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 2 

Abstract 19 

 20 

Polygenic scores are a popular tool for prediction of complex traits. However, prediction 21 

estimates in samples of unrelated participants can include effects of population 22 

stratification, assortative mating and environmentally mediated parental genetic effects, a 23 

form of genotype-environment correlation (rGE). Comparing genome-wide polygenic score 24 

(GPS) predictions in unrelated individuals with predictions between siblings in a within-25 

family design is a powerful approach to identify these different sources of prediction. Here, 26 

we compared within- to between-family GPS predictions of eight life outcomes 27 

(anthropometric, cognitive, personality and health) for eight corresponding GPSs. The 28 

outcomes were assessed in up to 2,366 dizygotic (DZ) twin pairs from the Twins Early 29 

Development Study from age 12 to age 21. To account for family clustering, we used mixed-30 

effects modelling, simultaneously estimating within- and between-family effects for target- 31 

and cross-trait GPS prediction of the outcomes. There were three main findings: (1) DZ twin 32 

GPS differences predicted DZ differences in height, BMI, intelligence, educational 33 

achievement and ADHD symptoms; (2) target and cross-trait analyses indicated that GPS 34 

prediction estimates for cognitive traits (intelligence and educational achievement) were on 35 

average 60% greater between families than within families, but this was not the case for 36 

non-cognitive traits; and (3) this within- and between-family difference for cognitive traits 37 

disappeared after controlling for family socio-economic status (SES), suggesting that SES is a 38 

source of between-family prediction through rGE mechanisms. These results provide novel 39 

insights into the patterns by which rGE contributes to GPS prediction, while ruling out 40 

confounding due to population stratification and assortative mating. 41 

42 
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 3 

Introduction 43 

 44 

The recent influx of well-powered genome-wide association (GWA) studies has led to 45 

substantial advances in our ability to detect genetic associations between single base pair 46 

variants (single nucleotide polymorphisms; SNPs) across the genome and a myriad of 47 

complex traits. Although individual SNP effect sizes are extremely small1, the surge in GWA 48 

power has improved the ability to predict complex traits through the genome-wide 49 

polygenic score (GPS) approach2,3. GPSs are indexes of individuals’ genetic propensity for a 50 

trait, and are derived as the sum of the total number of trait-associated alleles across the 51 

genome, weighted by their respective association effect size estimated through GWA 52 

analysis4. GPS can be calculated in any sample with genotype data that is independent from 53 

the discovery GWA study, and have permeated research in the social, behavioural and 54 

biomedical sciences5. In this paper, we use within-family analyses to investigate an 55 

important potential source of prediction in polygenic score analysis: passive genotype-56 

environment correlation. 57 

 58 

Currently one of the largest GWA meta-analyses with a sample size of 1.1 million was 59 

performed on educational attainment (years of schooling)6. A GPS derived from this study is 60 

the most predictive GPS for any behavioural trait to date, explaining 10.6% of the variance 61 

in years of education6 and 14.8% in tested educational achievement7. The predictive power 62 

of the educational attainment GPS (EA GPS) is considerable in contrast to other GPS for 63 

behavioral traits. Notably, cross-trait analyses have revealed that EA GPS is widely 64 

associated with traits other than educational achievement, including intelligence2,6,7, 65 

socioeconomic status (SES)8-11, behaviour problems12 , mental illness13, physical health13 66 

and personality14,15, in some cases accounting for as much as or more than the variance in 67 

cross-trait associations explained by the target GPS themselves15,16.  68 

 69 

However, GWA analyses, and the GPSs derived from them in independent samples, are 70 

naïve to the pathways that lead from SNPs to trait outcomes17. With a focus on prediction, 71 

the mechanisms by which polygenic scores relate to phenotypes are left largely unexplored. 72 

Given the popularity and widespread use of the GPS approach, the interpretation of GPS 73 
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 4 

prediction estimates requires more careful consideration. Potentially, passive genotype-74 

environment correlation (prGE)18 effects could be one source of prediction. Parents 75 

generate family environments consistent with their own genotypes, which in turn facilitate 76 

the development of the offspring trait, thus inducing a correlation between offspring 77 

genotype and family environment19-22. Although these effects are also genetic in origin, 78 

they stem from the parents and are thus environmentally mediated.  Therefore, GPS 79 

prediction among unrelated individuals may include contributions from both direct genetic 80 

effects and also indirect effects due to prGE.  81 

 82 

Within-family analysis of siblings is a powerful approach to disentangle these potential 83 

sources of prediction. The additive genetic correlation between siblings is on average 0.5023, 84 

and the transmission of alleles from parents to offspring is randomized during meiosis, such 85 

that siblings have equal probability of inheriting any given allele24. The variability around the 86 

average genetic relationship between siblings due to random segregation is generally 87 

independent of the environment, therefore any genetic difference between siblings is free 88 

of shared environmental influence25. A relationship between their genetic differences and 89 

trait differences provides evidence for a causal effect of the measured genetic difference, 90 

since (i) siblings are well-matched on all shared familial genetic influences that shape the 91 

environment, and (ii) potential bias due to population stratification and assortative mating 92 

is completely eliminated within families6,26,27. Such within-family analyses account for prGE 93 

effects that are related to common family environments which are correlated with the 94 

transmitted alleles shared between siblings, but also environmental effects related to non-95 

transmitted parental alleles that contribute to offspring similarity within a family. The use of 96 

DZ co-twins strengthens this design further as all shared environmental influences are time-97 

invariant between twins (e.g. pregnancy risk factors, parental age, family income).  98 

 99 

Indeed, previous within-family analyses have revealed substantial reductions in individual 100 

SNP effect sizes. For example, there was an effect size attenuation of ~40% compared to 101 

between-family associations in the most recent GWA study on educational attainment6. 102 

Most of this reduction has been attributed to prGE; no similar deflation of effect sizes was 103 

found for height6, indicating that prGE is not likely at play. A novel method relying on close- 104 

and distantly-related individuals, and that is applied to very large populations, detected a 105 
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 5 

similar reduction of SNP-heritability estimates of educational achievement (35%)25. 106 

Moreover, studies that tested the effect between non-transmitted alleles from parental to 107 

offspring genotypes on offspring outcomes reported a significant association for educational 108 

attainment – an effect of so-called genetic nurture – but not for height and BMI20,21. In 109 

contrast, one study that tested within-family predictions of educational attainment using 110 

the EA GPS found no noteworthy difference in comparison to between-family estimates28. 111 

However, this GPS was based on the smallest GWA study for educational attainment29, and 112 

may have been underpowered to pick up prGE-driven effects.  113 

 114 

Overall, relatively little research has been conducted on within-family GPS prediction and it 115 

has so far been limited to educational and anthropometric traits. This study adds 116 

substantially to this literature by systematically comparing within-family GPS prediction to 117 

between-family GPS prediction across eight core life outcomes (height, BMI, self-rated 118 

health, intelligence, educational achievement, neuroticism, attention-deficit/hyperactivity 119 

symptoms, and schizophrenia symptoms). Educational achievement is both phenotypically 120 

and genetically correlated with many life outcomes30-36. It is also is highly genetically 121 

correlated with family SES8,37,38, and EA GPS predicts 7.3% of the variance in SES9. 122 

Therefore, it is possible that the effects identified in the GWA studies for educational 123 

attainment related to family environment (e.g. SES) also contribute to the development of 124 

other behavioural traits through prGE mechanisms. Although it has been suggested that the 125 

widespread cross-trait associations between the EA GPS and various outcomes may be 126 

partly driven by prGE effects15,22, to our knowledge no study to date has tested this 127 

hypothesis.  128 

 129 

It is the aim of this study to investigate potential influences of prGE in a range of life 130 

outcomes through the comparison of within- and between-family polygenic score prediction 131 

estimates. First, we predict that within-family estimates will be disproportionally lower than 132 

between-family estimates for EA GPS predictions of educational achievement in contrast to 133 

other GPS predictions of their target trait. Second, we predict that cross-trait associations 134 

between the EA GPS and other outcomes will be smaller within families than between 135 

families, in comparison to the cross-trait associations of other GPS. 136 
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 6 

Methods 137 

 138 

Our hypotheses, measures and analysis plan were preregistered with the Open Science 139 

Framework (for more details, see Online Resource section), except where indicated below. 140 

The non-preregistered analyses should be considered exploratory. 141 

 142 

Sample  143 

 144 

Participants were drawn from the Twins Early Development Study (TEDS). Between 1994-145 

1996 TEDS recruited 16,810 twin pairs born in England and Wales, who have been assessed 146 

in multiple waves across development until the present. The demographic characteristics of 147 

TEDS participants and their families closely match those of families in the UK9,39. Written 148 

informed consent was obtained from parents prior to data collection, and from TEDS 149 

participants themselves past the age of 18. Project approval was granted by King’s College 150 

London’s ethics committee for the Institute of Psychiatry, Psychology and Neuroscience 151 

PNM/09/10–104. Only DZ co-twins with complete data were included in this study.  152 

 153 

Phenotypic data 154 

 155 

Height. Self-reported height was assessed at the average age of 22.1 (SD=0.86) in 1,463 twin 156 

pairs, including 789 same-sex and 674 opposite-sex twin pairs. 157 

 158 

Body Mass Index (BMI). BMI was calculated using self-reported weight in kg and height in 159 

meters (!"
#$) at age 22.1 (SD=0.86) in 1,353 twin pairs, including 733 same-sex and 620 160 

opposite-sex twin pairs.  161 

 162 

Self-rated health. Twins rated their health on the reduced RAND Short-Form Health 163 

Survey40. Individuals scored their health on a five point Likert scale for questions such as “In 164 

general, would you say your health is?” (“Poor” to “Excellent”), or “I am as healthy as 165 
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 7 

anybody I know” (“Strongly Disagree” to “Strongly Agree”). Data were available on 1,494 166 

twin pairs, including 805 same-sex and 689 opposite-sex twin pairs at age 22.1 (SD=0.86).  167 

 168 

Intelligence. At age 11.4 (SD=0.65), twins were assessed on their non-verbal abilities 169 

(Raven’s Standard Progressive Matrices41; WISC-III-UK Picture Completion42) and on their 170 

verbal abilities (WISC-III-PI Vocabulary Multiple-Choice43; WISC-III-PI Information Multiple-171 

Choice43). A composite variable was calculated as the arithmetic mean of the z-standardized 172 

scales for 1,569 twin pairs, including 824 same-sex and 745 opposite-sex twin pairs.  173 

 174 

Educational achievement. Results for standardized tests taken at the end of compulsory 175 

education in the United Kingdom (General Certificate of Secondary Education; GCSE) were 176 

obtained for twins at age 16.3 (SD=0.29) via self-report. Grades were coded from 4 (G; the 177 

minimum pass grade) to 11 (A* the highest possible grade). Self-reported GCSE grades in 178 

TEDS highly correlate with grades obtained for a subsample of individuals from the National 179 

Pupil Database (r = 0.98 for English, r = 0.99 for mathematics, r > 0.95 for all sciences)31. A 180 

composite was calculated as the arithmetic mean of the compulsory core subjects – Maths, 181 

English and Science – for 2,366 twin pairs, including 1,220 same-sex and 1,146 opposite-sex 182 

twin pairs.  183 

 184 

Neuroticism. At age 16.5 (SD=0.27), twins were assessed on their Big Five personality traits 185 

on a five-point Likert scale44. For this study, we used the six Neuroticism items (e.g. 186 

Anxiousness; Vulnerability) to form a composite score by taking the arithmetic mean for 789 187 

twin pairs, including 429 same-sex and 360 opposite-sex twin pairs.  188 

 189 

Attention-Deficit Hyperactivity Disorder (ADHD) symptoms. At age 11.5 (SD=0.69) and 16.3 190 

(SD=0.69), parents reported on twins’ ADHD symptoms via the Strength and Difficulties 191 

Questionnaire45 hyperactivity subscale (three-point Likert scale) and the Conners’ rating 192 

scales (CPRS-R; four-point Likert scale)46 on hyperactivity and inattention. Although self-193 

report ratings were available, it has been shown that informant-based ratings are more 194 

reflective of objective measures of ADHD symptoms47. A composite score was created as 195 

the arithmetic mean of the sex and age z-standardized scales. Where ratings were available 196 
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 8 

at one assessment only, this value was used to maximise sample size, leading to a sample 197 

size of 2,469 twin pairs, including 1,285 same-sex and 1,184 opposite-sex twin pairs. 198 

 199 

Schizophrenia symptoms. At age 22.7 (SD=0.85), paranoia and hallucinations were assessed 200 

through self-reported ratings on the Specific Psychotic Experiences Questionnaire (SPEQ; six 201 

point Likert scale)47, and parent-reported negative symptoms using the Scale for the 202 

Assessment of Negative Symptoms (SANS; four point Likert scale)7. Data were available for 203 

1,140 twin pairs, including 613 same-sex and 527 opposite-sex twin pairs.  204 

 205 

Family socio-economic status (SES). This measure was calculated as the mean of the z-206 

standardized maternal age at birth of the first child, maternal and paternal highest 207 

education level (coded from 1 = “no qualifications” to 8 = “postgraduate qualifications”), 208 

and maternal and paternal occupation (coded from 1 = “Other Occupations – dockers, 209 

porters, labourers,…” to 9 = “Managers and Administrators”). These measures were 210 

assessed at first contact at age 1.8 (SD=1.13). Data were available for 2,962 twin pairs, 211 

including 1,542 same-sex and 1,420 opposite-sex twin pairs.  212 

 213 

Measures were selected based on largest sample sizes available, and ages at phenotype 214 

assessment matching most closely the ages of GWA study samples to maximise predictive 215 

power. None of the measures were significantly associated with birth order, but most 216 

showed sex and age differences (see Supplementary Table S1) and were therefore adjusted 217 

for these effects using the regression method, and z-standardised residuals (mean=0, SD=1) 218 

were used for all subsequent analyses.  219 

 220 

Genotypic data 221 

 222 

Two different genotyping platforms were used because genotyping was undertaken in two 223 

separate waves, five years apart. AffymetrixGeneChip 6.0 SNP arrays were used to genotype 224 

3,665 individuals. Additionally, 8,122 individuals (including 3,607 dizygotic co-twin samples) 225 

were genotyped on HumanOmniExpressExome-8v1.2 arrays. After quality control, 635,269 226 
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 9 

SNPs remained for AffymetrixGeneChip 6.0 genotypes, and 559,772 SNPs for 227 

HumanOmniExpressExome genotypes.  228 

 229 

Genotypes from the two platforms were separately phased and imputed into the Haplotype 230 

Reference Consortium (release 1.1) through the Sanger Imputation Service6 before merging. 231 

Genotypes from a total of 10,346 samples (including 3,320 dizygotic twin pairs and 7,026 232 

unrelated individuals) passed quality control, including 3,057 individuals genotyped on 233 

Affymetrix and 7,289 individuals genotyped on Illumina. The final data contained 7,363,646 234 

genotyped or well imputed SNPs (for full genotype processing and quality control details, 235 

see6). To ease high computational demands of the software that generates polygenic scores, 236 

we further excluded SNPs with info <1, leaving 515,000 SNPs for analysis.  237 

 238 

We performed principal component analysis on a subset of 39,353 common (MAF > 5%), 239 

perfectly imputed (info = 1) autosomal SNPs, after stringent pruning to remove markers in  240 

linkage disequilibrium (r2 > 0.1) and excluding high linkage disequilibrium genomic regions 241 

so as to ensure that only genome-wide effects were detected. 242 

 243 

Polygenic scores 244 

 245 

We calculated polygenic scores based on summary statistics for the largest GWA studies 246 

available for key developmental outcomes, including height48, body mass index (BMI)48, 247 

self-rated health45, intelligence47, educational attainment6, neuroticism49, ADHD50, and 248 

schizophrenia51. These GWA studies were selected because their respective GPS yield the 249 

highest predictive accuracy within their trait category (details about the studies, reported 250 

SNP heritabilities and GPS predictions can be found in Supplementary Table S2). All 251 

polygenic scores were statistically adjusted for the first ten principal components, chip and 252 

plate using the regression method and were z-standardized (mean=0, SD=1).  253 

 254 

Polygenic scoring method 255 

 256 
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 10 

To calculate polygenic scores, we used a Bayesian approach, LDpred52. Using LDpred, a 257 

posterior effect size for each SNP is derived by re-weighting the original summary statistic 258 

coefficient based on (i) the relative influence of a SNP given its level of LD with surrounding 259 

SNPs, and (ii) a prior on the effect size of each SNP. This prior is dependent on the 260 

heritability of the trait, as well as the fraction of markers assumed to causally influence the 261 

trait. The final GPS is obtained as the sum of the trait-increasing alleles (each variant coded 262 

as 0, 1, or 2), weighted by the posterior effect size estimates. In contrast to clumping and 263 

thresholding, LDpred retains all the SNPs in the polygenic score that are common between 264 

GWA summary statistics and genotype data in the target sample (for more details about this 265 

polygenic score calculation approach, see15). In this study, we created polygenic scores 266 

using a prior that assumes a causal fraction of 1 for all analyses, based on the assumption 267 

that all genetic markers contribute to trait development.   268 

 269 

Statistical Analysis 270 

 271 

Mixed-effects modelling 272 

 273 

We applied a mixed-effects model on DZ data with the novel approach of including two 274 

fixed effects to separate the total effect between the polygenic score predictor and the 275 

outcome into within- and between-family effects53: 276 

  277 

%&' = 	*+ +	-./012&' − 012444444
'5 + -6012444444

' +	7' +	8&'  (1) 278 

 279 

where % denotes the outcome and GPS the polygenic score, 9 = {1,2} corresponds to the 280 

individual twins that are clustered within family ?, and	012444444 refers to the mean GPS value in 281 

family ?. The 9th value represents birth order, where twin 1 is the elder twin. The notation 282 

*+ represents the intercept and 7'  the random effect with 7'	~	A(0, DEF), which corresponds 283 

to a change in the intercept for both twins in family ?, and  8&'  with 8&'	~	A(0, DHF), which 284 

denotes the independent random error for each individual 9 in family ?. The between-family 285 

effect -6 represents the expected change in the outcome % given a one unit change in the 286 
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family GPS average, and the within-family effect -. represents the expected change given a 287 

one unit change in the difference between the individual GPS and the family average GPS. 288 

By including both -. and -6 in the same model, the individual estimates are adjusted for, 289 

and independent of, the effect of the other estimate. The random effect term DEF, which 290 

estimates the difference between each group intercept 7'  and the overall intercept *+, 291 

accounts for the residual structure in the data corresponding to all unaccounted familial 292 

factors (both genetic and environmental) that contribute to the trait similarity of the 293 

twins54,55.  294 

 295 

The use of a mixed-effects model is only justified if co-twins within a family correlate in the 296 

outcome, which can be estimated through the Intraclass Correlation (ICC) coefficient. The 297 

ICC is the ratio of the between-family (i.e. random intercept) variance over the total 298 

variance and is an estimate of how much of the total variation in the outcome is accounted 299 

for by family: 300 

 301 

IJK/%L', %F'5 = 	
MN
$	

(MN
$OMP

$)
 (2) 302 

 303 

where DEF is the covariance between the family variable, in this case family ID, and the 304 

outcome, and DHF indicates the residual variance capturing within twin pair differences. The 305 

total effect of the relationship between GPS and outcome is the ICC weighted sum of the 306 

within- and between-family effects53: 307 

 308 

QJRST	UVVUWR = 	-.(1 − XII) +	-6	XII (3) 309 

 310 

It follows from (3) that the total effect ranges between -. and -6. If the relationship 311 

between GPS and outcome is mostly due to individual-level variation, the ICC approximates 312 

0 and the total effect will be close to -.. In contrast, if the association is mostly due to 313 

family effects, the ICC approximates 1 and the total effect will be close to -6	47. 314 

 315 

Performing a regression corresponding to equation (1), we estimated the -. and -6 316 

parameters using each of the eight polygenic scores in turn as predictors of each of the 317 
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eight measured outcomes. To estimate potential SES effects, we repeated these analyses 318 

including the SES composite as a covariate in the model (these latter analyses were not 319 

preregistered). 320 

 321 

To empirically test the statistical difference between -. and -6, we performed permutation 322 

testing. We randomly permuted the vector containing GPS values of twin 2, so that there 323 

was no longer a systematic relationship between the GPS of twin 1 and twin 2, in line with 324 

the null hypothesis of interchangeability. Model (1) was repeated 100,000 times using 325 

randomly sampled data with replacement, calculating the difference between -6 and 326 

-.	for each iteration, therefore creating an empirical null distribution. To test the null 327 

hypothesis, an empirical p-value was calculated as the fraction of the total number of 328 

permuted (i.e. random) difference values that were at least as extreme as the difference 329 

between -6 and -. derived from unpermuted data. A pseudo-count of 1 was added to 330 

both numerator and denominator to avoid p-values of zero56, which would occur if all 331 

permuted difference values were smaller than the original difference in betas. Therefore, 332 

the lowest achievable p-value was 9.99e-6. Differences between -6 and -.	were considered 333 

as statistically significant if the empirical p-value was smaller than the alpha significance 334 

threshold (see below for multiple testing correction), indicating that this difference was 335 

unlikely a result of random sample characteristics. 336 

 337 

Quantile analysis of within-DZ pair differences 338 

 339 

To illustrate the extent to which within-DZ pair GPS differences result in differences in 340 

developmental outcomes, we performed quantile analysis. Firstly, we generated twin-GPS 341 

difference scores by subtracting the twin 2 score from the twin 1 score, and then split this 342 

variable into ten equal quantiles based on absolute GPS differences, ranging from the 343 

lowest to the highest GPS differences. Birth order did not explain any statistically significant 344 

amount of variance (Supplementary Table S1), therefore no randomisation of twin order 345 

was required. We tested mean differences in outcome variables between individuals in the 346 

lowest and highest decile. We performed quantile analysis on variables with scales that are 347 

easily interpretable: that is, BMI, height, intelligence and educational achievement. For this 348 
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purpose, the z-standardised and cleaned variables were transformed back to their original 349 

scale, and intelligence values were scaled to have a mean of 100 and a standard deviation of 350 

15. 351 

 352 

Multiple testing correction 353 

 354 

Multiple testing correction of the a significance threshold was performed using the 355 

Benjamini Hochberg false discovery rate (FDR) adjustment57. In contrast to more 356 

conservative corrections, this method has higher statistical power to detect true positives 357 

while controlling for false positives. Based on an a threshold of 0.05, the corrected a in this 358 

study was 0.01, defined as the maximum raw p-value that is smaller or equal than the FDR 359 

critical value (YZ[\ ≤
Z[^!	_`	abcd

e_e[f	^g#hiZ	_`	abcd	j[fgik
× α ). 360 
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 14 

Results 361 

 362 

Phenotypic resemblance between DZ twins within a family varied between traits, with 363 

Pearson’s correlation coefficients ranging from 0.10 – 0.59 (Supplementary Figure S1, and 364 

Supplementary Table S3 for ICCs). Twins were least alike in their neuroticism levels and self-365 

rated health, and most alike in their height, IQ and educational achievement. Within twin 366 

pair polygenic score correlations were close to expectations (range r = 0.49 – 0.57), given 367 

that the expected shared additive genetic variance between siblings is 50% of the total 368 

additive genetic variance based on quantitative genetic theory23.  369 

 370 

Within-family polygenic score predictions 371 

 372 

Figure 1 depicts the within- and between-family polygenic score prediction estimates of the 373 

eight core developmental outcomes from the mixed-effects model analyses. Within-family 374 

target-trait predictions were statistically significant for height, BMI, intelligence, educational 375 

achievement and ADHD symptoms, indicating that polygenic variation within twin pairs was 376 

related to these outcome differences. Specifically, phenotypic differences in height were 377 

significantly positively correlated with height GPS twin differences (b = 0.41, p = 5.72e-53) 378 

and differences in BMI were significantly correlated with BMI GPS differences (b = 0.30, p = 379 

1.76e-21) such that twins with a higher height GPS and BMI GPS were taller and heavier than 380 

their co-twin, respectively. IQ GPS differences predicted intelligence differences (b = 0.14, p 381 

= 1.32e-6) and EA GPS differences were significantly associated with GCSE grade differences 382 

(b = 0.21, p = 2.22e-26), indicating that those twins with a higher GPS also scored higher on 383 

intelligence measures and in their GCSE tests than their co-twin. For behaviour problems, 384 

twins with higher ADHD GPS had higher phenotypic ADHD symptoms than their co-twins (b 385 

= 0.12, p = 1.50e-7).  386 

 387 

We also investigated cross-trait relationships (Figure 1). For example, self-rated health GPS 388 

differences were negatively correlated with differences in BMI, such that twins with a higher 389 

self-rated health GPS had a lower BMI (b = -0.13, p = 3.56e-5). EA GPS differences 390 
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significantly related to phenotypic intelligence differences (b = 0.13, p = 2.15e-5), and IQ GPS 391 

predicted GCSE grade differences (b = 0.20, p = 7.24e-25), suggesting that those with higher 392 

GPS also had higher IQ and GCSE grades than their co-twin. GCSE grade differences were 393 

also negatively predicted by ADHD GPS twin differences (b = -0.07, p = 2.20e-4), indicating 394 

that twins with a higher ADHD GPS obtain lower GCSE results. Notably, IQ GPS differences (b 395 

= -0.12, p = 6.38e-7) and EA GPS differences (b = -0.14, p = 3.09e-8) were just as predictive 396 

of ADHD symptoms as the ADHD GPS itself, and the direction of effect sizes indicates that 397 

the twin with a higher GPS had lower ADHD symptoms than their co-twin (all prediction 398 

estimates and total effects are presented in Supplementary Table S4). 399 
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Figure 1. Within- and between-family prediction estimates of eight developmental outcomes using eight genome-wide polygenic scores (GPS) before (A) and after (B) 401 

statistical correction for family socio-economic status. The GPS are presented on the y-axis, predicting each of the eight phenotypic traits. Error bars are 95% 402 

bootstrap percentile intervals based on 10,000 bootstrap samples. Opaque estimates indicate statistical significance at the false discovery rate corrected threshold of 403 

p < 0.01. Brackets indicate a significant difference between within- and between-family prediction estimate based on permutation testing with 100,000 iterations. 404 

Significant differences are only shown where at least one of the estimates is statistically significant at the false discovery rate corrected threshold of p < 0.01 (for all 405 

prediction estimates and p-values, see Supplementary Tables S4 and S5). The dotted line represents a beta coefficient of zero. BMI = Body Mass Index; IQ = 406 

Intelligence; GCSE = General Certificate of Secondary Education (educational achievement); ADHD = Attention-Deficit/Hyperactivity Disorder; SCZ = Schizophrenia.407 
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Comparing within-family and between-family polygenic score prediction 408 

 409 

By simultaneously and independently estimating within- and between-family GPS 410 

predictions, it was possible to compare these estimates. Between-family estimates (Figure 411 

1) are mostly consistent with GPS correlations reported for unrelated individuals 412 

(Supplementary Table S2). Figure 1 also shows that between-family associations are 413 

generally greater than within-family associations. Significant associations were found for 414 

46.9% of the between-family associations and only 20.3% for within-family associations. On 415 

average, magnitudes of within-family associations were almost half (44.1% reduction) that 416 

compared to significant between-family estimates (for all prediction estimates and 417 

significance of differences see Supplementary Table S4). 418 

 419 

Notably, significant differences in associations within and between families for polygenic 420 

scores predicting their target traits were almost exclusively found for IQ and educational 421 

achievement (Figure 1A). The within-family prediction was significantly lower than between-422 

family prediction for both IQ (p = 3.50e-4, D = 48.0%) and GCSE grades (p = 9.99e-6, D = 423 

48.9%).  424 

 425 

Also, for cross-trait associations, differences in within- and between-family polygenic score 426 

predictions were most pronounced for IQ and educational achievement. For IQ, there were 427 

significant differences for the self-rated health GPS (p = 8.00e-3, D = 79.4%) and the EA GPS 428 

(p = 6.00e-5, D = 50.1%). For educational achievement, there were significant differences for 429 

the BMI GPS (p = 9.99e-6, D = 83.3%), the self-rated health GPS (p = 9.99e-6, D = 69.5%), the 430 

IQ GPS (p = 9.99e-6, D = 37.2%), and the ADHD GPS (p = 2.00e-5, D = 65.4%). In addition, 431 

there was a significant difference in within- and between-family prediction for the self-rated 432 

health GPS (p = 3.90e-4, D = 71.7%) predicting ADHD symptoms.  433 

 434 

The finding that polygenic score prediction estimates of our measured traits are 435 

substantially smaller within families suggests that the corresponding between-family 436 

associations are mediated by some combination of family-specific (i.e. shared family) 437 

effects, population stratification and potentially assortative mating. Family SES, which is the 438 
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same for members of a family, is a predictor not only of educational achievement and IQ, 439 

but also physical and mental health outcomes. Therefore, we repeated our analyses 440 

including family SES as a covariate in the model to interrogate its role in between-family GPS 441 

prediction. As noted above, this analysis was not pre-registered. As shown in Figure 1B, 442 

between-family predictions were greatly reduced and magnitudes approached those of 443 

within-family prediction estimates, which did not change (because any shared family effects 444 

are already controlled for in within-family estimates; for all prediction estimates and 445 

significance of differences, see Supplementary Table S5). For IQ, educational achievement, 446 

and ADHD, where the greatest prediction differences were observed, the average of 447 

statistically significant between-family beta estimates versus within-family estimates was 448 

0.182 and 0.097, and 0.102 and 0.095 after accounting for SES, respectively.  449 

 450 

Sensitivity analyses (not pre-registered) were performed by repeating all analyses 451 

separately for same-sex and opposite-sex twins, and we found no substantial deviations 452 

from the results using the combined sample (For results, see Supplementary Tables S6 to 453 

S10, and Supplementary Figures S2 and S3). 454 

 455 

Quantile Analysis 456 

 457 

To illustrate within-family differences further, quantile analysis demonstrated how within-458 

family polygenic score differences related to differences in height, BMI, intelligence and 459 

GCSE grades (Figure 2). There was an 8.7cm height mean difference (p = 1.28e-11) between 460 

the lowest absolute difference decile versus the highest difference decile. For BMI, the 461 

difference was 2.9 BMI points (p = 8.33e-6) between the lowest and the highest absolute 462 

GPS difference deciles. Mean GCSE grade differences (0.40) were also statistically significant 463 

(p = 7.13e-5) when comparing the lowest and the highest absolute GPS difference deciles. In 464 

contrast, intelligence point differences (1.9 points) were not statistically different (p = 0.26) 465 

between the lowest and the highest absolute GPS difference quantiles (for trait and GPS 466 

means at each difference decile see Supplementary Table S11). 467 

 468 

 469 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 10, 2019. ; https://doi.org/10.1101/605006doi: bioRxiv preprint 

https://doi.org/10.1101/605006
http://creativecommons.org/licenses/by-nd/4.0/


 20 

 470 

 471 
Figure 2. The relationship between absolute DZ twin polygenic score decile differences and 472 

trait outcome differences. Lower deciles represent small absolute genome-wide polygenic 473 

score (GPS) differences and higher deciles represent large GPS differences between DZ co-474 

twins. Error bars indicate 95% confidence intervals. Each GPS decile included the following 475 

numbers of twin pairs: Height = 146; BMI = 135; IQ = 157; GCSE = 236. Regression through 476 

origin analysis (fixed intercept of zero) using the continuous GPS difference values to predict 477 

outcome differences were significant for height (B = 4.42, p = 3.73e-53, R2 = 0.148), BMI (B = 478 

1.34, p = 1.73e-21, R2 = 0.064), IQ (B = 2.1, p = 4.53e-7, R2 = 0.015), and GCSE grades (B = 479 

0.26, p = 3.04e-26, R2 = 0.046).  480 
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Discussion 481 

 482 

Polygenic score prediction of complex traits is now a common approach in genomics 483 

research, but the potential pathways by which polygenic score variation predicts phenotypic 484 

variation remain largely unexplored. In this study, we contrasted within- and between-485 

family polygenic prediction estimates to quantify the extent to which environmentally-486 

mediated genetic effects (i.e. passive genotype-environment correlation) are picked up in 487 

polygenic score analyses. By systematically performing target- and cross-trait analyses 488 

across eight life outcomes using eight corresponding GPS, we found evidence that prGE 489 

might be a mechanism explaining a considerable proportion of the GPS prediction in 490 

cognitive traits (intelligence and educational achievement), but not for non-cognitive traits. 491 

We also found that for all between-family GPS predictions of cognitive traits – but, again, 492 

not other traits – family SES is likely to be the major source of prGE. 493 

 494 

For the prediction of IQ and educational achievement, within-family estimates were on 495 

average 60% smaller than between-family estimates. The within- versus between-family 496 

attenuation for the EA GPS prediction was 49%, which is close to the 40% estimate in GWA 497 

study effect sizes for years of education6. These findings highlight the influence of prGE in 498 

the development of IQ and educational achievement, and demonstrate the extent to which 499 

between-family GPS prediction may be partly driven by prGE effects. Results from our study 500 

are also in line with adoption studies showing evidence of between-family prGE in that 501 

correlations between home environment and children’s IQ is twice as great in non-adoptive 502 

families than in adoptive families58. Our findings are compatible with recent research on 503 

genetic nurture, using non-transmitted alleles from parental genotypes to assess prGE20,21 in 504 

terms of GPS target trait prediction of educational achievement and anthropometric traits. 505 

Our findings are novel to the extent that we performed cross-trait associations using a wide 506 

range of GPS. Contrary to our prediction that within- and between-family EA GPS 507 

associations would be significantly different across many associated life outcomes, results 508 

from cross-trait analysis suggest that within- and between-family predictions were only 509 

significantly different across a range of GPS for the prediction of cognitive outcomes. 510 

 511 
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A possible explanation for these results is that IQ and educational achievement show more 512 

shared environmental influences (24% and 27%, respectively) relative to other traits used in 513 

this study such as height (10%), BMI (10%), ADHD (2%), or schizophrenia (0%), as estimated 514 

through a large twin study meta-analysis59. The type of rGE that we assessed in this study – 515 

defined as the exposure to a family environment that is correlated with both parental and 516 

offspring genotypes, and which contributes to sibling similarity in their outcomes – is 517 

absorbed by the shared environment variance component (‘C’) in classical twin analyses60. 518 

Therefore, it may be more likely that genetic effects related to cognitive traits as estimated 519 

through GWA studies partly contain prGE effects – in contrast to other traits tested in our 520 

study – because the shared environmental component is larger to begin with for cognitive 521 

traits. As known from the existing literature, family SES is strongly genetically correlated 522 

with offspring cognitive traits8,37,38, rendering it a likely source of prGE. Indeed, our results 523 

showed that between-family effects were similar in magnitude to within-family effects in 524 

magnitude when holding SES constant, suggesting that SES is a source of the majority of the 525 

within-between discrepancy, rather than residual population stratification or assortative 526 

mating.  527 

 528 

The results showed that more distantly-related GPS captured considerable prGE effects in 529 

cross-trait GPS predictions of cognitive traits. For instance, within-family effect sizes for the 530 

ADHD GPS predicting educational achievement were significantly smaller (65% reduction), in 531 

contrast to the ADHD GPS predicting ADHD symptoms, where no significant difference was 532 

detected. This suggests that the GWAS for ADHD captures genetic variation that is 533 

correlated with aspects of the family environment that contribute to the co-development of 534 

ADHD symptoms and educational achievement, although it is unclear why these effects do 535 

not appear to contribute to the development of ADHD symptoms themselves.  536 

 537 

It is important to go beyond GPS predictions of traits in unrelated individuals to consider 538 

prGE mechanisms by comparing within- and between-family predictions in order to explain 539 

the sources of predictions in polygenic score analysis. However, finding between-family 540 

prGE does not diminish the usefulness of GPS predictions for cognitive traits in unrelated 541 

individuals, because these prGE effects help maximise the prediction of trait variance. 542 

Genetic influences operate via the environment by necessity, therefore the pathways from 543 
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genotype to phenotype operate through rGE mechanisms. Although within-family genetic 544 

effects do not include prGE effects due to between-family factors such as SES, within-family 545 

genetic effects are not free of all kinds of rGE, as demonstrated by twin studies showing 546 

that correlations between putative measures of the environment and children’s specific 547 

outcomes are genetically influenced58. Within-family GPS prediction estimates can be 548 

interpreted as direct genetic effects in the sense that they stem from the individual level not 549 

the family level. Children select, modify and create experiences (active rGE), or evoke 550 

responses in their environment (evocative rGE) that are correlated with their genetic 551 

propensities. Therefore, within-family genetic differences can relate to trait differences 552 

through active or evocative rGE pathways, but are free of any passive rGE effects.  553 

 554 

Implications 555 

 556 

The results from this study have three important implications for the interpretation of the 557 

existing polygenic score literature, as well as for future genetic research. First, the finding 558 

that between-family predictions pick up effects due to prGE only in cognitive, and not non-559 

cognitive traits is informative for causal inference studies that use designs such as 560 

Mendelian Randomisation61,62. Here, a genetic instrument that is related to a predictor (in 561 

form of a single genetic marker or GPS) is used to assess the causal relationship between 562 

the predictor and an outcome. At a population level, genotypes are not inherited randomly: 563 

individuals with particular genotypes are not born into environmental conditions at chance. 564 

If family environment is associated with the genetic instrument as well as the predictor and 565 

the outcome, this opens a backdoor path whereby predictor and outcome are related 566 

through the prGE mechanisms19. This could lead to an assumption violation, therefore 567 

biasing causal inference in between-family analysis. Only in a within-family design is it 568 

ensured that Mendelian Randomisation meets its assumptions because transmission of 569 

alleles is randomised at meiosis within families, and because prGE effects due to shared 570 

environment are held constant27,63-65. Although genetic data for siblings is often not 571 

available, our results provide a useful guideline for the GPS-outcome combinations that are 572 

unlikely to suffer from this assumption violation when applying designs such as Mendelian 573 

Randomisation to unrelated samples. For example, our results indicate that caution should 574 
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be warranted due to prGE mechanisms if applying Mendelian Randomisation to cognitive 575 

traits, even if family SES is included as a confounder in the analyses as confounding effects 576 

might not be captured perfectly. On the contrary, other traits such as BMI and ADHD (with 577 

the possible exclusion of the self-rated health GPS) should be less problematic, because 578 

within- and between-family effect sizes match closely, ruling out potential confounding due 579 

to prGE.  580 

 581 

Second, our results provide evidence that location-related population stratification is not a 582 

systematic bias in GPS prediction of complex traits when controlling for genetic principal 583 

components in samples from White European backgrounds. For example, for height and 584 

BMI, the decomposition of GPS effects showed that between-family prediction estimates 585 

were similar to within-family estimates, which are by necessity free of population 586 

stratification since stratification is constant within a family. For those traits where within- 587 

and between-family estimate differences were large and significant, differences 588 

disappeared after accounting for SES, indicating that SES was the main source of the 589 

discrepancy, as opposed to location-related population stratification. 590 

 591 

Third, our study illustrates the usefulness of obtaining genotypic data on family members, 592 

since it makes it possible to identify mechanisms of polygenic prediction. Our results 593 

demonstrate that by analysing DZ co-twins’ genetic data jointly, prGE mechanisms due to 594 

shared environment (and in this case associated with SES) can be revealed.  595 

 596 

Limitations 597 
 598 

Although we present the most comprehensive within- and between- family comparison of 599 

GPS prediction to date, there are limitations to this study. The GWA studies used to 600 

generate the eight GPS for this study had different statistical power to discover genetic 601 

effect sizes due to sample size variations and different underlying genetic architectures of 602 

the GWA study traits. As a result, each of the eight GPS were differently powered to detect 603 

target- and cross-trait associations, making it difficult to draw direct comparisons across the 604 

within- and between-family prediction effect sizes. Lack of power may also lead to an 605 

inability to detect small prGE effects that would become visible with (i) more powerful GPS 606 
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and (ii) the availability of larger DZ twin pair samples. However, we detected prGE effects in 607 

cross-trait analysis using the ADHD GPS, which is based on the smallest GWAS study sample 608 

(~55,000 individuals), indicating that we had sufficient power to detect at least some of the 609 

prGE effects. 610 

 611 

Another limitation was that we did not have parental genotypes available to directly test the 612 

influence of non-transmitted parental alleles on offspring outcomes (genetic nurture)20. 613 

Although the within-family design used in this study accounts for the effects of both 614 

transmitted and non-transmitted parental alleles on offspring outcomes, it is not possible to 615 

disentangle these two sources of prGE. Future studies would benefit from incorporating 616 

parental and sibling genotypes to disentangle the prGE effects through the joint analysis of 617 

parental and sibling genotypes, which will shed light on how both non-transmitted parental 618 

and non-co-inherited sibling alleles contribute to trait development.   619 

 620 

Conclusion 621 
 622 

This study provided strong evidence for prGE mechanisms in polygenic score prediction for 623 

cognitive, but not non-cognitive, traits across a range of different polygenic scores. The 624 

implications of these findings for future studies depend on their aims. If maximising trait 625 

prediction is the goal, the use of unrelated samples is valid even in the presence of prGE 626 

effects because these influences are informative nonetheless. However, if the goal is causal 627 

inference and explanation, a within-family genetic design is recommended to avoid prGE-628 

related confounding. The increasing availability of genotypic data in relatives will become a 629 

crucial element in genetics research, allowing researchers to disentangle the mechanisms of 630 

polygenic prediction of complex human traits. 631 
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Online Resources 632 

OSF pre-registration link 633 
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