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Abstract

The ever-growing genome-wide association studies (GWAS) have revealed widespread

pleiotropy. To exploit this, various methods which consider variant association with

multiple traits jointly have been developed. However, most effort has been put on
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improving discovery power: how to replicate and interpret these discovered pleiotropic

loci using multivariate methods has yet to be discussed fully. Using only multiple

publicly available single-trait GWAS summary statistics, we develop a fast and flexible

multi-trait framework that contains modules for (i) multi-trait genetic discovery, (ii)

replication of locus pleiotropic profile, and (iii) multi-trait conditional analysis. The

procedure is able to handle any level of sample overlap. As an empirical example, we

discovered and replicated 23 novel pleiotropic loci for human anthropometry and

evaluated their pleiotropic effects on other traits. By applying conditional multivariate

analysis on the 23 loci, we discovered and replicated two additional multi-trait

associated SNPs. Our results provide empirical evidence that multi-trait analysis allows

detection of additional, replicable, highly pleiotropic genetic associations without

genotyping additional individuals. The methods are implemented in a free and open

source R package MultiABEL.

Author summary

By analyzing large-scale genomic data, geneticists have revealed widespread pleiotropy,

i.e. single genetic variation can affect a wide range of complex traits. Methods have

been developed to discover such genetic variants. However, we still lack insights into the

relevant genetic architecture - What more can we learn from knowing the effects of

these genetic variants?

Here, we develop a fast and flexible statistical analysis procedure that includes

discovery, replication, and interpretation of pleiotropic effects. The whole analysis

pipeline only requires established genetic association study results. We also provide the

mathematical theory behind the pleiotropic genetic effects testing.

Most importantly, we show how a replication study can be essential to reveal new

biology rather than solely increasing sample size in current genomic studies. For

instance, we show that, using our proposed replication strategy, we can detect the

difference in genetic effects between studies of different geographical origins.

We applied the method to the GIANT consortium anthropometric traits to discover

new genetic associations, replicated in the UK Biobank, and provided important new

insights into growth and obesity.
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Our pipeline is implemented in an open-source R package MultiABEL, sufficiently

efficient that allows researchers to immediately apply on personal computers in minutes.

Introduction 1

During the past decade, single-trait genome-wide association studies (GWASs) have 2

successfully identified many genetic variants underlying complex traits [1]. However, 3

there are many issues in the current GWAS procedure. For example, the effects of the 4

genetic variants, such as single-nucleotide polymorphisms (SNPs), on complex traits are 5

usually very small. This directly limits the discovery power in most GWASs. On the 6

other hand, multiple GWASs suggest that pleiotropy is widespread for complex diseases 7

and traits [2]. However, in standard single-trait GWAS, pleiotropy is not directly taken 8

into account. Aiming to address these problems, many multi-trait analyses methods 9

have been developed in recent years to jointly analyze multiple correlated phenotypes. 10

At the early stage, most multi-trait tools were based on individual-level data. For 11

example, mv-plink implements canonical correlation analysis (CCA) to identify the 12

association between each SNP and linear combinations of traits [3]; MultiPhen [4] 13

performs a reversed regression with SNP as outcome and phenotypes as predictors and 14

combined-PC [5] where a principle components analysis is done on the phenotype data 15

to improve statistical power. A simulation study [6] demonstrated that the statistical 16

power of these methods is very similar to the power of the standard Multivariate 17

Analysis of Variance (MANOVA) for multiple phenotypes on each common SNP. 18

As more and more GWASs have been done in different study populations, given the 19

difficulty of sharing individual-level data, multi-trait methods based on summary-level 20

data have become popular. In order to combine any set of single-trait GWAS 21

summary-level data, the method should be able to (1) efficiently meta-analyze an 22

arbitrary number of phenotypes, (2) combine any phenotypic distributions including 23

quantitative and case-control outcomes, (3) handle any level of sample overlap between 24

studies, and (4) do not rely on known sample size knowledge or on strong assumptions. 25

Desired features (1) and (2) are computationally challenging for most multivariate 26

methods, and more importantly, (3) and (4) have to be achieved to take full advantage 27

of all the established GWAS results. There are several methods fulfilling most of these 28
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requirements. For example, Stephens (2013) outlined a unified multivariate analysis 29

framework based on Bayesian model comparison [7]; Zhu et al. (2015) introduced two 30

test statistics SHom and SHet to improve statistical power under different assumptions 31

of effect sizes [8], and suggested seven new loci by jointly analyzing the summary 32

statistics of three traits from GIANT [9]; Multi-trait analysis of GWAS (MTAG) was 33

developed to integrate the GWAS summary results of several related traits and improve 34

the inference in each single-trait GWAS [10]. 35

Although most summary-level multi-trait methods can boost discovery power, the 36

replication strategy and interpretation of the loci discovered in multi-trait analysis have 37

yet to be developed and agreed upon. When a locus is significant in multi-trait analysis, 38

a trivial approach to replication is to replicate associations trait by trait. However, in 39

this way, the overall association pattern between a SNP and multiple phenotypes is not 40

replicated. Another straightforward way for replication is performing the multi-trait test 41

in replication sample, and asking for the overall association (omnibus p-value) to be 42

significant. Although this strategy is at multivariate level, it does not replicate the 43

discovered locus pleiotropic profile either, as the consistency of the effect sizes and effect 44

directions across samples are neglected. Even if the effect sizes and directions of effects 45

are completely different in replication sample, the multivariate test may still reject the 46

null hypothesis of no association between the SNP and any phenotypes. Therefore, 47

neither of these two trivial replication strategies replicates the discovered locus 48

pleiotropic profile properly. 49

Furthermore, loci detected in multi-trait analysis is usually interpreted at the 50

single-trait level. Given many phenotypes are defined with numerous underlying 51

biological factors, O’Reilly et al. [4] point out that linear combinations of phenotypes 52

can be defined as new traits. Then the association between a SNP and a linear 53

combination of phenotypes can be interpreted as an association between the SNP and a 54

hidden phenotype which integrates the relevant underlying factors. Cichonska et al. [11] 55

get CCA results using summary-level data, but how to interpret and replicate CCA 56

results are not thoroughly discussed. Based on CCA, using individual-level data, we 57

introduced a combined phenotype score to assess the genetic effect so that the 58

replication can be meaningful [12]. More importantly, what geneticists want to acquire 59

from multi-trait analyses is additional knowledge about pleiotropy, while such an aim is 60
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hardly reached by current multivariate methods. 61

Besides multi-trait analysis, various summary-level methods have been developed 62

based on many classical statistical methods. For example, the conditional and joint 63

multi-variant analysis (GCTA-COJO) [13] has been successful in discovering additional 64

association signals within detected loci. In order to identify other trait-associated SNPs 65

in linkage disequilibrium (LD) with the top SNP, GCTA-COJO performs a secondary 66

association analysis conditioned on discovered top variants. For loci detected in 67

multi-trait analysis, it will be helpful to perform similar conditional analysis to detect 68

additional multi-trait associations instead of only reporting the top SNPs. Although 69

several methods [14–16] have been developed to include multiple traits as covariates, 70

only one trait is allowed to be dependent variable in these methods. 71

Here, using GWAS meta-analysis summary statistics, we develop a multi-trait 72

analysis framework that integrates the discovery, replication and conditional analyses. 73

We first develop a computationally fast method MVA (represents multivariate analysis) 74

to get MANOVA results based on multiple GWAS results for different traits. We then 75

introduce two replication strategies: MVA-score replication and Monte-Carlo (MC) 76

based correlation replication to replicate the underlying pattern of associations between 77

genotype and phenotypes. The MVA-score replication is related to CCA thus helpful for 78

interpretation; and the correlation replication directly suggests that the relative effects 79

and direction of associations are stable between discovery and replication samples. 80

These two replication methods can be used to gain knowledge of pleiotropy from 81

different aspects. We also develop and implement conditional multivariate analysis 82

(cMVA) that performs a conditional analysis analog to GCTA-COJO [13] after MVA. 83

All these procedures are solely based on summary association statistics from the 84

discovery and replication studies. To empirically demonstrate the utility of our methods, 85

we apply the methods on the publicly available GWAS summary-level data for human 86

anthropometry, and replicate in the UK Biobank. 87
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Materials and Methods 88

Summary of the methods 89

MVA 90

MVA is developed to get MANOVA results using summary statistics. To simplify the 91

formulae, we assume the phenotypes are standardized to have mean zero and variance 92

one, and genotypes are centered to have mean zero. k traits Y1, ...Yk are dependent 93

variables in MANOVA. We first focus on the analysis of one SNP. If we denote the true 94

marginal effects on the k traits by β, then the null hypothesis in MANOVA is 95

H0 : β = 0. Let t = [t1, ..., tk]′ be the vector of single-trait t-test statistics across the k 96

phenotypes on the SNP g, and R∗ ≡ Cor(t) = Var(t). If R∗ is available, the test 97

statistic 98

T 2 = t′R∗−1t, (1)

which asymptotically follows a χ2 distribution with k degrees of freedom under the null 99

hypothesis. 100

Estimation of R∗ 101

Let R represent the phenotypic correlation matrix of the k phenotypes. According to 102

Zhu et al. [8], R∗ = R when the phenotypes are measured on the same set of 103

individuals. If the individuals for trait j and those for trait j′ partially overlap, we 104

denote the number of overlapping individuals as n0, those with trait j but not trait j′ 105

as n1, and those with trait j′ but not trait j as n2. Then we have 106

R∗j,j′ = Cor(tj , tj′) ≈
n0√

(n0 + n1)(n0 + n2)
Rj,j′ (2)

(S1 Appendix). Therefore, the correlation of t-statistics is a shrinkage version of the 107

phenotypic correlation, with a factor determined by the level of overlap. Because (2) 108

holds for all SNPs, an unbiased estimate of the correlation matrix R∗ can be obtained 109

by selecting a large number of independent variants from the meta-GWAS summary 110

statistics and calculating their correlation coefficients (S1 Appendix). 111
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cMVA 112

To detect additional associated SNPs at loci discovered in MVA, we introduce cMVA to

perform conditional analysis. When p SNPs G = (G1, ..., Gp) and k traits are involved,

for SNP i, we denote its t-test statistics conditional on the other p− 1 SNPs as

t̃i = [t̃i1, ..., t̃ik]′. Both t̃i and its correlation matrix R̃∗i can be obtained by using

summary statistics and a reference sample used to approximate the LD matrix Cor(G)

(a full derivation is provided in the S1 Appendix). Therefore, similar to (1), we can use

the test statistic

T̃ 2
i = t̃′iR̃

∗−1
i t̃i,

which asymptotically follows a χ2 distribution with k degrees of freedom under the null 113

hypothesis. 114

Correlation replication 115

Aiming to replicate the locus pleiotropic profile in the replication sample, we develop

this MC-based correlation replication strategy. The key idea is to evaluate the similarity

of marginal effects across samples considering taking the uncertainty in estimates into

account. When p SNPs and k traits are analyzed jointly, let

β̂
c

= (β̂c11, ...β̂
c
p1, β̂

c
12, ..., β̂

c
p2, ..., β̂

c
1k, ..., β̂

c
pk) be the vector of estimated partial regression

coefficients. Then for cMVA,

Cor(β̂
c
) ≈ R̂∗ ⊗ Cor−1(G),

where ⊗ represents Kronecker product (S1 Appendix). Specifically, for MVA where

p = 1, Cor(β̂
c
) ≈ R̂∗. Because the variances of {β̂cij} can be obtained from MVA or

cMVA, we can get Σ = Cov(β̂
c
). This allows us to draw βMC

disc and βMC
rep from N (β̂

c
, Σ̂)

based on β̂
c

and Σ̂ for the discovery sample and replication sample respectively. Then

we can compute their correlation coefficients. Here we compute Kendall’s rank

correlation coefficient

τ̂β =
2

k(k − 1)

∑
j<j′

sgn(βMC
j,disc − βMC

j′,disc) · sgn(βMC
j,rep − βMC

j′,rep),
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which measures the ordinal association between βMC
disc and βMC

rep . We choose Kendall’s 116

correlation instead of Pearson’s correlation so that the correlation is not dominated by 117

those traits with especially large effects. By performing parametric bootstrap 118

simulations, we can get an estimated distribution of τβ . The parametric bootstrap 119

confidence intervals (CI) based on this distribution can be used for inference. 120

MVA-score replication 121

If individual-level data are available, given a SNP, we can use CCA to get its most

associated linear combination of traits. This linear combination of traits, which we

name as MVA-score, can be seen as a new phenotype which is helpful for investigating

the association between the SNP and the group of traits. It has been shown [4] that the

coefficients in CCA are equivalent to the estimate of b in this reversed multiple

regression

g = Yb + ε,

where g and Y represent genotypes and phenotypes respectively. Assuming

Hardy-Weinberg equilibrium (HWE), b̂ can be obtained by

b̂ = 2f(1− f) · R̂∗−1β̂,

where f is the coding allele frequency of the SNP (S1 Appendix). Therefore, we can get 122

b̂ based on summary statistics and construct the MVA-score S = Yb̂. Taking S as a 123

new phenotype and denoting the effect of the SNP on S as βs, we can estimate and test 124

βs in the discovery and replication populations (S1 Appendix). If β̂s is significantly 125

different from 0 and having the same sign in both populations, then we consider the 126

association between the SNP and the MVA-score is replicated. 127

Discovery cohort: GIANT 128

We downloaded the summary association statistics of six sex-stratified anthropometric 129

traits meta-GWAS by the GIANT consortium from: https://www.broadinstitute. 130

org/collaboration/giant/index.php/GIANT_consortium_data_files. We used six 131

anthropometric traits: BMI, height, weight, hip circumference (denoted here as HIP), 132
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waist circumference (WC) and waist-to-hip ratio (WHR). We used two datasets with 133

different sample size and meta-analysis date denoted as GIANT2013 and GIANT2015. 134

For GIANT2013 data for all six traits from Randall et al. [17] was used. As sex 135

stratified data was available, for each trait we computed the summary statistics by 136

meta-analyzing the effects and standard errors of the two genders. For GIANT2015 we 137

used several different data: height from Wood et al. [18]; HIP, WC and WHR from 138

Shungin et al. [19], BMI from Locke et al. [20]. There wasn’t available summary 139

statistics for weight later then 2013, therefore for GIANT2015 we have used the same 140

weight GWAS results as for GIANT2013. 141

As HapMap II allele frequencies were reported in the meta-GWAS instead of pooled 142

allele frequencies across all the cohorts, we excluded SNPs with sample size less than 143

40,000 and MAF<0.01 for GIANT2013 and sample size less than 70,000 and MAF<0.01 144

for GIANT2015. SNPs with missing allele frequencies were also excluded. All SNPs 145

were merged with genome positions (GRCh37) and filtered for autosomals only and 146

position missings. Then we selected only SNPs that were presented both in GIANT2013 147

and GIANT2015. In total we ended with 2,352,481 SNPs. 148

Novel loci discovery and clumping 149

For comparison of MVA loci and UVA loci on GIANT2013 we used all SNPs above the 150

threshold (p-value < 5× 10−8). All SNPs were clumped to loci and compared with each 151

other. We used position based clumping: (SNPs that are less than 500K distant from 152

most significant SNP are considered as one locus). 153

For multivariate analysis of GIANT2015 we excluded all significant UVA SNPs with 154

nearby region (p-value < 5× 10−8). In total for GIANT2015 for six traits we found 155

28,658 significant SNPs. We removed these SNPs as well as all SNPs 500kb around 156

(1Mb window): in total 618,873 SNPs were removed. All other SNPs were used for 157

discovery multivariate analysis. 158

Replication cohort: UK Biobank 159

UKB participants were recruited from the general UK population across 22 centers 160

between 2006-2010. Subjects were aged 40-69 at baseline, underwent extensive 161
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phenotyping by questionnaire and clinic measurements, and provided a blood sample. 162

Genotyping is in progress, with a wave 1 public release in June/July 2015. Data access 163

to UKB was granted under MAF 8304. Phenotypes and genotypes were downloaded 164

direct from UKB. In total 502,664 subjects had phenotypic information available, of 165

whom 152,732 had been genotyped, of these 120,286 were identified as genetically 166

British by UK Biobank, of which 118,182 (55,842 men) had complete phenotyping. 167

These subjects were taken forward for analysis. Participants provided full informed 168

consent to participate in UK Biobank. This study was covered by the generic ethical 169

approval for UK Biobank studies from the NHS National Research Ethics Service 170

(approval letter dated 17th June 2011, Ref 11/NW/0382). The authors in this study 171

were completed blinded to the individual-level data collection and preparation. The 172

phenotypes involved in this study were adjusted for age, sex and batch before being 173

standardized to have mean zero and variance one. 174

Reference cohort: 1000 Genomes 175

The 1000 Genomes Project was launched in 2008. The latest phases 3 data includes 176

2,504 individuals from 26 populations in Africa, East Asia, Europe, South Asia, and the 177

Americas [21]. Both whole-genome sequencing and targeted exome sequencing have 178

been done for all individuals. Among the sequenced individuals, 503 were identified as 179

European ancestry samples. The genotypes of these subjects were used to approximate 180

LD matrix in this study. 181

Correlation matrix estimation 182

For correlation matrix estimation, we used previously proposed approach based on 183

correlation of Z-statistics between independent unassociated SNPs [8]. We filtered SNPs 184

based on given criteria: MAF > 0.1; high imputations quality as indicated either by 185

INFO > 0.99 (for UKB) or by Ne/N > 0.9, where Ne = 1/(2pq(se)2), for GIANT; 186

abs(Z) < 2; the sample of 200,000 independent (LD pruned) SNPs to compute 187

correlation matrix (the list of SNPs was obtained by “–prune” option for PLINK using 188

1000 Genomes data). In total 128,670 independent SNPs were used to estimate 189

correlation matrix for GIANT, and 166,000 SNPs for UKB. All estimated correlation 190

February 22, 2019 10/27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/022269doi: bioRxiv preprint 

https://doi.org/10.1101/022269
http://creativecommons.org/licenses/by-nc-nd/4.0/


matrices can be found in S3 Table. 191

Multivariate trait construction 192

Together with six univariate traits we constructed six multivariate phenotypes based on 193

these six anthropometric traits: all-six-traits (denoted as multi6 or m6), 194

waist+hip+height+weight (denoted as multi4 or m4), waist+hip+whr (denoted as 195

multi.shape3 or msh3), waist+hip (denoted as multi.shape2 or msh2), 196

height+weight+bmi (denoted as multi.size3 or msz3), height+weight (denoted as 197

multi.size2 or msz2). 198

Application of cMVA at loci discovered in MVA 199

For each locus suggested in MVA, we set a 1-Mb window centred at the variant reported 200

in Table 1 as the genomic locus to be analyzed. We perform cMVA to select the 201

associated variants for each locus using the following stepwise selection strategy: 202

1. Take intersection of available variants in GIANT and 1000 Genomes 203

European-ancestry samples. 204

2. Estimate LD correlations using an individual-level genotype data in 1000 205

Genomes. 206

3. Start with setting the remaining variants set as all the variants, and the selected 207

variants set as empty. 208

4. Calculate the multivariate p-values of all the SNPs in the remaining set 209

conditional on the SNPs in the selected set. 210

5. If the minimum multivariate conditional p-value is below a cutoff p-value, such as 211

5× 10−8, then the corresponding SNP enters the selected set. 212

6. Calculate the conditional multivariate p-values of all the SNPs in the selected set. 213

Those selected variants with p-values larger than the cutoff p-value are dropped. 214

7. To avoid collinearity, we need to filter the remaining variants. If the regression R2
215

between the selected SNPs and a remaining SNP is larger than 0.5, we remove the 216

SNP from the remaining set. 217
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8. Repeat 4-7 until the remaining and selected sets can no longer be changed. 218

Results 219

Multivariate analysis of published results allows robust loci 220

discovery 221

In order to test whether MVA of already published results allows for robust and fruitful 222

discovery of new loci, we applied MVA to GWAS results published by the GIANT 223

consortium in the previous wave of meta-analyses (GIANT2013) and used the latest, 224

bigger analyses (GIANT2015) to validate our findings. 225

Using MVA, we have re-analyzed summary statistics for six traits in GIANT2013 226

data [17]: height (n = 133, 724), weight (n = 125, 946), body mass index (BMI, 227

n = 126, 623), hip (n = 73, 209), waist (n = 85, 635), and waist-to-hip ratio (n = 77, 369). 228

From these traits, we have constructed six multi-trait combinations related to size (SZ2: 229

height and weight, SZ3: height, weight, BMI), shape (SH2: waist and hip; SH3: waist, 230

hip, and WHR), and all parameters (M4: height, weight, waist, and hip; M6: the same 231

as M4 and BMI and WHR). In contrast with MVA, single trait GWAS is referred as 232

univariate analysis (UVA) in this study. In UVA, associations having nominal p-value 233

< 5× 10−8 were considered significant; we have used the same threshold for MVA. 234

Re-analysis of GIANT2013 data identified 72 new loci with significant MVA p-value 235

for at least one multi-trait combination (S1 Table). In single-trait analysis, only 14 of 236

these loci demonstrated suggestive (5× 10−8 < p < 5× 10−7) significance, and majority 237

(47) had p > 1× 10−6. The 72 loci were checked in the GIANT2015 analyses, that had 238

roughly double sample sizes for all traits except for weight. The data used included 239

GWAS for height [18] (n = 253, 108), body mass index (BMI [20], n = 233, 963), hip [19] 240

(n = 145, 432), waist [19] (n = 153, 927), and waist-to-hip ratio [19] (n = 144, 578). We 241

observed that most of loci (54 out of 72) discovered with MVA in GIANT2013 had 242

genome-wide significant p-value < 5× 10−8 with at least one of the traits in 243

GIANT2015. 244

These results indicate that MVA re-analysis of published GWAS results may be a 245

promising way to utilize already existing data and improve statistical power. 246
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Discovery of new anthropometric loci using published summary 247

statistics 248

Given indications that MVA of summary-level data may allow for fruitful and robust 249

loci discovery, we have set off to re-analyze the latest GWAS results published in 250

GIANT2015. Re-analysis has led to identification of 49 new loci (Fig 1, S2 Table). We 251

also quantified and analyzed the established associations of these loci using 252

PhenoScanner [22] at a false discovery rate threshold of 0.05 (Fig 1, S4 Table, S3 253

Appendix, S4 Appendix). It is interesting to note that the yield of new loci is lower 254

than that we had for the preliminary round of analyses, which we attribute to the fact 255

that the overlap between samples is lower and hence the added value of MVA is lower in 256

the latest GIANT data (e.g. see S3 Table for trait correlations estimated using three 257

data sets used in this work). 258

Fig 1. Novel associations discovered by the multi-trait analysis. Different
chromosomes are displayed as circular chunks. The outside ring shows the newly
detected loci, where the height of the bars are proportional to the multi-trait GWAS
-log10 p-values for the most significant multi-trait combination. The 23 MVA replicated
loci are represented as different shapes depending on replication strategies, and the rest
are shown as small gray dots. The nearest genes of the top associated variants at these
loci are labeled. The inside ring shows the amount of shared pleiotropic effects with
other phenotypes in PhenoScanner at a 5% false discovery rate threshold.

Replication of new anthropometric loci in the UK Biobank 259

We next attempted to replicate 49 new loci using the UK Biobank (UKB) interim 260

release data (118,182 ethnically British, genetically Caucasian participants having all 261

anthropometric measurements and genotypic data). For each locus, we defined the top 262

SNP of a locus as the SNP with the smallest MVA p-value across all six multi-trait 263

combinations. In the following replication, we used the top SNPs to represent loci. 264

There are various ways to replicate multivariate results. To begin with, we used two 265

straightforward replication strategies: single-trait replication and MVA-significance 266

replication. In the single-trait replication, a locus was replicated if there was at least 267

one trait which was significantly associated with the top SNP in UKB, and the sign of 268

association for this specific trait was consistent with that observed in GIANT2015. 269

Because we have six traits, we set the single-trait replication p-value threshold as 270
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0.05/(6× 49) = 1.7× 10−4. Using this criterion, we saw replication for 21 loci (S2 271

Table). Next, we used MVA-significance replication, where a locus was considered to be 272

replicated if it has at least one replicable multi-trait combination. More specifically, a 273

multi-trait combination is replicable if its MVA results are significant in both 274

GIANT2015 and UKB. The replication p-value threshold of MVA-significance test was 275

set to be 0.05/85 = 5.9× 10−4. We adjusted the p-values by dividing 85 because for the 276

49 loci discovered in GIANT2015, there are in total 85 MVA-significant multi-trait 277

combinations. Using this criterion, we replicated 23 loci (Table 1), three of which were 278

not replicated in single-trait replication (S1 Fig). For some loci, there were multiple 279

replicable multi-trait combinations. Although easy to implement, these two replication 280

strategies have obvious drawbacks: the single-trait replication lacks power, and neither 281

of these two strategies guarantees the genetic effects have similar sizes and directions as 282

in the discovery population. 283

For the 23 loci replicated by the MVA-significance test, to test the consistency of 284

pleiotropic effects, we implemented two novel replication strategies as follow-up methods 285

of the MVA-significance replication: MVA-score replication, which we previously 286

developed for individual-level data analysis [12], and MC-based correlation replication 287

(S1 Fig). The MVA-score replication integrates the multivariate genetic effects into the 288

genetic effect on MVA-score, and aims to replicate the discovered locus pleiotropic 289

profile by testing this integrated effect; while the MC-based correlation replication tests 290

the consistency of multivariate genetic effects directly. We firstly demonstrate the 291

MVA-score replication, which can also be used for interpretation. For each replicable 292

multi-trait combination of the 23 loci, we found the optimal linear combination of traits 293

and computed its MVA-score (described in the Materials and Methods) in GIANT2015. 294

For example, for six-traits MVA of rs905938, 295

MVA-score = 0.016×Waist + 0.002×WHR− 0.013×Hip

−0.007×Height− 0.003×Weight− 0.008× BMI.

Then we used the same linear combination coefficients in UKB to get an MVA-score 296

phenotype, estimated and tested the genetic effect βs of the SNP on the MVA-score in 297

UKB. In this procedure, we consider results to be replicated when the association 298
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Table 1. Summary of 23 loci detected and replicated by MVA for six anthropometric traits.

Top variant Nearest genes EA
Phenotypes
grouping

pG pU rβ CI pS,U

rs905938 ZBTB7B T msh2 7.47E-10 9.48E-10 - - *4.25E-12
msh3 7.88E-10 9.36E-10 *1 [1, 1] *2.85E-12
msz3 3.15E-10 2.72E-06 0.33 [-1, 1] *5.68E-08
m4 9.00E-13 2.36E-10 0.54 [0, 1] *2.03E-14
m6 8.31E-16 7.30E-10 *0.82 [0.46, 1] *1.55E-14

rs12033847 RFWD2 T m4 5.09E-11 5.32E-04 *0.66 [0.33, 1] 6.44E-03
rs823114 NUCKS1 A msz3 9.54E-09 7.20E-14 0.33 [-1, 1] *2.46E-07

m6 3.83E-08 5.82E-14 0.60 [-0.2, 0.87] *1.07E-06
rs2222413 RAPH1 A m4 1.21E-09 1.86E-04 0.66 [0, 1] 8.46E-04
rs6780459 LOC107986108 A m6 8.37E-09 1.51E-06 *0.46 [0.2, 1] *2.12E-06
rs11708067 ADCY5 A msz3 3.12E-08 5.27E-05 *1 [1, 1] 9.66E-04

m6 9.54E-09 4.86E-04 *0.60 [0.06, 0.87] 9.42E-04
rs9991328 FAM13A T msh3 2.32E-11 4.65E-15 *1 [1, 1] *1.44E-16

m6 1.40E-09 3.51E-13 *0.86 [0.46, 1] *2.46E-16
rs6870983 TMEM161B-AS1 T msz3 1.05E-08 3.75E-08 0.33 [-0.34, 1] *8.60E-09
rs459552 APC A m6 1.45E-08 7.21E-09 0.60 [-0.2, 0.87] *1.16E-06
rs1045241 TNFAIP8 T msh3 6.69E-09 8.69E-06 *1 [1, 1] *5.13E-07

m6 1.25E-08 2.27E-05 *0.60 [0.2, 0.87] *7.59E-06
rs9294260 ME1 A msz3 3.28E-08 5.28E-07 -0.34 [-0.34, 1] *2.02E-04

m6 2.33E-08 2.15E-07 -0.2 [-0.47, 0.6] 1.16E-02
rs972283 LOC105375508 A msh3 2.37E-08 1.55E-06 *1 [0.33, 1] *1.08E-08

m6 1.76E-10 1.54E-07 *0.86 [0.33, 1] *4.43E-11
rs10971773 UBE2R2 A msz2 2.35E-09 4.98E-07 - - *7.70E-09

msz3 1.18E-08 2.02E-06 *0.33 [0.33, 1] *7.43E-09
m4 2.24E-08 4.58E-06 0.33 [0, 0.67] *3.31E-08

rs2270204 SWI5 T msz3 2.75E-08 1.82E-04 *1 [0.33, 1] *2.50E-05
rs10761785 REEP3 T msz2 1.41E-08 1.82E-10 - - *1.31E-11

msz3 8.27E-09 9.92E-10 *1 [0.33, 1] *1.34E-11
m4 2.35E-09 2.36E-10 *1 [0.33, 1] *2.13E-12
m6 1.21E-10 1.58E-09 *0.86 [0.46, 1] *1.48E-12

rs11231693 MACROD1 A msh2 4.41E-09 1.77E-05 - - 3.31E-02
msh3 1.75E-10 5.18E-07 *1 [1, 1] 7.21E-03
m6 1.22E-09 1.23E-05 *0.33 [0.2, 0.73] 1.01E-02

rs1552224 ARAP1 A msz3 3.48E-08 3.63E-04 0.33 [-1, 1] *7.43E-05
m6 9.12E-09 3.63E-04 0.60 [-0.07, 0.87] *1.72E-06

rs7200543 PDXDC1 A msz3 2.31E-08 1.73E-09 -0.34 [-0.34, 1] *2.98E-06
m4 2.31E-08 6.20E-06 -0.19 [-1, 0.67] *3.08E-05

rs8048267 ZFHX3 A m6 4.60E-08 9.60E-05 0.33 [-0.2, 0.87] *1.60E-04
rs4925108 RAI1 T msh3 1.08E-10 8.40E-05 *1 [1, 1] *3.13E-06

m6 3.96E-09 2.67E-04 *0.86 [0.46, 1] *7.78E-06
rs12454712 BCL2 T m6 2.68E-09 1.43E-07 *0.86 [0.33, 1] *1.67E-11
rs6090583 EYA2 A msh2 2.86E-09 1.03E-09 - - *6.32E-13

msh3 5.13E-11 2.42E-10 *1 [1, 1] *6.15E-13
m4 2.12E-10 2.82E-09 0.66 [0, 1] *1.32E-09
m6 2.30E-11 6.79E-10 *0.73 [0.33, 1] *2.71E-10

rs1053593 HMGXB4 T msh2 6.31E-11 3.46E-04 - - *1.25E-04
EA, effect allele; pG, MVA p-value using summary statistics from GIANT; pU , MVA p-value using individual-level data from UKB; τβ ,
the observed Kendall’s rank correlation coefficient of multivariate marginal effects between GIANT and UKB, significant results are
asterisked ; CI, the 95% confidence interval of the empirical distribution for τβ ; pS,U , the p-value of MVA-score replication in UKB,
significant results are asterisked.
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p-value is < 0.05/85 = 5.9× 10−4 in UKB and the estimated βs has the same direction 299

as in GIANT. In this way, we replicated 19 out of 23 loci (Table 1). 300

Next, for each replicable multi-trait combination of the 23 loci, we performed our 301

MC-based correlation replication to test its consistency of pleiotropic association 302

patterns between the discovery and replication populations. Based on the estimated 303

marginal effect sizes and their variance in discovery sample and replication sample, we 304

got a parametric bootstrap distribution of τβ , which is a measurement of the 305

consistency of marginal effect sizes (described in the Materials and Methods). The CI of 306

τβ can be used to evaluate the consistency of pleiotropic effects between discovery and 307

replication samples. If 0 is not included in the 95% CI of the parametric bootstrap 308

distribution of τβ , we considered it suggests there is consistency. By this criterion, 14 309

out of 23 loci have at least one multi-trait combination with consistent pleiotropic 310

association pattern (Table 1). To visualize the comparison between consistent patterns 311

and inconsistent ones, we looked into the 16 loci which are replicated by six-traits MVA 312

(Fig 2). For example, both rs10761785 and rs9294260 can be replicated using six-traits 313

MVA-significance replication. However, the 95% CI of τβ is [0.46, 1] for rs10761785, and 314

[−0.47, 0.6] for rs9294260. This means the multi-trait marginal effects across samples 315

are similar for rs10761785 but not for rs9294260. The contrast indicates that the 316

underlying six-traits pleiotropic pattern is more plausible at the locus around 317

rs10761785. For the locus around rs9294260, although it can be detected and replicated 318

by MVA, the SNP may be only associated with a small subset of the six traits instead 319

of most of them. To detect which traits tend to be irrelevant for a SNP, we can compare 320

the discordance generated by each trait. For a SNP, if a trait introduces lots of 321

inconsistency into the pleiotropic pattern, then the association between the SNP and 322

that trait is more suspicious. For example, the marginal effect of height severely reduces 323

the consistency for rs11231693, which indicates height is more likely to be irrelevant to 324

rs11231693 among the six-traits. This detection is verified by its non-significance in 325

height GWAS (p-value is 0.91 in GIANT2015 and 0.96 in UKB). 326

Consequently, these two new replication strategies facilitate the investigation of 327

pleiotropic architecture at each MVA-discovered locus, which is helpful for interpreting 328

multi-trait association results. 329
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Fig 2. The correlations of the estimated marginal effects from GIANT and
UKB at 16 loci which are replicated by six-traits MVA. The panels are
reordered in ascending order according to the lower bounds of their 95% CI in
correlation replication. The 11 loci in the first two rows are replicated by correlation
replication. Each color represents one trait. There are two parts in each panel. In both
parts, the x axis is the ranks of estimated marginal effect sizes in ascending order from
GIANT. For the upper part, the y axis is the ranks from UKB. Therefore each dot
represents the rank in GIANT and UKB for one trait. The radius of shade around a dot
is proportional to the standard error of the estimated marginal effect. The standard
errors are computed with variances in GIANT and UKB using inverse variance weights.
To facilitate visualization, a regression line is added. Its slope equals to the Spearman’s
correlation. The lower part shows the results based on 10,000 times Monte-Carlo
simulations (described in the Materials and Methods). The y axis is the mean number
of concordant pairs generated by a trait. If a trait has a very low bar, it means the trait
disturbs the consistency. The whiskers represents ± 1 times the standard deviation
about the mean.

Conditional multivariate analysis suggests additional SNPs at 330

new loci 331

Finally, as a secondary association analysis of MVA, we applied cMVA at the 23 new 332

loci discovered and replicated in MVA. In this study, we took 1000 Genomes 333

European-ancestry samples (n = 503) as reference sample to approximate regional LD 334

matrix (described in the Materials and Methods). When all the six traits are analyzed 335

together, cMVA identified 2 additional SNPs at these 23 novel loci with p-value lower 336

than 5× 10−8 in conditional multivariate analysis (Table 2). These two signals can both 337

be replicated in UKB using either cMVA-significance replication (p < 0.05) or 338

correlation replication (95% CI). 339

Table 2. MVA and cMVA results at two loci with additional hits suggested by cMVA

Single-SNP analysis Conditional analysis

SNP EA r pG pU pG pU τβ CI

rs12033847 T 1 5.0E-10 2.1E-03 3.3E-10 1.2E-03 *0.76 (0.42, 0.88)
rs12138008 T 0.65 4.7E-08 5.2E-02 1.8E-09 3.1E-02 - -
rs4646404 A 1 1.1E-10 1.5E-07 1.7E-09 2.6E-05 *0.64 (0.21, 0.85)
rs7946 T 0.37 8.7E-08 2.7E-04 4.5E-08 2.8E-02 - -

EA, effect allele; r, LD correlation between a SNP and the top SNP at the locus in MVA; pG, cMVA p-value using summary
statistics from GIANT; pU , cMVA p-value using individual-level data from UKB; τβ , the observed correlation of multivariate
marginal effects between GIANT and UKB, significant results are asterisked; CI, the parametric bootstrap distribution 95%
confidence interval of τβ .
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Discussion 340

We developed and implemented an analysis framework consisting of a series of methods 341

to discover and replicate pleiotropic loci using GWAS summary statistics. Additionally, 342

with a reference sample, we demonstrated how to perform conditional analysis to detect 343

other traits-associated SNPs at loci discovered by MVA. We have shown that the 344

analysis of multi-trait is not only powerful but also informative for evaluation of 345

pleiotropy. 346

When individual-level data are available, our methods are equivalent to their 347

correspondent individual-level versions (S2 Fig, S3 Fig). In practice, multi-trait analyses 348

based on summary-level data usually have larger statistical power compared to those 349

based on individual-level data for two reasons. Firstly, summary-level data from 350

meta-anlyses have larger sample sizes in general. Secondly, when there are few 351

individuals overlapping across traits, individual-level multivariate methods will lose 352

power substantially by removing individuals with incomplete phenotypes. In the 353

extreme case, when the samples are completely different for two traits, which means no 354

individual gets both phenotypes measured, individual-level multivariate methods can 355

not be implemented. Here, inspired by Zhu et al.’s work [8], we derive the detailed 356

fundamental math for various test statistics when samples partially overlap. Therefore, 357

methods in this study can account for the sample overlap properly by using summary 358

statistics. 359

An essential issue of a multi-trait analysis is about deciding optimal trait sets, so 360

that the multivariate test has larger power to capture known loci and discover new 361

signals. The definition of the 6 sets used in this study depends on their relevance to 362

body size or shape. If we compare the power of multi-trait and single-trait analyses 363

under different pleiotropic architectures (S4 Fig), the power gain of the multi-trait 364

analysis is determined by both the level of correlations among the phenotypes and by 365

the effect directions of the genotype on the phenotypes. More specifically, power gain is 366

achieved when the correlation between traits is positive and the genetic effects are 367

opposite in their direction, or when the correlations between phenotypes is negative and 368

genetic effect directions are same. Such scenarios may suggest an interesting biological 369

basis of the phenotypes that can be missed in single-trait analysis. 370
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We developed two statistical methods for replicating multi-trait signals using 371

single-trait summary statistics. The replication results from these two methods can 372

provide additional evidence for the existence of pleiotropy. The first method is 373

MVA-score replication [12], which aims to replicate the association between SNP and 374

the optimal linear combination of traits. This method is closely related to CCA (S2 Fig). 375

If the association between MVA-score and a SNP is replicable, then the coefficients in 376

the linear combination can be used to interpret the roles of traits in this association. 377

The second replication method is correlation replication, which evaluates the 378

similarity of marginal effects across traits between samples by computing their Kendall’s 379

correlation (S5 Fig). Since Kendall’s τ computes correlation using ranks of estimated 380

marginal effects, any factor disturbing ranks weakens the correlation. For example, if a 381

SNP does not have effects on all traits, then its estimated marginal effects on those 382

irrelevant traits will be randomly ranked around zero, which reduces Kendall’s 383

correlation (S6 Fig). An extreme case is when a SNP is only associated with one trait. 384

In this case, there will be almost no consistency of the estimated effect sizes rank 385

between samples. Therefore, if a SNP can be replicated by correlation replication, it has 386

to be associated with more than one trait. On the other hand, when a SNP affects only 387

a small subset of traits, it may not be replicated in correlation replication although 388

pleiotropy exists. To solve this problem, we can compute the concordant pairs generated 389

by each trait and identify traits weakening the correlation. Then a subset of traits could 390

be taken and used to perform MVA and correlation replication again. Nevertheless, 391

when the total number of traits is limited such as two or three, the correlation 392

replication is less meaningful because the correlation is based on too few data points. 393

Although theoretically cMVA can be implemented on all the variants across the 394

genome, we applied cMVA locus by locus for three reasons. Firstly, because SNPs 395

separated by large genetic distance are usually independent to each other, regional 396

conditional analysis is equivalent to genome-wise conditional analysis in most cases. 397

The second reason is for accuracy. As in GCTA-COJO, we need a reference sample to 398

approximate the LD correlations of the population where the meta-analysis sample is 399

taken from. However, there is a mismatch between the LD structure of reference sample 400

and that of meta-analysis sample. When more and more SNPs are selected, the 401

mismatch accumulates and may disturb the results. To limit the error caused by the LD 402
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mismatch, we implemented cMVA locally so that not many SNPs are involved. The 403

third reason is for power and computation. In some stepwise selection procedures 404

including GCTA-COJO, the residuals from the regression given selected variants are 405

used as new phenotype to search the next variant. This ”adjusted-outcome” procedure 406

is computationally fast because it performs univariate regression at each step. However, 407

comparing to the standard multiple linear regression, where the original phenotype is 408

the outcome and the selected variants are the covariates, the ”adjusted-outcome” 409

procedure has lower power when a new variant is correlated with the selected 410

variants [23]. Since most of the additional traits-associated SNPs are in LD with the 411

detected SNPs, we choose to use the standard multiple linear regression in cMVA. As a 412

consequence, as more and more SNPs are selected, we have more and more covariates in 413

the regression, which slows down the procedure. By implementing cMVA regionally, the 414

analysis can be done quickly at each locus. 415

Based on GIANT2015 summary association statistics, our multi-trait analysis 416

revealed 49 novel loci. Most of the replicated loci show pleiotropic effects beyond the six 417

analyzed anthropometric traits. In particular, we see that some of newly discovered 418

multivariate anthropometric loci is likely extending their effects onto metabolic (glucose 419

and lipid levels) and life history (age at menarche, birth weight) phenotypes (S3 420

Appendix). According to results based on PhenoScanner [22], the loci with consistent 421

pleiotropic effects on the six anthropometric traits are associated with more traits in 422

general (S2 Appendix). As the MVA idetified loci are pleiotropic, a locus-specific test 423

was also used to identify shared genetic basis between complex traits, including 424

prediction of candidate genes according to expression quantitative trait loci (eQTL) 425

analysis (S4 Appendix). This identifies, for some loci, that the pleiotropic effects are 426

due to shared genetic causes instead of different linked causal variants. 427

Although only for a limited number of new loci, the existing mouse phenotyping 428

database did suggest that the loci detected via multivariate analysis have functional 429

relevance (S3 Appendix). Additional animal experimental validation is beyond the 430

scope of this in silico paper. We suggest that future molecular studies should include 431

such pleiotropic loci from multivariate analysis into investigation. 432

The developed pleiotropic analysis is implemented and freely available in the R 433

package MultiABEL (The GenABEL project packages URL: 434
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https://r-forge.r-project.org/R/?group_id=505). The internal genome-wide 435

screening module is implemented using Fortran 95 to gain computational speed. 436

With our results, we emphasize the value of combining multiple related phenotypes 437

in large-scale genomic studies. We also emphasize the value of replication study for 438

multi-trait analysis. Our results suggest that proper multivariate analysis may 439

substantially enhance our understanding of shared genetic architecture between complex 440

traits and disease and reveal more interesting biological knowledge. 441

Supporting information 442

S1 Appendix. Complete methods and derivations. 443

S2 Appendix. Pleiotropic effects of MVA loci. 444

S3 Appendix. Fine-mapping and candidate genes investigation. 445

S4 Appendix. Functional annotation via SMR-HEIDI. 446

S1 Fig. The number of loci replicated by different replication strategies. 447

Each circle in the Venn diagram represents one replication strategy. The four replication 448

strategies are: single-trait GWAS replication (UVA), MVA-significance replication 449

(MVA), MVA-score replication (Score) and correlation replication (Correlation). 450

S2 Fig. Plot of coefficients from MVA-score against those from CCA. We 451

randomly sampled 50,000 individuals and 100 SNPs from UKB chromosome 22. Then 452

for each SNP, we generated six marginal effects and traits. The estimated shrinkage 453

phenotypic correlation matrix from GIANT was used as the phenotypic correlation 454

matrix of simulated traits. Each SNP explains 0.01% variance of each trait. The x-axis 455

represents the coefficients in reverse regression estimated from CCA based on 456

individual-level data. The y-axis represents the coefficients estimated by MVA-score 457

using summary statistics. In the left panel, true phenotypic correlation matrix was used 458

in MVA-score. In the right panel, the phenotypic correlation matrix was estimated 459

using the t-statistics from 10,000 simulated SNPs without effect. In both cases, 460

MVA-score are almost equivalent to CCA. 461
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S3 Fig. Plot of -log10 p-values from cMVA against those from multiple 462

regression based on individual-level data. We randomly sampled 50,000 463

individuals from UKB and took their genotypes of 103 snps around SNP rs132622 as an 464

example. Among the 103 snps, we randomly picked two as causal variants. Then the 465

phenotypes were simulated as: Y1 = 0.3X1 + 0.1X2 + ε1, Y2 = 0.3X1 − 0.1X2 + ε2, 466

where Var(ε1) = Var(ε2) = 2Cov(ε1, ε2) = 100. 40,000 individuals among 50,000 were 467

used to perform GWAS and to generate summary statistics. A subset of the rest 10,000 468

individuals is used as reference sample to approximate LD matrix. The phenotypic 469

correlation matrix in cMVA was estimated using the t-statistics from 10,000 simulated 470

SNPs without effect. The reference sample used in cMVA is the original GWAS sample 471

(left panel), an independent sample with 4,000 individuals (middle panel) or an 472

independent sample with 500 individuals (right panel). 473

S4 Fig. Power comparison of multi-trait and single-trait analyses. Cor: 474

correlation coefficient between each pair of phenotypes; βi: the genetic effect on the i-th 475

phenotype; Half-overlap: each pair of the phenotypes share only 50% of the genotyped 476

samples. 477

S5 Fig. The rejection rate of correlation test under different scenarios. In 478

correlation test, the null hypothesis is rejected if the lower bound of MC-based CI is 479

larger than 0. The lines represent the change of rejection rate when the percentile used 480

for the lower bound is set to be different values. For example, percentile threshold = 481

0.05 means the test is based on whether 0 is above or below the 5th percentile of 482

MC-based distribution for τβ . The first step is to simulate 12 traits in two samples. We 483

firstly simulated 1,000 groups of marginal effects. In each group, 12 pairs of coefficients 484

were drawn from N2(0, I), which are the marginal effects of a SNP on 12 traits in 485

discovery and replication sample. Those groups with τβ = 0 or 0.15 or 0.3 were saved 486

for next step. We then simulated a SNP for 10,000 individuals. The SNP explains 0.1% 487

variance of each trait. After this, we sampled one group of coefficients from the saved 488

groups and simulated phenotypes. The phenotypic correlation matrix of the 12 489

simulated traits is set as a block diagonal matrix, where the first 6× 6 is the estimated 490

shrinkage phenotypic correlation matrix from GIANT and the second 6× 6 is the 491
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phenotypic correlation matrix from UKB. Then we performed the replication test and 492

got the parametric bootstrap distribution of τβ . Each dot is based on 1,000 simulations. 493

This figure shows that the test has no inflation or deflation when the true τβ = 0. The 494

power of this test increases as the true τβ becomes larger. 495

S6 Fig. The performance of correlation replication when zero effect sizes 496

exist. In this simulation, we set the marginal effects of a SNP on 12 traits in discovery 497

and replication sample to be same. We firstly simulated 1,000 groups of marginal effects. 498

In each group, 12 coefficients were drawn from N (0, 1), which are the marginal effects of 499

a SNP on 12 traits in discovery and replication sample. Because the effect sizes for each 500

trait are same across two samples, the true τβ = 1. To simulate the impact of zero effect 501

sizes on the MC-based distribution of τβ in correlation test, we set the first several 502

effect sizes as zero. In this case, the true τβ = 1 still, but the MC-based distribution of 503

τβ would change. We then simulated a SNP for 10,000 individuals. The SNP explains 504

0.1% variance of each trait. The phenotypic correlation matrix of the 12 simulated 505

traits is set as a block diagonal matrix, where the first 6× 6 is the estimated shrinkage 506

phenotypic correlation matrix from GIANT and the second 6× 6 is the phenotypic 507

correlation matrix from UKB. After this, we sampled one group of coefficients from the 508

1,000 groups and simulated phenotypes. Then we performed the replication test and got 509

the parametric bootstrap distribution of τβ . The x-axis represents the number of traits 510

on which the SNP has non-zero effect. The y-axis is the 5th percentile of the MC-based 511

distribution of τβ . 512

S7 Fig. The pleiotropic effects of six-traits MVA-only and UVA-only loci 513

in GIANT2015 across different PhenoScanner p-value threshold. (A) The 514

x-axis represents p-value threshold in PhenoScanner; the y-axis is the natural logarithm 515

of the number of associated traits plus one. (B) The parametric bootstrap distribution 516

is computed for each locus based on the summary statistics of the six anthropometric 517

traits in GIANT2015 and UKB. In each panel, the x-axis represents the lower bound of 518

95% CI of Kendall’s tau. The y-axis is the number of associated traits. To facilitate 519

visualization, loci with the same lower bound values are clustered. At each lower bound 520

value, only the median of the number of associated traits is plotted for each method. 521
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The proportion of each cluster is represented by diameter of dots, which is computed 522

separately for MVA and UVA. The curves are based on LOESS fit using data without 523

clustering. 524

S8 Fig. Effects of ELK4, ARAP1, and YDJC knock-out in mice across 525

different phenotypes. The figure data were extracted from the 526

International Mouse Phenotyping Consortium. 527

S9 Fig. ARAP1 and YDJC knock-out mice show difference in body mass 528

and caudal vertebrae. The figure data were extracted from the 529

International Mouse Phenotyping Consortium. 530

S10-S54 Fig. Visualization of the SMR-HEIDI test results for a single 531

shared causal variant for different traits pairs. 532

S1 Table. MV analysis results for GIANT2013 data with replication on 533

GIANT2015 data, UKB data, and GIANT2015+UKB meta-analysis data. 534

S2 Table. Extended results for 49 SNPs discovered using MV-only 535

approach in GIANT2015 data. 536

S3 Table. Correlation matrix for GIANT 2013, GIANT2015 and UKB. 537

S4 Table. Pleiotropy database records with the anthropometric traits 538

according to PhenoScanner (FDR < 5%) for the 49 novel loci. 539

S5 Table. SMR-HEIDI test results for the prediction of candidate gene 540

and detection of shared genetic basis across complex traits. 541
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