 − 𝜌𝑟) 

𝑓( 𝑠𝑥 ,  𝑠𝑦 , 𝑟) =
𝜂𝜂  

𝜋 (𝜂−2)!
(1 − 𝜌2)− 

𝜂

2 (1 − 𝑟2)
𝜂−3

2   𝑒
{− 

𝜂

2(1−𝜌2)
 (𝑠𝑥 

2− 2𝜌𝑟𝑠𝑥𝑠𝑦 + 𝑠𝑦
2)}
(𝑠𝑥𝑠𝑦)

𝜂−1𝑑𝑠𝑥  𝑑𝑠𝑦  𝑑𝑟    

 

𝛿 (𝑠𝑥𝑠𝑦)

𝛿 𝑠𝑥
=
𝛿 𝛼

𝛿 𝑠𝑥
= 𝑠𝑦        →              𝑑𝛼 = 𝑑𝑠𝑥 ∙ 𝑠𝑦   

𝑠𝑥
𝑠𝑦

=
𝛼
1
2 𝑒  

1
2
𝛽

𝛼
1
2 𝑒− 

1
2
𝛽
= 𝑒𝛽       →   𝑙𝑛 (

𝑠𝑥
𝑠𝑦
) = 𝑙𝑛(𝑒𝛽) = 𝛽 

𝑑 𝛽

𝑑 𝑠𝑦
=

𝑑 (ln
𝑠𝑥
𝑠𝑦
)

𝑑 𝑠𝑦
=

1

𝑠𝑦
      →              𝑑𝛽 =

1

𝑠𝑦
𝑑𝑠𝑦    

𝑓( 𝑠𝑥 ,  𝑠𝑦 , 𝑟) =
𝜂𝜂  

𝜋 (𝜂−2)!
(1 − 𝜌2)− 

𝜂

2 (1 − 𝑟2)
𝜂−3

2  𝑒 
{− 

𝜂

2(1−𝜌2)
 (𝑠𝑥 

2− 2𝜌𝑟𝑠𝑥𝑠𝑦 + 𝑠𝑦
2)}
 (𝑠𝑥𝑠𝑦)

𝜂−1
 𝑑𝑠𝑥  𝑑𝑠𝑦  𝑑𝑟    

We note that 

and 

  



. 

. 
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Therefore, the product  

𝑑𝛼 𝑑𝛽 = 𝑑𝑠𝑥 ∙ 𝑠𝑦  
1

𝑠𝑦
𝑑𝑠𝑦 = 𝑑𝑠𝑥  𝑑𝑠𝑦   

We mark the factors involving  𝑠𝑥  and 𝑠𝑦 in Equation 16 and express them in terms of 𝛼  and  𝛽. 

 𝑒
{− 

𝜂
2(1−𝜌2)

 (𝑠𝑥 
2− 2𝜌𝑟𝑠𝑥𝑠𝑦 + 𝑠𝑦

2)}
(𝑠𝑥𝑠𝑦)

𝜂−1𝑑𝑠𝑥  𝑑𝑠𝑦  =  |
1

2
| 𝛼𝜂−1 𝑒

−𝜂 
𝛼

1−𝜌2
 [ cosh𝛽− 𝜌𝑟 ]

𝑑𝛼 𝑑𝛽 

Integration with respect to 𝛼 (with integration limits 0 < 𝛼 < +∞) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2
∫  𝑒

−𝜂 
𝛼

1−𝜌2
 [ cosh𝛽− 𝜌𝑟 ]

+∞

 

 𝛼𝜂−1 𝑑𝛼 𝑑𝛽 

1

2
∫  𝑒

− 𝜂 
𝑎
𝑦
 𝑥  

∞

 

 𝑎𝜂−1 𝑑𝑎 𝑑𝛽 

                                                                                             𝛼 = 𝑎 

                                                                                (1 − 𝜌2) = 𝑦 

                                                                         cosh𝛽 −  𝜌𝑟 = 𝑥 

 



. 

. 
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1

2
∫  𝑒

− 𝜂  
𝑎
𝑦
 𝑥 

∞

 

 𝑎𝜂−1 𝑑𝑎 𝑑𝛽 

𝑢 =
𝑎

𝑦
   →   𝑎 = 𝑢𝑦             𝑎𝑛𝑑           

𝛿𝑎

𝛿𝑢
=  

𝛿(𝑢𝑦)

𝛿𝑢
= 𝑦  →   𝛿𝑎 = 𝑦 𝛿𝑢 

1

2
∫ 𝑦𝜂−1 𝑢𝜂−1𝑒− 𝜂 𝑢𝑥 
∞

 

𝑦 𝑑𝑢 𝑑𝛽 

1

2
𝑦𝜂∫  𝑢𝜂−1𝑒− 𝜂 𝑥𝑢 

∞

 

𝑑𝑢 𝑑𝛽 

1

2
𝑦𝜂∫  𝑢𝑏𝑒− 𝑚𝑢 

∞

 

𝑑𝑢 𝑑𝛽 =
1

2
𝑦𝜂

𝛤(𝑏 + 1)

𝑚𝑏+1
𝑑𝛽 

1

2
𝑦𝜂

𝛤(𝑏 + 1)

𝑚𝑏+1
𝑑𝛽     →      

1

2
𝑦𝜂

𝛤(𝜂)

𝑥𝜂 𝜂𝜂
𝑑𝛽 =

 1

2
(1 − 𝜌2)𝜂  

𝛤(𝜂)

𝜂𝜂
 

1

(𝑐𝑜𝑠ℎ𝛽 −  𝜌𝑟)2
𝑑𝛽 

1

2
∫  𝑒

− 𝜂  
𝑎
𝑦
 𝑥 

∞

 

 𝑎𝜂−1 𝑑𝑎 𝑑𝛽 =  
1

2

(1 − 𝜌2)𝜂  𝛤(𝜂)

𝜂𝜂
1

(cosh 𝛽 − 𝜌𝑟)𝜂
𝑑𝛽 

Steps to integrate with respect to 𝑎 (Equation 16b) 

  substitute 

Use                                            𝑎𝜂−1 = 𝑦𝜂−1𝑢𝜂−1 
                                                                                              

                                                         𝑢 =
𝛼

𝑦
 

 

  substitute in   
1

2
𝑦𝜂 ∫  𝑢𝜂−1𝑒− 𝜂 𝑢𝑥 

∞

 
𝑑𝑢 𝑑𝛽 

        𝑏 = 𝜂 − 1            →       𝑏 + 1 = 𝜂 

       𝑚 = 𝑥(𝑏 + 1)      →              𝑚 = 𝑥𝜂       

 

Undoing of variable substitution above 

 Undo substitution 

 

 Undo variable change.  Finally we obtain 

                                           =
1

2
𝛤(𝜂) (

1−𝜌2

𝜂
)
𝜂 1

(cosh𝛽−𝜌𝑟)𝜂
𝑑𝛽  



. 

. 
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Now we can reformulate the integrant as follows 

 

 

 

 

Finally, integrating with respect to 𝛼, 

 

 

 

 

Equation 16c 

Integration with respect to 𝛽 (integration limits −∞ < 𝛽 < +∞), but since we work from 0 to +∞, we 
multiply by 2. 

1

2
(𝜂 − 1)! (

1 − 𝜌2

𝜂
)

𝜂

2∫
1

(cosh𝛽 − 𝜌𝑟)𝜂
𝑑𝛽

+∞

 

 

 

Up to now, we have arrived to the following expression 

𝑓( 𝑟, 𝜌) =
𝜂𝜂   

𝜋 (𝜂 − 2)!
(1 − 𝜌2)− 

𝜂
2 (1 − 𝑟2)

1
2
(𝜂−3) (𝜂 − 1)! (

1 − 𝜌2

𝜂
)

𝜂

[∫
1

(cosh 𝛽 − 𝜌𝑟)𝜂
𝑑𝛽

∞

 

]  𝑑𝑟 

 

After some simplification and rearrangement, the general distribution of 𝑟 is 

𝑓𝑛( 𝑟, 𝜌)𝑑𝑟 =
𝜂 − 1 

𝜋 
(1 − 𝜌2)

𝜂
2  (1 − 𝑟2)

1
2
(𝜂−3) [∫

1

(cosh𝛽 − 𝜌𝑟)𝜂
𝑑𝛽

∞

 

] 𝑑𝑟 

Introducing the notation 

 

 

 

 

 
1

2
∫  𝑒

− 
𝜂𝛼

1−𝜌2
 [ cosh𝛽− 𝜌𝑟 ]

∞

 

 𝛼𝜂−1𝑑𝛼 𝑑𝛽 

 

 

1

2
∫ 𝛼𝜂−1 𝑒

− 
𝜂𝛼

1−𝜌2
 [ cosh𝛽− 𝜌𝑟 ]

𝛼→+∞

𝛼= 

 𝑑𝛼 𝑑𝛽 =   
1

2
(𝜂 − 1)! (

1 − 𝜌2

𝜂
)

𝜂
1

(cosh 𝛽 − 𝜌𝑟)𝜂
𝑑𝛽 

Equation 17  

                                                𝐼𝑛(𝜌𝑟) = ∫
1

(cosh𝛽−𝜌𝑟)𝜂

∞

 
𝑑𝛽                                            |𝑝| < 1 



. 

. 
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We replace the integral for equation 17  

 

 

 

The difficulties with the form presented lies in the integral factor, which will be denoted as 𝐼𝑛(𝜌𝑟).             

We can re-express  

 

 

 

 

Introducing the notation 𝑝 = 𝜌𝑟 

 

 

 

A fundamental improvement is the use of the following substitution: 

 

 

 

 

Therefore  

 

 

 

 

 

 

 

    𝑓𝜂( 𝑟, 𝜌)𝑑𝑟 =
𝜂 − 1 

𝜋 
(1 − 𝜌2)

𝜂
2  (1 − 𝑟2)

1
2
(𝜂−3)𝐼𝑛(𝜌𝑟)𝑑𝑟 

    𝑓𝜂( 𝑟, 𝜌)𝑑𝑟 =
𝜂 − 1 

𝜋 
(1 − 𝜌2)

1
2
𝜂   (1 − 𝑟2)

1
2
(𝜂−3)𝐼𝑛(𝜌𝑟)𝑑𝑟 

Equation 18 

 

 

𝐼𝜂(𝑝) = ∫
1

(cosh 𝛽 − 𝑝)𝑛

∞

 

𝑑𝛽 

 

cosh𝛽 =  
1 − 𝑝𝑧

1 − 𝑧
 

Equation 21 

 

 

cosh𝛽 − 𝑝 =  (
1 − 𝑝𝑧

1 − 𝑧
− 𝑝) = 

1 − 𝑝

1 − 𝑧
 

      𝛽 = 𝑎𝑟𝑐𝑜𝑠ℎ (
1 − 𝑝𝑧

1 − 𝑧
) 



. 

. 
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Taking the derivative of 𝛽 with respect to 𝑧,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After some simplification and rearrangement we obtain 

 

 

Multiplying the integrand by 
√2

√2
 

 𝐼𝜂(𝑝) = ∫ (1 − 𝑝)−𝜂+
1
2

∞

 

 𝑧−
1
2 (1 − 𝑧)𝜂−1

1

√2 − 𝑧 − 𝑝𝑧

√2

√2
𝑑𝑧 

 

 

                            
𝑑𝛽

𝑑𝑧
=

1 − 𝑝

(𝑧 − 1)2 √
(1 − 𝑝𝑧)2

(1 − 𝑧)2
− 1 

 

                                  =
1 − 𝑝

(𝑧 − 1)2√
1− 𝑝𝑧
1 − 𝑧 − 1√

1 − 𝑝𝑧
1 − 𝑧 + 1 

 

                                  =
1 − 𝑝

(𝑧 − 1)2√
𝑧(1 − 𝑝) 
1 − 𝑧

√2− 𝑧 − 𝑝𝑧 
1 − 𝑧

 

                                  =
(1 − 𝑝)(1 − 𝑧)

(𝑧 − 1)2√𝑧√1 − 𝑝 √2 − 𝑧 − 𝑝𝑧
 

                      𝑑𝛽 =
(1 − 𝑝)

1
2 

(1 − 𝑧) √𝑧 √2 − 𝑧 − 𝑝𝑧
𝑑𝑧 

𝐼𝜂(𝑝) = ∫
1

(cosh 𝛽 − 𝑝)𝜂

∞

 

𝑑𝛽 =  ∫
(1 − 𝑧)𝜂

(1 − 𝑝)𝜂
(1 − 𝑝)

(1 − 𝑧) √𝑧 √2 − 𝑧 − 𝑝𝑧)

∞

 

𝑑𝑧 

 

Finally, we note that the term (𝑧 − 1)2 = (1 − 𝑧)2 and after simplification 

Thus      

 

 

𝐼𝜂(𝑝) = ∫ (1 − 𝑝)−𝜂+
1
2

∞

 

 𝑧−
1
2 (1 − 𝑧)𝜂−1

1

√2 − 𝑧 − 𝑝𝑧
𝑑𝑧 

 



. 
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𝐼𝜂(𝑝) =
1

√2
 (1 − 𝑝)−𝜂+

1
2∫ 𝑧−

1
2 (1 − 𝑧)𝜂−1 (1 −

(1 + 𝑝)

2
𝑧)

− 
1
2
𝑑𝑧

∞

 

 

Equation 22 

                                       2𝐹1(𝑎1 , 𝑎2 ; 𝑏1; 𝑥) =      
𝛤(𝑏1)

𝛤(𝑎2)𝛤(𝑏1 − 𝑎2)
∫ 𝑧𝑎2(

1

0

1 − 𝑧)𝑏1−𝑎2(1 − 𝑘𝑧)−𝑎1𝑑𝑧 

𝛤(𝑎2)𝛤(𝑏1 − 𝑎2)

𝛤(𝑏1)
∙ 2𝐹1(𝑎1 , 𝑎2 ;  𝑏1; 𝑥) = ∫ 𝑧𝑎2(

1

0

1 − 𝑧)𝑏1−𝑎2(1 − 𝑘𝑧)−𝑎1𝑑𝑧 

This integral has the kernel of a hypergeometric integral  

where    𝑎1 =
1

2
 ,            𝑎2 =

1

2
 ,              𝑏1 = 𝜂+

1

2
 ,              𝑘 =

1 + 𝑝

2
  

𝐼𝑛(𝑝) =
1

√2
 (1 − 𝑝)−𝜂+

1
2  
𝛤(

1
2
)𝛤(𝜂)

𝛤(𝜂 +
1
2
)
∙ 2𝐹1 (

1

2
,
1

2
 ;  𝜂 +

1

2
;
1 + 𝑝

2
) 

𝐼𝑛(𝑝) =
1

√2
 (1 − 𝑝)−𝜂+

1
2  
𝜋 
1

2  𝛤(𝜂)

𝛤(𝜂 +
1
2
)
∙ 2𝐹1 (

1

2
 ,
1

2
 ;  𝜂 +

1

2
; 
1 + 𝑝

2
) 

Replacing this variables in equation we obtain 

𝐼𝑛(𝑝) =
1

√2
 (1 − 𝑝)−𝜂+

1

2 ∫ 𝑧−
1

2 (1 − 𝑧)𝜂−1 (1 −
(1+𝑝)

2
𝑧)

− 
1

2
𝑑𝑧

∞

 
    

Since 𝛤 (
1

2
) = 𝜋

1

2 

𝐼𝑛(𝑝) =  
𝜋 
1

2  𝛤(𝜂)

√2 𝛤(𝜂 +
1
2
)
(1 − 𝑝)−𝜂+

1
2  2𝐹1 (

1

2
 ,
1

2
 ;  𝜂 +

1

2
; 
1 + 𝑝

2
) 

Equation 24 
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Replacing this  𝐼𝜂(𝜌𝑟) term in Equation 18, we obtain 

 

 

 

 

 

Finally, we exchange 𝜂 = 𝑛 − 1, and obtain the sampling distribution of the correlation coefficient in 

terms of the sample size 𝑛. 

 

 

 

 

The hypergeometric function is expanded in Appendix 5.  By using the first three terms one can obtain a 

very good approximation of the probability density function of  𝑟. 

 

 

 

 

  

    𝐼𝜂(𝜌𝑟) =  
𝜋 
1

2  𝛤(𝜂)

√2 𝛤(𝜂 +
1
2
)
(1 − 𝜌𝑟)−𝜂+

1
2  2𝐹1 (

1

2
 ,
1

2
 ;  𝜂 +

1

2
; 
1 + 𝜌𝑟

2
) 

𝑓𝜂(𝑟|𝜌, 𝜂)𝑑𝑟 =
𝜂 − 1 

𝜋 
(1 − 𝜌2)

𝜂
2  (1 − 𝑟2)

1
2
(𝜂−3)𝐼𝜂(𝜌𝑟)𝑑𝑟 

Replacing  𝑝 =  𝜌𝑟, we obtain 

𝑓𝜂(𝑟|𝜌, 𝜂) =
𝜂 − 1 

𝜋 
(1 − 𝜌2)

𝜂
2  (1 − 𝑟2)

1
2
(𝜂−3) 𝜋 

1

2  𝛤(𝜂)

√2 𝛤(𝜂 +
1
2
)
(1 − 𝜌𝑟)−𝜂+

1
2  2𝐹1 (

1

2
 ,
1

2
 ;  𝜂 +

1

2
; 
1 + 𝜌𝑟

2
) 

Equation 25 

   which converges for −1 < 𝜌𝑟 < +1 . 

Probability density function of the distribution of the sample correlation coefficient in terms of 𝜌, 𝑛  

𝒇𝐫(𝒓|𝝆, 𝒏) =
𝒏−𝟐

√𝟐𝝅
 
𝜞(𝒏−𝟏)

𝜞(𝒏−
𝟏

𝟐
)
 (𝟏 − 𝝆𝟐)

𝒏−𝟏

𝟐  (𝟏 − 𝒓𝟐)
𝒏−𝟒

𝟐  (𝟏 −  𝝆𝒓)−𝒏+
𝟑

𝟐 ∙𝟐 𝑭𝟏 ( 
𝟏

𝟐
 ,
𝟏

𝟐
 ; 𝒏 −

𝟏

𝟐
 ;  

𝟏+𝝆𝒓

𝟐
 )  

 

𝒇𝐫(𝒓| 𝝆,𝒏) ≈
𝒏− 𝟐

√𝟐𝝅

𝜞(𝒏− 𝟏)

𝜞 (𝒏−
𝟏
𝟐)

(𝟏 − 𝝆𝟐)
𝒏−𝟏
𝟐 (𝟏− 𝒓𝟐)

𝒏−𝟒
𝟐 (𝟏−  𝝆𝒓)−𝒏+

𝟑
𝟐 [𝟏 +

𝟏

𝟒

(𝟏− 𝝆𝒓)

(𝟐𝒏− 𝟏)
+

𝟗

𝟑𝟐

(𝟏+ 𝝆𝒓)𝟐

(𝟐𝒏− 𝟏)(𝟐𝒏+ 𝟏)
+⋯ ] 
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4.2  Comments on the distribution of 𝒓 

4.2.1  General comments 

The shape of the sample correlation coefficient 

when 𝜌 = 0 is symmetric and/or when the 

sample size is very large. The distribution has a 

zero skew value indicating that the left and right 

hand sides of the distribution are roughly 

equally balanced around the mean.   

 

However, the shape of the sampling distribution 

of the correlation coefficient is asymmetric 

when it differs from 𝜌 = 0. This means that the 

tail on one side is longer or fatter than the other 

side. The reason for this asymmetry of the 

probability distribution is that the correlation 

coefficient cannot take values less than -1 or 

greater than +1.  The skew of the distribution is 

more noticeable when the sample size is small 

(𝑛 < 25). 

When 𝜌 < 0  the distribution is positively 

skewed. 

 

 

 

 

When 𝑟 > 0, the distribution is negatively 

skewed.  
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As the sample size 𝑛 increases                                     

the skew is less pronounced,                                      

the distribution becomes narrower          

(variance decreases),                                                                                   

and density (𝑦 axis) reaches larger values 
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As 𝜌 approaches +1 or −1, the sampling 

variance decreases, so that when 𝜌 is either at 

+1 or −1, all sample values equal the 

parameter and the sampling variance is zero.  

 

 

 

 

Note that as |ρ| approaches 1, the sampling variance approaches zero.  

The shape of the sampling distribution depends on the sample size  𝑛. The shape becomes increasingly 

normal with large values of 𝑛, and becomes increasingly skewed with increasing |𝜌|.  
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4.2.2  Comments on the distribution of 𝒓 when the correlation coefficient parameter 𝝆 is zero  

 

Independence implies zero correlation, but not the converse. 

If the population phenotypic correlation is zero, then two possible cases exist:  

(a) both the population coheritability 𝐻𝑥,𝑦 and the population coenvironmentability 𝐸𝑥,𝑦  are zero,  

 

or 

 

(b) both the population coheritability 𝐻𝑥,𝑦 and the population coenvironmentability 𝐸𝑥,𝑦  are 

nonzero, have the same magnitude, but differ in sign. 

In the latter case, one must be mindful that a zero phenotypic correlation does not necessarily indicate 

that the coheritability and coenvironmentability are zero.  From a statistical point of view, their values 

may be significantly different than zero, yet possess a different sign. 

Examples of distribution of  𝑟𝑃𝑥,𝑦 , ℎ𝑥,𝑦, and 𝑒𝑥,𝑦 when the parameter values of the population-level 

coheritability and coenvironmentability sum up to zero. 
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4.2.3  Comments on the distribution of 𝒓 when the correlation coefficient parameter 𝝆 is 

nonzero  

 

The closed-form representation of the probability density function of the sample correlation coefficient 

𝑟  is dependent on the population correlation coefficient  𝜌  and the sample size  𝑛 (see section 4.1.2). 

Figure 4.2.3-1 presents a hypothetical but realistic case of data plotted on the 2DHER-field where the 

phenotypic correlation is 𝑟𝑃𝑥,𝑦 = −0.5, the coheritability ℎ𝑥,𝑦 = −0.35, and the coenvironmentability 

𝑒𝑥,𝑦 = −0.15.  Further examples are presented in Figure 4.2.3-2 where, for ease of comparison, the 

density curves are overlaid in the same graph. 

  

                               

Figure 4.2.3-1  Sampling distribution of phenotypic correlation, coheritability, and coenvironmnetability.  

Data is plotted on the 2DHER-field showing the phenotypic correlation between two traits obtained 

from  𝑛 = 150  samples drawn from a population with 𝜌𝑃𝑥,𝑦 =-0.51, decomposed into its coheritability, 

coenvironmentability components  
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Figure 4.2.3-2  Example of distributions of the phenotypic correlation, coheritability and 

coenvironmentability.  Density curves are overlaid to facilitate comparison.   

 

Pham-Gia and Choulakian (2014) proposed an original expression for the density of the correlation 

matrix, with sample variances as parameters for the case of the multivariate normal population with 

non-identity population correlation.  
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4.3  Moments of the sample correlation coefficient  distribution 
 

Hotelling (1953, page 212) presents the moments of the sample correlation coefficient 𝑟 around its 

mean. Rady et al. (2005) introduced a method to easily determine the moments of 𝑟 around its mean, 

which are the same as those found by Gosh (1966). Romero-Padilla (2016) presents the moments of 𝑟 

around the origin using hypergeometric functions. 

     

Mean sample correlation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐸(𝑟) =  �̅�  =  𝜌 {1 − 
1

2(𝑛− 1)
(1− 𝜌2)− 

3

8(𝑛− 1)2
(1 − 𝜌2)(1 + 3𝜌2)} 

.4-3a. Mean of the sample correlation coefficient around its mean 

 

 

 
𝑉𝑎𝑟(𝑟) =  𝜎𝑟

2 = 
(1 − 𝜌2)2

𝑛 − 1
  {1 + 

5.5 𝜌2

𝑛 − 1
+
−24𝜌2 +  5𝜌4

2(𝑛 − 1)2
+.  .  . } 

.4-3b.  Variance of the sample correlation coefficient  

 

 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 
 𝜌

√𝑛 − 1
 1 + 

−30 +   𝜌2

12 (𝑛 − 1)
+.  .  .  

.4-3c.  Skewness  of the sample correlation coefficient 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
 (12𝜌2 − 1)

√𝑛 − 1
 +.  .  .  

.4-3c.  Kurtosis  of the sample correlation coefficient 
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4.4  The  Fisher  𝒓-to-𝒁  transform  of  the  correlation  coefficient 
 

The Pearson product moment correlation coefficient  𝑟  based on  𝑛  independent units of observation 

has an asymptotic normal distribution.  However, its distribution can be highly skewed at small-to-

moderate sample sizes, and its sampling variance varies as a function of the population correlation 

coefficient 𝜌.  Noting these limitations, Fisher (1921) proposed using the inverse hyperbolic tangent 

function 𝑍𝑟 as a normalizing and variance-stabilizing transformation: 

 

 

 

 

 

 

For the transformed 𝑧, the approximate variance 𝜎 𝑍𝑟
2 =  1/(𝑛 − 3) is independent of the correlation.  

Fouladi and Steiger (2008) provide a thorough discussion on the consequence of the use of this 

transformation and its implications in inferential statistics.  
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.4-4a. Fisher r-to-Z transformation of 𝑍𝑟 

note the equivalent ways to denote the inverse hyperbolic tangent: 

                                          𝑎𝑡𝑎𝑛ℎ(𝑟)= 𝑎𝑟𝑡𝑎𝑛ℎ(𝑟) = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(𝑟) = 𝑡𝑎𝑛ℎ−1(𝑟)  
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�̅�𝑟 = 𝐸(𝑍𝑟 − 𝑍𝜌) 

                      =
𝜌

2(𝑛 − 1)
+

5𝜌 + 𝜌3

8(𝑛 − 1)2
+
11𝜌 + 2𝜌3 + 3𝜌5

1 (𝑛 − 1)3
+
83𝜌 + 13𝜌3 − 2 𝜌5 +  5𝜌7

128(𝑛 − 1)4
+𝑂(𝑛−5) 

.4-4b. Mean of the Fisher transform of 𝑍𝑟 

 

𝜎𝑍𝑟−𝑍𝜌
2 = 𝐸(𝑍𝑟 − 𝑍𝜌 − �̅�)2

=
1

𝑛 − 1
+

8 − 𝜌2

4(𝑛 − 1)2
+
88 − 9𝜌2 − 9𝜌4

24(𝑛 − 1)3
+
384 − 19𝜌2 + 2𝜌4 −  5𝜌6

 4(𝑛 − 1)4
+𝑂(𝑛−5) 

.4-4c. Variance of the Fisher transform of 𝑍𝑟 
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Figure 4.4.  Distribution of the sample 

correlation coefficient r  (orange line), 

and its corresponding                                  

Fisher transform Zr  (purple line). 
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5  Inferential statistics 
 

Statistical inference is often conducted through significance testing and confidence interval 

construction.  Although closely related, significance testing focuses on a single a priori hypothesis, 

usually a null value (e.g. 𝜌 = 0).  In contrast, a confidence interval can avoid such problems by providing 

a range of plausible parameter values.  The confidence interval reveals both the magnitude and the 

precision of the estimated effect, whereas the p-value obtained from significance testing confounds 

these two aspects of the data (Lee 2016). 

 

5.1  Statistical  justification 
 

In this section I apply well-established statistical tools for the analysis of correlations and extend them to 

the analysis of the coheritability coefficient.  The heritabilities are treated here as scalars, which may be 

considered a potential caveat of the method. 

The distribution of a random variable multiplied by a scalar creates a scale family distribution, with well-

known statistical properties.  Thus, the coheritability ℎ𝑥𝑦 has a distribution similar to the one of 𝑟𝐴𝑥,𝑦, 

but rescaled by √ℎ𝑥2 ℎ𝑦2  . 

 (1) It has been demonstrated that at limiting cases (Section 7.4) the phenotypic correlation can equate 

either the coheritability (if both heritabilities are unity) or the coenvironmentability (if at least one 

heritability is zero).  This fact indicates that the same inferential statistical tools to test correlations can 

also be used to test the coheritability and the coenvironmentability.    

(2) The coheritability is composed of additive genetic correlation multiplied by the factor  √ℎ𝑥2 ℎ𝑦2   which 

is the geometric mean of the heritabilities. Although, the heritabilities are random variables, here they 

are going to be regarded as constants (i.e. scalars). Thus, the coheritability coefficient  ℎ𝑥𝑦 = √ℎ𝑥2 ℎ𝑦2  𝑟𝐴𝑥,𝑦 

can be thought of as the weighed genetic correlation, with a distribution that is a scale family of the 

original correlation distribution. 

The √ℎ𝑥
2 ℎ𝑥

2  factor is expressed as a strictly positive decimal numeral bound by the interval (0 , +1]. This 

causes the values of ℎ𝑥,𝑦 to compare to 𝑟𝐴𝑥,𝑦 as follows:  

Multiplying √ℎ𝑥
2 ℎ𝑥

2   to the genetic correlation 𝑟𝐴𝑥,𝑦 will cause (a) the modulus (i.e. absolute value) of 

the product to decrease, but still maintaining the same sign.  

(a) if  −1 ≤  𝑟𝐴𝑥,𝑦 < 0   then the value of the coheritability would oscillate in the range      

𝑟𝐴𝑥,𝑦 ≤ ℎ𝑥,𝑦 < 0, because multiplying a decimal numeral to a negative 𝑟𝐴𝑥,𝑦  will cause its 
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magnitude to move towards zero, making ℎ𝑥,𝑦  comparatively higher than𝑟𝐴𝑥,𝑦, yet keeping 

its sign.  

(b) If  0 <  𝑟𝐴𝑥𝑦  ≤  1  then 0 < ℎ𝑥𝑦 ≤ 𝑟𝐴𝑥𝑦, because multiplying a positive decimal numeral to 

a strictly positive 𝑟𝐴𝑥𝑦  will cause its magnitude to move towards zero thus decreasing it, and 

maintain its sign. 

(3)  The form of the 𝑟𝐴𝑥𝑦  sampling distribution does not change with the factoring √ℎ𝑥2 ℎ𝑦2.  It simply 

becomes a scale family distribution of 𝑟𝐴𝑥𝑦 . 

(4)  The 𝑟-to-𝑍 Fisher transformed of the phenotypic correlation cannot be decomposed into a 

coheritability term and a coenvironmentability term.  However, a naïve and heuristic approach could be 

assumed in which the proportion of the coheritability or coenvironmentability with respect to the 

phenotypic correlation in the 𝑟-space does not change with the transformation to the 𝑍-space. 
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5.2  Hypothesis testing when null hypothesis sets the parameters to a zero value 
 

Although the fundamental results and associated use of the sample correlation are described in most 

introductory textbooks of statistics.  The rationale used for the testing of the correlation coefficients 

(phenotypic, genetic, environmental) 𝜌 = 0, is extended, in a heuristic way, to the hypothesis test of the  

coheritability 𝐻𝑥,𝑦 = 0, and the coenvironmentability 𝐸𝑥,𝑦 = 0.  Here I used the term parameter to refer 

to 𝜃 = {𝜌𝑃𝑥,𝑦 , 𝜌𝐴𝑥,𝑦  , 𝜌𝐸𝑥,𝑦 , 𝐻𝑥,𝑦  , 𝐸𝑥,𝑦}. 

The sample correlation coefficient 𝑟 is a point estimator of 𝜌.  The distribution of r when 𝜌 = 0  is 

presented in Section 4.1.1.    To test whether or not a linear relationship exists between two traits 𝑥 and 

𝑦, a following test statistic is used 

𝑡𝛼 ,(𝑛−2) =
𝑟

√1 − 𝑟2

𝑛 − 2

 

Which can also be rearranged as 

𝑟 =
𝑡𝛼 ,(𝑛−2)

√𝑛 − 2 + 𝑡2
 

(see Samiuddin 1970 for an exact test statistic). 

Which is the basis of the critical value method, used in this work. 

𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝑡𝛼 ,(𝑛−2)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

√𝑛 − 2 + 𝑡2
 

There is extensive criticism in the literature of testing of parameters hypothesized to be equal 

to zero (Beaulieu-Prévost  2006, Lee 2016).  Simply reporting that a correlation is significant at a 

given 𝛼 level just because the p-value for the test 𝐻𝑜: 𝜌 = 0 is less than 𝛼  is generally not 

sufficient (Looney 2008).  The argument that 𝐻𝑜: 𝜌 = 0 is the appropriate null hypothesis to 

test and that using sample sizes that actually yield a desirable level of power (say 80%) for the 

test can result in confidence intervals that are so wide that they provide very little useful 

information about the magnitude of the population correlation coefficient. 

A better approach is to test null values other than 𝜌𝑜 = 0 (Section 5.3), and then determine the 

sample size (Section 5.6) so as to achieve a certain level of precision of the estimate of 𝜌 as 

measured by the width of the resulting confidence interval. 
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-1 # # 1 ## 1

0 0 0 0 0 0

   test  conclusion    test  conclusion    test  conclusion

The test rejects the H₀ at an The test rejects the H₀ at an The test does not rejects the H₀ at an
 α = significance level  α = significance level  α = significance level
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-0.1646

0.05 0.05

0.05 0.05

Hypothesis  test  of  population  phenotypic  correlation

then reject the H₀

0.05 0.05 0.05
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Because <

then reject the H₀
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  critical  value   critical  value   critical  value

  test  statistic   test  statistic   test  statistic

  test  criteria   test  criteria   test  criteria

do not reject H₀ do not reject H₀ do not reject H₀

  test  result   test  result   test  result

-1 # -1 # # 1 ## 1

0 0 0 0 0 0 0 0

   test  conclusion    test  conclusion    test  conclusion

The test rejects the H₀ at an The test rejects the H₀ at an The test does not rejects the H₀ at an
 α = significance level  α = significance level  α = significance level0.05 0.05 0.05

1.9842

-0.0403

Because < Because >

-1.6604 1.6604

-0.2 -0.2 -0.2

then reject the H₀ then reject the H₀ then reject the H₀

Because <

101 0.05 101 0.05 101 0.05

0.0403

Hypothesis  test  of  population  coheritability

0.05 0.05 0.05

0.0479

𝐻𝑜:  𝐻𝑥,𝑦 = 0

𝐻1 :  𝐻𝑥,𝑦 < 0

𝐻𝑜:  𝐻𝑥,𝑦 = 0

𝐻1 :  𝐻𝑥,𝑦 ≠ 0

𝐻𝑜:  𝐻𝑥,𝑦 = 0

𝐻1 :  𝐻𝑥,𝑦 > 0

𝑛 =                    𝛼 =

𝑡𝑐𝑟𝑖𝑡 = −𝑡𝛼 ,𝑛−2 =

𝛼 = 𝛼 = 𝛼 =

𝑛 =                    𝛼 =

𝑡𝑐𝑟𝑖𝑡 = 𝑡𝛼 ,𝑛−2 =

  𝑛 =                    𝛼 =

|𝑡𝑐𝑟𝑖𝑡|→ ± 𝑡
1−

𝛼
2
 ,𝑛−2

= ±

ℎ𝑥,𝑦 = ℎ𝑥,𝑦 = ℎ𝑥,𝑦 =

𝑖𝑓  
ℎ𝑥,𝑦 ≤ ℎ𝑥,𝑦𝑐𝑟𝑖𝑡

.
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑖𝑓  
ℎ𝑥,𝑦  ℎ𝑥,𝑦𝑐𝑟𝑖𝑡

.
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ℎ𝑥,𝑦 𝑟𝑖 = ℎ𝑥
2  ℎ𝑦  

2  𝑟𝐴𝑥,𝑦 𝑟𝑖 
=

ℎ𝑥
2 ℎ𝑦  

2 𝑡𝑐𝑟𝑖𝑡

𝑛 − 2+ 𝑡𝑐𝑟𝑖𝑡
2

=

𝑖𝑓  
ℎ𝑥,𝑦  ℎ𝑥,𝑦𝑐𝑟𝑖𝑡

.
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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2 ℎ𝑦  

2  𝑟𝐴𝑥,𝑦 𝑟𝑖 
=

ℎ𝑥
2  ℎ𝑦  

2 𝑡𝑐𝑟𝑖𝑡

𝑛 − 2 + 𝑡𝑐𝑟𝑖𝑡
2

= ±

|ℎ𝑥,𝑦|     ℎ𝑥,𝑦𝑐𝑟𝑖𝑡 ℎ𝑥,𝑦     ℎ𝑥,𝑦𝑐𝑟𝑖𝑡
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  hypotheses   hypotheses   hypotheses

  significance  level   significance  level   significance  level

  critical  value   critical  value   critical  value

  test  statistic   test  statistic   test  statistic

  test  criteria   test  criteria   test  criteria

do not reject H₀ do not reject H₀ do not reject H₀

  test  result   test  result   test  result

-1 # -1 # # 1 ## 1

0 0 0 0 0 0 0 0

   test  conclusion    test  conclusion    test  conclusion

The test does not reject the H₀ at an The test rejects the H₀ at an The test rejects the H₀ at an
 α = significance level  α = significance level  α = significance level

Because >Because < Because >

0.05 101

-1.6604 1.9842 1.6604

0.65

0.05 101 0.05

0.05 0.05 0.05

Hypothesis  test  of  population  coenvironmentability

0.05 0.05 0.05

0.65 0.65

then reject the H₀ then reject the H₀ then reject the H₀

101

-0.1232 0.1464 0.1232

𝐻𝑜:  𝐸𝑥,𝑦 = 0

𝐻1 :  𝐸𝑥,𝑦 < 0

𝐻𝑜:  𝐸𝑥,𝑦 = 0

𝐻1 :  𝐸𝑥,𝑦 ≠ 0

𝐻𝑜:  𝐸𝑥,𝑦 = 0

𝐻1 :  𝐸𝑥,𝑦 > 0

𝑛 =                    𝛼 =

𝑡𝑐𝑟𝑖𝑡 = −𝑡𝛼 ,𝑛−2 =

𝛼 = 𝛼 = 𝛼 =

𝑛 =                    𝛼 =

𝑡𝑐𝑟𝑖𝑡 = 𝑡𝛼 ,𝑛−2 =

  𝑛 =                    𝛼 =

|𝑡𝑐𝑟𝑖𝑡|→ ± 𝑡
1−

𝛼
2
 ,𝑛−2

= ±

𝑒𝑥,𝑦 = 𝑒𝑥,𝑦 = 𝑒𝑥,𝑦 =

𝑖𝑓  
𝑒𝑥,𝑦 ≤ 𝑒𝑥,𝑦𝑐𝑟𝑖𝑡

.
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑒𝑥,𝑦 𝑟𝑖 = (1− ℎ𝑥
2)(1 − ℎ𝑦 

2 ) 𝑟𝐸𝑥,𝑦 𝑟𝑖 
=

(1− ℎ𝑥
2)(1 − ℎ𝑦 

2 ) 𝑡𝑐𝑟𝑖𝑡

𝑛 −2 + 𝑡𝑐𝑟𝑖𝑡
2

                                         =

𝑖𝑓  
𝑒𝑥,𝑦  𝑒𝑥,𝑦 𝑟𝑖 

.
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑖𝑓  
𝑒𝑥,𝑦  𝑒𝑥,𝑦 𝑟𝑖 

.
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑒𝑥,𝑦 𝑟𝑖 = (1 − ℎ𝑥
2)(1 − ℎ𝑦 

2 ) 𝑟𝐸𝑥,𝑦 𝑟𝑖 
=

(1− ℎ𝑥
2)(1 − ℎ𝑦 

2 ) 𝑡𝑐𝑟𝑖𝑡

𝑛 −2 + 𝑡𝑐𝑟𝑖𝑡
2

                                         = ± 

𝑟𝐸𝑥,𝑦       𝑟𝐸 𝑟𝑖 |𝑟𝐸𝑥,𝑦 |     𝑟𝐸 𝑟𝑖 

𝑒𝑥,𝑦 𝑟𝑖 = (1− ℎ𝑥
2)(1 − ℎ𝑦 

2 ) 𝑟𝐸𝑥,𝑦 𝑟𝑖 
=

(1 − ℎ𝑥
2)(1 − ℎ𝑦 

2 ) 𝑡𝑐𝑟𝑖𝑡

𝑛 −2 + 𝑡𝑐𝑟𝑖𝑡
2

                                         =

𝑟𝐸𝑥,𝑦       𝑟𝐸 𝑟𝑖 

𝑒𝑥 ,𝑦 𝑒𝑥 ,𝑦 𝑒𝑥 ,𝑦
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5.3  Hypothesis testing for a parameter equal to a nonzero value 
 

To test the significance of point estimators of the population parameters 

𝜃 = {𝜌𝑃𝑥,𝑦 , 𝜌𝐴𝑥,𝑦  , 𝜌𝐸𝑥,𝑦 , 𝐻𝑥,𝑦  , 𝐸𝑥,𝑦},  the hypothesized values used in 𝐻𝑜  must satisfy the following 

relationship: 

𝜌𝑃𝑥,𝑦 = √ℎ𝑥
2 ℎ𝑦

2   𝜌𝐴𝑥,𝑦⏟        
𝐻𝑥,𝑦

+ √(1 − ℎ𝑥
2)(1 − ℎ𝑦

2) 𝜌𝐸𝑥,𝑦⏟                
𝐸𝑥,𝑦

 

Since the sampling distribution of the Pearson’s 𝑟 is not normally distributed, a common practice is to 

use the Fisher’s 𝑟-to-𝑍 transformation (Section 4.4). 
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  hypotheses   hypotheses   hypotheses

  significance  level   significance  level   significance  level

  Fisher r -to-Z transformation   Fisher r -to-Z transformation   Fisher r -to-Z transformation

  critical  value   critical  value   critical  value

  test  statistic   test  statistic   test  statistic

  test  criteria   test  criteria   test  criteria

do not reject H₀ do not reject H₀

  test  result   test  result   test  result

   test  conclusion    test  conclusion    test  conclusion

The test rejects the H₀ at an The test rejects the H₀ at an The test does not reject the H₀ at an
 α = significance level  α = significance level  α = significance level
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0.05

0.45
0.4847

0.45

0.6
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0.4847
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0.6
0.6931

0.6

0.1010
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Because

-2.06
0.1010

then reject the H₀
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Hypothesis  test  of  population  phenotypic  correlation
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0.1010
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do not reject H₀

0.05
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Because

𝐻𝑜:  𝜌𝑃𝑥,𝑦 =

𝐻1 :  𝜌𝑃𝑥,𝑦 <

𝛼 =

𝑍𝑟𝑃 =
1

2
𝑙𝑛

1+ (               ) 

1 − (              )
=

𝑍𝜌𝑃 =
1

2
𝑙𝑛

1+ (                )

1 − (                )
=

𝑧𝑐𝑟𝑖𝑡 = 𝑧𝛼 =

𝑧 =
𝑧𝑟𝑃 − 𝑧𝜌𝑃
𝜎𝑍𝑟𝑃

=
               −                

                                    )
=

𝜎𝑍𝑟𝑃
≈

1

𝑛 − 3
=

𝑖𝑓  
𝑧 ≤ 𝑧𝑃 𝑟𝑖 

.
  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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=
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𝐻1 :  𝜌𝑃𝑥,𝑦 ≠

𝑧     𝑧𝑃 𝑟𝑖 

𝑧𝑃 𝑟𝑖 = 𝑧1−𝛼
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  hypotheses   hypotheses   hypotheses

  significance  level   significance  level   significance  level

  Fisher r -to-Z transformation   Fisher r -to-Z transformation   Fisher r -to-Z transformation

  critical  value   critical  value   critical  value

  test  statistic   test  statistic   test  statistic

  test  criteria   test  criteria   test  criteria

do not reject H₀ do not reject H₀

  test  result   test  result   test  result
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 α = significance level  α = significance level  α = significance level
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.
  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑧𝑒 𝑐𝑟𝑖𝑡 = 𝑧𝛼 = 𝑧𝑒 𝑐𝑟𝑖𝑡 = 𝑧1−𝛼
2
 =𝑧𝑒 𝑐𝑟𝑖𝑡 = ± 𝑧

1−
𝛼
2
 
=±

𝑍𝑒𝑥,𝑦
 =𝑍𝑟𝑃 −𝑍ℎ𝑥,𝑦

 =               −               =      

𝑍𝐸𝑥,𝑦 =
1

2
𝑙𝑛

1+ (                  ) 

1 − (                 )
=

𝑧  >  𝑧𝑒   𝑟𝑖 −𝑧𝑒   𝑟𝑖 <  𝑧 < + 𝑧𝑒   𝑟𝑖 
𝑧 > 𝑧𝑒   𝑟𝑖 

𝑍𝐸𝑥,𝑦 =
1

2
𝑙𝑛

1+ (                  ) 

1 − (                 )
= 𝑍𝐻𝑥,𝑦 =

1

2
𝑙𝑛

1+ (                  ) 

1 − (                 )
=

𝑍𝑒𝑥,𝑦
 =𝑍𝑟𝑃 −𝑍ℎ𝑥,𝑦

 =               −               =      𝑍𝑒𝑥,𝑦
 =𝑍𝑟𝑃 −𝑍ℎ𝑥,𝑦

 =               −               =      

𝑧 =
𝑍𝑒𝑥,𝑦
 −𝑍𝐸𝑥,𝑦

𝜎𝑍 𝑥,𝑦 
=

               −                

                                    
= 𝑧 =

𝑍𝑒𝑥,𝑦
 −𝑍𝐸𝑥,𝑦

𝜎𝑍 𝑥,𝑦 
=

               −                

                                    
=
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5.4  Power of the hypothesis test 
 

Power (sensitivity) is defined as the chance of appropriately rejecting the 𝐻  if the data are drawn from 

the alternative hypothesis 𝐻1.  It is calculated from the area of 𝐻1 in the points set under the Ho 

distribution as the critical values. 

Here the classical approach for determining the power of the test is presented for the case where the 

null hypothesis states that the parameter is has a nonzero value.             

The method to calculate the power of the test for the coheritability is based on the Fisher’s Z 

transformation.  Since there is no way to analytically determine the Z transform of the heritability and 

coenvironmentability given the value of the phenotypic correlation, the approach taken here was to 

determine the proportion of the coheritability in reference to the phenotypic correlation (i.e. 
ℎ𝑥,𝑦

𝑟𝑃𝑥,𝑦
).  The 

assumption is that the proportion is retained even when the phenotypic correlation has been 

transformed to 𝑍𝑟𝑃   (which is a very demanding assumption).  Multiplying the calculated proportion 

times the 𝑍𝑟𝑃  will yield a product “ 𝑍ℎ𝑥,𝑦”   which is assumed to be the coheritability in the Z-space. 

This method is certainly not robust enough, and rather indicates that further work is needed in this 

topic.                       
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Hypotheses Hypotheses Hypotheses

This is a single left-tailed test

Significance level Significance level Significance level

= = =

Fisher r-to-Z transformation Fisher r-to-Z transformation Fisher r-to-Z transformation

1 + ( ) 1 + ( ) 1 + ( )

1 - ( ) 1 - ( ) 1 - ( )

1 + ( ) 1 + ( ) 1 + ( )

1 - ( ) 1 - ( ) 1 - ( )

Critical  Value Critical  Value Critical  Value

Test  Statistic Test  Statistic Test  Statistic

( ) - (( ) ( ) - ( ) ( ) - (( )

Test  Criterion Test  Criterion Test  Criterion

Test  Result Test  Result Test  Result

Standard normal Standard normal Standard normal 

score    z score    z score    z

Fisher  Z Fisher  Z Fisher  Z

Sample Correlation Sample Correlation Sample Correlation

coefficient   r correlation   r coefficient   r

Test  Conclusion Test  Conclusion Test  Conclusion

 Because z  CRIT  Because z  CRIT  Because z  CRIT

The test does not reject the H₀ at an The test rejects the H₀ at an The test rejects the H₀ at an

 α = significance level  α = significance level  α = significance level

-0.715

-0.614

2.173

-0.330
-0.3183

= ln
-0.5

= -0.549
-0.5

1.96

0.101

±

= ln
-0.3183

-0.330

-0.549

2.173

z z z >

0.05

-1.645

>

-0.365 -0.318

=

Standard deviation = 0.101

P( z  < z CRIT ) =  α  = 0.05 z CRIT = 1.645

z ≤ z crit

-0.50

if
| z | < z crit do not reject H₀

| z | ≥ z crit

1.645

-0.3183

-0.3183

if
z < z crit do not reject H₀

0.05

-0.318

-0.33

-1.96 0

-0.549

1.96

-0.747

-0.338-0.614

-0.549

-0.50

0

-0.330

-0.318

>

0.05

-0.5

-0.3183
= -0.330

α 0.05

if

P( z  < z CRIT ) =  α  = 0.05 z CRIT =

0.101

Hypothesis   test  of  population  phenotypic   correlation

= -0.5

≠ -0.5

α 0.05

=

α 0.05

2.173

Standard deviation 

0.05P(| z | > z CRIT ) =  α  = 

=

-1.645

0.101

-0.330 -0.549

ln
-0.5

= -0.549
-0.5

 z CRIT =

= 0.101Standard deviation 

= ln
-0.5

z -0.330 -0.549

H₀ : ρ ᴘ

H₁ : ρ ᴘ

= ln
-0.3183

ln

= 2.173

ρ ᴘ > -0.5

H₀ : ρ ᴘ = -0.5H₀ : ρ ᴘ = -0.5

-0.5<ρ ᴘH₁ :

2.173

-0.383-0.351

0

-0.549

z > z crit do not reject H₀

then reject the H₀ then reject the H₀ z ≥ z crit then reject the H₀

-0.50

-0.330

H₁ :

z -0.330 -0.549z = 2.173
0.101

=𝑍𝜌 

𝑍𝑟 

𝜎𝑍𝑟𝑃

 =
𝑍𝑟𝑃 −𝑍𝜌𝑃
𝜎𝑍𝑟𝑃

= 

𝑍𝜌 

𝑍𝑟 

𝜎𝑍𝑟𝑃

𝑍𝜌 

𝑍𝑟 

𝜎𝑍𝑟𝑃

 =
𝑍𝑟𝑃 −𝑍𝜌𝑃
𝜎𝑍𝑟𝑃

=  =
𝑍𝑟𝑃 −𝑍𝜌𝑃
𝜎𝑍𝑟𝑃

= 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

𝑟𝑃𝑥,𝑦

Power
1 − 𝛽

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

𝑟𝑃𝑥,𝑦

Power
1 − 𝛽

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

𝑟𝑃𝑥,𝑦

Power
1 − 𝛽
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Hypotheses Hypotheses Hypotheses

This is a single left-tailed test

Significance level Significance level Significance level

= = =

Fisher r-to-Z transformation Fisher r-to-Z transformation Fisher r-to-Z transformation

1 + ( ) 1 + ( ) 1 + ( )

1 - ( ) 1 - ( ) 1 - ( )

1 + ( ) 1 + ( ) 1 + ( )

1 - ( ) 1 - ( ) 1 - ( )

Critical  Value Critical  Value Critical  Value

Test  Statistic Test  Statistic Test  Statistic

( ) - ( ) ( ) - ( ) ( ) - (( )

Test  Criterion Test  Criterion Test  Criterion

Test  Result Test  Result Test  Result

Standard normal Standard normal Standard normal 

score    z score    z score    z

Fisher  Z Fisher  Z Fisher  Z

Sample Correlation Sample Correlation Sample Correlation

coefficient   r correlation   r coefficient   r

Test  Conclusion Test  Conclusion Test  Conclusion

 Because z  CRIT  Because z  CRIT  Because z  CRIT

The test  reject the H₀ at an The test rejects the H₀ at an The test does not reject the H₀ at an

 α = significance level  α = significance level  α = significance level

0.483 0.60 0.458 0.60 0.712 0.60 0.696

-2.668 -2.668 -2.668

0.424

0.05 0.05 0.05

z < z < z <

-1.645 0 -1.96 0 1.96 0 1.645

0.527 0.693 0.495 0.693 0.891 0.693 0.859

0.40.4

0.424

0.4

0.424

z ≤ z crit then reject the H₀ | z | ≥ z crit then reject the H₀ z ≥ z crit then reject the H₀

if if if
z > z crit do not reject H₀ | z | < z crit do not reject H₀ z < z crit do not reject H₀

0.101

P( z  < z CRIT ) =  α  = 0.05 z CRIT = -1.645 P(| z | > z CRIT ) =  α  = 0.05  z CRIT = ± 1.96 P( z  < z CRIT ) =  α  = 0.05 z CRIT = 1.645

-0.330 -0.549 -0.330 -0.549 -0.330 -0.549z = -2.668 z = -2.668 z = -2.668
0.101 0.101 0.101

ln
0.4

= 0.424 = ln
0.4

0.424 = ln
0.4

=
0.4 0.4 0.4

Standard deviation =

H₀ : ρ A = 0.6 H₀ : ρ A = 0.6 H₀ : ρ A

α 0.05 α 0.05 α

= ln
0.6

= 0.693 = ln
0.6

= 0.6

H₁ : ρ A

0.05

0.6 H₁ :

0.424

0.693 = ln
0.6

= 0.693
0.6 0.6 0.6

Standard deviation = 0.101

ρ A > 0.6

=

H₁ : ρ A < 0.6

Standard deviation 0.101

≠

Hypothesis   test  of  population  genetic   correlation

𝑍𝜌 

𝑍𝑟 

𝜎𝑍𝑟𝑃

 =
𝑍𝑟𝐴 −𝑍𝜌𝐴
𝜎𝑍𝑟𝐴

= 

𝑍𝜌 

𝑍𝑟 

𝜎𝑍𝑟𝑃

𝑍𝜌 

𝑍𝑟 

𝜎𝑍𝑟𝑃

 =
𝑍𝑟𝐴 − 𝑍𝜌𝐴
𝜎𝑍𝑟𝐴

=  =
𝑍𝑟𝐴 −𝑍𝜌𝐴
𝜎𝑍𝑟𝐴

= 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

𝑟𝐴𝑥,𝑦

Power
1 − 𝛽

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

𝑟𝐴𝑥,𝑦

Power
1 − 𝛽

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

𝑟𝐴𝑥,𝑦

Power
1 − 𝛽
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Hypotheses Hypotheses Hypotheses

This is a single left-tailed test

Significance level Significance level Significance level

= = =

Fisher r-to-Z transformation Fisher r-to-Z transformation Fisher r-to-Z transformation

1 + ( ) 1 + ( ) 1 + ( )

1 - ( ) 1 - ( ) 1 - ( )

Critical  Value Critical  Value Critical  Value

Test  Statistic Test  Statistic Test  Statistic

( ) - ( ) ( ) - ( ) ( ) - ( )

Test  Criterion Test  Criterion Test  Criterion

Test  Result Test  Result Test  Result

Standard normal Standard normal Standard normal 

score    z score    z score    z

Fisher  Z Fisher  Z Fisher  Z

Sample Correlation Sample Correlation Sample Correlation

coefficient   r correlation   r coefficient   r

Test  Conclusion Test  Conclusion Test  Conclusion

 Because z  CRIT  Because z  CRIT  Because z  CRIT

The test  reject the H₀ at an The test rejects the H₀ at an The test does not reject the H₀ at an

 α = significance level  α = significance level  α = significance level

Standard deviation = 0.101 Standard deviation 0.101

0.25

H₁ : H xy< 0.25 H₁ : H xy

Hypothesis   test  of  population  coheritability  

H₀ : H xy= 0.25 H₀ : H xy= 0.25 H₀ : H xy=

0.25

≠ 0.25 H₁ : H xy> 0.25

α 0.05 α 0.05 α 0.05

= = 0.160 = = 0.160 = = 0.160

0.255 0.160 0.255 0.160 0.255z = -0.940 z = -0.940 z = -0.940
0.101

= ln
0.25

= 0.255 = ln
0.25

= 0.255 = ln
0.25

= 0.255
0.25 0.25

if if if
z > z crit do not reject H₀ | z | < z crit do not reject H₀ z < z crit do not reject H₀

Standard deviation = 0.101

P( z  < z CRIT ) =  α  = 0.05 z CRIT = -1.645 P(| z | > z CRIT ) =  α  = 0.05  z CRIT = ± 1.96 P( z  < z CRIT ) =  α  = 0.05 z CRIT = 1.645

0.160

0.16 0.255 0.16

0.101 0.101

z ≤ z crit then reject the H₀ | z | ≥ z crit then reject the H₀ z ≥ z crit then reject the H₀

-0.940 0

0.089 0.25 0.057 0.425 0.25 0.398

z < z < z <

0.159 0.25 0.159

-1.645 -1.96 1.96 1.645

0.089 0.255 0.057 0.453 0.255 0.422

-0.940 0

0.05 0.05 0.05

Z hxy

Z Hxy

hxy
arctanh(rP)

rP

hxy
arctanh(rP)

rP

hxy
arctanh(rP)

rP
Z hxy

Z Hxy

Z hxy

Z Hxy

0-0.940

0.16

0.159

𝜎𝑍ℎ𝑥𝑦

 =
𝑍ℎ𝑥𝑦 −𝑍𝐻𝑥𝑦

𝜎𝑍ℎ𝑥𝑦
= 

𝜎ℎ𝑥𝑦𝜎ℎ𝑥𝑦

 =
𝑍𝑟𝑃 −𝑍𝜌𝑃
𝜎𝑍𝑟𝑃

=  =
𝑍𝑟𝑃 −𝑍𝜌𝑃
𝜎𝑍𝑟𝑃

= 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

𝑟𝐴𝑥,𝑦

Power
1 − 𝛽
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0.9
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-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5
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1

-1 -0.5 0 0.5 1
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0.9

1
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𝑟𝐴𝑥,𝑦
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1 − 𝛽
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5.5  Confidence interval of  𝒓𝑷𝒙𝒚  , 𝒉𝒙𝒚 and  𝒆𝒙𝒚 

 

The confidence interval for a single correlation ( 𝜌∎: phenotypic  𝜌𝑃 , genetic  𝜌𝐴, environmental 𝜌𝐸) is 

often obtained using Fisher’s 𝑟 to 𝑍 transformation because the sampling distribution of 𝑟 displays a 

positive (for 𝑟 < 0) and negative (𝑟 > 0) skew.  To do this, one first forms confidence limits for         

𝑍𝜌∎ = atanh(𝑟) =
1

2
ln [

1+𝜌∎

1−𝜌∎
] (Section 4.4) and then back transform the resultant limits 𝑟 =

tanh( 𝑍𝑟) =
𝑒2𝑍𝑟   −  1

𝑒2𝑍𝑟  +  1
 to obtain a confidence interval for 𝜌∎ .   

The  𝑍𝑟   is the Fisher transform of 𝜌, whose confidence interval are calculated as follows: 

the lower bound   𝑍𝐿  = 𝑍𝑟 − 𝑧1−𝛼
2
 √𝜎𝑍𝑟

2  ,  and 

the upper bound  𝑍𝑈 = 𝑍𝑟 + 𝑧1−𝛼
2
 √𝜎𝑍𝑟

2  

Where  𝛼  is the significance level,   𝑧1−𝛼 
2

  is the 1 −
𝛼 

2
  quantile of the standard normal distribution 

𝑧1−𝛼 

2
= 

{
 
 

 
 
1. 45        𝑓𝑜𝑟  𝛼 = 90% 𝐶𝐼

1.9           𝑓𝑜𝑟   𝛼 = 95% 𝐶𝐼

2.5          𝑓𝑜𝑟  𝛼 = 99% 𝐶𝐼

   

and 𝜎𝑍𝑟
2 =

1

𝑛−3
 is the (approximate) variance of the  𝑍𝑟  distribution, which depends only in the sample 

size 𝑛.   

It is assumed that the variance of the Fisher transform can be adequately approximated by this value. 

Fouladi and Steiger (2008) show that although a better approximation to the variance of the Fisher 

transform (𝑛 − 3)−1 can be obtained, the use of these values or even exact value for the variance of the 

Fisher transform does not directly translate into statistics with improved size or coverage probabilities 

with respect to tests or confidence intervals on single correlations. 

A worked example follows accompanied by Figure 5.5-1.  Another example, in a more succinct 

presentation is given and represented graphically in Figure 5.5-2. 
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STEP  0.   Data

EXAMPLE

Sample size 

Phenotypic correlation of traits x and y 

Additive genetic correlation of traits  x   and  y 

Environmental correlation of traits  x   and  y  

Narrow-sense heritability of trait  x  

Narrow-sense heritability of trait  y  

STEP  1.   Fisher r-to-Z transformation

STEP  2.   Determination of upper and lower bounds for a given  α  level

for a two-tailed confidence interval the 

the standard normal z  score is given for a 

fiven significance level α. 

for a two-tailed 95% confidence interval we 

obtained the following bounds:

Let the following data obtained from a quantitative 

genetics experiment

The following be parameter estimators must be 

obtained from the sample

Perform the Fisher r-to-Z transformation 

of   the phenotypic           and   genetic                    

correlations.        

100

0.34

-0.4131

0.8451

0.5

0.3

-0.16

0.50

𝒓𝑨𝒙,𝒚 =

 

𝒓𝑬𝒙,𝒚 =

𝒉𝒙
𝟐 =    

𝒓𝑷𝒙,𝒚

𝒉𝒚
𝟐 =    

𝑟𝑃𝑥,𝑦                  𝑟𝐴𝑥,𝑦

Phenotypic

𝑍𝑟𝑃 = 0.5 𝑙𝑛
1+ .34

1− .34
= 0.3541

𝐺𝑒𝑛𝑒𝑡𝑖𝑐

𝑍𝑟𝐴 = 0.5 𝑙𝑛
1+(− .4131)

1−(− .4131)
= −0.4393

𝑍𝑟 − 𝑧1−𝛼
2

1

𝑁− 3
  <  𝑍𝑟 <  𝑍𝑟 − 𝑧1−𝛼

2

1

𝑁− 3
 

𝑧.
1−

𝛼
2 

=

1.9 0          𝑓𝑜𝑟 𝛼 = 0.05,  𝑧.
1−  

 .  

2  

 
2.5            𝑓𝑜𝑟 𝛼 = 0.01,  𝑧.

1−  
 .  

2  

        𝑍𝑟 𝐿                                                   𝑍𝑟 𝑈
𝑙𝑜𝑤𝑒𝑟  𝑏𝑜𝑢𝑛𝑑                                      𝑢𝑝𝑝𝑒𝑟  𝑏𝑜𝑢𝑛𝑑

𝒏 =    

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐

0.3541 −1.9 
1

100 −3
< 𝑍𝑟𝑃< 0.3541+ 1.9 

1

100 −3

0.1551
𝑍𝑟𝑃    

< 𝑍𝑟𝑃 < 0.5531
𝑍𝑟𝑃    

𝐺𝑒𝑛𝑒𝑡𝑖𝑐

−0.4393− 1.9 
1

1  −3
< 𝑍𝑟𝐴 < −0.4393 +1.9 

1

1  −3

−0. 384
𝑍𝑟𝐴  

  <𝑍𝑟𝐴 < −0.2403
𝑍𝑟𝐴  

    

𝒉𝒙,𝒚 =

𝒆𝒙,𝒚 =

Phenotypic

𝑍𝑟𝑃 = 0.5 𝑙𝑛
1 + 𝑟𝑃𝑥,𝑦

1 − 𝑟𝑃𝑥,𝑦

𝐺𝑒𝑛𝑒𝑡𝑖𝑐

𝑍𝑟𝐴 = 0.5 𝑙𝑛
1 + 𝑟𝐴𝑥,𝑦
1− 𝑟𝐴𝑥,𝑦
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STEP  3.   Back-transformation  of  Z r  in  r

STEP  4.   Back-transformation  of  Z r  in  rConfidence interval of the coheritability

STEP  5.   Confidence level of the coenvironmentability

Use the following relationship to 

transform  Z r   back into correlations in r

Multiply the confidence interval of the 

genetic correlation by the product of the 

square root of the heritabilities

𝑒
2 𝑍𝑟𝑃    − 1

𝑒
2 𝑍𝑟    + 1
 𝑟∎  

  <  𝜌 < 
𝑒2 𝑍𝑟    − 1

𝑒
2 𝑍𝑟    + 1

𝑟∎  

 
 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐

𝑒  2 ( .1551)  −  1

𝑒  2 ( .1551)  +  1
  < 𝜌𝑃  <  

𝑒2 ( .5531)   −  1

𝑒2 ( .5531)   +  1

0.1539
𝑟𝑃  

 <  𝜌𝑃 < 0.5028
𝑟𝑃    

  

𝐺𝑒𝑛𝑒𝑡𝑖𝑐

𝑒  2 (− .63 4)  −  1

𝑒  2 (− .63 4)  +  1
  < 𝜌𝐴  <  

𝑒2 (− .24 3)  −  1

𝑒2 (− .24 3)  +  1

−0.5 38
𝑟𝐴  

 < 𝜌𝐴 < −0.2358
𝑟𝐴    

  

 ℎ𝑥
2 .ℎ𝑦

2 𝑟𝐴 𝐿

ℎ𝑥,𝑦  

<   ℎ𝑥
2 .ℎ𝑦

2 𝜌𝐴

𝐻𝑥,𝑦

<  ℎ𝑥
2  .ℎ𝑦

2 𝑟𝐴 𝑈

ℎ𝑥,𝑦  

  

𝑟𝑃 − ℎ𝑥,𝑦 𝐿
𝑟𝐸 

   <    𝐸𝑥,𝑦    <   𝑟𝑃 − ℎ𝑥,𝑦 𝑈
𝑟𝐸 

0.5𝑥0.3(−0.5 38)< ℎ𝑥
2 ∙ℎ𝑦

2 𝜌𝐴 < 0.5𝑥0.3(−0.2358)

−0.2183
ℎ𝑥,𝑦  

 < 𝐻𝑥,𝑦 < −0.0913 
ℎ𝑥,𝑦  

0.1539− −0.2138 <   𝐸𝑥,𝑦  < 0.5028 − −0.0913

0.4059 <   𝐸𝑥,𝑦  < 0.5941

The lower bound  𝑟𝐸 equals the lower bound 

of phenotypic correlation minus 
the lower bound of the coheritability.

The upper bound  𝑟𝐸 equals the upper bound 

of the phenotypic correlation minus 
the upper bound of the coheritability.



 .

 Supplementary Infor 

. 

 

Page 81 of 230 
 

 To summarize, the confidence interval for the parameters (sample size n=100) are 

 

                                 

 

 

 

 

 

 

                                     

Figure 5.5-1 Confidence intervals of the phenotypic correlation, coheritability and coenvironmentability 

(yellow rectangle) .  

 

1.01.0

0.6

0.5

0.4

1.0

0.9

0.8

0.3

0.7

0.30.3

0.2

0.10.1

00

-0.3

-0.4

-0.5

0

-0.1

-0.2

-0.9

-1.0

-0.6

-0.7

-0.8

-0.4 -0.3 -0.2 -0.1 0.0 0.1-1 -0.9 -0.8 -0.7 -0.6 -0.5 0.8 0.9 10.2 0.3 0.4 0.5 0.6 0.7-0.4 -0.3 -0.2 -0.1 0.0 0.1-1 -0.9 -0.8 -0.7 -0.6 -0.5 0.8 0.9 10.2 0.3 0.4 0.5 0.6 0.7

-0
.9-1

.0

-0
.1-0

.2-0
.3-0

.4-0
.5-0

.6-0
.7-0

.8

0
.2

0
.1

0

1
.0

0
.9

0
.8

0
.7

0
.6

0
.5

0
.4

0
.3

 

0.1539
𝑟𝑃  

 <  𝜌𝑃 < 0.5028
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5.6  Sample size 
 

An important aspect in planning a study that will require inference on the phenotypic 

correlation and its components is the determination of the appropriate sample size 𝑛 in order 

to maximize the probability of credible results.  Sometimes, the sample size is determined by 

practical issues regarding resources, time, and money.  In this case the number of individuals to 

be measure is known, yet it is nevertheless important to determine the inferential extent the 

data can provide when used for hypothesis testing.  A usual procedure of choosing 𝑛 aims to 

achieve sufficient power of the test and level of significance to determine whether a parameter 

is zero ( 𝐻𝑜: 𝜃 = 0).  The following formula can be used to that effect: 

𝑛 =  (
𝑧
1− 

𝛼
2
 
 +  𝑧1−𝛽

1
2 𝑙𝑛 

[
1 + 𝜃
1 − 𝜃

]
)

2

+ 3 

where 𝑧1− 𝛼
2
   and  𝑧1−𝛽   are the standard normal 𝑧 scores corresponding to the 1 − 

𝛼

2
  and 

1 − 𝛽 quantiles of the standard normal distribution (e.g. for 𝛼 = 0.05 , 𝑧1− 𝛼
2
 = 1.9 ;  𝛽 = 0.2,

𝑧1−𝛽 = 0.842), and the denominator within the brackets is the Fisher’s transformation of 

𝜃 (where 𝜃 is the parameter to be assessed, e.g.,  𝑟𝑃𝑥,𝑦 , 𝑟𝐴𝑥,𝑦 , ℎ𝑥,𝑦) 

A better procedure for the determination of the optimum sample size for the study of joint 

inheritance of two traits uses confidence intervals.  This procedure aims to find a sample size 

that guarantees confidence intervals with a given width to detect a given effect size.  Here we 

intend to specify a null hypothesis in which the parameter is equal to a nonzero value.  The 

attention, therefore, is on confidence level estimation of the population parameter instead of 

the test of a parameter hypothesized null value.  The following equation can be used to 

determine the sample size required to obtain a 95% CI for the parameter 𝜃 with a desired width 

(Moinester and Gottfried  2014). 



 .

 Supplementary Infor 

. 

 

Page 84 of 230 
 

𝑛 =
3.84 (1 − 𝜃2)2

𝑤2
+  𝜃2 + 1 

And the corresponding equation for the half-width of the confidence interval is 

𝑤 = 1.9 
 (1 − 𝜃2)

√𝑛 − 1 −  𝜃2
 

where 𝜃 is the effect size, that is the value of the parameter of interest, e.g.,  𝑟𝑃𝑥,𝑦  , 𝑟𝐴𝑥,𝑦 , ℎ𝑥,𝑦; 

and 𝑤 is half-width of the desired confidence interval.  If the sample size is already fixed, one 

can calculate the corresponding half-width w for a given expected effect size 𝜃. 

Effect size 𝜃 is the expected value of the parameter that one suspects or guesses. 
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Figure 5.6.  (A)  Sample 

size required to obtain 

a desired 95% 

confidence interval 

half-width for different 

values of the 

correlations,  or 

coheritability) 

according to the 

formula of Moinester 

and Gottfried (2014).  

(B) Sample size 

required to test a null 

hypothesis that the 

parameter is zero with 

a significance level 

𝛼 = 0.05, and power 

1 − 𝛽 = 0.8. 
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Since in absolute value the coheritability is generally smaller than the genetic correlation, it has 

implications on lowering the effect size, and it is expected that the sample size for testing the 

coheritability will generally be larger than that for the genetic correlation. For example, if a test 

is to be carried out having a test statistic 𝑟𝐴𝑥,𝑦 = 0.  and set the probability to reject a true null 

hypothesis to 𝛼 = 0.05 (Type I error), and a probability for failing to reject a false null 

hypothesis to 𝛽 = 0.2 (Type II error) then the sample size required to determine whether a 

genetic correlation differs from zero would be 𝑛 = 19. In contrast, given the same genetic 

correlation and ℎ𝑥
2 = 0.28, ℎ𝑦

2 = 0.405, the coheritability becomes ℎ𝑥,𝑦 = (√0.28 ∙  0.405 ∙

0. ) = 0.202, and the sample size would be 𝑛 = 190 to establish a 80% power of the 

hypothesis test. 

A more meaningful approach, however, is to determine a sample size that guarantees a narrow 

confidence interval for the coheritability. For instance, using the data from Figure 5.5.2, if the 

genetic correlation is expected to be 𝑟𝐴𝑥,𝑦 = −0.58 (this is the effect size), and would like to 

measure it within a confidence interval [−0. 2 ,−0.54], which is −0.58 ± 0.04, then using the 

equation of Moinester and Gottfried refereed above,  

𝑛 =
3.84 (1 − (0.58)2)2

(0.04)2
+   (0.58)2 + 1 = 𝟏 𝟗  

If the coheritability is expected to be ℎ𝑥,𝑦 = −0.2, and also would like to measure around a 

±𝑤 = ±0.04, that is [−0.24,−0.1 ], then 

𝑛 =
3.84 (1 − (0.2)2)2

(0.04)2
+   (0.2)2 + 1 = 𝟐𝟑𝟎  

which results in a larger sample size for the coheritability because its effect size (0.2) is smaller 

than the one for the genetic correlation (0.58). 

On the other hand, if we have already a fixed number of individuals to measure, say a sample of 

size  𝑛 = 981 and would like to know what is the confidence level that can be obtained if the 

coheritability is ℎ𝑥,𝑦 = −0.2.  Again, we use the equation from Moinester and Gottfried, 
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𝑤 = 1.9 
 (1 − (0.2)2)

√981 − 1 −  (0.2)2
= 0.0  

Therefore, with a fixed sample size 𝑛 = 981, the coheritability ℎ𝑥,𝑦 = −0.2 would be calculated 

within a confidence interval [(−0.2 − 0.0 ), (−0.2 + 0.0 )] = [−0.2  , −0.14].  Note that the 

interval is a little broader because of the reduced sample size. 
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6   Visualizing the 𝒉𝒙𝒚 ∙ 𝒆𝒙𝒚 ∙ 𝒓𝑷𝒙𝒚-relationship 

 

6.1  The three-dimensional hx,y ▪ex,y ▪rP ₓ,ᵧ -plane (3DHER-plane) 

 

The relationship  𝑟𝑃𝑥,𝑦 = (ℎ𝑥,𝑦 + 𝑒𝑥,𝑦) allow us to infer the domains of the phenotypic correlation, 

coheritability and coenvironmentability, as follows 

−1 ≤  𝑟𝑃𝑥,𝑦  ≤ 1 

−1 ≤ ℎ𝑥,𝑦  ≤ 1 

−1 ≤ 𝑒𝑥,𝑦   ≤ 1 

               

Figure 6.1  3DHER-plane 

 

If each variable (coheritability, coenvironmentability, phenotypic correlation) are assigned to an ordered 

triplet of axis lines, which are numerical, intersect at the origin, are pair-wise perpendicular, and all have 

a single unit of length,  it is possible to uniquely specify, in this Cartesian system, the values of a single 

point by signed distances from the origin, i.e. three numbers in a chosen order (ℎ𝑥,𝑦  , 𝑒𝑥,𝑦  , 𝑟𝑃𝑥,𝑦  ).  This 
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is illustrated in Figure 6.1 and is called the three-dimensional coheritability-coenvironmentability-

phenotypic correlation plane, 3DHER-plane. 

The data align on a plane (i.e. it has zero volume) due to the interdependencies established by the 

intrinsic linear dependency of the axes, namely,  𝑟𝑃𝑥,𝑦 = (ℎ𝑥,𝑦 + 𝑒𝑥,𝑦) (see Section 6.4).   
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6.2  The two-dimensional hxy ▪exy ▪rP ₓᵧ -field (2DHER-field) 

 

The orthogonal projection of the 3D ℎ𝑥,𝑦 ∙ 𝑒𝑥,𝑦 ∙ 𝑟𝑃𝑥,𝑦 –plane on the surface defined by   ℎ𝑥𝑦 

x 𝑒𝑥𝑦| 𝑟𝑃𝑥𝑦 = 0, results in the two-dimensional ℎ𝑥,𝑦 ∙ 𝑒𝑥,𝑦 ∙ 𝑟𝑃𝑥,𝑦 –field.  This field is circumscribed by 

the relationship |ℎ𝑥,𝑦| + |𝑒𝑥,𝑦| = 1, which in a more explicit way, is demarcated by the lines 

ℎ𝑥,𝑦 + 𝑒𝑥,𝑦 = 1 , ℎ𝑥,𝑦 + 𝑒𝑥,𝑦 = −1, ℎ𝑥,𝑦 − 𝑒𝑥,𝑦 = 1, and ℎ𝑥,𝑦 − 𝑒𝑥,𝑦 = −1 (Figure 6.2) 

The field  ℎ𝑥𝑦∎𝑒𝑥𝑦∎𝑟𝑃   can be partitioned according to the sign of the phenotypic correlation, 

coheritability and coenvironmentability.  Note here that the coheritability sign is conferred by the 

additive genetic correlation.  The sign of the cohenvironmentability is given by the environmental 

correlation.  By tracing the lines 𝑟𝑃𝑥𝑦 = 0,  ℎ𝑥𝑦 = 0, and  𝑒𝑥𝑦 = 0, sectors are demarcated within the 

field forming isosceles triangles.  These partitions are characterized by (1)  a particular sign combination 

among components, (2) the range of values the components can have, and (3) and the relationship 

between the sign of the phenotypic correlation and the coheritability and coenvironmentability. 

The partitions are denoted by the letter S  followed by a subscripted numeral having the sign of the 

coheritability of that sector. For instance, partitions  S₊₁ ,  S₊₂  , S₊₃   have a positive coheritability, and 

therefore a positive genetic correlation.  The sign of the phenotypic correlation does not follow 

necessarily the sign of the coheritability or genetic correlation.  

The subscripts with the same numeral but with opposite signs indicate sectors that are reciprocal to 

each other. For example, partition S₊₃  has ℎ𝑥𝑦 > 0, and 𝑒𝑥𝑦 < 0,  while partition  S₋₃  has ℎ𝑥𝑦 < 0, and 

𝑒𝑥𝑦 > 0.  In both S₊₃ and S₋₃   the phenotypic correlation 𝑟𝑃𝑥𝑦  has the sign of 𝑒𝑥𝑦 , indicating the 

preponderant effect of the coenvironmentability over the coheritability component. Notice that it 

implies that  𝑟𝑃𝑥𝑦   and  𝑟𝐴𝑥𝑦  have opposite sign. 

Partitions S₊₁  and S₋₁  are reciprocal sectors where the coheritability and coenvironmentability have the 

same sign, and contribute to the magnitude of the phenotypic correlation in the same direction (sign). 

Both  ℎ𝑥𝑦 and 𝑒𝑥𝑦 act in the same direction (same sign). 

Partitions S₊₂  and S₋₂  are reciprocal sectors characterized by the preponderant effect of the 

coheritability on the phenotypic correlation, at the expense of the coenvironmentability.  This is clearly 

seen by 𝑟𝑃𝑥𝑦 having the same sign as the coheritability (and 𝑟𝐴𝑥𝑦).  Both  ℎ𝑥𝑦 and 𝑒𝑥𝑦 display an 

antagonistic relationship, they act in opposite directions (different signs).  This may also suggest the 

reduced effect of the GxE interaction. 

Partitions S₊₃  and S₋₃  are reciprocal sectors characterized by the phenotypic correlation and the 

coheritability having opposite signs, and the coenvironmentability having a preponderant effect on the 

magnitude and sign of the phenotypic correlation. Both  ℎ𝑥𝑦 and 𝑒𝑥𝑦 display an antagonistic 
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relationship, they act in opposite directions (different signs).  This may be an indicator that a probable 

GxE interaction may be present. 

                       

 

Figure  6.2  (A) The two-dimensional coheritability-coenvironmentability-phenotypic correlation-field 

(2DHER).  This field is demarcated by the relationship |ℎ𝑥,𝑦| + |𝑒𝑥,𝑦| = 1. Lines at zero for each 

variable define partitions, labeled by an S followed by the sign of the coheritability and an indicator 

numeral. (B) Range of values for the variables for each partition.    
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6.3  The 𝒉𝒙𝒚 ∙ 𝒆𝒙𝒚 ∙ 𝒓𝑷𝒙𝒚-plane in a three-dimensional spherical space 

 

The coheritability, coenvironmentability and the phenotypic correlation, being three numerical 

coordinates that define a point  in a 3-dimensional Cartesian system, could easily be represented into a 

spherical coordinate system where the position of a point in space is specified by spherical coordinates 

(r , 𝜃 , 𝜑 ), (symbols as often used in mathematics)(Figure 6.3-1). 

r ,    the radius (radial coordinate, r  0 ) defined as the Euclidean distance from the origin O to the point 

P. 

𝜃,   the azimuthal angle (azimuth coordinate, 0 < 𝜃 < 2𝜋) is the signed angle measured from the azimuth 

reference direction (positive x-axis) to the orthogonal projection of the line segment OP on the reference 

plane (x-y plane). The azimuth coordinate corresponds to the coheritability. 

𝜑,   the polar angle (zenith angle coordinate, 0 < 𝜑 < 𝜋) is the angle between the zenith direction (z-axis) 

to the line segment OP that connects the origin O to the point P. The zenith coordinate corresponds to the 

phenotypic correlation. 

                                                 

Figure 6.3-1  The spherical coordinate system corresponding to the variables coheritability, coenvironmentability 

and phenotypic correlation.  The point can be uniquely specified by (r , 𝜃 , 𝜑 ).   The plane is inclined 35.26438968⁰ 

in reference to the 𝑟𝑃𝑥,𝑦 . 𝑒𝑥,𝑦-plane and rotated 45⁰. The radius of the sphere is equal to √2. 

 

𝜃

𝜑

c

d

a

f

𝒓𝑷𝒙,𝒚

P

ℎ𝑥𝑦  = r s n𝜑  cos 𝜃

𝑒𝑥𝑦  = r s n𝜑  s n 𝜃

𝑟𝑃𝑥𝑦 = r  cos 𝜑        
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Figure 6.3-2  Examples of determination of specified positions in the spherical coordinate system 

corresponding to the coheritability, coenvironmentability and phenotypic correlation. 
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The spherical coordinates  (r , 𝜃 , 𝜑 ) are related to the Cartesian coordinates (ℎ𝑥𝑦 , 𝑒𝑥𝑦 , 𝑟𝑃𝑥𝑦) by the 

formulae 

 

r = √ℎ𝑥𝑦2 + 𝑒𝑥𝑦2 + 𝑟𝑃𝑥𝑦
2  ,                                         r 𝜖 [0 , √2]            

 

𝜃 = arctan (
𝑒𝑥𝑦

ℎ𝑥𝑦
)            ,                                        𝜃 𝜖 {

[0 , 2𝜋)   
   [0  , 3 0 )

 

 

𝜑 = arccos ( 
𝑟𝑃𝑥𝑦

 r
 )         ,                                       𝜑 𝜖 {

[0 , 𝜋)    
   [0  , 180 )

 

 

The Cartesian coordinates are related to the spherical coordinates as follows 

ℎ𝑥𝑦 = 𝑥 = r s n 𝜑  cos 𝜃 

𝑒𝑥𝑦 = 𝑦 = r s n𝜑  s n 𝜃 

𝑟𝑃𝑥𝑦 = 𝑧 = r  cos𝜑             

The following relationship must be satisfied 

r cos(𝜑)⏞    

     𝑟𝑃𝑥,𝑦

=  s n (𝜑)𝑐𝑜𝑠𝜃⏞       

ℎ𝑥,𝑦

+ s n (𝜑)s n (𝜃)⏞        

𝑒𝑥,𝑦

 

 

Relationship between the azimuthal 𝜃 and polar 𝜑 angles (Figure 6.3-3) is derived as follow 

𝑟𝑃𝑥,𝑦   =             ℎ𝑥,𝑦          +          𝑒𝑥,𝑦 

r cos 𝜑 =   r s n𝜑 cos 𝜃    +   r s n𝜑 s n 𝜃 

cos 𝜑 =      s n𝜑 [s n 𝜃    +   cos 𝜃]           

cos 𝜑 

s n𝜑
 =                   s n𝜃    +  cos 𝜃              

(
1

tan𝜑
 )
2

=  (s n𝜃    +  cos 𝜃)2   = (  𝑠𝑖𝑛2 𝜃  +  𝑐𝑜𝑠2  𝜃  +  2 s n 𝜃 cos 𝜃 )  =    1  +  2 s n 𝜃 cos 𝜃  
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1

𝜑
=    √1 +  2 s n 𝜃 cos 𝜃  =   √ 1 + s n( 2𝜃 ) 

tan𝜑  =   
1

√1 + s n(2𝜃)
 

Finally we obtain 

𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛 [ 
1

√1 + s n(2𝜃)
 ] 

 

Figure  6.3-3  Relationship between the radius r, the azimuthal angle 𝜃, and the polar angle 𝜑. 
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6.4  The determinant of the 𝒉𝒙𝒚 ∙ 𝒆𝒙𝒚 ∙ 𝒓𝑷𝒙𝒚-plane 

 

The equation  𝑟𝑃𝑥𝑦 = ℎ𝑥𝑦 + 𝑒𝑥𝑦  establishes a linear dependency between the variables that 

constraints their values.  Therefore, a 3x3 matrix in which a column corresponds to a single datum, of 

the form |

ℎ𝑥𝑦
𝑒𝑥𝑦
 𝑟𝑃𝑥𝑦

| will have a determinant equal to zero, which means that all the data is “squeezed” to a 

flat plane of zero volume.   

Using three of the points a, c, d, f which touch an imaginary sphere of radius √2 

 

a = |
−1
   0 
−1 

|  ,   c= | 
0 
 1  
1 
|  ,  d = | 

1 
 0  
1 
|  ,  f = |

  0 
−1 
−1 

| 

 

 

 

 

 

In Cartesian Coordinates 

 

        det [ a c d ]   =            det [ a c f ]    =           det [ a d f ]     =          det [c d f ] 

𝑑𝑒𝑡 |
−1 0 1
  0 1 0 
−1 1 1

| = 𝑑𝑒𝑡 |
−1 0 0
  0 1 −1 
−1 1 −1

| = 𝑑𝑒𝑡 |
−1 1 0
  0 0 −1
−1 1 −1

 | = 𝑑𝑒𝑡 |
 0 1 0
 1 0 −1 
 1 1 −1

| = 0 

 

Using the values in of Figure 6.3-2 above, one can find the determinant for three points, say points c, d, 

f, the determinant has the following format: 

                         𝑑𝑒𝑡 |

(r s n𝜑  cos𝜃)𝑐 (r s n𝜑  cos𝜃)𝑑 (r s n𝜑  cos𝜃)𝑓
(r s n𝜑  s n 𝜃)𝑐 (r s n𝜑  s n 𝜃)𝑑 (r s n𝜑  s n𝜃)𝑓
(     r cos𝜑      )𝑐 (     r cos𝜑      )𝑑 (     r cos𝜑      )𝑓

| = 0  

 

-1
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7   Set of values and limiting cases 
 

7.1  The range of values of the coheritability for a given value of the 

coenvironmentability 
 

Given the interdependencies, it is possible to relate the range of values of the coheritability based on a 

given value of the coenvironmentability, as follows: 

                                                  − ( 1 −| 𝑒𝑥,𝑦  | )  <    ℎ𝑥,𝑦    <   ( 1 − |𝑒𝑥,𝑦|)                              −1 <  𝑒𝑥,𝑦  ≤ 1                                                         

which can be written more explicitly as 

− (1 − 𝑒𝑥,𝑦  ) <    ℎ𝑥,𝑦    <   ( 1 − 𝑒𝑥,𝑦)                                        0 <  𝑒𝑥,𝑦  ≤ 1                                                         

  −1 <    ℎ𝑥,𝑦    <    1                                                                   𝑒𝑥,𝑦 = 0 

−(1 + 𝑒𝑥,𝑦  ) <    ℎ𝑥,𝑦    <   ( 1 +  𝑒𝑥,𝑦)                                     −1 ≤ 𝑒𝑥,𝑦 < 0 

To illustrate:  for    𝑒𝑥,𝑦 = 0.8             −  (1 −  0.8 ) <    ℎ𝑥,𝑦    <   ( 1 −  0.8)              →    − 0.2 <    ℎ𝑥,𝑦    <   0.2 

                                             𝑒𝑥,𝑦 = 0                                     −  1 <    ℎ𝑥,𝑦    <   1                            →       − 1 <    ℎ𝑥,𝑦    <   1 

                                 𝑒𝑥,𝑦 = 0.8       − (1 + (−0.35) ) <    ℎ𝑥,𝑦    <   ( 1 + (−0.35))         →    − 0. 5 <    ℎ𝑥,𝑦    <   0. 5 
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7.2  The set of values of coheritability and coenvironmentability for a given 

phenotypic correlation 
 

Provided a value of phenotypic correlation, what is the range values allowed for its coheritability and 

coenvironmentability components?  The problem can be expressed as follows: 

𝑟𝑃𝑥,𝑦  → (ℎ𝑥,𝑦  , 𝑒𝑥,𝑦| 𝑟𝑃𝑥,𝑦) 

(a) The set of (ℎ𝑥𝑦  , 𝑒𝑥𝑦) values valid for a given  𝑟𝑃𝑥,𝑦 ,  is a collection of bivariate data whose 

boundaries are: 

(−0.5(1 − 𝑟𝑃𝑥,𝑦)  , 0.5(1 + 𝑟𝑃𝑥,𝑦)) < (ℎ𝑥,𝑦  , 𝑒𝑥,𝑦|𝑟𝑃𝑥,𝑦) < ( 0.5(1 + 𝑟𝑃𝑥,𝑦)  , −0.5(1 − 0.5 𝑟𝑃𝑥,𝑦))   

and (b) the elements of the datum sum up to the phenotypic correlation 

ℎ𝑥,𝑦 + 𝑒𝑥,𝑦 = 𝑟𝑃𝑥𝑦  

and, (c)  where the linear equation relating the coenvironmentability as a function of the coheritability is    

𝑒𝑥,𝑦 = 𝑟𝑃𝑥𝑦 −  ℎ𝑥,𝑦 

a line whose intercept is the value of the phenotypic correlation, and the slopeof the coheritability 

factor is -1.   

For example, if the phenotypic correlation 𝑟𝑃𝑥𝑦 = −0.35, then the ( ℎ𝑥,𝑦  ,  𝑒𝑥,𝑦) values follow: 

(a) The ( ℎ𝑥,𝑦  ,  𝑒𝑥,𝑦)  must be within the boundaries  

    

(−0.  5 , 0.325) ≤  (ℎ
𝑥,𝑦
 , 𝑒𝑥,𝑦| 𝑟𝑃𝑥,𝑦 = −0.35) ≤ ( 0.325  ,−0.  5 ) 

 

(b) The elements of the datum must necessarily sum up to the phenotypic correlation 

ℎ𝑥,𝑦 + 𝑒𝑥,𝑦 = −0.35 

using the boundaries as an example: 

−0.  5 + 0.325 =  −0.35,  and  0.325 − 0.  5 =  −0.35 

(c) and the linear relationship is  that relates the coenvironmentability and coheritability is    

𝑒𝑥,𝑦 = −0.35 − ℎ𝑥,𝑦  ,                (−0.  5 < ℎ𝑥,𝑦 < 0.325) 

This line allows to determine the coenvironmentability value for any value of coheritability within the 

set boundaries.  Figure 7.2 illustrates this example.  
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 Figure 7.2.  Example of some of the possible values of the bivariate datum (coheritability, 

coenvironmentability) for the given phenotypic correlation of -0.35, presented in the 2DHER-field.   

Notice that the boundaries of coheritability and coenvironmentability are the numerically the same yet 

antiparallel. Note that the elements constituting each datum sum up to the phenotypic correlation.  The 

line equation has as intercept the value of the phenotypic correlation, and a slope of -1. 
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7.3  The set of possible values of heritabilities, and correlations (genetic, 

environmental) for a given (coheritability, coenvironmentability) datum.  
 

Provided a value of a (coheritability, coenvironmentability) datum, what are the possible values of the 

heritabilities of the traits and the genetic and the environmental correlations?  In other words, knowing 

a datum involving coheritability,coenvironmentability corresponding to a phenotypic correlation  

(ℎ𝑥,𝑦  , 𝑒𝑥,𝑦  | 𝑟𝑃𝑥 ,𝑦)  what would be the collection of possible values of the heritability of trait 𝑥 and of 

trait 𝑦, the genetic correlation, and the environmental correlation, (ℎ𝑥
2 , ℎ𝑦

2  , 𝑟𝐴𝑥,𝑦  , 𝑟𝐸𝑥,𝑦)?  The problem 

can be expressed as follows: 

(ℎ𝑥,𝑦  , 𝑒𝑥,𝑦  | 𝑟𝑃𝑥 ,𝑦)  →  { ℎ𝑥
2 ,  ℎ𝑦

2  ,  𝑟𝐴𝑥,𝑦  ,  𝑟𝐸𝑥,𝑦 } 

In principle, the values of the phenotypic, genetic and environmental correlations are independent and 

random variables.  A high phenotypic correlation does not imply a comparable value of the genetic 

correlation.  A high genetic correlation between two traits, do not necessarily indicates that the 

heritabilities of the traits are high also.  Traits that have high heritabilities may display a weak genetic 

correlation, and visceversa.  In this sense the heritabilities and genetic correlations are independent.  In 

addition, the effect of the heritabilities may result in changes in the rank of the genetic correlation 

compared to the rank observed in the coheritabilities.  

However, as explained in the previous section, by imposing a constraint (i.e. fixing the value of a 

variable) such as equating the phenotypic correlation to a specific value would affect the set of bivariate 

coheritability-coenvironmentability combinations. 

To address the problem of finding heritabilities and correlations, here I use an empirical, graphical 

method where the set of values  𝑟𝐴𝑥,𝑦 , 𝑟𝐸𝑥,𝑦   are plotted against √ℎ𝑥
2ℎ𝑦

2  .  The algorithm to can be 

sumnmarized as follows: 

(1) list a set of heritabilities combinations, ranked by the value of their geometric mean  √ℎ𝑥
2ℎ𝑦

2 . 

 

 

in this case, the values are within the interval [0.1 , 0.9] in order to avoid numerical instability. 
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(2) Second, set the boundaries of the heritabilities.  In which the magnitude of the correlation 

becomes 1.  This is determined using the following relationship: 

 ℎ𝑥
2 =  ℎ𝑦

2 = √ ℎ𝑥
2 ℎ𝑦

2 = | ℎ𝑥,𝑦 | , it results in  𝑟𝐴𝑥,𝑦 =
| ℎ𝑥,𝑦 |  

ℎ𝑥,𝑦 
 , with value either -1 or +1 

and 

 ℎ𝑥
2 =  ℎ𝑦

2 = √ℎ𝑥
2 ℎ𝑦

2 =  1 − | 𝑒𝑥,𝑦 | , it results in  𝑟𝐸𝑥,𝑦 =
| 𝑒𝑥,𝑦 |  

𝑒𝑥,𝑦 
 , with value either -1 or +1 

To summarize, when both heritabilities are either | ℎ𝑥,𝑦 | or (1 − | 𝑒𝑥,𝑦 |), it establish the boundaries of 

the heritability values.  Note that even within this interval the correlations may be greater than +1 or 

less than -1. 

(3)  The correlations that are within the heritability boundaries and contained in [-1 , +1 ] are the 

possible valid values to be selected.   
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Figure 7.3  Example of values of heritabilities and correlations (genetic, environmental) for given values 

of coheritability and coenvironmentability (ℎ𝑥,𝑦  , 𝑒𝑥,𝑦) 𝑟𝑃𝑥,𝑦 .  (A) Values of genetic (blue) and 

environmental (orange) correlations as a function of the square root of the product of heritabilities.  

These graphs are dependent on (B) the list of combinations  of heritabilities of the traits ranked by their 

geometric mean.   
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7.4  The relationship of the heritabilities to yield a given geometric mean 
 

In the previous section, the algorithm requires to list an ordered set of geometric means of pair of 

heritabilities.  The major caveat of such a method is that there is not a 1-to-1 relationship between a 

geometric mean and a pair of heritabilities. In fact, a given geometric mean can be obtained by a 

number of alternative pairs. 

For instance, following example consists of heritability pairs whose product is 0.18, and its geometric 

mean is  0.424264. 

 

 

 

 

 

 

 

 

 

 

  

 

                                                          √0.8 ∙ 0.225                                    0.393 0 

0.4242 4                                        √0. 5 ∙ 0.24                                    0.43589 

                                                           √0.   ∙  0.3                                       0.52915 

                                                           √0.5 ∙ 0.3                                       0.5 5 8 

                                                          √0.4 ∙ 0.45                                       0.5 445 

                                                          √0.18 ∙ 0.18                                     0.82 

                                                          √ℎ𝑥
2  ∙  ℎ𝑦

2                         √(1 − ℎ𝑥
2)(1 −   ℎ𝑦

2)    

                                                          √1  ∙   0.18                                       0           

                                                          √0.9  ∙   0.2                                      0.28284                                      
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7.5  Limiting cases 
 

Limiting cases provide insight into the nature of the coheritability and coenvironmentability in relation 

to the phenotypic correlation.  For instance, if one of the heritabilities approaches 1, results in vanishing 

coenvironmentability, and  𝑟𝑃𝑥,𝑦 = ℎ𝑥𝑦.  If conversely one of the heritabilities approaches zero, it causes 

the coheritability to vanish, leading to  𝑟𝑃𝑥,𝑦 = 𝑒𝑥𝑦.  Clearly this shows that at extreme values of the 

heritability, the phenotypic correlation can become either the coheritability or coenvironmentability.  

Therefore the statistical inferences designed to test  𝑟𝑃𝑥,𝑦 can be used for ℎ𝑥𝑦 and 𝑒𝑥𝑦 as well.    

Note that  

if  𝑟𝐴𝑥,𝑦 < 0, the multiplying by  √ℎ𝑥2 ℎ𝑦2 ,  will result in coheritability with larger value than 𝑟𝐴𝑥,𝑦.   

If  𝑟𝐴𝑥,𝑦 > 0  then the product of √ℎ𝑥2 ℎ𝑦2   and  𝑟𝐴𝑥,𝑦 results in a coheritability value smaller than  𝑟𝐴𝑥,𝑦 .   

In both cases, the coheritability will move in a direction towards zero. 

Additionally,  if  ℎ𝑥
2 + ℎ𝑦

2 = 1, then √ℎ𝑥2 ℎ𝑦2 = √(1 − ℎ𝑥2)(1 − ℎ𝑥2).   

The phenotypic correlation would be zero if the coheritability and coenvironmentability are of the same 

magnitude but of different sign. Another case exists when both the coheritability and 

coenvironmentability are zero;  this would happen if one of the heritabilities is unity and the other zero, 

or if both genetic and environmental correlations is zero. 

 

The sample correlation coefficient, as well as the coheritability estimator, depending on the sample size 

involved, can display numerical instability, especially at the proximity±1.  Both the sample correlation 

and the coheritability are not sufficiently robust, so its values can be misleading if outliers are present. 

Cognizant of this fact, we can make some deductions in this regard:  

(A) A heritability equal to zero can only occur if the additive genetic variance (in the numerator) is 

zero.  Under this condition, however, such zero genetic variance enters into the formula of the 

genetic correlation and causes it to be mathematically undefined (i.e. division by zero).  

Therefore, zero heritability cannot coexist with non null genetic correlation.     

   

(B) A similar rationale can also be applied to the environmental correlation.  A heritability equal to 1 

implies that the additive genetic variance and the phenotypic variance are the same, and that 

the environmental variance is zero.  Since the zero environmental variance is part of the 

denominator of the environmental correlation, it will cause to become undefined.  Therefore, a 

heritability equal to 1 and a non null environmental correlation cannot exist. 
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Table 7.5 presents the algebraic formula for coheritability, coenvironmentability and phenotypic 

correlations, as affected by the heritabilities and the correlations. 
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𝒓
𝑷
𝒙
,𝒚
=
𝟎

  ℎ
𝑥
,𝑦
=

 0
.5
 𝑟
𝐴
𝑥
,𝑦

   
 𝑒
𝑥
,𝑦
=
 −
0
.5
 𝑟
𝐴
𝑥
,𝑦

𝒓
𝑷
𝒙
,𝒚
=
𝟎
. 

  ℎ
𝑥
,𝑦
=

 0
.5
 𝑟
𝐴
𝑥
,𝑦

   
𝑒 𝑥

,𝑦
=
 0
.5
 (
1
−
𝑟 𝐴

𝑥
,𝑦
)

𝒓
𝑷
𝒙
,𝒚
=

 𝒉
𝒙𝟐
 (
 𝒓
𝑨
𝒙
,𝒚
 +
 𝒓
𝑬
𝒙
,𝒚
)
+
 𝒓
𝑬
𝒙
,𝒚

  ℎ
𝑥
,𝑦
=
 ℎ
𝑥2
 𝑟
𝐴
𝑥
,𝑦

   
   
 𝑒
𝑥
,𝑦
=
 (
1
−
ℎ
𝑥2
) 
𝑟 𝐸

𝑥
,𝑦

𝒓
𝑷
𝒙
,𝒚
=

 𝒉
𝒙𝟐
 𝒓
𝑨
𝒙
,𝒚

  ℎ
𝑥
,𝑦
=
 ℎ
𝑥2
 𝑟
𝐴
𝑥
,𝑦

   
   
 𝑒
𝑥
,𝑦
=
0

𝒓
𝑷
𝒙
,𝒚
=
 𝒓
𝑨
𝒙
,𝒚

+ 
(𝟏

−
𝒉
𝒙𝟐
)

  ℎ
𝑥
,𝑦
=
0

   
   
   
  𝑒

𝑥
,𝑦
=
 (
1
−
ℎ
𝑥2
) 
𝑟 𝐸

𝑥
,𝑦

𝒓
𝑷
𝒙
,𝒚
=
 𝒉

𝒙𝟐
 𝒓
𝑨
𝒙
,𝒚

+ 
(𝟏

−
𝒉
𝒙𝟐
) 

  ℎ
𝑥
,𝑦
=
 ℎ
𝑥2
 𝑟
𝐴
𝑥
,𝑦

𝑒 𝑥
,𝑦
=
(1

−
ℎ
𝑥2
) 

𝒓
𝑷
𝒙
,𝒚
=

𝒉
𝒙𝟐

+ 
 (
𝟏
−
𝒉
𝒙𝟐
)𝒓

𝑬
𝒙
,𝒚

  ℎ
𝑥
,𝑦
=

ℎ
𝑥2

   
   
   
   
   
 𝑒
𝑥
,𝑦
=
 (
1
−
ℎ
𝑥2
) 
𝑟 𝐸

𝑥
,𝑦

𝒓
𝑷
𝒙
,𝒚
=

𝟏

  ℎ
𝑥
,𝑦
=

ℎ
𝑥2
 𝑟
𝐴
𝑥
,𝑦

   
   
 𝑒
𝑥
,𝑦
=
 (
1
−
ℎ
𝑥2
) 
𝑟 𝐴

𝑥
,𝑦

𝒓
𝑷
𝒙
,𝒚
=
−
𝟏
+
𝟐
 𝒉

𝒙𝟐
 𝒓
𝑨
𝒙
,𝒚

  ℎ
𝑥
,𝑦
=

ℎ
𝑥2
 𝑟
𝐴
𝑥
,𝑦

   
   
 𝑒
𝑥
,𝑦
=
 −
(1
−
ℎ
𝑥2
) 
𝑟 𝐴

𝑥
,𝑦

𝒓
𝑷
𝒙
,𝒚
=
𝟏
+
𝟐
 𝒉

𝒙𝟐
 𝒓
𝑨
𝒙
,𝒚
−
 𝒉

𝒙𝟐
 −
 𝒓
𝑨
𝒙
,𝒚

  ℎ
𝑥
,𝑦
=

ℎ
𝑥2
 𝑟
𝐴
𝑥
,𝑦

   
   
 𝑒
𝑥
,𝑦
=
 (
1
−
ℎ
𝑥2
)(
1
−
 𝑟
𝐴
𝑥
,𝑦
)

𝒓
𝑷
𝒙
,𝒚
=

 𝒉
𝒙𝟐
(𝟏

−
𝒉
𝒙𝟐

 
)
 𝒓
𝑨
𝒙
,𝒚
  
   
𝒓
𝑬
𝒙
,𝒚

  ℎ
𝑥
,𝑦
=

 ℎ
𝑥2
ℎ
𝑦2

 
 𝑟
𝐴
𝑥
,𝑦

   
   
 𝑒
𝑥
,𝑦
=

ℎ
𝑥2
(1

−
ℎ
𝑥2
)

 
 𝑟
𝐸
𝑥
,𝑦

𝒓
𝑷
𝒙
,𝒚
=

 𝒉
𝒙𝟐
(𝟏

−
𝒉
𝒙𝟐

 
) 
𝒓
𝑨
𝒙
,𝒚

  ℎ
𝑥
,𝑦
=

 ℎ
𝑥2
(1

−
ℎ
𝑥2
)

 
 𝑟
𝐴
𝑥
,𝑦

𝑒 𝑥
,𝑦
=
0

𝒓
𝑷
𝒙
,𝒚
=

 𝒉
𝒙𝟐
(𝟏

−
𝒉
𝒙𝟐

 
) 
𝒓
𝑬
𝒙
,𝒚

  ℎ
𝑥
,𝑦
=
0

𝑒 𝑥
,𝑦
=

 ℎ
𝑥2
(1

−
ℎ
𝑥2
)

 
  𝑟

𝐸
𝑥
,𝑦

𝒓
𝑷
𝒙
,𝒚
=

 𝒉
𝒙𝟐
(𝟏

−
𝒉
𝒙𝟐

 
)
 𝒓
𝑨
𝒙
,𝒚
+
𝟏
 

  ℎ
𝑥
,𝑦
=

ℎ
𝑥2
(1

−
ℎ
𝑥2
)

 
 𝑟
𝐴
𝑥
,𝑦

   
   
 𝑒
𝑥
,𝑦
=

𝒓
𝑷
𝒙
,𝒚
=

 𝒉
𝒙𝟐
(𝟏

−
𝒉
𝒙𝟐

 
)
 𝒓
𝑬
𝒙
,𝒚
+
𝟏
 

  ℎ
𝑥
,𝑦
=

ℎ
𝑥2
(1

−
ℎ
𝑥2
)

 
   
   
 𝑒
𝑥
,𝑦
=

ℎ
𝑥2
(1

−
ℎ
𝑥2
)

 

𝒓
𝑷
𝒙
,𝒚
=
𝟐

 𝒉
𝒙𝟐
(𝟏

−
𝒉
𝒙𝟐

 
) 
𝒓
𝑨
𝒙
,𝒚

  ℎ
𝑥
,𝑦
=

 ℎ
𝑥2
(1

−
ℎ
𝑥2

 
) 
𝑟 𝐴

𝑥
,𝑦

   
   
 𝑒
𝑥
,𝑦
=

ℎ
𝑥2
(1

−
ℎ
𝑥2
)

 
 𝑟
𝐴
𝑥
,𝑦

𝒓
𝑷
𝒙
,𝒚
=
𝟎

  ℎ
𝑥
,𝑦
=

 ℎ
𝑥2
(1
−
ℎ
𝑥2

 
) 
𝑟 𝐴

𝑥
,𝑦

   
   
 𝑒
𝑥
,𝑦
=
−
 
ℎ
𝑥2
(1

−
ℎ
𝑥2
)

 
 𝑟
𝐴
𝑥
,𝑦

𝒓
𝑷
𝒙
,𝒚
=

 𝒉
𝒙𝟐
(𝟏

−
𝒉
𝒙𝟐

 
)

  ℎ
𝑥
,𝑦
=

 ℎ
𝑥2
(1
−
ℎ
𝑥2
)

 
 𝑟
𝐴
𝑥
,𝑦

𝑒 𝑥
,𝑦
=

 ℎ
𝑥2
(1
−
ℎ
𝑥2
)

 
 −

   
ℎ
𝑥
,𝑦

ℎ
𝑥2
=
0
.5
   
   
an
d
   
   
 ℎ
𝑦2
=
0
.5

ℎ
𝑥2
=
ℎ
𝑦2

ℎ
𝑥2
+
ℎ
𝑦2
=
1

0
<
ℎ
𝑥2
<
1
   
 a
n
d
   
0
<
ℎ
𝑦2
<
1

 

𝑟 𝐴
𝑥
,𝑦
+
𝑟 𝐸

𝑥
,𝑦
=

1

𝒓
𝑷
𝒙
,𝒚
=

 𝒉
𝒙𝟐
𝒉
𝒚𝟐

 
+ 

 (
𝟏
−
𝒉
𝒙𝟐
)(
𝟏
−
𝒉
𝒚𝟐
)

 

  ℎ
𝑥
,𝑦
=

 ℎ
𝑥2
ℎ
𝑦2

 
   
   
 𝑒
𝑥
,𝑦
=

 (
1
−
ℎ
𝑥2
)(
1
−
ℎ
𝑦2
)

 

𝒓
𝑷
𝒙
,𝒚
=
𝟏

  ℎ
𝑥
,𝑦
=

0
.5

   
   
   
   
  𝑒

𝑥
,𝑦
=
0
.5

𝒓
𝑷
𝒙
,𝒚
=
𝟏

  ℎ
𝑥
,𝑦
=

ℎ
𝑥2

   
   
 𝑒
𝑥
,𝑦
=
(1

−
ℎ
𝑥2
)

𝒓
𝑷
𝒙
,𝒚
=
𝟐

 𝒉
𝒙𝟐
(𝟏

−
𝒉
𝒙𝟐

 
)

  ℎ
𝑥
,𝑦
=

 ℎ
𝑥2
(1
−
ℎ
𝑥2
)

 
𝑒 𝑥

,𝑦
=

 ℎ
𝑥2
(1
−
ℎ
𝑥2
)
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Finally, the value that of the phenotypic correlation "approaches" as the covariance input "approaches" 

zero, shows that at the limit the phenotypic correlation can become one of its components, the 

coheritability or the coenvironmentability. 

l m
 𝐸𝑥,𝑦→ 

(𝑟𝑃𝑥,𝑦) = l m
 𝐸𝑥,𝑦→ 

(

 
𝐶𝑃𝑥,𝑦

√𝑉𝑃𝑥𝑉𝑃𝑦)

 = l m
 𝐸𝑥,𝑦→ 

(

 
𝐶𝐴𝑥,𝑦 + 𝐶𝐸𝑥,𝑦

√𝑉𝑃𝑥𝑉𝑃𝑦 )

  =  ℎ𝑥,𝑦 

and 

l m
 𝐴𝑥,𝑦→ 

(𝑟𝑃𝑥,𝑦) = l m
 𝐴𝑥,𝑦→ 

(

 
𝐶𝑃𝑥,𝑦

√𝑉𝑃𝑥𝑉𝑃𝑦)

 = l m
 𝐴𝑥,𝑦→ 

(

 
𝐶𝐴𝑥,𝑦 + 𝐶𝐸𝑥,𝑦

√𝑉𝑃𝑥𝑉𝑃𝑦 )

  =  𝑒𝑥,𝑦 
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7.6  The assumption that  𝒓𝑷𝒙,𝒚 = 𝒓𝑨𝒙,𝒚  

 

To assume that the phenotypic correlation is a suitable proxy for the genetic correlation.  At the extreme 

case when  𝑟𝑃𝑥,𝑦 = 𝑟𝐴𝑥,𝑦 , some implications can be deduced: 

(A) The phenotypic variance of each trait is entirely composed of additive genetic variance and null 

environmental variance. 
(B) This implies that the heritability of each trait is unity. 
(C) The environmental correlation becomes undefined because its denominator would include zero. 
(D) Thus, 

𝑟𝑃𝑥,𝑦  = √ℎ𝑥
2 ℎ𝑦

2  𝑟𝐴𝑥,𝑦 + √(1 − ℎ𝑥
2)(1 −  ℎ𝑦

2)  𝑟𝐸𝑥,𝑦 

 

                        𝑟𝑃𝑥,𝑦 = √1 ∙  1 𝑟𝐴𝑥,𝑦 = 𝑟𝐴𝑥,𝑦  

These are problematic assumptions, especially if applied in studies in the wild, 

and even in field tests of plant and animal breeding, where the environmental 

effects are generally strong and of importance. 
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7.7  Disparity between the phenotypic and genetic correlations 
 

Disparity D denotes the absolute difference of the phenotypic and genetic correlations (Willis et al. 

1991). 

𝐷 = |𝑟𝑃𝑥,𝑦 − 𝑟𝐴𝑥,𝑦| 

This is a measure to assess the closeness of the values of the phenotypic and genetic 

correlations to one another. 

The disparity index D is equivalent to the following relationship, 

||√ℎ𝑥2 ℎ𝑦2  𝑟𝐴𝑥,𝑦 + √(1 − ℎ𝑥2)(1 − ℎ𝑦2)  𝑟𝐸𝑥,𝑦⏟                          
𝑟𝑃𝑥,𝑦

− 𝑟𝐴𝑥,𝑦|
| 

which reduces to 

𝐷 = | (√ℎ𝑥2 ℎ𝑦2  − 1) 𝑟𝐴𝑥,𝑦  + √(1 − ℎ𝑥2)(1 − ℎ𝑦2)  𝑟𝐸𝑥,𝑦| 

 

 

7.7.1  The domain of the Disparity Index 

 

To properly address issues regarding the domain of the Disparity Index, it is useful to review the 

relationship maintained by the heritabilities and correlations, as presentred in table 7.7.1. 

If 𝑟𝑃𝑥,𝑦 = 1, it means that either the coheritability or the coenvironmentability equals 1.  Let’s 

analyze each case. 

 

Case 1: If  𝒓𝑷𝒙,𝒚 = 𝟏, 𝒂𝒏𝒅 𝒉𝒙,𝒚 = 𝟏 ( 𝒆𝒙,𝒚 = 𝟎 ).  If the coheritability equals 1 then the only 

combination of values allowed is that all ℎ𝑥
2 = 1, ℎ𝑦

2 = 1,  𝑟𝐴𝑥,𝑦 = 1  (causing the 

coenvironmentability to become zero, note if the heritabilities are 1, then 

√(1 − ℎ𝑥2)(1 − ℎ𝑦2) = 0).  The disparity is 𝐷 = |1 − 1| = 0. 



 .
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Case 2: If  𝒓𝑷𝒙,𝒚 = 𝟏, 𝒂𝒏𝒅 𝒉𝒙,𝒚 = 𝟎 ( 𝒆𝒙,𝒚 = 𝟏 ). In the case that the coheritability is zero, it is 

useful to analyze it by decomposing it into its constituents. 

ℎ𝑥,𝑦 = √ℎ𝑥
2
 ℎ𝑦
2
  ∙    𝑟𝐴𝑥,𝑦                              for  0 < ℎ∎

2 < 1 , −1 <  𝑟𝐴𝑥,𝑦 < 1 

ℎ𝑥,𝑦 =
𝜎𝐴𝑥  

𝜎𝑃𝑥

𝜎𝐴𝑦

𝜎𝑃𝑦
 ∙  

𝜎𝐴𝑥,𝑦

𝜎𝐴𝑥𝜎𝐴𝑦
            for  𝜎𝐴𝑥 > 0 , 𝜎𝐴𝑥 > 0 , 𝜎𝑃𝑥 > 0,  𝜎𝑃𝑦 > 0 

One notices that the numerator of the square root of the product of the heritabilities is also the 

denominator of the genetic correlation.  If a heritability equals zero, it means that the genetic 

variance (the numerator) is zero, is also part of the denominator of the genetic correlation (see 

Section 7.5) Additional cases are presented in Table 7.7.1 .  

An intuitive way to express this finding is presented below. 

𝐷 = |𝑟𝑃𝑥,𝑦 − 𝑟𝐴𝑥,𝑦| 

|𝑟𝑃𝑥,𝑦 − 𝑟𝐴𝑥,𝑦| < 1 

−1 < 𝑟𝑃𝑥,𝑦 − 𝑟𝐴𝑥,𝑦 ≤ 1           

−1 + 𝑟𝐴𝑥,𝑦 < 𝑟𝑃𝑥,𝑦 < 1+ 𝑟𝐴𝑥,𝑦           

Note at this point that if 𝑟𝐴𝑥,𝑦 = 0, then  −1 < 𝑟𝑃𝑥,𝑦 < 1 

Let’s analyze each bound separately.   

When 𝑟𝑃𝑥,𝑦 > 0, the upper bound, 𝑟𝑃𝑥,𝑦 < 1 + 𝑟𝐴𝑥,𝑦   cannot exceed unity, therefore to satisfy 

this condition 𝑟𝐴𝑥,𝑦 must have negative values. 

When 𝑟𝑃𝑥,𝑦 < 0, the lower bound, 𝑟𝑃𝑥,𝑦 > −1 + 𝑟𝐴𝑥,𝑦 , cannot be lower than -1, therefore 𝑟𝐴𝑥,𝑦 

should have positive values. 

To summarize, the bounds the bounds of the Disparity Index is  −1 < 𝐷 < 1, or more explicitly 

𝐷 = {

𝑟𝑃𝑥,𝑦 − 𝑟𝐴𝑥,𝑦 < 1             𝑓𝑜𝑟 𝑟𝐴𝑥,𝑦 < 0 ,  𝑟𝑃𝑥,𝑦 > 0 

            𝑟𝑃𝑥,𝑦                       𝑓𝑜𝑟 𝑟𝐴𝑥,𝑦 = 0, 𝑟𝑃𝑥,𝑦 ≠ 0

𝑟𝑃𝑥,𝑦 − 𝑟𝐴𝑥,𝑦 > −1           𝑓𝑜𝑟 𝑟𝐴𝑥,𝑦 > 0, 𝑟𝑃𝑥,𝑦 < 0
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Table 7.7.1  Disparity index measures under varying values of phenotypic and genetic 

correlations.  Note the last four rows, which show incongruence relationship between the 

genetic and the environmental correlations, produce invalid disparity indices.  

1 1 0 = |1 - 1|

1

1 1 1 0 = |1 - 1|

-1 -1 0 = |-1 - (-1)|

-1 -1 -1 0 = |-1 -(- 1)|

0 0 0 = |0 - 0|

0 0 0 0 = |0 - 0|

0 1 -1 1 = |0 - 1|

0 -1 1 1 = |0 - (-1)|

0

1 1

-1 -1

1 -1 1

-1 1 -1

2 = | 1 - (-1) |

2 = | -1 - 1 |

𝑟𝑃𝑥,𝑦 =    ℎ𝑥
2        ℎ𝑦

2          𝑟𝐴𝑥,𝑦 + (1− ℎ𝑥
2)    (1− ℎ𝑦

2)       𝑟𝐸𝑥,𝑦                 = |𝑟𝑃𝑥,𝑦 − 𝑟𝐴𝑥,𝑦 |

ℎ𝑥,𝑦 𝑒𝑥,𝑦

𝑟𝐸𝑥,𝑦

ℎ𝑥,𝑦 = 1 𝑒𝑥,𝑦 = 0

𝟏  𝟏 1 − 𝟏             1 − 𝟏 

ℎ𝑥,𝑦 = 0.5 𝑒𝑥,𝑦 = 0.5

𝟎. 𝟎. 1 − 𝟎.          1 − 𝟎. 

ℎ𝑥,𝑦 = −1 𝑒𝑥,𝑦 = 0

𝟏 𝟏 1 − 𝟏            1 − 𝟏 𝑟𝐸𝑥,𝑦

ℎ𝑥,𝑦 = −0.5 𝑒𝑥,𝑦 = −0.5

𝟎. 𝟎. 1 − 𝟎.          1 − 𝟎. 

𝑟𝐸𝑥,𝑦

ℎ𝑥,𝑦 = 0 𝑒𝑥,𝑦 = 0
𝟏  ℎ𝑦

2 1 − 𝟏          1 − ℎ𝑦
2 

ℎ𝑥,𝑦 = 0 𝑒𝑥,𝑦 = 0

 ℎ𝑥
2           ℎ𝑦

2        (1 − ℎ𝑦
2)     1 − ℎ𝑦

2 

ℎ𝑥,𝑦 = 0.5 𝑒𝑥,𝑦 = −0.5

𝟎. 𝟎. 1 − 𝟎.          1 − 𝟎. 

ℎ𝑥,𝑦 = −0.5 𝑒𝑥,𝑦 = 0.5

𝟎. 𝟎. 1 − 𝟎.          1 − 𝟎. 

ℎ𝑥,𝑦 = 0.5 𝑟𝐴𝑥,𝑦 𝑒𝑥,𝑦 = −0.5 𝑟𝐴𝑥,𝑦

𝟎. 𝟎. 1 − 𝟎.          1 − 𝟎. 𝑟𝐴𝑥,𝑦
𝑟𝐸𝑥,𝑦 = −𝑟𝐴𝑥,𝑦 | 𝒓𝑨𝒙,𝒚| = | 0 −  𝑟

𝐴𝑥,𝑦
|

ℎ𝑥,𝑦 = 0 𝑒𝑥,𝑦 = 1

𝟎 𝟎 1 − 𝟎          1 − 𝟎𝑟𝐴𝑥,𝑦
| 𝟏 −  𝑟𝐴𝑥,𝑦 |   

𝑟𝐸𝑥,𝑦

ℎ𝑥,𝑦 = 𝑟𝐴𝑥,𝑦
𝑒𝑥,𝑦 = 0

𝟏  𝟏 𝑟𝐴𝑥,𝑦 | 1 −  𝑟𝐴𝑥,𝑦|1 − 𝟏             1 − 𝟏 

ℎ𝑥,𝑦 = 0 𝑒𝑥,𝑦 = −1

𝟎 𝟎 1 − 𝟎          1 − 𝟎𝑟𝐴𝑥,𝑦
|  − 𝟏 −  𝑟𝐴𝑥,𝑦 |   

ℎ𝑥,𝑦 = 0 𝑒𝑥,𝑦 = 1

𝟎 𝟎 1 − 𝟎          1 − 𝟎

ℎ𝑥,𝑦 = 0 𝑒𝑥,𝑦 = −1

𝟎 𝟎 1 − 𝟎          1 − 𝟎
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Figure 7.7.1  Surface graph depicting the Disparity Index 𝐷 as a function of the phenotypic 

correlation  𝑟𝑃𝑥,𝑦and the genetic correlation 𝑟𝐴𝑥,𝑦 . 
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7.7.2  Distribution of  the Disparity Index 

 

The distribution of D can be modelled as the absolute difference of two uniform variables, which results 

in the triangular distribution.  Our purpose now is to find the cumulative density function (CDF) and the 

probability density function (PDF) of 𝐷. 

Let 𝑃 and 𝐴 be random variables distributed identically and independently as standard uniform, such 

that 

𝑃~ (0,1) ,       𝑓𝑃(𝑝) = 1 ,      0 < 𝑝 < 1 , 

𝐴~ (0,1) ,       𝑓𝐴(𝑎) = 1 ,      0 < 𝑎 < 1 , 

Define the new variable 𝐷 = | 𝑃 − 𝐴 |.   

The subset within the unit square that is between the two lines represents the area where the event 

{ |𝑃 –  𝐴| ≤ 𝑑 } for 0 ≤ 𝑑 ≤ 1 occurs.  The area of the unit square is 1.  The dimension of the subset (a 

hexagon) is obtained by subtracting the area of the two triangles, each encompassing  
(1−𝑑)2

2
. 

       

Figure  7.7.2-1  Event { |𝑃 –  𝐴| ≤ 𝑑 }. (A) Area representing the occurrence of the event.  (B) Volume 

representing the probability of the event. 

Within this region, the probability is the volume within the two lines (yellow region in Figure 7.7.2-1A).  

The overall volume is a cube with dimension 1x1x1=1 is obtained by multiplying by 1 since that is the 

uniform pdf in each point (𝑃, 𝐴) (Figure 7.7.2-2). 
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𝐹𝐷(𝑑) =  1 − 2
(1 − 𝑑)2

2
= 2𝑑 − 𝑑2 

𝐹𝐷(𝑑) =

{
 
 

 
 

  0                           𝑑 < 1  

 𝑑(2 − 𝑑)         0 ≤ 𝑑 ≤ 1   

  0                           𝑑 > 1  

  

The cumulative density function of 𝐷 

Is obtained by determining the 

probability of 𝐷 taking values less than 

𝑑 

𝐹𝐷(𝑑) =  𝑃𝑟{ 𝐷 ≤ 𝑑 } =  𝑃𝑟{{||𝑃 –  𝐴|}| ≤ 𝑑 }       

𝐹𝐷(𝑑) =  𝑑(2 − 𝑑)                  for  0 ≤ 𝑑 ≤ 1 
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𝐹𝐷 𝑑

𝑑

𝑓𝐷(𝑑) =

{
 
 

 
 
0                                                𝑑 < 0

d(𝐹𝐷)

d𝑑
= 2 − 2𝑑            0 ≤ 𝑑 ≤ 1

0                                                 𝑑 > 1

 

  

The probability density function of 𝐷 

Is obtained by differentiating the 

cumulative function 𝐹𝐷 with respect to 

𝑑.   
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7.7.3  A simulation model to generate disparity data 

  

The disparity between the phenotypic and genetic correlation, as we have seen, can only obtain values 

between zero and one (Section 7.7.1). 

To generate simulated data of the disparity index, a model can be devised as the distribution of a simple 

difference of two standard uniform random variables. Here a convolution method is employed. 

Let 𝑋1 and 𝑋2 be random variables distributed identically and independently as standard uniform, such 

that 

𝑋1~ (0,1) ,       𝑓𝑋1(𝑥1) = 1 ,      0 < 𝑥1 < 1  

𝑋2~ (0,1) ,       𝑓𝑋2(𝑥2) = 1 ,      0 < 𝑥2 < 1  

The joint density of (𝑋1, 𝑋2) is 

𝑓𝑋1,𝑋2(𝑥1, 𝑥2) = 𝑓𝑋1(𝑥1) ∙ 𝑓𝑋2(𝑥2) =  
1                         𝑓𝑜𝑟  0 ≤ 𝑥1 ≤ 1  ,   0 ≤ 𝑥2 ≤ 1  

0                        𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                       

 

Let’s define = 𝑋1 − 𝑋2 , such that the value of 𝑥1 = 𝑧 + 𝑥2  

0 ≤ 𝑥1 ≤ 1 

0 ≤ 𝑧 + 𝑥2 ≤ 1 

−𝑥2 ≤   𝑧 ≤ 1 − 𝑥2 

which can be replaced in the joint density pdf, as follows. 

𝑓𝑋1,𝑋2(𝑥1, 𝑥2) =  𝑓𝑋1,𝑋2( 𝑧 + 𝑥2 ,  𝑥2) =  
1                         𝑓𝑜𝑟  0 ≤ 𝑥2 ≤ 1  ,   𝑧  −𝑥2  ,    𝑧 + 𝑥2 ≤ 1

0                        𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                                             
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The tables above help corroborate that this is a 1-to-1 transformation. 

The probability density function of 𝑧 is obtained by solving the convolution integrals 

𝑓𝑍(𝑧) = ∫ 𝑓𝑋1,𝑋2( 𝑧 + 𝑥2 ,  𝑥2) 𝑑𝑥2

+∞

−∞

=  ∫ 𝑓𝑋1( 𝑧 + 𝑥2 ) ∙ 𝑓𝑋2(𝑥2) 𝑑𝑥2

+∞

−∞

= ∫ 𝑓𝑋1( 𝑧 + 𝑥2 ) 𝑑𝑥2

+∞

−∞

 

 

                   𝑓𝑍(𝑧) =

{
 
 

 
 
0                                                                                           𝑧 < −1

∫ 1 𝑑𝑥2 =  [1 − (−𝑧)] = 1 + 𝑧                     − 1 ≤ 𝑧 < 0 
1

−𝑧

1                                                                                              𝑧 = 0 

∫ 1 𝑑𝑥2 = [1 − 𝑧 − 0] = 1 − 𝑧                         0 < 𝑧 ≤ 1
1−𝑧

 

0                                                                                               𝑧 > 0

 

And the cumulative density function of 𝑧 is 

𝐹𝑍(𝑧) =  𝑃𝑟{ 𝑍 ≤ 𝑧 }  = 𝑃𝑟{ 𝑋1 − 𝑋2 ≤ 𝑧 } 
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𝐹𝑍(𝑧) =

{
  
 

  
 
0                                                                                                          𝑧 < −1

∫ ∫ 1 𝑑𝑥2 𝑑𝑥1 =  
 𝑧2

2
+ 𝑧 +

1

2
                           − 1 ≤ 𝑧 < 0 

1

𝑥2=𝑥1−𝑧

𝑧

𝑥1= 

0.5                                                                                                         𝑧 = 0 

1 − ∫ ∫ 1 𝑑𝑥2 𝑑𝑥1 = −
 𝑧2

2
+ 𝑧 +

1

2
                         0 < 𝑧 ≤ 1

𝑥1−𝑧

𝑥2= 

1

𝑥1=𝑧

0                                                                                                             𝑧 > 0

 

 

 

 

 

 

 

 

 

 

 

 

 

  

𝐹𝑍(𝑧) =

{
  
 

  
 

 

             0                             𝑧 < −1

   
 𝑧2

2
+ 𝑧 +

1

2
          − 1 ≤ 𝑧 < 0 

     0.5                                    𝑧 = 0

−
 𝑧2

2
+ 𝑧 +

1

2
            0 < 𝑧 ≤ 1

             0                              𝑧 > 0 

 

 

The cumulative density function of 𝑧 
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𝑧

  

The probability density function of 𝑧 

 

    𝑓𝑍(𝑧) =

{
 
 

 
 

 

      0                     𝑧 < −1 
   1 + 𝑧          − 1 ≤ 𝑧 < 0 
     1                            𝑧 = 0
1 − 𝑧            0 < 𝑧 ≤ 1
      0                     𝑧 > 0 
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7.7.4  The ratio of the genetic correlation over the phenotypic correlation 

 

The ratio 𝑘 between the genetic correlation and the phenotypic correlation can be deduced if the 

phenotypic correlation and the disparity index are known.  This ratio is another parameter that reveal 

the degree of difference between the genetic and phenotypic correlations. 

Figure 7.7.4 illustrates how the ratio behave as a function of the phenotypic correlation and the 

disparity index. 

(A) When the genetic and phenotypic correlation have the same sign, the ratio oscillates between 

zero and is 1 (or 100%).  The latter is equivalent that  𝑟𝐴𝑥 = 𝑟𝑃𝑥 , and its line correspond to the 

base of the triangle. 

(B) When the genetic and phenotypic correlation have different sign, the ratio goes from zero to 

extreme values (< -900%). A ratio equal to -200% indicates that the henetic correlation value is 

the double of the phenotypic correlation, |𝑟𝐴𝑥| = 2|𝑟𝑃𝑥|, the sign indicating the genetic 

correlation has a different sign than the phenotypic correlation. 

(C) When 𝑟𝐴𝑥 = 0, then the disparity is 𝐷 = 𝑟𝑃𝑥  and the ratio is zero (0 %). 

(D) For a given disparity value there are different ratios that can be associated to it , dependning on 

the value of 𝑟𝑃𝑥  . 

(E) For a given value of  𝑟𝑃𝑥  , there is a continuum of ratios that depend upon the 𝐷 value. 

(F) As the phenotypic correlation approaches zero, irrespective of the disparity value, the ratio 

assumes extreme values, showing a marked difference between 𝑟𝐴𝑥 and 𝑟𝑃𝑥 . 
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Figure 7.7.4-1  Ratio of the genetic correlation over the phenotypic correlation as a function of the 

disparity index and the phenotypic correlation. Only one size is labeled.  A mirror image of the lines 

apply at the left side of the triangle where the 𝑟𝑃𝑥 < 0.  The sign associated to the percentage indicates 

that  𝑟𝐴𝑥   has a different sign than the phenotypic correlation.  At the right side (𝑟𝑃𝑥 > 0), negative sign 

percentages indicate that the  𝑟𝐴𝑥 is negative.  At the left side (𝑟𝑃𝑥 < 0), negative sign indicates that 𝑟𝐴𝑥 

is positive.  
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0.5-0.5 0 1-1

1

0.9

0.8
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𝑟𝑃𝑥

𝐷

Table  7.7.4-1 

Values of the ratio 𝑘, and parameters of the line 

that starts at the origin and reaches the side of the 

triangle at the point ( 𝑟𝑃𝑘  , 𝐷𝑘) having a slope 𝑚.   

                  

See below for a description of the algorithm used to 

create Figure 7.7.4-1. 

 

 

0 1

1

0

-1

𝑟𝑃 𝑥,𝑦

𝐷

𝐷𝑘  −

 
𝑟𝑃𝑘 

( 𝑟𝑃𝑘  ,  𝐷𝑘 )  

 

-10 11 0.083 0.917 -1000%

-9 10 0.091 0.909 -900%

-8 9 0.100 0.900 -800%

-7 8 0.111 0.889 -700%

-6 7 0.125 0.875 -600%

-5 6 0.143 0.857 -500%

-4 5 0.167 0.833 -400%

-3 4 0.200 0.800 -300%

-2.5 3.5 0.222 0.778 -250%

-2 3 0.250 0.750 -200%

-1.5 2.5 0.286 0.714 -150%

-1 2 0.333 0.667 100%

-0.8 1.8 0.357 0.643 -80%

-0.75 1.75 0.364 0.636 -75%

-0.5 1.5 0.400 0.600 -50%

-0.3 1.3 0.435 0.565 -30%

-0.25 1.25 0.444 0.556 -25%

0 1 0.500 0.500 0%

0.25 0.75 0.571 0.429 25%

0.3 0.7 0.588 0.412 30%

0.5 0.5 0.667 0.333 50%

0.75 0.25 0.800 0.200 75%

0.8 0.2 0.833 0.167 80%

1 0 1 0 100%
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Figure 7.7.4-2  Disparity data derived from genetic and phenotypic correlations collected from an 

extensive literature review (𝑛 =  280).  A first impression points out to the fact that in the majority of 

the cases, the value of the genotypic correlation differ quite significantly from the value of the 

phenotypic correlation. 
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Algorithm to derive the line corresponding to a given ratio 𝑘 of the 

genetic correlation over the phenotypic correlation 

.1  Select a given value of the ratio 𝑘 = (
𝑟𝐴𝑥,𝑦

𝑟𝑃𝑥,𝑦
). If the phenotypic 

correlation has the same sign as the genetic correlation, then the 

maximum k is 1.  If the phenotypic correlation and the genetic correlation 

differ in sign, then k can be from zero to 10 (above 10 is possible, but the 

value of 𝑟𝑃  will be extremenly small).  For example, choosing a value of 5 

means that 𝑟𝐴 is 5 times larger than , or that 𝑟𝐴  is 500% the value of 𝑟𝑃 . 

.2  Determine the slope of the line 𝑚 = 1− 𝑘. 

.3  Determine the phenotypic correlation value 𝑟𝑃𝑘 =
1

1+|𝑚|
.  (If working 

with the negative phenotypic correlation, multiply by -1. 

.4  Determine the disparity index 𝐷𝑘  . 

.5  Trace the line from the origin to the point ( 𝑟𝑃𝑘  ,   𝐷𝑘) .   The line covers 

all the combinations of ( 𝑟𝑃𝑥,𝑦  ,  𝐷)  that have a ratio equal to 𝑘. 
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8   Selection 
 

The term √ℎ𝑥2 ℎ𝑦2  𝑟𝐴𝑥,𝑦 is a measure of coinheritance of a pair of phenotypic traits that is due to shared 

genetics.  This expression has named coheritability by Nei (1960), and further studied by others (Searle 

1961, Falconer 1960). It is in the last edition of Principles of Quantitative Genetics by Falconer and 

Mackay (1996) in which the term coheritability was reintroduced.   The name is derived from the 

context of correlated response to selection.  The formula for the expected response 𝑅𝑋  of a progeny in 

terms of phenotypic gain in trait  x due to selection of parents based on the same trait is 

𝑅𝑥 =  𝑖 ( ℎ𝑥
2 ) 𝜎𝑃𝑋                                                                            [ 8 − 1 ]  

where i  is the intensity of selection, and 𝜎𝑃𝑥  is the phenotypic standard deviation of trait x.  In an 

analogous way, the expected response of correlated trait x when parental selection is based one trait y 

is: 

𝑅𝑋|𝑌 =  𝑖 (√ℎ𝑥
2ℎ𝑦

2 𝑟𝐴𝑥,𝑦) 𝜎𝑃𝑋                                                                [ 8 − 2 ]  

The term in brakets is the coheritability, which functions in an analogous manner as the heritability in 

equation  [ 8-1 ]. 

Yet despite its implicit use, very little attention has been paid to understand the statistical and 

mathematical properties of coheritability.  There is a persistent confusion in the scientific literature of 

what this term means or how should be calculated.  Denoted as coheritability some reports present 

expressions that do not possess any consistent theoretical background, such as the mere ratio of 

additive genetic to phenotypic covariances   
 𝐴

 𝑃
  (de Reggi 1972, Janssens 1979).  The simple ratio 

 𝐴

 𝑃
=

√𝑉𝐴𝑥𝑉𝐴𝑦𝑟𝐴

√𝑉𝑃𝑥𝑉𝑃𝑦𝑟𝑃
=

√ℎ𝑥
2 ℎ𝑦 

2 𝑟𝐴𝑥𝑦

𝑟𝑃
=

ℎ𝑥,𝑦

𝑟𝑃
 ≠ ℎ𝑥𝑦 , clearly is not a recognizable coheritability form (its bounds 

go from zero to infinity).   

Most quantitative phenotypes are polygenic, and for these traits, selection is likely to act on many 

preexisting genetic variants of small effect.  Detecting so called polygenic selection is challenging 

because selection acts on multiple loci simultaneously.   

For the sake of completeness and to introduce symbols denoting estimators to be used later, this 

section starts with a brief explanation of the theory of mass selection and correlated response. 
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8.1  Realized heritability 
 

The mass selection method aims in choosing a subset of individuals from a original population to breed 

and generate the progeny (or offspring) generation.  Individuals are ordered my their phenotypic value.  

Individuals whose phenotypic value are above a pre-specified  value (i.e., truncation point), generally at 

an extreme of the distribution, are selected.  Therefore, individuals are selected solely strictly by their 

rank judge by their phenotypic values. 

Based on the assumption that the distribution of phenotypic values of the population follows a normal 

distribution 𝑁(�̅�𝑜 , 𝜎𝑃
2),  the observed mean phenotypic value of the original distribution (�̅�𝑜 ), and the 

mean phenotypic value of the subset of individuals chosen (�̅�𝑠) differ in the amount called the selection 

differential 

𝑆 = (�̅�𝑠 − �̅�𝑜). 

 𝑆 depends on the percentage 𝑘 of individuals of the original population selected as parents, and the 

phenotypic standard deviation of the original population. The expected mean value of the selected 

individuals above the truncation point  𝑡  (𝑡 > 0) is  

𝐸(𝑥𝑠) = 𝐸(𝑃 | 𝑃 >  𝑡 ) =
ℎ

𝑘
 

and the variance of the selected individuals is 

𝑉𝑎𝑟(𝑃𝑠) = 𝑉𝑎𝑟(𝑃 |𝑃 > 𝑡) = 1 −
ℎ

𝑘
 (
ℎ

𝑘
− 𝑡) 

where ℎ is the height (i.e. ordinate) of the standard normal curve at point  𝑡. 
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The expected response ( 𝑅 ) to mass selection for a desired trait is 

𝑅 = ℎ2𝑆 

When the progeny has been obtained and its mean phenotypic value (�̅�1)  determined, the realized 

response to selection is calculated as 

𝑅𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 = �̅�1 − �̅�𝑜  

Given than the both the selection differential 𝑆 and the realized response  𝑅𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑   are known, it is 

then possible to determine the realized heritability of the trait as follows: 

ℎ𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑
2 =

𝑅𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑
𝑆

 

In practice, the cumulative response is plotted against the cumulated selection differential (Falconer and 

MacKay 1996, page 197ss), a a simple regression line is fitted.  The slope of this line (𝑏) is a function of 

the realized heritability, such that 𝑏 = 𝑣 ∙ ℎ𝑟
2. The coefficient 𝑣 = 1 if the trait is measured in all 

R
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individuals irrespective of their sex.  If the measurements are obtained from either male or female, then 

𝑣 = 0.5, and the realized heritability in this case is obtained by doubling the slope. 
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8.2  Realized coheritability   
 

Using the correlated response of trait 𝑦 when selection was directed to trait 𝑥, a similar rationale can be 

used to determined the realized bivariate measures of genetic relationship. 

By performing mass selection on an original population, based on the phenotypic value of trait 𝑥, using a 

specified selection differential 𝑆𝑥 , both a direct response to selection for trait x (𝑅𝑥)  as well as a 

correlated response in trait 𝑦 (𝐶𝑅𝑋|𝑌) are obtained.  

( A ) If one round of selection has been performed, then the realized coheritability is the ratio of the 

correlated response on the selection differential, 

ℎ𝑥,𝑦 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐶𝑅𝑋|𝑌

𝑆𝑥
 

If several rounds of selection have been done, then one can plot cumulative correlated response of trait  

𝑦 on the cumulative selection differential of trait 𝑥, an a liner regression model fitted.  The slope 

parameter 𝑏 (which can be positive or negative) becomes a function of the coheritability, such that: 

 

ℎ𝑥,𝑦 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑏

2𝑏

if analyses employ measurements of all individuals irrespective of sex

if analyses employ measurements of either male or female individuals 
 

 

( B ) In the case of double selection experiments, in which one group of individuals is directly selected 

for the primary trait  𝑥 yielding 𝑅𝑥 , and trait 𝑦 is assessed as a secondary (correlated) trait as 𝐶𝑅𝑋|𝑌 , and 

another group is directly selected for 𝑦 (𝑅𝑥), and 𝑥 becomes the secondary trait 𝐶𝑅𝑌|𝑋 .  Both are 

plotted and the coheritabilities calculated as expounded above.  It is expected that the two estimates 

should be numerically close, provided the theory of correlated response is adequate to describe the 

results, and no discernible asymmetry is found in the direct and correlated responses.  The estimate of 

the realized coheritability is the geometric mean of the slope parameters of the regressions. 

ℎ𝑥,𝑦 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 =

{
 
 

 
 
 ± 𝑣 ∙ √

|𝐶𝑅𝑋|𝑌

|  𝑆 𝑌
 
𝐶𝑅𝑌|𝑋|

  𝑆 𝑋  |
for one single round of double selection

± 𝑣 ∙ √𝑏𝑋|𝑌  𝑏𝑌|𝑋          for several rounds of double selection    
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where 𝑆 𝑋  and 𝑆 𝑌  are the selection differentials used for direct selection of trait 𝑥 and 𝑦 respectively.  

The sign depends on the relationship observed in the plot of the data. Again, 𝑣 = 1 when individuals are 

selected irrespective of sex, and 𝑣 = 0.5 if measurements come from only one sex. 

 

( C ) It both the realized heritabilities and genetic correlations (see below) have been estimated, then  

ℎ𝑥,𝑦 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑 = √ℎ 𝑥 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑
2  ℎ 𝑦 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑

2   𝑟𝐴𝑥,𝑦 𝑟 𝑎𝑙𝑖𝑧 𝑑  

All the formulas presented are subject to large experimental variation and must be taken to indicate 

tendency rather than magnitude. 

 

Figure 8.2   The coheritability and the genetic correlation in relation to their capability to predict the 

correlated response to selection.  The intensity of selection was set to an intensity of selection 𝑖 =

0.1 and the phenotypic variance of the correlated trait standardized to 1 (𝑛 =  288).  
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8.3  Realized genetic correlation 
 

The realized genetic correlation between two traits is, 

𝑟𝐴𝑥,𝑦 𝑟 𝑎𝑙𝑖𝑧 𝑑 =

{
  
 

  
 𝐶𝑅𝑌|𝑋

𝑅𝑥
for single round of selection       

√
𝐶𝑅𝑋|𝑌

𝑅𝑥
 
𝐶𝑅𝑌|𝑋

𝑅𝑦
for double selection experiment

 

Note that the value of the correlated response may be either positive or negative. 
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8.4  Relative efficiency of indirect selection with respect to direct selection 
 

Observation of the response to selection of correlated traits may lead to consider that in certain 

circumstances it would be feasible to obtain more rapid and efficient advance of a desired character 

when applying selection for a secondary trait 𝑦 which is correlated to 𝑥.  This means that to improve 

character 𝑥, selection should be applied to another (secondary) character 𝑦 and achieve progress 

through the correlated response of character 𝑥.   

Indirect selection is advantageous under special conditions.   

Let  𝑅𝑥 = 𝑖𝑥  ℎ𝑥
2 𝜎𝑃𝑥  be the direct response of the desired trait when selection is applied directly on 

character 𝑥.   

Let 𝐶𝑅𝑥|𝑦 = 𝑖𝑦  ℎ𝑥𝑦  𝜎𝑃𝑥  be the correlated response of character 𝑥 resulting from selection applied to 

secondary character 𝑦. 

The relative efficiency (RE) of selection is the value of indirect selection relative to that of direct 

selection, and could be expressed as the ratio of expected responses, as follows 

𝑅𝐸 =
𝐶𝑅𝑥|𝑦

𝑅𝑥
=
𝑖𝑦 ℎ𝑥,𝑦 𝜎𝑃𝑥
𝑖𝑥   ℎ𝑥2  𝜎𝑃𝑥

=
𝑖𝑌 ℎ𝑥,𝑦
𝑖𝑥   ℎ𝑥2

 

 

Lerner and Cruden (1948 ) defined as relative efficiency of indirect selection the expression  
ℎ𝑌𝑟𝐴

ℎ𝑋
 which 

is equivalent to 

𝑅𝐸 =  
ℎ𝑥,𝑦

ℎ𝑋
2  

this equation allows to determine conditions of when indirect selection of 𝑥 when selecting for 𝑦 would 

be greater than the direct response to selection for 𝑥 (see Figure 8.4), 

                                                     𝑖𝑌 ℎ𝑥,𝑦 > 𝑖𝑥   ℎ𝑥2  

                                              𝑖𝑌 √ℎ𝑥2 ℎ𝑦 2 𝑟𝐴𝑥𝑦 > 𝑖𝑥   ℎ𝑥
2  

                                                   𝑖𝑌 √ℎ𝑦 2 𝑟𝐴𝑥𝑦 > 𝑖𝑥   √ℎ𝑥
2  
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Inspection of this relationship shows that indirect selection would be greater if the heritability  ℎ𝑦
2  is 

greater than ℎ𝑥
2, and the genetic correlation 𝑟𝐴𝑥𝑦  is high. Cases like this would occur if trait x is difficult 

to measure with precision but y is not. 

If the selection intensity is much greater for 𝑦 than 𝑥 would also result in a greater response of indirect 

selection.  This would apply if 𝑦 were measurable in both sexes by 𝑥 measurable in only one sex. 

 

  

 

Figure 8.4  Different views of the relationship between relative efficiency of selection as a function of 

the coheritability of the traits and the heritability of the directly selected trait.  
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8.3  A measure of the intensity of GxE Interaction 
 

8.3.1  Type B coheritability and the intensity of GxE interaction S 

 

It is well recognized by breeders that if the rank order and relative magnitude of phenotypic expression 

are the same across locations, it does not matter in which environment the parental selection is 

conducted.  However, if the rank changes, it might be best to select in the environment in which the 

organisms will ultimately be reared.  Falconer (1952) proposed that the magnitude of genotype-by-

environment interaction (GxE) be quantified by the cross-environment genetic correlations, in which the 

same characters measured in two environments is considered to be two different characters. Type B 

genetic correlation (using Burdon’s 1977 naming) is defined as 

𝑟𝐵𝑥 1,2 =  
𝑠𝑥1,𝑥2

√𝑠𝑥1
2  𝑠𝑥2

2
 

where  𝑠𝑥1,𝑥2  refers to the genotypic covariance between the same trait x in environments 1 and 2.  The 

terms 𝑠𝑥1
2  and  𝑠𝑥2

2   denotes the estimated genetic variance for the trait 𝑥 in environments 1 and 2, 

respectively. 

Nevertheless, the heritabilities displayed by the traits in the different environments are also important 

and informative, and they must be taken into account.  Therefore, to have a better idea of the intensity 

of GxE, would be rather preferable to use the Type B coheritability of the trait, which is defined was 

defined in Section 3.2.2 as: 

ℎ𝐵𝑥 1,2 = √ℎ𝑥1
2  ℎ𝑥2

2  𝑟𝐵𝑥 1,2  

ℎ𝐵𝑥 1,2  is the coheritability between trait x in environment 1 and 2,  ℎ𝑥∎
2  is the heritability of trait x in a 

given environment (1=env1, 2=env2), and 𝑟𝐵𝑥 1,2 is the Type B-genetic correlation.  The intensity of GxE is 

inversely related to the coheritability,  [𝐺𝑥𝐸] ∝  
1

ℎ𝑥1,𝑥2
.  When the intensity of GxE is high it means that 

the environment exert a larger influence on the phenotype manifested in their change of rank of the 

mean performance of the trait, and thus the coheritability is low. On the other hand, a high 

coheritability across sites shows that the genetic component is stable across environments.  Cognizant 

that one cannot infer the underlying genetic architecture from an observed coheritability, because many 

different underlying causal pathways can generate the same pattern. Such patterns, however, might 

suggest causal hypotheses, yet caution must be exercised to make statements about causes of observed 

coheritabilities (Pigliucci  2005).   
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Here I present a measure of the intensity of the genotype-by-environment interaction, called S, based 

on the Type B coheritability of a trait exhibited by members of a genotype (i.e. family, clones, variety) in 

two distinct environments. 

 

The measure S is defined as 

𝑆 =
1 − |ℎ𝐵𝑥 1,2|

1 + |ℎ𝐵𝑥 1,2|
                                                        0 < 𝑆 < 1 

 

Which can be plotted as a function of the absolute value of the Type coheritability ℎ𝐵𝑥 1,2
 . 

                                       

The graph illustrates the inverse relationship between intensity of genotype x environment interaction 

(S) and the coheritability of the same trait in two environments. 

 

The low absolute value of the coheritability means that the breeding values of a trait displayed by a 

genotype in an environment are not linearly related to the breeding values of the same genotype in 

another environment, thus S would be high. High absolute value of the coheritability indicates that the 

genotype is stable across environments, and the intensity of S is reduced.   

 

 

  

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ℎ 𝑥 1,2

𝑆

less stable  genotype

more stable  genotype

le
ss

in
te

n
se

   G
xE

   
in

te
ra

ct
io

n

m
o

re
in

te
n

se
  G

xE
   

in
te

ra
ct

io
n



 .

 Supplementary Infor 

. 

 

Page 131 of 230 
 

8.3.2  Relationship of coheritabilities across environments. Case for two traits. 

 

How the coheritabilities across environments relate to the coheritabilities between traits within an 

environment? 

In the case that two traits are of interest in both environments, the Type B coheritability across sites of 

each single trait and the coheritability between both traits within each environment can be related, as 

follows, 

 

Let  ℎ𝐵𝑥 1,2 = √ℎ𝑥1
2  ℎ𝑥2

2  𝑟𝐵𝑥 1,2  and  ℎ𝐵𝑦 1,2 = √ℎ𝑦1
2  ℎ𝑦2

2  𝑟𝐵𝑦 1,2 be the Type B coheritability for trait 𝑥 and 𝑦, 

respectively.  Then its product is 

ℎ𝐵𝑥 1,2 ∙ ℎ𝐵𝑦 1,2 = √ℎ𝑥1
2  ℎ𝑥2

2  𝑟𝐵𝑥 1,2 √ℎ𝑦1
2  ℎ𝑦2

2  𝑟𝐵𝑦 1,2                                     [ 8.3.2 − 1] 

 

After some rearrangement 

 

ℎ𝐵𝑥 1,2 ∙ ℎ𝐵𝑦 1,2 = √ℎ𝑥1
2  ℎ𝑦1

2  √ℎ𝑥2
2  ℎ𝑦2

2  𝑟𝐵𝑥 1,2 𝑟𝐵𝑦 1,2                                     [ 8.3.2 − 2] 

 

the geometric means of the heritabilities  √ℎ𝑥
2 ℎ𝑦

2  can be replaced by  
ℎ𝑥,𝑦

𝑟𝐴𝑥,𝑦 
  employed now in equation  

8.3.2-2], which yields, 

ℎ𝐵𝑥 1,2 ∙ ℎ𝐵𝑦 1,2 = ℎ𝑥1,𝑦1ℎ𝑥2,𝑦2
𝑟𝐵𝑥 1,2 

𝑟𝐴𝑥1,𝑦1 

𝑟𝐵𝑦 1,2 

𝑟𝐴𝑥2,𝑦2 
                                                [ 8.3.2 − 2] 

 

Therefore, the product of Type B coheritabilities of two traits is the product of the coheritabilities 

between the traits in each environment multiplied by the ratio of Type B correlation and the genetic 

correlation, for both tratits.  
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9  Comparing correlations and coheritabilities 
 

9.1  Types of comparisons 
 

Testing single statistics (correlations, coheritability) was the purview of Section 5.  This section deals 

with comparing two values of correlations or coheritabilities.  A proper comparison of correlations 

between two groups must also involve comparing the groups based on other measures such as the 

response variable.  For details of a method aiming to do this, see Tabesh et al. 2010.  

Analogous to the statistical treatment concerning the comparison of correlations (Didenhofen and 

Musch 2015,  ), we can use the same statistical tools to perform the comparison of coheritabilities.   

There are two cases that can be distinguished in the comparison. A test that of independent 

coheritabilities compares two values obtained from distinct individuals/samples.   A test of  dependent 

coheritabilities compares two values obtained from the same individuals/sample. It can be referred as 

either an dependent, overlapping test if it compares two coheritabilities with one trait in common, or 

dependent, non-overlapping test if it compares two coheritabilities involving different traits, none in 

common.  Although different interpretation, these two cases of dependent testing are identical from a 

statistical perspective. An example may explain this better.  If, in a forestry progeny trial, the 

coheritability between height growth and diameter is to be compared to the coheritability between 

height growth and wood volume, there is a common factor, namely, the variable height growth.  This 

comparison is classified as dependent because it compares data obtained from the same group and 

overlapping because both coheritabilities have one factor in common.  On the other hand, any of these 

will be compared to the coheritability between early and late wood density, then the comparison is 

classified as dependent and non-overlapping.  In the case that the data comes from different groups or 

experiments, then it is classified as non-overlapping (see Example Box 9.1). 

 

                      

Fa
ct

o
r

Two correlations obtained from 

independent samples without common 

variable involved.

Non-overlapping

Two correlations or coheritabilities are 

calculated from the same sample with 

commom variables involved.

Non-overlapping

Dependent

Two correlations or coheritabilities are 

calculated from the same sample 

without commom variables involved.

Independent
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Example Box 9.1 

             

 

To perform the statistical comparison of the magnitude of two coheritabilities, as well as the confidence 

interval for such comparison, the free software package cocor (Didenhofen and Munsch 2015, available 

online at http://comparingcorrelations.org) covers a broad range of tests including the comparisons of 

independent and dependent variables in overlapping or nonoverlapping cases.  A thorough elaboration 

Dependent, overlapping

Dependent, nonoverlapping

Non-dependent, nonoverlapping

Tr
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 1

1 h 1,2 h 1,3 h 1,4 h 1,5

1 h 2,3 h 2,4 h 2,5

1

4H9

5H12

Problem:   To determine whether the genetic 

control  of a  phenotype in a  juveni le age i s  the 

same as  the same phenotype in a  mature age.

Question 1:   At what age i s  the juveni le 

phenotype  s igni ficantly correlated to the 

phenotype at the mature age?

Question 2:   At what age i s  the juveni le 

phenotype a  better predictor of the phenotype 

at the mature age?h 3,4 h 3,5

1 h 4,5

Trait  2
H3

2

H6

3

Data collection:   Measurements  of the tra i t 

regularly taken from the same individuals  

during development.
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54

1

Trait  2
Problem:  We look at whether the degree of 

genetic control  of two tra i ts  remains  the same 

or not at juveni le and mature s tages .

6 7

1

8 9 10
Question 1:   Is  the correlation between two 

tra i ts  at juveni le and the mature age the same 

throughout development?
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on statistical comparison of correlations (which do also apply to coheritabilities) is provided by the 

useful appendix accompanying the article 

(https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121945#sec010).   

9.2  The nature of the coheritability in terms of traits, environment and state 
 

Another aspect pertinent to comparisons is the conceptual nature of the variables (i.e. correlations, 

coheritabilities) involved in a single correlation of coheritability measure. Table 9 defines the traits, 

expands the concept of environment, and introduces the concept of state 

 

Table 9  Conceptual considerations in bivariate measures of relationship such as correlations and 

coheritability 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121945#sec010
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Case I   coheritability between two distinct traits, say insect resistance and the abundance of certain 

metabolite in the leaf (traits) in a localities with varying insect pest abundance (environment) and 

obtained in individual trees of certain age (state).  

Case II   coheritability between the concentration of two pollutants (traits) in a contaminated site 

(environment), evaluated in pregnant mothers and the fetuses (state)  

Case III   coheritability between two types of cholesterol evaluated before and after a diet change 

(environment) in the same individuals in a juvenile and a mature age (state). 

Case IV   coheritability between the abundance of two hormones (traits) measured in individuals when 

awake and sleeping (environment), in males and females (state). 

it refers to any intrinsic biological 

condition, quality, or event that 

influence the genetic control of the 

traits. 

State
D

ef
in

it
io

n
Ex

am
p

le

developmental stage:  juvenile, adult.                                                                                       

disease state:  unaffected, affected.                                

sex: male, female                                                                                    

ethnic provenance, strain, biovar, 

clone                              

continuous,   discrete, complex

spatial:  physical environmental, site.                                                                                       

subject: individual, cohort, family                                                                                                   

generational:  parent, progeny                                                           

temporal:  circadian,  year                                                                                                

treatment:  before, during, after test 

Environment

it refers to any external or extrinsic factor 

that modulates, modifies, or influence the 

genetic control of the traits.

measure of a phenotypic 

character, or an aggregate of 

characters,observed in 

members of a sample or 

population.

Trait

case                          

I

case                          

II

same                                      

state

case                          

III

case                          

IV

same 

environment

different 

environment

same 

environment

different 

environment

different                           

traits

same                               

trait same                                      

state

different                                           

state

different                                           

state

different                                           

state

same                                      

state

same                                      

state

case                          

V

case                          

VI

case                          

VII

case                          

VIII

different                                           

state
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Case V   coheritability between wood volume growth (trait) measured in trees planted in the same site 

(environment) measured at distinct ages (state). 

Case VI   coheritability between concentrations of a pollutant in the blood (trait) measured in specific 

homes (environments) and among individuals before and after some treatment (state). 

Case VII coheritability between height growth (trait) measured in individuals growing in different sites 

(environment) and from different clones (state). 

Case VIII coheritability between pest resistance (trait) in different plantation sites (environment) and 

among resistant and susceptible genotypes. 

Examples for some cases are show below. 

Case VIII 

 

Case VII 

 

same trait, same environment, same state

Measurement in the same individuals

Hage1

Hage2

Hage3

The  H represents the trait, the numeral indicate the age in which the 

measurement was taken.  The coheritability  is represented by  h   and the 

symbols of the traits as subscripts.

Hage2 Hage3 Hage4

ℎ𝐻1𝐻2
ℎ𝐻1𝐻3

ℎ𝐻1𝐻 

ℎ𝐻2𝐻3
ℎ𝐻2𝐻 

ℎ𝐻3𝐻4

ℎ𝐻1𝐻2
           ℎ𝐻3𝐻 

dependent nonoverlapping

ℎ𝐻1𝐻 
           ℎ𝐻3𝐻 

dependent overlapping

same trait, different environment, same state Type B correlations coheritability

if different organs in same individuals, dependent

different individuals yet belonging to the same family

Hsite3

The  H represents the trait, the subscript indicate the locality at which the 

measurement was taken.  The coheritability  is represented by  h   and the 

symbols of the traits as subscripts.

Hsite2 Hsite3 Hsite4

Hsite1

Hsite2

ℎ𝐻𝑠𝑖𝑡𝑒1𝐻𝑠𝑖  2
ℎ𝐻𝑠𝑖  1𝐻𝑠𝑖  3

ℎ𝐻𝑠𝑖  1𝐻𝑠𝑖   

ℎ𝐻𝑠𝑖  2𝐻𝑠𝑖  3
ℎ𝐻𝑠𝑖  2𝐻𝑠𝑖   

ℎ𝐻𝑠𝑖  3𝐻𝑠𝑖   

ℎ𝐻1𝐻3
           ℎ𝐻2𝐻 

dependent nonoverlapping

ℎ𝐻1𝐻 
           ℎ𝐻1𝐻3

dependent overlapping
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Case VI 

 

Case II

 

 

Case III 

 

different traits, same environment, same state

J

K

The  H, J, K, D, E, F represent the trai.  The coheritability  is represented by  h  

and the symbols of the traits as subscripts.

D E F

H ℎ𝐻𝐷 ℎ𝐻𝐸 ℎ𝐻 

ℎ 𝐸 ℎ  

ℎ  

ℎ𝐻𝐷            ℎ  dependent nonoverlapping

ℎ𝐻            ℎ  dependent overlapping

different traits, same environment, different state

different individuals

Hj

Hm

The  H and D represent the traits, the subscript j refers to a juvenile state, m to 

the mature state. Also applicable is that j represents the parental generation, 

and m the progeny generation.   The coheritability  is represented by  h   and the 

symbols of the traits as subscripts.

Dj Dm

ℎ(𝐻𝐷) 

ℎ(𝐻𝐷)𝑚

ℎ(𝐻𝐷)              ℎ(𝐻𝐷)𝑚  independent

different traits, different environment, same state

Hsite1

Hsite2

The  H and D represent the traits, the subscript refers to a environments where 

the measurements were taken. Also applicable is that j represents the parental 

generation, and m the progeny generation.   The coheritability  is represented 

by  h   and the symbols of the traits as subscripts.

site 2

si
te

 1

Dsite1 Dsite2

ℎ(𝐻𝐷)𝑠𝑖  1

ℎ(𝐻𝐷)𝑠𝑖  2

ℎ(𝐻𝐷)1              ℎ(𝐻𝐷)2  (in)dependent
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10  Simulation of coheritability and coenvironmentability data 
 

10.1  Derivation of joint probability density function of simulated  𝒉𝒙𝒚  and  𝒆𝒙𝒚    

 

Let   (𝑋1, 𝑋2)  be a bivariate random vector in which the 𝑋1 and 𝑋2 variables independently have a 

Uniform (−
1

2
 ,

1

2
)  distribution.  The joint distribution of 𝑋1 and 𝑋2 is 

𝑓𝑋1 ,𝑋2(𝑥1, 𝑥2) = 𝑓𝑋1(𝑥1)  ×  𝑓𝑋2(𝑥2) = 1 × 1 = 1 ,     for −1 < 𝑥1  <  1  and −1 <  𝑥2  <  1.   

 

Now consider a new bivariate random  ( 𝐻 , 𝐸)  vector be defined by 

𝐻 = 𝑔1(𝑋1, 𝑋2) =  𝑋1 + 𝑋2 ,    −1 ≤ 𝐻 ≤ 1,   

𝐸 = 𝑔2(𝑋1, 𝑋2) =  𝑋1 − 𝑋2 ,    −1 ≤ 𝐸 ≤  1 

Our goal is to find the joint distribution of 𝐻 and 𝐸 expressed in terms of 𝑓𝑋1,𝑋2(𝑥1, 𝑥2).  The set  

A =  {(𝑥1 ,   𝑥2) ∶  𝑓𝑋1,𝑋2 (𝑥1, 𝑥2) > 0 } , and 

B =  {(ℎ , 𝑒) ∶  ℎ = 𝑔1(𝑥1, 𝑥2) =  𝑥1 + 𝑥2 ;   𝑒 = 𝑔2(𝑥1, 𝑥2) = 𝑥1 − 𝑥2, ,  for  (𝑥1 ,  𝑥2)  ∈ A } 

Thus, the joint pdf 𝑓𝐻,𝐸 (ℎ , 𝑒) will be positive on the set B. 

 

Verification of the 1-to-1 transformation 

Here we demonstrate that  ℎ =  𝑔1(𝑥1, 𝑥2)  and  𝑒 =  𝑔2(𝑥1, 𝑥2) define a one-to-one transformation of 

A onto B.  The transformation is onto because of the definition of B.  Thus, for each (ℎ, 𝑒) ∈ B  there is 

only one (𝑥1, 𝑥2) ∈ A  such that  (ℎ, 𝑒) = (𝑔1(𝑥1, 𝑥2) , 𝑔2(𝑥1, 𝑥2)) .  Therefore, we aim to express  𝑥1 

and  𝑥2 in terms of ℎ and  𝑒 .  Thus, we obtain the following inverse transformation: 

𝑥1 =  𝑔1
−1 (ℎ , 𝑒)  =  

ℎ +  𝑒

2
 

𝑥2 =  𝑔2
−1 (ℎ , 𝑒)  =  

ℎ −  𝑒

2
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The tables below each graph show that the transformation is 1-to-1. 

(5)  Jacobian determinant of the transformation 

𝐽 =  |

𝜕𝑥1

𝜕ℎ

𝜕𝑥1

𝜕𝑒

𝜕𝑥2

𝜕ℎ

𝜕𝑥2

𝜕𝑒

| =  |

𝜕

𝜕ℎ
( 
ℎ+𝑒

2
 )

𝜕

𝜕𝑒
 ( 

ℎ+𝑒

2
 )

𝜕

𝜕ℎ
( 
ℎ−𝑒

2
 )

𝜕

𝜕𝑒
( 
ℎ−𝑒

2
 )

| =   =  |

1

2
    

1

2

1

2
−

1

2

| =  −0.5  

 

We observe that  𝐽  is not identical to zero in B.   Then the joint pdf of (𝐻, 𝐸) is zero outside the set B, 

and on the set  B  is given by 

𝑓𝐻,𝐸(ℎ, 𝑒) =  𝑓𝑋1,𝑋2(𝑔1
−1 (ℎ , 𝑒) ,  𝑔2

−1(ℎ, 𝑒) ) |  𝐽 | 

=  1| −0.5 | 

𝑓𝐻,𝐸(ℎ, 𝑒) =  0.5            

b d

a c

d 1 0

b 0 -1

c 0 1

h               
X ₁ + X ₂

e                 
X₁ + X₂

a -1 0a -0.5 -0.5

0.5-0.5b

c 0.5 -0.5

0.50.5d

c

d

b

X ₁ X₂

X₁

0

h
10.50

e

-0.5 -0.5

-1

a

0.5

A

-0.5-1-0.5 0 0.5

X₂ 0

0.5

1

B



 .

 Supplementary Infor 

. 

 

Page 140 of 230 
 

 

Thus, 𝑃  [(𝐻, 𝐸) ∈  B ] = 𝑃[(𝑋1 , 𝑋2)  ∈ A ], and the probability distribution of (𝐻 , 𝐸) is completely 

determined by the probability distribution of  (𝑋1 , 𝑋2). 

 

                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

 

f H,E(h,e)

e

h
- 1

0

1

1

- 1

0

0.5

0
a

c

d

b

Joint probability density function 

of the variables H and E. 

 

 

 

 

 

 

 

Results of generating simulated 

data using the model explained in 

this section. 

The data  (𝑛 = 3000) obtained 

using a SAS program.  Notice that 

the data allocates randomly 

throughout the 2DHER-field, all 

partitions have approximately 

similar content of data points. 

 

 

 

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

𝑒𝑥,𝑦

ℎ𝑥,𝑦

-1

-0
.5

0

0.5

1
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11  The Breeder’s Equation 
 

This section attempts to illustrate that role of the coheritability in the context of the multivariate form of 
the breeder’s equation, particularly the 𝐻 = 𝐺𝑃−1 component, includes terms of coheritability and 
correlations related in a complex manner, and would remain hidden were not derived explicitly.  The 
equations for a 2x2 and a 3x3 matrices are presented here, this just to show the complex relationship 
when the covariance terms are not zero. 

The breeder’s equation measures within-generation response to selection.  Predictions from the 
breeder's equation typically do not hold well in natural populations (Morrisey et al. 2010).  Rollinson and 
Rowe (2015) discuss about the persistent directional selection on body size that is widely observed in 
wild populations, yet response to selection is generally not in the direction predicted by the breeder’s 
equation.  Stasis tends to dominate the temporal dynamic of traits in nature (Uyeda et al. 2010). 

This lack of correspondence between expectation and observation may be due, in part, to an incomplete 
picture of all traits under selection (Pujol et al.  2018), or how the traits interact and correlate properly 
(Lande and Arnold 1983).  Kruuk et al. (2008) acknowledge that the breeder’s equation is too simplistic a 
representation to apply to studies of natural selection in heterogeneous environments.  An alternative 
form of a breeder’s equation is presented by Houchmandzadeh (2014). 

The breeder's equation, in multivariate form, is given as: 𝛥𝑧 =  𝐺𝑃−1𝑠, where 𝛥𝑧 is a vector of the 
change in trait means between generations, 𝐺 is the genetic variance-covariance matrix, 𝑃−1 is the 
inverse of the phenotypic variance-covariance matrix, and 𝑠 is the vector of selection differentials (or 

alternatively, 𝛥𝑧 =  𝐺𝛽 where 𝛽 is a vector of selection gradients (Lande and Arnold 1983). Matrix 
formulations involving phenotypic and genetic correlations are important and must possess certain 
characteristics.  Methods to generate realistic correlation matrices have been proposed for simulation 
studies (Hardin et al. 2013, Numpacharoen and Atsawarunruagkit 2012).  
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11.1  The 2x2 Breeder’s equation matrix 
 

Let  𝑮𝟐𝒙𝟐  be the 2x2 (unstructured) genetic variance-covariance matrix  

 

𝑮𝟐𝒙𝟐 = [
𝑉𝐴1 𝐶𝐴1.2
𝐶𝐴1.2  𝑉𝐴2.

] 

 

And  𝑷𝟐𝒙𝟐  the 2x2 (unstructured) phenotypic variance-covariance matrix  𝑷𝟐𝒙𝟐 

𝑷𝟐𝒙𝟐 = [
𝑉𝑃1 𝐶𝑃1.2
𝐶𝑃1.2   𝑉𝑃2 .

] 

whose determinant is   𝒅𝒆𝒕 𝑷𝟐𝒙𝟐 = 𝑉𝑃1𝑉𝑃2 − 𝐶𝑃1,2
2  or 

𝒅𝒆𝒕 𝑷𝟐𝒙𝟐 = 𝑉𝑃1𝑉𝑃2(1 − 𝑟𝑃1,2
2 ) 

Inverse of 𝑷  is 

𝑷𝟐𝒙𝟐
−𝟏 =

1

  𝑉𝑃1𝑉𝑃2(1 − 𝑟𝑃1,2
2 )

 [
  𝑉𝑃2 −𝐶𝑃1.2
−𝐶𝑃1.2   𝑉𝑃1 .

]  =  
1

(1 − 𝑟𝑃1,2
2 )

[
 
 
 
 
 

1

𝑉𝑃1

−
𝑟𝑃1,2

√𝑉𝑃1𝑉𝑃2

−
𝑟𝑃1,2

√𝑉𝑃1𝑉𝑃2

1

𝑉𝑃2

 

]
 
 
 
 
 

 

 

Which we can use to derive the the 2x2 heritability-coheritability  𝐇𝟐𝒙𝟐 = 𝑮𝑷−𝟏
𝟐𝒙𝟐 

𝐇𝟐𝒙𝟐 = 𝑮𝑷−𝟏
𝟐𝒙𝟐 =

1

(1 − 𝑟𝑃1,2
2 )

 [
𝑉𝐴1 𝐶𝐴1.2
𝐶𝐴1.2  𝑉𝐴2.

 ]

[
 
 
 
 
 

1

𝑉𝑃1

−
𝑟𝑃1,2

√𝑉𝑃1𝑉𝑃2

−
𝑟𝑃1,2

√𝑉𝑃1𝑉𝑃2

1

𝑉𝑃2

 

]
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                           =
1

(1 − 𝑟𝑃1,2
2 )

 

[
 
 
 
 
 
𝑉𝐴1
𝑉𝑃1

−
𝐶𝐴1,2

√𝑉𝑃1𝑉𝑃2
𝑟𝑃1,2

𝐶𝐴1,2
𝑉𝑃1

−
𝑉𝐴2

√𝑉𝑃1𝑉𝑃2
𝑟𝑃1,2

𝐶𝐴1,2
𝑉𝑃2

−
𝑉𝐴1

√𝑉𝑃1𝑉𝑃2
𝑟𝑃1,2

𝑉𝐴2
𝑉𝑃2

−
𝐶𝐴1,2

√𝑉𝑃1𝑉𝑃2
𝑟𝑃1,2

 

]
 
 
 
 
 

 

Finally, the 2x2 heritability-coheritability matrix is 

 

𝐇𝟐𝒙𝟐 = 𝑮𝑷
𝟐𝒙𝟐

−𝟏 =
1

(1 − 𝑟𝑃1,2
2 )

[
 
 
 
 
 
 
 
          ℎ1

2 − ℎ1,2 𝑟𝑃1,2                  ℎ1,2 (√
𝑉𝑃1
𝑉𝑃2

 − 
𝑟𝑃1,2
𝑟𝐴1,2

√
𝑉𝐴1
𝑉𝐴2

)

 ℎ1,2(√
𝑉𝑃2
𝑉𝑃1

 − 
𝑟𝑃1,2
𝑟𝐴1,2

√
𝑉𝐴2
𝑉𝐴1

)                ℎ2
2 − ℎ1,2 𝑟𝑃1,2             

  

]
 
 
 
 
 
 
 

 

 

Note that the diagonal elements consist of functions of heritability, coheritability, and phenotypic 

correlation.  The off-diagonal elements involve the coheritabilities affected by raios of variances and 

covariances. 
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11.2  The 3x3 Breeder’s equation matrix 
 

Let  𝑮𝟑𝒙𝟑  be the 3x3 (unstructured) genetic variance-covariance matrix  

𝑮𝟑𝒙𝟑 = [

𝑉𝐴1 

𝐶𝐴1.2
𝐶𝐴1.2

  𝐶𝐴1.2
 𝑉𝐴2
  𝐶𝐴2.3

  𝐶𝐴1.3
  𝐶𝐴2.3
  𝑉𝐴3

 ] 

 

And  𝑷𝟑𝒙𝟑  the 3x3 (unstructured) phenotypic variance-covariance matrix   

𝑷𝟑𝒙𝟑 = [

𝑉𝑃1  

𝐶𝑃1.2
𝐶𝑃1.2

  𝐶𝑃1.2
 𝑉𝑃2
  𝐶𝑃2.3

  𝐶𝑃1.3
  𝐶𝑃2.3
  𝑉𝑃3

 ] 

whose determinant is  

det𝑷𝟑𝒙𝟑 = 𝑉𝑃1𝑉𝑃2𝑉𝑃3 + 2 𝐶𝑃1.2𝐶𝑃1.3𝐶𝑃2.3 − 𝑉𝑃1𝐶𝑃2.3 − 𝑉𝑃2𝐶𝑃1.3 − 𝑉𝑃3𝐶𝑃1.2 

Multiplying and dividing by  𝑉𝑃1𝑉𝑃2𝑉𝑃3 , it yields 

det𝑷𝟑𝒙𝟑 = 𝑉𝑃1𝑉𝑃2𝑉𝑃3(1 + 2𝑟𝑃1,2𝑟𝑃1.3𝑟𝑃2,3 − 𝑟𝑃1,2
2 𝑟𝑃1,3

2 𝑟𝑃2,3
2 ) 

The inverse of the phenotypic variance-covariance matrix is 

𝑷𝟑𝒙𝟑
−𝟏 =

1

(1 + 2𝑟𝑃1,2𝑟𝑃1.3𝑟𝑃2,3 − 𝑟𝑃1,2
2 𝑟𝑃1,3

2 𝑟𝑃2,3
2 )

[
 
 
 
 
 
 
 

1

𝑉𝑃1
(1 − 𝑟𝑃2,3

2 )  
1

√𝑉𝑃1𝑉𝑃2
(𝑟𝑃1.3𝑟𝑃2,3 − 𝑟𝑃1,2)  

1

√𝑉𝑃1𝑉𝑃3
(𝑟𝑃1.2𝑟𝑃2,3 − 𝑟𝑃1,3)

1

√𝑉𝑃1𝑉𝑃2
(𝑟𝑃1.3𝑟𝑃2,3 − 𝑟𝑃1,2)

1

𝑉𝑃2
(1 − 𝑟𝑃1,3

2 )  
1

√𝑉𝑃2𝑉𝑃3
(𝑟𝑃1.2𝑟𝑃1,3 − 𝑟𝑃2,3)

1

√𝑉𝑃1𝑉𝑃3
(𝑟𝑃1.2𝑟𝑃2,3 − 𝑟𝑃1,3)  

1

√𝑉𝑃2𝑉𝑃3
(𝑟𝑃1.2𝑟𝑃1,3 − 𝑟𝑃2,3)

1

𝑉𝑃3
(1 − 𝑟1,2

2 )
]
 
 
 
 
 
 
 

 

Then  𝐇𝟑𝒙𝟑 = 𝑮𝑷−𝟏
𝟑𝒙𝟑 is 

            

𝑮𝑷−𝟏
𝟑𝒙𝟑

=
1

det𝑃3𝑥3
[

𝑉𝐴1  

𝐶𝐴1.2
𝐶𝐴1.2

  𝐶𝐴1.2
 𝑉𝐴2
  𝐶𝐴2.3

  𝐶𝐴1.3
  𝐶𝐴2.3
  𝑉𝐴3

 ]

[
 
 
 
 
 
 
 

1

𝑉𝑃1
(1 − 𝑟𝑃2,3

2 )  
1

√𝑉𝑃1𝑉𝑃2
(𝑟𝑃1.3𝑟𝑃2,3 − 𝑟𝑃1,2)  

1

√𝑉𝑃1𝑉𝑃3
(𝑟𝑃1.2𝑟𝑃2,3 − 𝑟𝑃1,3)

1

√𝑉𝑃1𝑉𝑃2
(𝑟𝑃1.3𝑟𝑃2,3 − 𝑟𝑃1,2)

1

𝑉𝑃2
(1 − 𝑟𝑃1,3

2 )  
1

√𝑉𝑃2𝑉𝑃3
(𝑟𝑃1.2𝑟𝑃1,3 − 𝑟𝑃2,3)

1

√𝑉𝑃1𝑉𝑃3
(𝑟𝑃1.2𝑟𝑃2,3 − 𝑟𝑃1,3)  

1

√𝑉𝑃2𝑉𝑃3
(𝑟𝑃1.2𝑟𝑃1,3 − 𝑟𝑃2,3)

1

𝑉𝑃3
(1 − 𝑟1,2

2 )
]
 
 
 
 
 
 
 

 



 .

 Supplementary Infor 

. 

 

Page 145 of 230 
 

 

Then 𝐇𝟑𝒙𝟑 results in 

 

 

To facilitate visualization, the 𝐇𝟑𝒙𝟑 is presented below as a block matrix where the 𝑮𝑷
𝟑𝒙𝟑

−𝟏  has been 

partition in one row-group and three col-groups (column vectors), namely 𝐇𝟏𝟏 , 𝐇𝟏𝟐 , 𝐇𝟏𝟑. 

 

𝐇𝟑𝒙𝟑 = 𝑮𝑷
𝟑𝒙𝟑

−𝟏 =
𝟏

(1 + 2𝑟𝑃1,2𝑟𝑃1.3𝑟𝑃2,3 − 𝑟𝑃1,2
2 𝑟𝑃1,3

2 𝑟𝑃2,3
2 )

[ 𝐇𝟏𝟏  𝐇𝟏𝟐  𝐇𝟏𝟑 ]  

Where 

 𝟏𝟏 = 

[
 
 
 
 
 
 
                  ℎ1

2(1 − 𝑟𝑃2,3
2 ) + ℎ1,2(𝑟𝑃1,3𝑟𝑃2,3 − 𝑟𝑃1,2) + ℎ1,3(𝑟𝑃1,2𝑟𝑃2,3 − 𝑟𝑃1,3)   

√𝑉𝑃2

√𝑉𝑃1
[ℎ1,2(1 − 𝑟𝑃2,3

2 ) + ℎ2
2(𝑟𝑃1,3𝑟𝑃2,3 − 𝑟𝑃1,2) + ℎ2,3(𝑟𝑃1,2𝑟𝑃2,3 − 𝑟𝑃1,3)]

√𝑉3

√𝑉𝑃1
[ℎ1,3(1 − 𝑟𝑃2,3

2 ) + ℎ2,3(𝑟𝑃1,3𝑟𝑃2,3 − 𝑟𝑃1,2) + ℎ3
2(𝑟𝑃1,2𝑟𝑃2,3 − 𝑟𝑃1,3)] 

]
 
 
 
 
 
 

 

 

 𝟏𝟐 = 

[
 
 
 
 
 
 √
𝑉𝑃1

√𝑉𝑃2
[ℎ1

2(𝑟𝑃1,3𝑟𝑃2,3 − 𝑟𝑃1,2) + ℎ1,2(1 − 𝑟𝑃1,3
2 ) + ℎ1,3(𝑟𝑃1,2𝑟𝑃1,3 − 𝑟𝑃2,3)]   

ℎ1,2(𝑟𝑃1,3𝑟𝑃2,3 − 𝑟𝑃1,2) + ℎ2
2(1 − 𝑟𝑃1,3

2 ) + ℎ2,3(𝑟𝑃1,2𝑟𝑃1,3 − 𝑟𝑃2,3) 

√𝑉𝑃3

√𝑉𝑃2
[ℎ1,3(𝑟𝑃1,3𝑟𝑃2,3 − 𝑟𝑃1,2) + ℎ1,2(1 − 𝑟𝑃1,3

2 ) + ℎ3
2(𝑟𝑃1,2𝑟𝑃2,3 − 𝑟𝑃2,3)] 

]
 
 
 
 
 
 

 

 

1

(1 + 2𝑟𝑃1,2𝑟𝑃1.3𝑟𝑃2,3− 𝑟𝑃1,2
2 𝑟𝑃1,3

2 𝑟𝑃2,3
2 )

𝑮𝑷−𝟏𝟑𝒙𝟑=



 .
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 𝟏𝟑 =  

[
 
 
 
 
 
 √
𝑉𝑃1

√𝑉𝑃3
[ℎ1

2(𝑟𝑃1,2𝑟𝑃2,3 − 𝑟𝑃1,3) + ℎ1,2(𝑟𝑃1,2𝑟𝑃1,3 − 𝑟𝑃2,3) + ℎ1,3(1 − 𝑟𝑃1,2
2 )]

√𝑉𝑃2

√𝑉𝑃3
[ℎ1,2(𝑟𝑃1,2𝑟𝑃2,3 − 𝑟𝑃1,3) + ℎ2

2(𝑟𝑃1,2𝑟𝑃1,3 − 𝑟𝑃2,3) + ℎ2,3(1 − 𝑟𝑃1,2
2 )]

ℎ1,3(𝑟𝑃1,2𝑟𝑃2,3 − 𝑟𝑃1,3) + ℎ2,3(𝑟𝑃1,2𝑟𝑃1,3 − 𝑟𝑃2,3) + ℎ3
2 (1 − 𝑟𝑃1,2

2 ) ]
 
 
 
 
 
 

 

 

In the case that the phenotypic matrix 𝑷 has zero off-diagonal elements (no covariances), it becomes a 

diagonal matrix whose elements are the phenotypic variances of the traits, and further consider that the 

phenotypic variances have been standardized to 1, then the heritability-coheritability  𝐇 matrices 

become 

𝐇𝟐𝒙𝟐 = 𝑮𝑷
𝟐𝒙𝟐

−𝟏 = [

 ℎ1
2                  ℎ1,2

 ℎ1,2               ℎ2
2
  ] 

and 

𝐇𝟑𝒙𝟑 = 𝑮𝑷
𝟑𝒙𝟑

−𝟏 = [

 ℎ1
2            ℎ1,2        ℎ1,3 

ℎ1,2            ℎ2
2         ℎ2,3  

 ℎ1,3           ℎ2,3         ℎ3     
2

] 

The null phenotypic covariance between the traits implies that the phenotypic correlations between the 

traits is zero.  As we have seen, this fact does not preclude the coheritability to have statistically 

significant values, and be of importance.  In addition, under the condition 𝑟𝑃𝑥,𝑦 = 0,  then ℎ𝑥,𝑦 = −𝑒𝑥,𝑦  . 
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12  Supplementary Text 

12.1  Alternative conceptual frameworks to assess quantitative joint 

inheritance 
 

The notion that a phenotype is by nature a composite of an organism’s observable characters that are 

manifested in morphological, developmental, biochemical, behavioral or physiological properties, leads 

to think that a phenotype is inherently a multivariate concept.  This has prompted researchers to find 

ways to express a multivariate form of heritability (Carper 2008).   

Based on Lande (1979) proposal of a multivariate generalization of the Breeder’s equation ∆𝒛 = 𝑮𝑷−1𝒔 

(where G  and P  are the additive genetic and (co)variance matrices, respectively; and s the selection 

differential),  Klingenberg and Leamy (2001)  interpreted the dominant eigenvalue of  𝑮𝑷−1 as a 

multivariate heritability estimate.  Myers et al. (2006) re-scaled the largest eigenvalue by the sum of the 

eigenvalues.  These eigenvalue-based multivariate heritability measures have drawbacks mainly in the 

difficulty of estimating the standard errors of eigenvalues. In addition, as the number of traits increase, 

concomitantly increase the number of variance and covariance to be estimated, leading to an over 

parametrized model. 

While imbalance is fairly easily accommodated in the multivariate setting, the inclusion of multiple traits 

greatly increases the number of variance and covariance components to be estimated, and 

consequently of computation time.  The lack of reliable standard error estimates has led to the use of 

nonparametric resampling techniques in connection with multivariate analysis (Myers et al. 2006, 

Carper 2008). 

Other forms have been proposed such as the ratio of the sum of the diagonal elements of 𝑮 and 𝑷,  h=tr 

(G)/tr(P) proposed by Klingender and Monteiro (2005). They recognize that the method ignores the 

covariation among traits, and the direction of the selection differential or the direction of variation in 𝑮 

and 𝑷.  Basset and De Jong (2011) used an Evolutionary Algorithm to express multivariate heritability of 

M traits as a metric function of 𝑮𝑷−1 namely, ℎ = 𝑚(𝑮𝑷−1) = √det (𝑮𝑷−1)
𝑀

.  Guo et al. (2016) present 

two measures of coheritability between a pair traits  using GWAs data in the framework of high 

dimensional linear models. 
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12.2  Is there a “missing” coheritability?  
 

In the framework of genome-wide association studies, the problem of a “missing” coheritability is 

expected, and estimates of coheritability of a pair of traits using GWAS data must be taken cautiously, 

under the view that methodological and statistical artifacts have a higher risk of influencing such 

estimates. 

Gianola et al. (2015) rightly stated accurate predictions of complex traits and estimation of genomic 

correlations can be obtained from multivariate quantitative genetic analysis based on markers.  But such 

determinations (SNPS heritability, correlations) cannot be confused with heritabilities and genetic 

correlations because of the discrepancy and distinctiveness of the sources that bring forth the data. 

Certainly in single-trait analyses, imperfect marker-QTL linkage disequilibrium results in missing 

heritability. In a multivariate context the problem is compounded by missing correlations.  Therefore, 

caution is recommended in making pronouncements on causality when dealing with SNP heritabilities 

and genomic correlations involving complex traits. Speculating about genetic correlations in the study of 

complex traits, using marker data must be considered conjectural. 
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12.3  Coheritability of threshold traits 
 

This brief explanation of coheritability of threshold traits is based on Lee et al. (2011, 2012). 

First, two models are presented that describe the phenotypic trait in its observed scale, and in an 

unobserved underlying liability scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A simple linear regression can be used as an approximate model of the relationship between the genetic 

value on the observed scale and the genetic value in the liability scale, for each trait 

𝑢∎ = 𝑐 + 𝑏∎𝑔∎ 

 

 

𝑥 = 𝑢𝑥 + 𝑒𝑥         𝑦 = 𝑢𝑦 + 𝑒𝑦 

𝑥 =  
1
 
0
  

for  nd v duals hav ng the cond t on 𝑥

 
for  nd v duals not hav ng the cond t on 𝑦

 

𝑉𝑎𝑟(𝑥) = 𝐾𝑥(1 − 𝐾𝑥) 

𝑦 =  
1
 
0
  

for  nd v duals hav ng the cond t on 𝑥

 
for  nd v duals not hav ng the cond t on 𝑦

 

𝑉𝑎𝑟(𝑦) = 𝐾𝑦(1 −𝐾𝑦) 

OBSERVED  SCALE 

where 

The X and Y are the threshold traits defined as 

𝑢∎  is the random additive genetic effects from               

.      aggregate marker data 

𝑒∎  is the random residual 

𝐾𝑥   and 𝐾𝑦 represent the prevalence of the  

condition in the population  

 

𝑙𝑥 = 𝑔𝑥 + 𝑒𝑙 𝑥                 𝑙𝑦 = 𝑔𝑦 + 𝑒𝑙 𝑦  

LIABILITY  SCALE 

where 

𝑙∎  is the liability phenotype corresponding to trait ∎.   

.      𝑙∎~𝑁(0 , 1) , 

𝑔∎  is the random additive genetic effect on the                

.       liability scale,  𝑔∎~𝑁(0 , 𝜎𝑔∎
2 ) , 

𝑒𝑙 ∎  is the random residual on the liability scale,               

.        𝑒∎~𝑁(0 ,𝜎𝑒∎
2 ) ,       
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Where the regression parameter 𝑏 is defined as the covariance of the dependent variable 𝑢 divided by 

the variance of the independent variable 𝑔 

𝑏 =
𝐶𝑜𝑣(𝑢, 𝑔)

𝜎𝑔
2 = 𝑧 

Therefore,  

𝑢∎ = 𝑧∎𝑔∎ 

The genetic covariance between the additive values of  𝑢𝑥 , and  𝑢𝑦 are related to the covariance to the 

additive values in the liability scale, as follows: 

𝐶𝑜𝑣(𝑢𝑥 , 𝑢𝑦) = 𝐶𝑜𝑣(𝑧𝑥𝑔𝑥 , 𝑧𝑦𝑔𝑦) = 𝑧𝑥𝑧𝑦 𝐶𝑜𝑣(𝑔𝑥 , 𝑔𝑦) 

We define the coheritability as the ratio of the genetic covariance divided by the square root of the 

product of the phenotypic variance of the traits. 

Note that the 𝐶𝑜𝑣(𝑔𝑥 , 𝑔𝑦) = ℎ𝑙𝑥,𝑦 because the variance of the liability phenotype for each trait is unity. 

Thus  

𝐶𝑜𝑣(𝑢𝑥 , 𝑢𝑦) = 𝑧𝑥𝑧𝑦 ℎ𝑙𝑥,𝑦 

 

 

 

 

 

 

The relationship between the coheritability in the observed (ℎ𝑜𝑥,𝑦) and liability (ℎ𝑙𝑥,𝑦)  scales is,  

ℎ𝑜𝑥,𝑦 =
𝑧𝑥  𝑧𝑦  ℎ𝑙𝑥,𝑦

√𝐾𝑥(1 − 𝐾𝑥) 𝐾𝑦(1 − 𝐾𝑦)
 

 

 

 

 

ℎ𝑜𝑥,𝑦 =
𝜎𝑢𝑥 ,𝑢𝑦

√𝐾𝑥(1 − 𝐾𝑥) 𝐾𝑦(1 − 𝐾𝑦)
 

In the observed scale, the coheritability between threshold traits 𝑥 and 𝑦,  

ℎ𝑙𝑥,𝑦 =
ℎ𝑜𝑥,𝑦 √𝐾𝑥(1 − 𝐾𝑥) 𝐾𝑦(1 − 𝐾𝑦)

𝑧𝑥  𝑧𝑦
 

In the liability scale, the coheritability between traits 𝑥 and 𝑦, is 
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12.4  Partitions of the additive genetic covariance  
 

The additive genetic covariance between two traits 𝑥 and 𝑦 can be partitioned into a pleiotropic 

component and a linkage component (Gardner and Latta 2007): 

𝐶𝐺𝑥,𝑦 = 2∑ 𝑝𝑖  𝑞𝑖 𝑎𝑖𝑥 𝑎𝑖𝑦

𝑛

𝑖=1⏟          
𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑖𝑐

 + 2∑∑ 𝑎𝑗𝑥 𝑎𝑘𝑦  𝐷𝑗𝑘

𝑙2

𝑘≠𝑗

𝑙1

𝑗=1⏟            
𝑙𝑖𝑛𝑘𝑎𝑔𝑒  𝑑𝑖𝑠𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑜𝑢𝑚

 

More explicitly, for the case of a two biallelic, pleiotropic loci that are in linkage disequilibrium, the 

genetic covariance on two traits (𝑥, 𝑦) is 

𝐶𝐺𝑥,𝑦 = 2 𝑝1 𝑞1 𝑎1𝑥 𝑎1𝑦  +   2 𝑝2 𝑞2 𝑎2𝑥 𝑎2𝑦  ⏟                      
𝑝𝑙𝑒𝑖𝑜𝑡𝑟𝑜𝑝𝑖𝑐

+ 2  𝑎1𝑥 𝑎2𝑦  𝐷12  +   2  𝑎1𝑦 𝑎2𝑥  𝐷12 ⏟                    
𝑙𝑖𝑛𝑘𝑎𝑔𝑒  𝑑𝑖𝑠𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑜𝑢𝑚

  

where 𝑝 is the allele frequency of the 𝑖th locus, 𝑞 = 1 − 𝑝,   𝑎1𝑥  is the additive effect of the locus 1 on 

trait 𝑥, 𝐷12  is the measure of linkage disequilibrium (𝐷𝑗𝑘  depends upon the recombination distance 

between loci). 

 

 

Details regarding the pleiotropic component 

Consider a single biallelic locus whose alleles A₁ and A₂ exert effects on two traits, namely trait x and 

trait y. Using Falconer and Mackay’s notation, we associate an arbitrarily-assigned value to the 

genotypes formed by random association of the alleles, whose frequencies in the population are  𝑝  for 

A₁, and  𝑞  for A₂ The objective is to determine a measure of an individual based upon the particular 

allele combination present in the locus, and transmitted to the progeny. The average effect of an allele 

on a trait is such value, and depends on the genotypic values 𝑎 and 𝑑.  Table 12.4 shows the results of 

the derivation of the average effect of the alleles A₁ and A₂ on each of the traits 𝑥 and 𝑦 , expressed as  

the mean deviation (from the population mean) of individuals which received that allele from one 

parent, the other allele come from a random parent from the population.   

Figures 12.4-1 and 12.4-2 display the average effect of alleles when the  
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Table 12.4  Average effect of alleles of a biallelic, pleotropic locus affecting traits 𝑥 and 𝑦 

 

 

 

We can see that in these derivations  𝛼𝑥 = [𝑎𝑥 + 𝑑𝑥(𝑞 − 𝑝)]    and   𝛼𝑦 = [𝑎𝑦 + 𝑑𝑦(𝑞 − 𝑝)]  are the 

average effect on a trait due to allele substitution in that locus.                                                                    

 

                                                     

 

The genotypic covariance is obtained by summing up the product of the genotype frecuency 𝑓𝐺  times 

the breeding values of trait  𝑥  and  𝑦 for each genotype, as follows: 

𝐶𝐺𝑥,𝑦 = ∑(𝑓𝐺 𝑥 𝑦)𝑖
𝑖∈ 

                                     𝑆 = { A1A1 ,  A1A2 ,  A2A2 } 

A₁ A₁ A₁ A₂ A₂ A₂

+a d -a

A₁ A₁ p +aₓ 

A₁ A₂ q dₓ

A₁A₂ p dₓ

A₂ A₂ q -aₓ 

A₁ A₁ p +a y 

A₁ A₂ q d y

A₁A₂ p -a y 

A₂ A₂ q d y

Population genotypic (and 

phenotypic) mean to be 

deducted

Allele in population

Average effect of the allele                                                

on a trait

-pα ₓ =  -p [aₓ + dₓ ( q - p ) ]- [ aₓ (p-q) + 2dₓ pq ]

p

q

A₂

genotypic 

value

A₁

- qa y+ pd y - [ a y (p-q) + 2d y  pq ] -pα y=  -p [a y + d y  ( q - p) ]

Mean                      

genotypic                            

value

- [ a y (p-q) + 2d y  pq ] qα y=  q [a y+ d y  ( q - p) ]

  paₓ + qdₓ - [ aₓ (p-q) + 2dₓ pq ] qα ₓ =  q [aₓ + dₓ ( q - p ) ]

  pa y+ qd y

- qaₓ + pdₓ

Trait  x

Trait  y

A₁

A₂

A₁

A₂

Tra it x Tra it y

f G B x B y

ge
n

ot
yp

e

genotype  

frequency

2qαₓ

(q-p)αₓ

-2qαₓ

A₁A₁

A₁A₂

A₂A₂

p
2

2pq

q
2

2qα y

(q-p)α y

-2qα y

Breeding  va lue
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Genotypic  covariance  of  breeding  values  of  trait 𝑥  and  trait 𝑦 

𝐶𝐺𝑥,𝑦 = 𝑝
2(2𝑞𝛼𝑥)(2𝑞𝛼𝑦) + 2𝑞𝑝(𝑞 − 𝑝)𝛼𝑥(𝑞 − 𝑝)𝛼𝑦 + (−2𝑝𝛼𝑥)(−2𝑝𝛼𝑦)𝑞

2     

𝐶𝐺𝑥,𝑦 = 4𝑝2𝑞2𝛼𝑥𝛼𝑦 + 2𝑝𝑞(𝑞 − 𝑝)2𝛼𝑥𝛼𝑦 + 4𝑝2𝑞2𝛼𝑥𝛼𝑦 

𝐶𝐺𝑥,𝑦 = 2𝑝𝑞𝛼𝑥𝛼𝑦  (2𝑝𝑞 + (𝑞 − 𝑝)2 + 2𝑝𝑞) 

𝐶𝐺𝑥,𝑦 = 2𝑝𝑞𝛼𝑥𝛼𝑦(4𝑝𝑞 + 𝑞2 − 2𝑝𝑞 + 𝑝2) 

𝐶𝐺𝑥,𝑦 = 2𝑝𝑞𝛼𝑥𝛼𝑦(𝑝
2 + 2𝑝𝑞 + 𝑞2) 

𝐶𝐺𝑥,𝑦 = 2𝑝𝑞𝛼𝑥𝛼𝑦 

Therefore the genotypic covariance between two traits influenced by a single locus is a function of the 

average effect of gene substitution exerted on each trait and the frequency of the alleles in the 

population. 

 

  Genotypic covariance among traits 𝑥 and 𝑦 controlled by a biallelic locus (three equivalent                         

. expressions): 

𝐶𝐺𝑥,𝑦 = 

{
 
 

 
 
2𝑝𝑞𝛼𝑥𝛼𝑦                                                                                    

2𝑝𝑞 [𝑎𝑥 + 𝑑𝑥(𝑞 − 𝑝)][𝑎𝑦 + 𝑑𝑦(𝑞 − 𝑝)]       
                    

 2𝑝𝑞 [𝑎𝑥𝑎𝑦 + (𝑎𝑥𝑑𝑦 + 𝑎𝑦𝑑𝑥) (𝑞 − 𝑝) + 𝑑𝑥𝑑𝑦(𝑞 − 𝑝)2

 

 

Notice that if dealing with the same trait, then 𝑥 = 𝑦, it results in the familiar expression of the 

genotypic variance of the trait 

 

  Genotypic variance of a trait controlled by an biallelic locus 

𝑉𝐺 = 

{
 
 

 
  
2𝑝𝑞𝛼2 

                                                                                 

 2𝑝𝑞 [𝑎 + 𝑑(𝑞 − 𝑝)]2                  
                                     

 2𝑝𝑞 [𝑎2 +  2𝑎𝑑(𝑞 − 𝑝) + 𝑑2(𝑞 − 𝑝)2]                      
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Derivation  of  the  average  effect  expressions  of  Table 12.4 

Average effect of allele A₁ on trait x                                                                    Average effect of allele A₁ on trait y 

  𝛼1𝑥 = 𝑝𝑎𝑥  +  𝑞𝑑𝑥 − [ 𝑎𝑥  (𝑝 − 𝑞) +  2𝑑𝑥  𝑝𝑞 ]                                                     𝛼1𝑦 = 𝑝𝑎𝑦  +  𝑞𝑑𝑦 − [ 𝑎𝑦  (𝑝 − 𝑞)  +

 2𝑑𝑦  𝑝𝑞 ] 

          = 𝑝𝑎𝑥 + 𝑎𝑥(𝑝 − 𝑞) − 𝑞𝑑𝑥 − 2𝑝𝑞𝑑𝑥                                                                          = 𝑝𝑎𝑦 + 𝑎𝑦(𝑝 − 𝑞) − 𝑞𝑑𝑦 − 2𝑝𝑞𝑑𝑦  

          = 𝑎𝑥(𝑝 − 𝑝 + 𝑞) − 𝑞𝑑𝑥(1 − 2𝑝)                                                                              = 𝑎𝑦(𝑝 − 𝑝 + 𝑞) − 𝑞𝑑𝑦(1 − 2𝑝) 

          = 𝑞𝑎𝑥 + 𝑞𝑑𝑥(𝑞 − 𝑝)                                                                                                    = 𝑞𝑎𝑦 + 𝑞𝑑𝑦(𝑞 − 𝑝) 

          = 𝑞[𝑎𝑥 + 𝑑𝑥(𝑞 − 𝑝)]                                                                                                   = 𝑞[𝑎𝑦 + 𝑑𝑦(𝑞 − 𝑝)] 

          = 𝑞𝛼𝑥                                                                                                                             = 𝑞𝛼𝑦  

 

Average effect of allele A₂ on trait x                                                                    Average effect of allele A₂ on trait y 

  𝛼2𝑥 = −𝑞𝑎𝑥  +  𝑝𝑑𝑥 − [ 𝑎𝑥  (𝑝 − 𝑞)  +  2𝑑𝑥  𝑝𝑞 ]                                                     𝛼2𝑦 = −𝑞𝑎𝑦  +  𝑝𝑑𝑦 − [ 𝑎𝑦  (𝑝 − 𝑞)  +

 2𝑑𝑦  𝑝𝑞 ] 

          = −𝑞𝑎𝑥 + 𝑝𝑑𝑥 − 𝑎𝑥  (𝑝 − 𝑞) +  2𝑑𝑥  𝑝𝑞                                                                     = −𝑞𝑎𝑦 + 𝑝𝑑𝑦 − 𝑎𝑦  (𝑝 − 𝑞)  +

 2𝑑𝑦  𝑝𝑞 

          = −𝑞𝑎𝑥(𝑞 + 𝑝 − 𝑞) − 𝑝𝑑𝑥(1 − 2𝑝)                                                                             = −𝑞𝑎𝑦(𝑞 + 𝑝 − 𝑞) − 𝑝𝑑𝑦(1 − 2𝑝) 

          = −𝑝𝑎𝑥 − 𝑝𝑑𝑥(𝑝 − 𝑞)                                                                                                     = −𝑝𝑎𝑦 − 𝑝𝑑𝑦(𝑝 − 𝑞) 

          = −𝑝[𝑎𝑥 + 𝑑𝑥(𝑞 − 𝑝)]                                                                                                    = −𝑝[𝑎𝑦 + 𝑑𝑦(𝑞 − 𝑝)]  

          = −𝑝𝛼𝑥                                                                                                                                = −𝑝𝛼𝑦  
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Figure 12.4-1  Average effect of a allele on a single trait, under varying values of 𝑑. The allele frequency 

of 𝑝 = 0.25, 𝑞 = 0. 5 
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Figure 12.4-2  Average effect of two alleles of a locus on two traits.  The horizontal plane is for trait 𝑥 

and has a fixed value of 𝑑 = −1.25𝑎, the vertical plane is the effect on trait y and has varying values of 

𝑑.  This is an extension to the Figure 12.4-1.   
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12.5  An epidemiological bivariate measure gene-trait relationship 
 

Here I present an extension of the concept positive predictive value, as generally used in epidemiology.  

The experimental scheme is to screen-test individuals for a particular genetic variant(s) that affects at 

least two traits.  The data is meristic in nature, it uses count data to perform calculations.  I called this 

measure bivariate positive predictive value, and is defined as, 

 

𝑏𝑃𝑃𝑉 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑤𝑖𝑡ℎ 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑡   𝑉
𝑒𝑥ℎ𝑖𝑏𝑖𝑡𝑖𝑛𝑔 𝑡𝑟𝑎𝑖𝑡𝑠  𝑥  𝑎𝑛𝑑  𝑦

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑤𝑖𝑡ℎ 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑡   𝑉
 

 

The denominator includes all individuals with genetic variant 𝑉 that have both traits, and those having 

one of the traits, and those not presenting any of the traits.  The bivariate positive predictive value of 

the genetic screening test is the probability of returning a positive result (i.e. the individual has a genetic 

variant in a locus of interest) correctly identifying  those individuals possessing variant 𝑉 that do show 

both traits under consideration (see Trevethan 2017).  

 

To illustrate this concept with hypothetical, yet realistic, examples. 
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Figure 12.5-1  Determination of the bivariate positive predictive value (bPPV) of a genetic screening test. 

( FP, False positive;  TP,  True Positive;  FN, False Negative,  TN, True Negative) 
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Figure 12.5-1  Venn diagrams of on the determination of the bivariate positive predictive value (bPPV) of 

a genetic screening test in two populations of size n=1954. Both populations have a sensitivity of 85% 

and a specificity of 85%.  The bivariate positive predictive value in population K is 41% and in population 

K is  60%. One of the reason for this difference is that only 8% of individual display both traits, whereas 

in population Q is 15%.  ( FP, False positive;  TP,  True Positive;  FN, False Negative,  TN, True Negative) 
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Appendix 2.  Data Validation 
 

Criteria for data validation 

In order to ensure the quality of the data that are input, validation rules must be used beforehand 

analyses are carried out to check for fitness, accuracy, and consistency of the data. The validation logic 

included simple range and constraint validation (range of parameter estimates within their domains), 

structured validation (involves operations to check the data for consistency to mathematical 

relationships).   

 

Domain condition 

This range criteria establish that  

heritabilities                       ℎ2 ∈ [0 , +1 ] 

correlations                    𝑟∎𝑥,𝑦
∈ [−1 , +1 ] 

coheritability                  ℎ𝑥,𝑦  ∈ [−1 , +1 ]     

coenvironmentability    𝑒𝑥,𝑦 ∈ [−1 , +1 ] 

It, therefore, checks that the values of the parameter estimators are numerically within their domains. 

 

Boundary Condition 

The criterion states that 

|ℎ𝑥,𝑦| + |𝑒𝑥,𝑦| ≤ 1 

It verifies that the calculated coheritabilities and coenvironmentabilities are located within the 

boundaries of the field due to their satisfying all the following conditions:  𝑟𝑃𝑥,𝑦  = ℎ𝑥,𝑦 + 𝑒𝑥,𝑦, and  

−1 < 𝑟𝑃𝑥,𝑦 < 1, and −1 < ℎ𝑥,𝑦 < 1, and −1 < 𝑒𝑥,𝑦 < 1. 
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Disparity  Condition 

This structured validation criterion involves the disparity 𝐷 = | 𝑟𝑃𝑥,𝑦 − 𝑟𝐴𝑥,𝑦| between the phenotypic 

and genetic correlations. 

| 𝑟𝑃𝑥,𝑦| + 𝐷 ≤ 1 

This procedure checks that the phenotypic and genetic correlations maintain a congruent relationship as 

expressed in the equation  𝑟𝑃𝑥,𝑦 = √ℎ𝑥2 ℎ𝑦 2   𝑟𝐴𝑥,𝑦  +  √(1 − ℎ𝑥2)(1 − ℎ𝑦2) 𝑟𝐸𝑥,𝑦 . 

Limit Check 

The limit criteria are 

|ℎ𝑥,𝑦| ≤ √ℎ𝑥
2 ℎ𝑦

2                         

|𝑒𝑥,𝑦| ≤ √(1 − ℎ𝑥
2)(1 −  ℎ𝑦

2) 

To check that the coheritability and coenvironmentability values are always below or equal to what 

would be expected were the genetic or environmental correlation be equal to 1, respectively.  That is, 

|ℎ𝑥,𝑦| ≤ √ℎ𝑥
2 ℎ𝑦

2 means that the factor √ℎ𝑥2 ℎ𝑦 2   which takes values between zero and positive 1,  is 

multiplied by another variable | 𝑟𝐴𝑥,𝑦|   which also varies in the same range, the result necessarily will be 

a number smaller than the factor itself.   
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Flow chart of data management 

                

         

𝑟𝑃𝑥,𝑦  𝑟𝐴𝑥,𝑦    𝑟𝐸𝑥,𝑦 ℎ𝑥
2       ℎ𝑦 

2 𝑟𝑃𝑥,𝑦  𝑟𝐴𝑥,𝑦    𝑟𝐸𝑥,𝑦 ℎ𝑥
2       ℎ𝑦 

2𝑟𝑃𝑥,𝑦  𝑟𝐴𝑥,𝑦    𝑟𝐸𝑥,𝑦 ℎ𝑥
2       ℎ𝑦 

2

𝑟𝑃𝑥,𝑦 = ℎ𝑥
2 ℎ𝑦 

2   𝑟𝐴𝑥,𝑦  + (1 − ℎ𝑥
2)(1− ℎ𝑦

2) 𝑟𝐸𝑥,𝑦

Calculate  𝑟𝐸𝑥,𝑦 Calculate  𝑟𝑃𝑥,𝑦

Calculate                    ℎ𝑥,𝑦 = ℎ𝑥
2 ℎ𝑦 

2   𝑟𝐴𝑥,𝑦

Calculate    𝑒𝑥,𝑦 = (1 − ℎ𝑥
2)(1 − ℎ𝑦

2) 𝑟𝐸𝑥,𝑦 

Determination  of partitions            𝑆∎

ℎ∎
2 > 1      

𝑟∎𝑥,𝑦
> 1  ,  𝑟∎𝑥,𝑦

< −1  

Violation of parameter domain

Calculation                 𝐷 = | 𝑟𝐴𝑥,𝑦- 𝑟𝐴𝑥,𝑦|

𝑟𝑃𝑥,𝑦  𝑟𝐴𝑥,𝑦    𝑟𝐸𝑥,𝑦 ℎ𝑥
2      ℎ𝑦 

2 ℎ𝑥,𝑦 𝑒𝑥,𝑦   

𝑟𝑃𝑥,𝑦  𝑟𝐴𝑥,𝑦    𝑟𝐸𝑥,𝑦 ℎ𝑥
2      ℎ𝑦 

2  

|ℎ𝑥,𝑦|+|𝑒𝑥,𝑦| > 1

Violation  of  boundary  condition

|𝑟𝑃𝑥,𝑦|+ 𝐷 > 1

Violation  of  disparity  

Violation  of  limit  criteria

ℎ𝑥,𝑦 < ℎ𝑥
2 ℎ𝑦

2                        

𝑒𝑥,𝑦 < (1− ℎ𝑥
2)(1 −  ℎ𝑦

2)

   𝑟𝑃𝑥,𝑦  𝑟𝐴𝑥,𝑦    𝑟𝐸𝑥,𝑦 ℎ𝑥
2     ℎ𝑦 

2 ℎ𝑥,𝑦 𝑒𝑥,𝑦   𝐷 𝑆∎

   𝑟𝑃𝑥,𝑦  𝑟𝐴𝑥,𝑦    𝑟𝐸𝑥,𝑦 ℎ𝑥
2     ℎ𝑦 

2 ℎ𝑥,𝑦 𝑒𝑥,𝑦   𝐷 𝑆∎
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Appendix 3.  Statistical Analyses 

Part A.  Basic Statistics 
 

The UNIVARIATE Procedure                                                                                                                                  

Variable: rP 

Moments 

N 6286 Sum Weights 6286 

Mean 0.15800175 Sum Observations 993.199 

Std Deviation 0.30906791 Variance 0.09552297 

Skewness 0.4063202 Kurtosis 0.94320413 

Uncorrected SS 757.289053 Corrected SS 600.361873 

Coeff Variation 195.610433 Std Error Mean 0.00389822 

 

Basic Statistical Measures 

Location Variability 

Mean 0.158002 Std Deviation 0.30907 

Median 0.108000 Variance 0.09552 

Mode 0.020000 Range 1.95200 

    Interquartile Range 0.32000 

 

Tests for Location: Mu0=0 

Test Statistic p Value 

Student's t t 40.53173 Pr > |t| <.0001 

Sign M 1385 Pr >= |M| <.0001 

Signed Rank S 5559832 Pr >= |S| <.0001 

 

Extreme Observations 

Lowest Highest 

Value Obs Value Obs 

-0.96 2240 0.990 2064 

-0.95 4639 0.990 2067 

-0.95 2408 0.990 2212 

-0.95 1355 0.990 2511 
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The UNIVARIATE Procedure 

Variable: rA 

Moments 

N 6286 Sum Weights 6286 

Mean 0.19502733 Sum Observations 1225.9418 

Std Deviation 0.42936089 Variance 0.18435078 

Skewness -0.0800828 Kurtosis -0.332983 

Uncorrected SS 1397.7368 Corrected SS 1158.64464 

Coeff Variation 220.154218 Std Error Mean 0.00541546 

 

 

Basic Statistical Measures 

Location Variability 

Mean 0.195027 Std Deviation 0.42936 

Median 0.160500 Variance 0.18435 

Mode 0.010000 Range 2.00000 

    Interquartile Range 0.57000 

 

Note: The mode displayed is the smallest of 2 modes with a count of 69. 

 

Tests for Location: Mu0=0 

Test Statistic p Value 

Student's t t 36.01307 Pr > |t| <.0001 

Sign M 1184.5 Pr >= |M| <.0001 

Signed Rank S 4744694 Pr >= |S| <.0001 

 

 

Extreme Observations 

Lowest Highest 

Value Obs Value Obs 

-1 5222 1 4384 

-1 2754 1 4398 

-1 2753 1 5931 

-1 2750 1 6008 
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Extreme Observations 

Lowest Highest 

Value Obs Value Obs 

-1 2748 1 6121 

 
The UNIVARIATE Procedure 

Variable: rE 

Moments 

N 6286 Sum Weights 6286 

Mean 0.14026039 Sum Observations 881.676821 

Std Deviation 0.31501491 Variance 0.09923439 

Skewness 0.31095032 Kurtosis 0.97735159 

Uncorrected SS 747.352486 Corrected SS 623.68815 

Coeff Variation 224.592918 Std Error Mean 0.00397323 

 

 

Basic Statistical Measures 

Location Variability 

Mean 0.140260 Std Deviation 0.31501 

Median 0.091000 Variance 0.09923 

Mode 0.060000 Range 2.00000 

    Interquartile Range 0.32100 

 

 

Tests for Location: Mu0=0 

Test Statistic p Value 

Student's t t 35.30134 Pr > |t| <.0001 

Sign M 1245 Pr >= |M| <.0001 

Signed Rank S 4947997 Pr >= |S| <.0001 

 

 

Extreme Observations 

Lowest Highest 

Value Obs Value Obs 
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Extreme Observations 

Lowest Highest 

Value Obs Value Obs 

-1.000 2406 0.993 2402 

-0.982 2408 0.993 2403 

-0.981 6267 0.995 2212 

-0.980 2419 1.000 1838 

-0.971 6273 1.000 2445 

 
The UNIVARIATE Procedure 

Variable: hxy 

Moments 

N 6286 Sum Weights 6286 

Mean 0.07545434 Sum Observations 474.306 

Std Deviation 0.17795416 Variance 0.03166768 

Skewness 0.72275883 Kurtosis 2.61925239 

Uncorrected SS 234.819846 Corrected SS 199.031398 

Coeff Variation 235.843502 Std Error Mean 0.00224451 

 

Basic Statistical Measures 

Location Variability 

Mean 0.075454 Std Deviation 0.17795 

Median 0.049000 Variance 0.03167 

Mode 0.000000 Range 1.71200 

    Interquartile Range 0.17100 

 

Tests for Location: Mu0=0 

Test Statistic p Value 

Student's t t 33.61733 Pr > |t| <.0001 

Sign M 1190.5 Pr >= |M| <.0001 

Signed Rank S 4740642 Pr >= |S| <.0001 

 

Quantiles (Definition 5) 

Level Quantile 
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Quantiles (Definition 5) 

Level Quantile 

100% Max 0.945 

90% 0.306 

75% Q3 0.155 

50% Median 0.049 

25% Q1 -0.016 

10% -0.105 

5% -0.172 

1% -0.357 

0% Min -0.767 

 
The UNIVARIATE Procedure 

Variable: exy 

Moments 

N 6286 Sum Weights 6286 

Mean 0.0825867 Sum Observations 519.14 

Std Deviation 0.19845122 Variance 0.03938289 

Skewness 0.59411701 Kurtosis 2.2046199 

Uncorrected SS 290.395492 Corrected SS 247.521432 

Coeff Variation 240.294399 Std Error Mean 0.00250303 

 

Basic Statistical Measures 

Location Variability 

Mean 0.082587 Std Deviation 0.19845 

Median 0.053000 Variance 0.03938 

Mode 0.000000 Range 1.74000 

    Interquartile Range 0.17900 

 

Tests for Location: Mu0=0 

Test Statistic p Value 

Student's t t 32.99465 Pr > |t| <.0001 

Sign M 1237 Pr >= |M| <.0001 

Signed Rank S 4838707 Pr >= |S| <.0001 
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Quantiles (Definition 5) 

Level Quantile 

100% Max 0.876 

99% 0.669 

75% Q3 0.161 

50% Median 0.053 

25% Q1 -0.018 

10% -0.107 

5% -0.195 

1% -0.435 

0% Min -0.864 
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Part B.  Multinomial Test 

 
The FREQ Procedure 

 

Statistics for Table of partition 

Chi-Square Test 

for Specified Proportions 

Chi-Square 9.3370 

DF 5 

Pr > ChiSq 0.0964 
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Part C.  Model 1: Multiple Regression Analysis  

 

rP=hxy exy -ALL 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: rP 

Number of Observations Read 6290 

Number of Observations Used 6290 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 604.38562 302.19281 2.498E7 <.0001 

Error 6287 0.07605 0.00001210     

Corrected Total 6289 604.46167       

 

 

Root MSE 0.00348 R-Square 0.9999 

Dependent Mean 0.15790 Adj R-Sq 0.9999 

Coeff Var 2.20262     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 -0.00003174 0.00004923 -0.64 0.5191 

hxy 1 1.00008 0.00026117 3829.29 <.0001 

exy 1 0.99983 0.00023442 4265.11 <.0001 

 

 

Collinearity Diagnostics 

Number Eigenvalue 
Condition 

Index 

Proportion of Variation 

Intercept hxy exy 

1 1.80892 1.00000 0.13712 0.14292 0.14240 

2 0.63233 1.69137 0.86067 0.15532 0.21786 
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Collinearity Diagnostics 

Number Eigenvalue 
Condition 

Index 

Proportion of Variation 

Intercept hxy exy 

3 0.55875 1.79929 0.00222 0.70176 0.63974 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: rP 

partition=S+1 

Number of Observations Read 3311 

Number of Observations Used 3311 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 227.80716 113.90358 1.439E9 <.0001 

Error 3308 0.00026185 7.915681E-8     

Corrected Total 3310 227.80742       

 

 

Root MSE 0.00028135 R-Square 1.0000 

Dependent Mean 0.34818 Adj R-Sq 1.0000 

Coeff Var 0.08081     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 0.00000626 0.00000814 0.77 0.4420 

hxy 1 0.99997 0.00003262 30658.4 <.0001 

exy 1 1.00002 0.00002787 35877.0 <.0001 
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The REG Procedure 
Model: MODEL1 

Dependent Variable: rP 
partition=S+2 

Number of Observations Read 617 

Number of Observations Used 617 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 9.75769 4.87885 6.839E7 <.0001 

Error 614 0.00004380 7.133518E-8     

Corrected Total 616 9.75773       

 

 

Root MSE 0.00026709 R-Square 1.0000 

Dependent Mean 0.11935 Adj R-Sq 1.0000 

Coeff Var 0.22378     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 0.00000866 0.00001802 0.48 0.6310 

hxy 1 1.00000 0.00008550 11695.6 <.0001 

exy 1 0.99987 0.00020235 4941.33 <.0001 

 

 

 

 

 

 

 

 

 

 

 

 
The REG Procedure 
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Model: MODEL1 
Dependent Variable: rP 

 
 

partition=S+3 

Number of Observations Read 367 

Number of Observations Used 367 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 2.51740 1.25870 2.451E7 <.0001 

Error 364 0.00001869 5.135616E-8     

Corrected Total 366 2.51742       

 

 

Root MSE 0.00022662 R-Square 1.0000 

Dependent Mean -0.07991 Adj R-Sq 1.0000 

Coeff Var -0.28358     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 -0.00004385 0.00001926 -2.28 0.0234 

hxy 1 1.00029 0.00026374 3792.79 <.0001 

exy 1 0.99986 0.00014283 7000.37 <.0001 
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The REG Procedure 
Model: MODEL1 

Dependent Variable: rP 
partition=S-1 

Number of Observations Read 880 

Number of Observations Used 880 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 37.41069 18.70535 4.02E8 <.0001 

Error 877 0.00004080 4.652576E-8     

Corrected Total 879 37.41073       

 

 

Root MSE 0.00021570 R-Square 1.0000 

Dependent Mean -0.24035 Adj R-Sq 1.0000 

Coeff Var -0.08974     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 0.00002168 0.00001123 1.93 0.0539 

hxy 1 1.00011 0.00006963 14362.4 <.0001 

exy 1 1.00002 0.00005087 19656.8 <.0001 
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The REG Procedure 
Model: MODEL1 

Dependent Variable: rP 
partition=S-2 

Number of Observations Read 473 

Number of Observations Used 473 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 4.74065 2.37033 3.301E7 <.0001 

Error 470 0.00003375 7.181444E-8     

Corrected Total 472 4.74069       

 

 

Root MSE 0.00026798 R-Square 1.0000 

Dependent Mean -0.08663 Adj R-Sq 1.0000 

Coeff Var -0.30934     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 -0.00003170 0.00002128 -1.49 0.1370 

hxy 1 1.00001 0.00012337 8105.59 <.0001 

exy 1 1.00037 0.00025993 3848.65 <.0001 

 

 

 

 

 

 

 

 

 

 

 

 

 



 .

 Supplementary Infor 

. 

 

Page 194 of 230 
 

 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: rP 

partition=S-3 

Number of Observations Read 562 

Number of Observations Used 562 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 3.74976 1.87488 2.68E7 <.0001 

Error 559 0.00003911 6.995705E-8     

Corrected Total 561 3.74980       

 

 

Root MSE 0.00026449 R-Square 1.0000 

Dependent Mean 0.08616 Adj R-Sq 1.0000 

Coeff Var 0.30697     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 0.00006554 0.00002007 3.26 0.0012 

hxy 1 0.99986 0.00026281 3804.57 <.0001 

exy 1 0.99957 0.00013691 7301.15 <.0001 
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Part D.  Model 2: Multiple Regression Analysis 

 

 

rP=rA rE - ALL 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: rP 

Number of Observations Read 6290 

Number of Observations Used 6290 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 559.23457 279.61728 38869.5 <.0001 

Error 6287 45.22710 0.00719     

Corrected Total 6289 604.46167       

 

 

Root MSE 0.08482 R-Square 0.9252 

Dependent Mean 0.15790 Adj R-Sq 0.9252 

Coeff Var 53.71456     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 0.00264 0.00121 2.19 0.0289 

rA 1 0.39036 0.00285 137.05 <.0001 

rE 1 0.56490 0.00388 145.62 <.0001 
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rP=rA rE -PARTITION 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: rP 

partition=S+1 

Number of Observations Read 3311 

Number of Observations Used 3311 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 214.72230 107.36115 27141.6 <.0001 

Error 3308 13.08512 0.00396     

Corrected Total 3310 227.80742       

 

 

Root MSE 0.06289 R-Square 0.9426 

Dependent Mean 0.34818 Adj R-Sq 0.9425 

Coeff Var 18.06363     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 -0.01006 0.00194 -5.19 <.0001 

rA 1 0.39393 0.00448 87.93 <.0001 

rE 1 0.59921 0.00511 117.36 <.0001 
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rP=rA rE -PARTITION 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: rP 

partition=S+2 

Number of Observations Read 617 

Number of Observations Used 617 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 2.92511 1.46256 131.43 <.0001 

Error 614 6.83262 0.01113     

Corrected Total 616 9.75773       

 

 

Root MSE 0.10549 R-Square 0.2998 

Dependent Mean 0.11935 Adj R-Sq 0.2975 

Coeff Var 88.38666     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 0.00804 0.00825 0.97 0.3302 

rA 1 0.25936 0.01665 15.57 <.0001 

rE 1 0.01197 0.02959 0.40 0.6859 
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rP=rA rE -PARTITION 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: rP 

partition=S+3 

Number of Observations Read 367 

Number of Observations Used 367 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 0.97356 0.48678 114.77 <.0001 

Error 364 1.54386 0.00424     

Corrected Total 366 2.51742       

 

 

Root MSE 0.06513 R-Square 0.3867 

Dependent Mean -0.07991 Adj R-Sq 0.3834 

Coeff Var -81.49611     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 -0.03867 0.00543 -7.12 <.0001 

rA 1 0.11735 0.02188 5.36 <.0001 

rE 1 0.30134 0.01989 15.15 <.0001 
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rP=rA rE -PARTITION 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: rP 

partition=S-1 

Number of Observations Read 880 

Number of Observations Used 880 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 33.38106 16.69053 3632.45 <.0001 

Error 877 4.02967 0.00459     

Corrected Total 879 37.41073       

 

 

Root MSE 0.06779 R-Square 0.8923 

Dependent Mean -0.24035 Adj R-Sq 0.8920 

Coeff Var -28.20244     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 -0.00809 0.00367 -2.20 0.0277 

rA 1 0.36761 0.01029 35.73 <.0001 

rE 1 0.60166 0.01215 49.54 <.0001 
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rP=rA rE -PARTITION 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: rP 

partition=S-2 

Number of Observations Read 473 

Number of Observations Used 473 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 1.11413 0.55706 72.20 <.0001 

Error 470 3.62656 0.00772     

Corrected Total 472 4.74069       

 

 

Root MSE 0.08784 R-Square 0.2350 

Dependent Mean -0.08663 Adj R-Sq 0.2318 

Coeff Var -101.39814     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 -0.00466 0.00796 -0.59 0.5582 

rA 1 0.21788 0.01982 10.99 <.0001 

rE 1 -0.03615 0.02960 -1.22 0.2226 
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The REG Procedure 

Model: MODEL1 
Dependent Variable: rP 

partition=S-3 

Number of Observations Read 562 

Number of Observations Used 562 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 2 1.86161 0.93080 275.56 <.0001 

Error 559 1.88820 0.00338     

Corrected Total 561 3.74980       

 

 

Root MSE 0.05812 R-Square 0.4965 

Dependent Mean 0.08616 Adj R-Sq 0.4947 

Coeff Var 67.45178     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 0.02795 0.00447 6.25 <.0001 

rA 1 0.09673 0.01367 7.08 <.0001 

rE 1 0.35169 0.01511 23.28 <.0001 
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Part E.  Simple regression of phenotypic correlation against a single factor 

 

 

model rP=hxy ALL 

 
The REG Procedure 

Model: MODELx1 
Dependent Variable: rP 

Number of Observations Read 6290 

Number of Observations Used 6290 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 1 384.34137 384.34137 10979.2 <.0001 

Error 6288 220.12030 0.03501     

Corrected Total 6289 604.46167       

 

 

Root MSE 0.18710 R-Square 0.6358 

Dependent Mean 0.15790 Adj R-Sq 0.6358 

Coeff Var 118.49176     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 0.05364 0.00256 20.95 <.0001 

hxy 1 1.38262 0.01320 104.78 <.0001 
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rP=exy -ALL 

 
The REG Procedure 

Model: MODELx1 
Dependent Variable: rP 

Number of Observations Read 6290 

Number of Observations Used 6290 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 1 427.01299 427.01299 15131.5 <.0001 

Error 6288 177.44868 0.02822     

Corrected Total 6289 604.46167       

 

 

Root MSE 0.16799 R-Square 0.7064 

Dependent Mean 0.15790 Adj R-Sq 0.7064 

Coeff Var 106.38845     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 0.04994 0.00229 21.78 <.0001 

exy 1 1.30811 0.01063 123.01 <.0001 

 

 

 

 

 

 

 

 

 

 

 

 



 .

 Supplementary Infor 

. 

 

Page 204 of 230 
 

rP=rA -ALL 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: rP 

Number of Observations Read 6290 

Number of Observations Used 6290 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 1 406.69694 406.69694 12931.1 <.0001 

Error 6288 197.76473 0.03145     

Corrected Total 6289 604.46167       

 

 

Root MSE 0.17734 R-Square 0.6728 

Dependent Mean 0.15790 Adj R-Sq 0.6728 

Coeff Var 112.31365     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 0.04254 0.00246 17.32 <.0001 

rA 1 0.59191 0.00521 113.71 <.0001 
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rP=rE -ALL 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: rP 

Number of Observations Read 6290 

Number of Observations Used 6290 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 1 424.12059 424.12059 14787.9 <.0001 

Error 6288 180.34108 0.02868     

Corrected Total 6289 604.46167       

 

 

Root MSE 0.16935 R-Square 0.7017 

Dependent Mean 0.15790 Adj R-Sq 0.7016 

Coeff Var 107.25201     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 0.04250 0.00234 18.19 <.0001 

rE 1 0.82326 0.00677 121.61 <.0001 
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Part F.  Simple Regression of rA on rP 

 

Phenotypic correlation as predictor of genetic correlation 

 
The REG Procedure 

Model: MODEL1 
Dependent Variable: rA 

Number of Observations Read 6290 

Number of Observations Used 6290 

 

 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 1 781.01307 781.01307 12931.1 <.0001 

Error 6288 379.78362 0.06040     

Corrected Total 6289 1160.79669       

 

 

Root MSE 0.24576 R-Square 0.6728 

Dependent Mean 0.19490 Adj R-Sq 0.6728 

Coeff Var 126.09348     

 

 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 0.01542 0.00348 4.43 <.0001 

rP 1 1.13670 0.01000 113.71 <.0001 
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Part G.  Test of heterogeneity of regression coefficients 

 
Results of the test that the regression coefficients of Model 1 (involving the coheritability and 
coenvironmentability as regressors) are not different than zero 
 
                          

rP=hxy exy -ALL 

 
The REG Procedure 

Model: MODEL1 

Test test00 Results for Dependent Variable rP 

Source DF 
Mean 

Square F Value Pr > F 

Numerator 2 299.12757 4.221E9 <.0001 

Denominator 6207 7.086589E-8     

 

 

 

Results of the test that the regression coefficients of Model 1 (involving the coheritability and 
coenvironmentability as regressors) are not different than unity 
 

                          

rP=hxy exy -ALL 

 
The REG Procedure 

Model: MODEL1 

Test test01 Results for Dependent Variable rP 

Source DF 
Mean 

Square F Value Pr > F 

Numerator 2 4.57815E-9 0.06 0.9374 

Denominator 6207 7.086589E-8     
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Test of Heterogenetity of slopes by partition model 1 
The GLM Procedure 

  
Dependent Variable: rP 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 12 598.2551448 49.8545954 7.033E8 <.0001 

Error 6197 0.0004393 0.0000001     

Corrected Total 6209 598.2555841       

 

R-Square Coeff Var Root MSE rP Mean 

0.999999 0.166491 0.000266 0.159914 

 

Source DF Type I SS Mean Square F Value Pr > F 

hxy 1 381.6300961 381.6300961 5.384E9 <.0001 

exy 1 216.6250481 216.6250481 3.056E9 <.0001 

hxy*partition 5 0.0000002 0.0000000 0.64 0.6681 

exy*partition 5 0.0000004 0.0000001 1.02 0.4038 

 

Parameter Estimate 
  Standard 

Error t Value Pr > |t| 

Intercept 0.0000078329   0.00000561 1.40 0.1625 

hxy 0.9997105089 B 0.00025964 3850.43 <.0001 

exy 0.9998122234 B 0.00010991 9096.53 <.0001 

hxy*partition S+1 0.0002540093 B 0.00026188 0.97 0.3321 

hxy*partition S+2 0.0002920603 B 0.00027023 1.08 0.2798 

hxy*partition S+3 0.0005000960 B 0.00040304 1.24 0.2147 

hxy*partition S-1 0.0003553349 B 0.00027009 1.32 0.1884 

hxy*partition S-2 0.0004238301 B 0.00027890 1.52 0.1287 

hxy*partition S-3 0.0000000000 B . . . 

exy*partition S+1 0.0002021176 B 0.00011064 1.83 0.0678 

exy*partition S+2 0.0000516191 B 0.00022539 0.23 0.8189 

exy*partition S+3 0.0002783650 B 0.00017860 1.56 0.1191 

exy*partition S-1 0.0001797528 B 0.00012612 1.43 0.1541 

exy*partition S-2 0.0004022520 B 0.00026639 1.51 0.1311 

exy*partition S-3 0.0000000000 B . . . 
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Test of Heterogenetity of slopes by partition model 2 
The GLM Procedure 

  
Dependent Variable: rP 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 12 566.8512326 47.2376027 9321.37 <.0001 

Error 6197 31.4043515 0.0050677     

Corrected Total 6209 598.2555841       

 

R-Square Coeff Var Root MSE rP Mean 

0.947507 44.51616 0.071188 0.159914 

 

Source DF Type I SS Mean Square F Value Pr > F 

rA 1 406.6296609 406.6296609 80240.0 <.0001 

rE 1 148.6597054 148.6597054 29334.9 <.0001 

rA*partition 5 3.5007162 0.7001432 138.16 <.0001 

rE*partition 5 8.0611501 1.6122300 318.14 <.0001 

 

Parameter Estimate 
  Standard 

Error t Value Pr > |t| 

Intercept -.0067448116   0.00159477 -4.23 <.0001 

rA 0.0511668388 B 0.01525943 3.35 0.0008 

rE 0.4257233458 B 0.01474941 28.86 <.0001 

rA*partition S+1 0.3388508491 B 0.01622625 20.88 <.0001 

rA*partition S+2 0.2303500082 B 0.01747176 13.18 <.0001 

rA*partition S+3 0.0170564459 B 0.02716135 0.63 0.5300 

rA*partition S-1 0.3184734467 B 0.01765384 18.04 <.0001 

rA*partition S-2 0.1628277772 B 0.01849852 8.80 <.0001 

rA*partition S-3 0.0000000000 B . . . 

rE*partition S+1 0.1717135371 B 0.01563650 10.98 <.0001 

rE*partition S+2 -.4235432624 B 0.02471607 -17.14 <.0001 

rE*partition S+3 -.0673930605 B 0.02460769 -2.74 0.0062 

rE*partition S-1 0.1769540581 B 0.01952937 9.06 <.0001 

rE*partition S-2 -.4605367454 B 0.02774716 -16.60 <.0001 

rE*partition S-3 0.0000000000 B . . . 
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Part H.  Correlation between the squared disparity and sampling variance of the genetic correlation 

 
 

 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

D2 3234 0.06406 0.12350 207.16323 0 0.96040 

V_rA 3241 0.04516 0.15385 146.36436 0 3.79080 

 

 

Pearson Correlation Coefficients  
Prob > |r| under H0: Rho=0  

Number of Observations 

  D2 V_rA 

D2 1.00000 

  

3234 
 

0.17093 

<.0001 

3233 
 

V_rA 0.17093 

<.0001 

3233 
 

1.00000 

  

3241 
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Part I.   Wilcoxon Rank Test of the squared disparity and the sampling 

variance of the genetic correlation 
 

The NPAR1WAY Procedure 
 

Wilcoxon Scores (Rank Sums) for Variable D
2
 

Classified by Variable partition 

partition N 
Sum of 
Scores 

Expected 
Under H0 

Std Dev 
Under H0 

Mean 
Score 

S+1 1862 2539773.00 3011785.00 26240.6879 1364.00269 

S+2 251 608568.00 405992.50 14206.0000 2424.57371 

S+3 171 344470.00 276592.50 11881.7354 2014.44444 

S-1 454 607333.50 734345.00 18444.1501 1337.73899 

S-2 192 449557.50 310560.00 12546.9608 2341.44531 

S-3 304 681293.00 491720.00 15494.5485 2241.09539 

Average scores were used for ties. 

 

Kruskal-Wallis Test 

Chi-Square 647.5628 

DF 5 

Pr > Chi-Square <.0001 
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The NPAR1WAY Procedure 

Wilcoxon Scores (Rank Sums) for Variable Var( rA ) 
Classified by Variable partition 

partition N 
Sum of 
Scores 

Expected 
Under H0 

Std Dev 
Under H0 

Mean 
Score 

S+1 1865 2477918.00 3023165.0 26324.8233 1328.64236 

S+2 251 507142.50 406871.0 14236.0428 2020.48805 

S+3 171 349740.00 277191.0 11906.4988 2045.26316 

S-1 455 796619.50 737555.0 18501.7617 1750.81209 

S-2 194 436730.00 314474.0 12634.3796 2251.18557 

S-3 305 685511.00 494405.0 15550.5149 2247.57705 

Average scores were used for ties. 

 

 

Kruskal-Wallis Test 

Chi-Square 496.6782 

DF 5 

Pr > Chi-Square <.0001 
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Results from http://astatsa.com/WilcoxonTest/Result/ 

 

 

http://astatsa.com/WilcoxonTest/Result/
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Results from http://www.statskingdom.com/175wilcoxon_signed_ranks.html 

 

http://www.statskingdom.com/175wilcoxon_signed_ranks.html
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Figure S1.  Abundance, dispersion and distribution of coheritability, 

coenvironmentability, and phenotypic correlation, overall and by partition.  A single 

datum determined by { 𝒉𝒙,𝒚 , 𝒆𝒙,𝒚 , 𝒓𝑷𝒙,𝒚 }  is represented by a dot in the scatter plot. 
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Figure S2.  Scatter plot and regression of genetic correlation (A) and environmental 

correlation (B) against the phenotypic correlation.  (C) Regression of environmental 

correlation on genetic correlation. 
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Figure S3.  Disparity Index by partition 
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Figure S4.  Supplementary Examples 

 

Pick et al. (2016) studied the role of egg size as a maternal effector (a mother’s trait causing 

maternal effects).  Despite the positive association between egg size and fitness, a significant 

amount of additive genetic variation is maintained in natural populations, which lead to an 

evolutionary stasis in egg size.  The authors hypothesized that this variation is kept by genetic 

constraints due to shared genetics among maternal resource investment on egg components.  

They assessed this hypothesis by performing artificial selection in a captive population of 

Japanese quail (Coturnix  japonica). They found effectively that the high maternal egg 

investment line produced eggs with more albumen, yolk and shell mass than low-line eggs. 
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Figure S4-1.  Coheritability, coenvironmentability and phenotypic correlation from pairwise 

analyses of morphological traits in house sparrow, Passer domesticus.  (A) male, (B) female.  

The pair of traits highlighted are: tarsus length-bill length (square), tarsus length-body mass 

(circle), bill length-body mass (rhomboid). (Data source: Jensen et al. 2003).  Notice the 

comparison of the phenotypic correlations of tarsus length and bill length in males (𝑟𝑚 =

0.1 1, 𝑛 = 40 ) and females (𝑟𝑓 = 0.185,𝑛 = 3 4) were similar (Ho: 𝑟𝑚 = 𝑟𝑓 was retained 

based on Zou’s confidence interval of the difference -0.1609 and 0.1136 which included zero), 

the relative contribution of the coheritabilities and coenvironmentabilities were dramatically 

different in each sex. The coheritability (in males 0.295,  in females -0.095) and and 

coenvironmentability (0.134 males, 0.280 females) were significantly different between each 

other.  This tells of a differential genetic and environmental influence on these traits by sex. 
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Figure S5  Coheritability surface as a function of the heritabilities of the traits 

given a genetic correlation.  
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Table T2.  Definitions 
 

     

 

  

genetic  correlation environmental  correlation

breeding values of each traits phenotypic values of each trait

Linear association between breeding 

values of two traits.  Degree to which two 

characters are influenced by same loci.




Proportion of the total 

phenotypic variance that is 

attributed to variability of 

breeding values.

 Residual proportion of the total 

phenotypic variance that is 

attributed to factors not 

accounted by breeding values.

breeding values of the trait

population with known genetic 

structure

 residual

 Proportion of total phenotypic 

variability of two traits 

attributed to non genetic 

covariance of the traits.

 Linear association between phenotypic values of 

two traits.  
 Proportion of total phenotypic 

variability of two traits 

attributed to the additive 

covariance of the traits.

 phenotypic variances, and 

environmental covariance

heritabilities of each trait, and 

genetic correlation, or

phenotypic variances, and 

additive genetic covariance

 heritabilities of each trait, and 

environmental correlation, or

degree of resemblace 

between relatives
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Appendix 5.  Hypergeometric function 
 

2𝐹1 is the generalized hypergeometric function 

2𝐹1(𝑎1 , 𝑎2 ;  𝑏1; 𝑥) =  ∑
(𝑎1)𝑚 (𝑎2)𝑚

(𝑏1)𝑘

∞
𝑚=  

𝑥𝑚

𝑚 !
  

where (𝑞)𝑚  denotes the rising Pochhammer symbol 

(𝑞)𝑚 = {
   1                                                              𝑚 = 0          
 𝑞(𝑞 − 1) .  .  .  (𝑞 +𝑚 − 1)                  𝑚 > 0          

    

 

 

 

 

 

m > 7

Hypergeometric function associated to the density 

distribution of the                                                          

sample correlation coefficient

Pochhammer  function

m = 6

Hypergeometric  function

m = 0

m = 1

m = 2

m = 3

m = 4

m = 5
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𝑏1 1

 
𝑥1

1!
=
𝑎1 𝑎2
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𝑏1 2
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2!
=  

𝑎1 𝑎1+ 1 𝑎2 𝑎2+ 1
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𝑥5

5!
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Appendix 6.  Delta Method 
 

Taylor Expansion of a trivariate function around its means 

𝑓( 𝑥 , 𝑦 , 𝑧 ) =  𝑓( 𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  ) +  𝑓𝑥
1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  )(𝑥 − 𝑥𝑜) + 𝑓𝑦

1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  )(𝑦 − 𝑦𝑜) + 𝑓𝑧
1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  )(𝑧 − 𝑧𝑜) 

where   𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜   are constants (considered here as means). The first term is the actual estimate of the function.  

Terms of the form 𝑓∎
1(𝑥𝑜  ,  𝑦𝑜  ,  𝑧𝑜  ) are the first-order derivatives evaluated around  𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜 . 

Expected value 

𝐸[ 𝑓( 𝑥 , 𝑦 , 𝑧 ) ] =  𝐸[𝑓( 𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  ) + 𝑓𝑥
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )(𝑥 − 𝑥𝑜) +  𝑓𝑦

1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )(𝑦 − 𝑦𝑜) +  𝑓𝑧
1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  )(𝑧 − 𝑧𝑜)] 

                               =  𝐸 [𝑓( 𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )] +  𝑓𝑥
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )𝐸(𝑥 − 𝑥𝑜) +  𝑓𝑦

1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  )𝐸(𝑦 − 𝑦𝑜) + 𝑓𝑧
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )𝐸(𝑧 − 𝑧𝑜) 

Since the expected value of a variable around its mean is zero,  

𝐸[ 𝑓( 𝑥 , 𝑦 , 𝑧 ) ] =  𝑓( 𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  ) 

Variance 

Here we define the variance of a variable as the squared deviations around its mean 

𝑉𝑎𝑟[ 𝑓( 𝑥 , 𝑦 , 𝑧 ) ] =  𝐸( 𝑓( 𝑥 , 𝑦 , 𝑧 ) −  𝐸[ 𝑓( 𝑥 , 𝑦 , 𝑧 ) ] )2 

                                   = [ 𝑓( 𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  ) +  𝑓𝑥
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )(𝑥 − 𝑥𝑜) + 𝑓𝑦

1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )(𝑦 − 𝑦𝑜) + 𝑓𝑧
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )(𝑧 − 𝑧𝑜) −  𝑓( 𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )]

2 

                                   =  [ 𝑓𝑥
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )(𝑥 − 𝑥𝑜) +  𝑓𝑦

1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  )(𝑦 − 𝑦𝑜) + 𝑓𝑧
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )(𝑧 − 𝑧𝑜)]

2
 

                                   =  𝐸 [ 𝑓𝑥
1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  )(𝑥 − 𝑥𝑜) + 𝑓𝑦

1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )(𝑦 − 𝑦𝑜) +  𝑓𝑧
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )(𝑧 − 𝑧𝑜)]

2
 

Squaring the terms within the brackets, we obtain 

                                   =  𝐸 [( 𝑓𝑥
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  ))

2
(𝑥 − 𝑥𝑜)

2 + (𝑓𝑦
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  ))

2
(𝑦 − 𝑦𝑜)

2 + (𝑓𝑧
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  ))

2
(𝑧 − 𝑧𝑜)

2 

                                                 + 2 𝑓𝑥
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  ) 𝑓𝑦

1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )(𝑥 − 𝑥𝑜)(𝑦 − 𝑦𝑜)  

                                                 + 2 𝑓𝑥
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  ) 𝑓𝑧

1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )(𝑥 − 𝑥𝑜)(𝑧 − 𝑧𝑜)  

                                                 + 2 𝑓𝑦
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  ) 𝑓𝑧

1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )(𝑦 − 𝑦𝑜)(𝑧 − 𝑧𝑜) ]  

Taking the expectation of the terms involving variables 

                                   =   ( 𝑓𝑥
1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  ))

2
𝐸(𝑥 − 𝑥𝑜)

2 + (𝑓𝑦
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  ))

2

𝐸(𝑦 − 𝑦𝑜)
2 + (𝑓𝑧

1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  ))
2
𝐸(𝑧 − 𝑧𝑜)

2 

                                                 + 2 𝑓𝑥
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  ) 𝑓𝑦

1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )𝐸[(𝑥 − 𝑥𝑜)(𝑦 − 𝑦𝑜)]  

                                                 + 2 𝑓𝑥
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  ) 𝑓𝑧

1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )𝐸[(𝑥 − 𝑥𝑜)(𝑧 − 𝑧𝑜) ] 

                                                 + 2 𝑓𝑦
1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  ) 𝑓𝑧

1(𝑥𝑜 , 𝑦𝑜  , 𝑧𝑜  )𝐸[(𝑦 − 𝑦𝑜)(𝑧 − 𝑧𝑜)]  
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Finally, the variance of the function can be approximated  

𝑉𝑎𝑟[ 𝑓( 𝑥 , 𝑦 , 𝑧 ) ] =   ( 𝑓𝑥
1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  ))

2
𝑉𝑎𝑟(𝑥) + (𝑓𝑦

1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  ))
2

𝑉𝑎𝑟(𝑦) + (𝑓𝑧
1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  ))

2
𝑉𝑎𝑟(𝑧) 

                                                 + 2 𝑓𝑥
1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  ) 𝑓𝑦

1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  )𝐶𝑜𝑣(𝑥, 𝑦)  

                                                 + 2 𝑓𝑥
1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  ) 𝑓𝑧

1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  )𝐶𝑜𝑣(𝑥, 𝑧) 

                                                 + 2 𝑓𝑦
1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  ) 𝑓𝑧

1(𝑥𝑜  , 𝑦𝑜  , 𝑧𝑜  )𝐶𝑜𝑣(𝑦, 𝑧) 
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Note on the Taylor expansion of a function involving three variables 

Taylor series are polynomials that approximate functions.  For functions of three variables, the Taylor 

series depends upon first, second, third, etc. partial derivatives at some point (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜), which involve 

taking sequential derivatives with respect to the same or different variables.  The following is the 

expansion of the function up to the fourth-order. 

 

𝑓(𝑥 , 𝑦 , 𝑧) = 𝑓(𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 ) 

+ 
1

1!
[ 𝑓𝑥

1(𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜  )(𝑥 − 𝑥𝑜)  + 𝑓𝑦
1(𝑥𝑜  , 𝑦𝑜 , 𝑧𝑜 )(𝑦 − 𝑦𝑜)   + 𝑓𝑧

1(𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑧 − 𝑧𝑜)] 

+
1

2!
[ 𝑓𝑥𝑥

2 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)
2  +  2𝑓𝑥𝑦

2 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)(𝑦 − 𝑦𝑜) + 2𝑓𝑥𝑧
2 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)(𝑧 −

𝑧𝑜)  +  2𝑓𝑦𝑦
2 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜  )(𝑦 − 𝑦𝑜)

2  +  2𝑓𝑦𝑧
2 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜  )(𝑦 − 𝑦𝑜)(𝑧 − 𝑧𝑜)  +  2𝑓𝑧𝑧

2 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑧 −

𝑧𝑜)
2 ]    

+ 
1

3!
 [ 𝑓𝑥𝑥𝑥

3 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)
3 + 3𝑓𝑥𝑥𝑦

3 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)
2(𝑦 − 𝑦𝑜) + 3𝑓𝑥𝑥𝑧

3 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑥 −

𝑥𝑜)
2(𝑧 − 𝑧𝑜)  +  3𝑓𝑦𝑦𝑥

3 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑦 − 𝑦𝑜)
2(𝑥 − 𝑥𝑜)  + 𝑓𝑦𝑦𝑦

3 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑦 − 𝑦𝑜)
3   +

  3𝑓𝑦𝑦𝑧
3 (𝑥𝑜  , 𝑦𝑜 , 𝑧𝑜 )(𝑦 − 𝑦𝑜)

2(𝑧 − 𝑧𝑜)  +  3𝑓𝑧𝑧𝑥
3 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜  )(𝑧 − 𝑧𝑜)

2(𝑥 − 𝑥𝑜)  +

  3𝑓𝑧𝑧𝑦
3 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑧 − 𝑧𝑜)

2(𝑦 − 𝑦𝑜)  +   𝑓𝑧𝑧𝑧
3 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜  )(𝑧 − 𝑧𝑜)

3  +  𝑓𝑥𝑦𝑧
3 (𝑥𝑜  , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)(𝑦 −

𝑦𝑜)(𝑧 − 𝑧𝑜) ]   

+  
1

4!
  [𝑓𝑥𝑥𝑥𝑥

4 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜  )(𝑥 − 𝑥𝑜)
4  +   4𝑓𝑥𝑥𝑥𝑦

4 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)
3(𝑦 − 𝑦𝑜)  +

   𝑓𝑥𝑥𝑦𝑦
4 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)

2(𝑦 − 𝑦𝑜)
2  +   4𝑓𝑥𝑥𝑥𝑧

4 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)
3(𝑧 − 𝑧𝑜)  +

 4𝑓𝑥𝑦𝑦𝑦
4 (𝑥𝑜  , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)(𝑦 − 𝑦𝑜)

3   +   12𝑓𝑥𝑥𝑦𝑧
4 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)

2(𝑦 − 𝑦𝑜)(𝑧 − 𝑧𝑜)   +

  𝑓𝑥𝑥𝑧𝑧
4 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)

2(𝑧 − 𝑧𝑜)
2  +   12𝑓𝑥𝑦𝑦𝑧

4 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)(𝑦 − 𝑦𝑜)
2(𝑧 − 𝑧𝑜)  +

 12𝑓𝑥𝑦𝑧𝑧
4 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜  )(𝑥 − 𝑥𝑜)(𝑧 − 𝑧𝑜)(𝑦 − 𝑦𝑜)

2  +   4𝑓𝑥𝑧𝑧𝑧
4 (𝑥𝑜  , 𝑦𝑜 , 𝑧𝑜 )(𝑥 − 𝑥𝑜)(𝑧 − 𝑧𝑜)

3  +

  𝑓𝑦𝑦𝑦𝑦
4 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜  )(𝑦 − 𝑦𝑜)

4  +   4𝑓𝑦𝑦𝑦𝑧
4 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑦 − 𝑦𝑜)

3(𝑧 − 𝑧𝑜)           +    𝑓𝑦𝑦𝑧𝑧
4 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑦 −

𝑦𝑜)
2(𝑧 − 𝑧𝑜)

2  +   4𝑓𝑦𝑧𝑧𝑧
4 (𝑥𝑜  , 𝑦𝑜 , 𝑧𝑜 )(𝑦 − 𝑦𝑜)(𝑧 − 𝑧𝑜)

3       +  𝑓𝑧𝑧𝑧𝑧
4 (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 )(𝑧 − 𝑧𝑜)

4  ]  

+ 𝑂(𝑛−5) 
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Appendix 7.  Web resources 
 

The URLs of online resources relevant to this work are presented below: 

 

Testing the significance of correlations 

https://www.psychometrica.de/correlation.html 

1.   Comparison of correlations from independent samples.  2. Comparison of correlations from dependent samples.  3. Testing linear 

independence (Testing against 0).   4. Testing correlations against a fixed value.  5. Calculation of confidence intervals of  correlations.  6. Fisher-

Z-Transformation.  7. Calculation of the weighted mean of a list of correlations.  8. Transformation of the effect sizes r, d, f, Odds Ratio and eta 

square.  9. Calculation of Linear Correlations. 

Citation 

Lenhard, W. & Lenhard, A.   2014 . Hypothesis Tests for Comparing Correlations. Available: Bibergau (Germany): Psychometrica. DOI: 

10.13140/RG.2.1.2954.1367                                                                                                                                                                                                                                                      

https://www.psychometrica.de/correlation.html. 

 

The confidence interval of rho (the correlation coefficient) 

http://vassarstats.net/rho.html 

1. Calculation of the 0.95 and 0.99 confidence intervals for rho, based on the Fisher r-to-z transformation.  The values of r and n are 

required.  Note that the confidence interval of rho is symmetrical around the observed r only with large values of n. 

2. -  Free, full-length, and interactive statistics textbook. It is a companion site of "VassarStats: Web Site for Statistical Computation"  

Citation                                                                                                                                                                                                                                                                             

Lowry, R  2015.  Concepts and Applications of Inferential Statistics.                                                                                                                                                                              

http://vassarstats.net/textbook/ 

Confidence Interval 

http://www.psyctc.org/cgi-bin/R.cgi/CI_correln.R 

Sample size calculators for designing clinical research 

http://www.sample-size.net/correlation-sample-size 

1. Total sample size required to determine whether a correlation coefficient differs from zero.  

Citation                                                                                                                                                                                                                                                    

Hulley SB, Cummings SR, Browner WS, Grady D, Newman TB  2013  .  Designing clinical research : an epidemiologic approach. 4th ed. 

Philadelphia, PA: Lippincott Williams & Wilkins. Appendix 6C, page 79.  

 

https://www.psychometrica.de/correlation.html
http://vassarstats.net/rho.html
http://vassarstats.net/textbook/
http://www.psyctc.org/cgi-bin/R.cgi/CI_correln.R
http://www.sample-size.net/correlation-sample-size
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Fisher r-to-Z transformation 

http://vassarstats.net/tabs_rz.html 

For any particular value of r, the Pearson product-moment correlation coefficient, this section will perform the Fisher r-to-z transformation 
according to the formula  

𝑍𝑟 = 
1

2
 𝑙𝑛 (

1 + 𝑟

1 − 𝑟
) 

 

If a value of N is entered (optional), it will also calculate the standard deviation of zr as  

𝜎𝑍𝑟 =  
1

𝑛 − 3
 

__________________________________________________________________

Cocor  Comparing correlations 

http://comparingcorrelations.org 

1.  Tests for comparing two correlations based on independent groups: Fisher’s z;  Zou’s confidence interval.  

2.  Tests for comparing two correlations based on dependent groups with overlapping variables:  Pearson and Filon’s;   Hotelling’s;  Williams;  

Olkin’s;  Dunn and Clark’s;  Hendrickson's modification of Williams’;  Steiger’s modification of Dunn and Clark’s;Hittner's m odification of Dunn 

and Clark’s;Zou’s. 

3.  Tests for comparing two correlations based on dependent groups with nonoverlapping variables:  Pearson and Filon’s; Dunn and Clark’s; 

Steiger’s modification of Dunn and Clark’s; Raghunathan, Rosenthal, and Rubin’s modification of Pearson and Filon’s; Silver, Hittner, and May’s 

modification of Dunn and Clark’s; Zou’s confidence interval. 

Citation:                                                                                                                                                                                                                                                                                                                

Diedenhofen B, Musch J  2015 .   cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLoS ONE 10(4): e0121945. 

doi:10.1371/journal.pone.0121945. http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0121945&type=printabl e 

Package documentation                                                                                                                                                                                 

http://comparingcorrelations.org/repo/pckg/cocor/cocor.pdf 

 

 

 

 

 

 

http://vassarstats.net/tabs_rz.html
http://comparingcorrelations.org/
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Useful online blogs and information 

 

Fisher's transformation of the correlation coefficient  

https://blogs.sas.com/content/iml/2017/09/20/fishers-transformation-

correlation.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+TheDoLoop+

%28The+DO+Loop%29 

By Rick Wicklin on The DO Loop  |September 20, 2017  

This article shows that Fisher's "z transformation," which is z = arctanh(r), is a normalizing transformation for the Pearson correlation of 

bivariate normal samples of size N. The transformation converts the skewed and bounded sampling distribution of r into a normal distribution 

for z. The standard error of the transformed distribution is 1/sqrt(N-3), which does not depend on the correlation.  

One can download the SAS program that creates all the graphs in this article. 

_____________________________________________________________________________________ 

Simulate correlations by using the Wishart distribution 

https://blogs.sas.com/content/iml/2017/10/11/simulate-correlations-wishart-distribution.html 

By Rick Wicklin on The DO Loop October 11, 2017 

There is a simpler ways to simulate the correlation estimates: One can directly simulate from the Wishart distribution. Each draw from the 

Wishart distribution is a sample covariance matrix for a multivariate normal sample of size N. If you convert that covariance matrix to a 

correlation matrix, you can immediately extract the off-diagonal elements.  

Coverage probability of confidence intervals: A simulation approach 

https://blogs.sas.com/content/iml/2016/09/08/coverage-probability-confidence-intervals.html 

By Rick Wicklin on The DO Loop  

The article uses the SAS DATA step and Base SAS procedures to estimate the coverage probability of the confidence interval for the mean of 

normally distributed data. This discussion is based on Section 5.2 (p. 74–77) of Simulating Data with SAS.   

 

 

http://keisan.casio.com/exec/system/1359533867 

 

http://www.emathhelp.net/calculators/probability-statistics/ 

 

https://blogs.sas.com/content/iml/2017/09/20/fishers-transformation-correlation.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+TheDoLoop+%28The+DO+Loop%29
https://blogs.sas.com/content/iml/2017/09/20/fishers-transformation-correlation.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+TheDoLoop+%28The+DO+Loop%29
https://blogs.sas.com/content/iml/2017/09/20/fishers-transformation-correlation.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+TheDoLoop+%28The+DO+Loop%29
https://blogs.sas.com/content/iml/2017/10/11/simulate-correlations-wishart-distribution.html
https://blogs.sas.com/content/iml/2016/09/08/coverage-probability-confidence-intervals.html
http://keisan.casio.com/exec/system/1359533867
http://www.emathhelp.net/calculators/probability-statistics/

