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2	

Abstract 15	

 16	

Cells responds to diverse stimuli by changing the levels of specific effector proteins. 17	

These changes are usually examined using high throughput RNA sequencing data (RNA-18	

Seq); transcriptional regulation is generally assumed to directly influence protein 19	

abundances. However, the correlation between RNA-Seq and proteomics data is in 20	

general quite limited owing to differences in protein stability and translational regulation. 21	

Here we perform RNA-Seq, ribosome profiling and proteomics analyses in baker’s yeast 22	

cells grow in rich media and oxidative stress conditions to examine gene expression 23	

regulation at various levels. With the exception of a small set of genes involved in the 24	

maintenance of the redox state, which are regulated at the transcriptional level, 25	

modulation of protein expression is largely driven by changes in the relative ribosome 26	

density across conditions. The majority of shifts in mRNA abundance are compensated 27	

by changes in the opposite direction in the number of translating ribosomes and are 28	

predicted to result in no net change in protein level. We also identify a subset of mRNAs 29	

which is likely to undergo specific translational repression during stress and which 30	

includes cell cycle control genes. The study suggests that post-transcriptional buffering 31	

of gene expression may be more common than previously anticipated.  32	

	  33	
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Introduction  34	

 35	

In recent years high throughput RNA sequencing (RNA-Seq) has become the method of 36	

choice for measuring shifts in gene expression between cells grown in different conditions 37	

1. However, diverse studies have shown that mRNA levels only partially explain protein 38	

levels in the cell 2–5. In yeast, the correlation between mRNA and protein abundance is 39	

typically in the range 0.6-0.7 2. In addition, the ratio between protein and mRNA levels 40	

may vary across different conditions 3. For instance, substantial differences in this ratio 41	

have been observed during osmotic stress in yeast 6 or after the treatment of human cells 42	

with epidermal growth factor 7. 	43	

 44	

In contrast to RNA-Seq, which measures the total amount of mRNA in the cell, ribosome 45	

profiling (Ribo-Seq) only captures those mRNAs that are being actively translated 8. Each 46	

Ribo-Seq read corresponds to one translating ribosome, providing a quantitative view of 47	

the amount of protein produced by the cell at any given time. Although this remains an 48	

indirect estimate of protein abundance, it has several advantages over proteomics, such 49	

as the fact that with Ribo-Seq virtually all translated sequences can be captured, and that 50	

one can apply the same pipelines and statistical methods as for RNA-Seq to identify 51	

differentially expressed genes.   52	

 53	

The response to oxidative stress in the yeast Saccharomyces cerevisiae involves a general 54	

decrease in mRNA translation initiation as well as the selective transcriptional activation 55	

of a set of proteins involved in the maintenance of the redox state of the cell 9-11. A 56	

previous study reported changes in the ratio between the normalized number of Ribo-Seq 57	

and RNA-Seq reads, or translational efficiency (TE), of hundreds of genes upon oxidative 58	
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stress 9, suggesting extensive translational regulation. However, changes in TE alone do 59	

not necessarily imply changes in the abundance of the translated proteins. Here, by 60	

performing a separate analysis of Ribo-Seq and RNA-Seq data, we show that the majority 61	

of genes that show statistically significant differences at the RNA-Seq level do not show 62	

similar differences at the Ribo-Seq level, suggesting that, in most cases, changes in 63	

mRNA abundance are compensated by changes in ribosome density and are not 64	

propagated to the protein level. Our approach also uncovers a subset of differentially 65	

expressed genes in which regulation appears to be mainly exerted at the translational level.  66	

 67	

Results 	68	

 69	

Ribosome profiling experiments in normal and stress conditions 70	

 71	

We extracted ribosome-protected RNA fragments, as well as complete polyadenylated 72	

RNAs, from Saccharomyces cerevisiae grown in rich media (normal) and in H2O2-73	

induced oxidative stress conditions (stress)(Figure 1). We then sequenced the ribosome-74	

protected RNA fragments (Ribo-Seq) as well as complete mRNAs (RNA-Seq) using a 75	

strand-specific protocol. The Ribo-Seq data provided a snapshot of the translatome, each 76	

read corresponding to one translating ribosome, whereas the number of RNA-Seq reads 77	

mapping to a gene was used to quantify the relative abundance of the transcript.  78	

 79	

After quality control of the sequencing reads we obtained 31-36 million Ribo-Seq reads 80	

and 12-15 million RNA-Seq reads per sample (Supplementary Table S1). We mapped the 81	

reads to the genome and generated a table of read counts per gene for each of the samples. 82	
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After filtering out non-expressed genes (see Methods), the table contained data for 5,419 83	

S. cerevisiae annotated genes (ORFs).  84	

 85	

We normalized the RNA-Seq and Ribo-Seq table of counts by calculating normalized 86	

counts per million (CPM) in logarithmic scale, or log2CPM (Supplementary Figure S1). 87	

The correlation coefficient between the average Ribo-Seq and RNA-Seq log2CPM 88	

expression values was 0.84 in normal conditions and 0.87 in stress conditions (Figure 2 89	

A and B, respectively). As the differences in log2CPM between RNA-Seq or Ribo-Seq 90	

replicates were negligible (Figure 2 C and D, Supplementary Table S2), these values 91	

reflect the amount of disagreement between total mRNA and translated protein 92	

abundances. 93	

 94	

Ribo-Seq shows a higher correlation with proteomics than RNA-Seq  95	

 96	

The next step was to compare the quantification of gene expression by RNA-Seq and 97	

Ribo-Seq to that obtained using proteomics. We extracted the protein fraction from yeast 98	

grown in normal and stress conditions and estimated the abundance of different yeast 99	

proteins, i.e. the proteome, using mass spectrometry information (Figure 1). We could 100	

reliably quantify the protein products of 2,200 genes (see Methods), representing about 101	

40% of the genes quantified by RNA-Seq or Ribo-Seq. Normalized protein abundances 102	

between pairs of proteomics replicates showed correlation coefficients in the range 0.83-103	

0.93 (Supplementary Table S3), lower than for RNA-Seq or Ribo-Seq replicates (>0.99).  104	

 105	

In normal conditions the correlation coefficient between the transcriptome (RNA-Seq) 106	

and the proteome relative abundance units was 0.46. This increased to 0.71 when 107	
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comparing the translatome (Ribo-Seq) and the proteome units (Figure 3). This indicates 108	

that Ribo-Seq-based quantification of gene expression provides a more accurate picture 109	

of protein abundance than RNA-Seq data. The average correlation coefficient between 110	

the three pairs of proteome replicates was 0.91, setting up a maximum value for any 111	

correlation. Differences between RNA-Seq and proteomics quantification estimates may 112	

arise because of differences in the half life of the proteins with respect to their cognate 113	

mRNAs as well as variations in the translation rate or ribosome density across the 114	

transcripts. As the value of 0.71 (Ribo-Seq versus proteomics) is intermediate between 115	

0.46 (RNA-Seq versus proteomics) and 0.91 (proteomics replicates), the two above 116	

mentioned factors appear to be relevant to explain the strong uncoupling between mRNA 117	

and protein abundance in this system.  118	

 119	

In stress conditions the correlation coefficient between the transcriptome and proteome 120	

was 0.62, somewhat higher than in normal conditions. The correlation coefficient 121	

between the translatome and the proteome was 0.67, again higher than the same value 122	

between the transcriptome and the proteome but lower than the correlation between the 123	

proteome stress replicates (0.86). Taken together, these results are consistent with the 124	

hypothesis that differences in ribosome density play a role in modulating protein 125	

expression. 126	

 127	

Analysis of three nucleotide periodicity 128	

 129	

In actively translated regions mapped Ribo-Seq reads exhibit a characteristic three 130	

nucleotide periodicity that results from the codon-to-codon ratcheting movement of the 131	

ribosome along the coding sequence 8. We used the program RibORF 10 to assess the 132	
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nucleotide periodicity and homogeneity of the Ribo-Seq reads in the annotated coding 133	

sequences. According to this analysis, in the vast majority of genes (98%, 5198 out of 134	

5304 analyzed genes) the annotated ORF appeared to be translated in both normal and 135	

stress conditions, validating our approach of considering all the reads that mapped to the 136	

annotated ORFs for the quantification of protein translation.  137	

 138	

In a small fraction of genes, however, we found evidence of alternative translated ORFs 139	

(Supplementary Table S4). One example was TOS8, which encodes a homeodomain-140	

containing transcription factor. In this gene active translation of the canonical 831 amino 141	

acid long protein by RibORF was only detected in stress conditions; in contrast, a protein 142	

of only 81 amino acids was the main translated polypeptide in rich media. The shorter 143	

alternative ORF was on a different reading frame to the main protein product and showed 144	

no homology to any previously characterized protein. These cases illustrate how detailed 145	

examination of the distribution of the Ribo-Seq reads may help uncover proteins that have 146	

remained hidden within longer ORFs. 147	

 148	

Ribo-Seq estimates of changes in gene expression are more conservative  149	

 150	

We next calculated the gene expression level fold change (FC) between the two 151	

conditions, using RNA-Seq and Ribo-Seq data separately. The log2FC distribution based 152	

on the Ribo-Seq data had a lower variance than the log2FC distribution using RNA-Seq 153	

data (Figure 4A). This indicated a higher range of variation in the mRNA levels, as 154	

estimated by RNA-Seq, than in the ribosome-protected fragments. This was consistent 155	

with the existence of post-transcriptional buffering of gene expression, as also reported 156	

for inter-specific gene expression comparisons of S.cerevisiae and S.paradoxus 11. 157	
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 158	

We considered the possibility that the about 2.5 times higher number of Ribo-Seq reads 159	

than RNA-Seq read in the original datasets biased the comparison of log2FC distributions. 160	

In order to test it we subsampled the mapped reads so as to have a similar number of reads 161	

in all the RNA-Seq and Ribo-Seq samples (Supplementary Tables S5 and S6). The results 162	

were very similar to those observed without subsampling (Supplementary Figure S2), 163	

indicating that these observations have a biological origin.  164	

 165	

We also used an alternative method, multidimensional scaling (MDS) 12, to quantify the 166	

distance between Ribo-Seq and RNA-Seq gene expression measurements (Figure 4B). 167	

We found that the distance between Ribo-Seq normal and stress conditions was shorter 168	

that the distance between RNA-Seq normal and stress conditions, which was consistent 169	

with the previous observation that log2FC variance was lower for Ribo-Seq than for RNA-170	

Seq. 171	

 172	

Extensive post-transcriptional buffering of gene expression  173	

 174	

We next performed differential gene expression analysis, separately for Ribo-Seq and 175	

RNA-Seq data, using multivariable linear regression with the Limma package 13. Limma 176	

provides a list of differentially expressed genes with the corresponding adjusted p-values. 177	

We selected genes with an adjusted p-value < 0.05 and a log2FC larger than one standard 178	

deviation; the latter corresponded to a minimum FC of 1.49 for RNA-Seq data and 1.36 179	

for Ribo-Seq data. We used the standard deviation instead of a fixed value to 180	

accommodate for the differences in the width of the log2FC distributions. The number of 181	

genes that were differentially expressed was 1,530 for RNA-Seq and 536 for Ribo-Seq.	182	
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 183	

The correlation between RNA-Seq and Ribo-Seq gene log2FC values was quite low (0.18), 184	

indicating an important disconnect between the two kinds of data (Figure 4C). Only 127 185	

genes showed a significant change in the same direction i.e.  homodirectional changes. 186	

Genes that were up-regulated during stress according to both RNA-Seq and Ribo-Seq 187	

included protein functions known to be activated at the transcriptional level in response 188	

to stress, such as hexoquinases or heat shock proteins 14. The number of genes annotated 189	

with the Gene Ontology (GO) term ‘oxidation reduction process’ was similar for RNA-190	

Seq or Ribo-Seq up-regulated genes (17 and 15, respectively), supporting that these genes 191	

are essentially regulated at the level of transcription and can be effectively detected with 192	

both kinds of sequencing data. 193	

 194	

The vast majority of genes were only significant at the transcriptome or the translatome 195	

levels (1,413 and 409 genes, respectively; Figure 4C). The first group was formed by 196	

genes that showed significant changes in relative transcript abundance but not in the 197	

relative number of ribosome-protected fragments, supporting extensive post-198	

transcriptional buffering of gene expression. The data indicated that about a quarter of the 199	

genes in the genome may be undergoing compensatory changes: when mRNA levels 200	

increase ribosome density per transcript decreases and the other way round. The levels of 201	

the proteins encoded by these genes are not expected to change despite significant 202	

changes in the corresponding mRNA abundance.  203	

 204	

The second group, translatome-only differentially expressed genes, represented cases in 205	

which mRNA levels did not change but the density of ribosomes per transcript showed a 206	

significant increase or decrease in stress relative to normal. This would be consistent with 207	
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the expression of these genes being primarily modulated at the level of translation. We 208	

identified many more genes under differential translational repression than activation 209	

(360 versus 49, Figure 4C), suggesting that the former mechanism may be more prevalent 210	

that the first one in response to stress. 211	

 212	

Finally, we found a subset of cases showing opposite changes in RNA-Seq and Ribo-Seq 213	

data. The main group was formed by 70 genes showing increased mRNA levels but 214	

decreased translation in stress versus normal. One simple explanation would be that, for 215	

these genes, there is an mRNA fraction that is stored in a translational inactive highly 216	

stable form, whereas the rest is translated at the usual level. More complex scenarios 217	

could involve a combination of transcriptional and translational regulatory events.  218	

 219	

Dissecting differential regulation by functional class 220	

 221	

To better understand the biological relevance of our observations, we investigated if 222	

certain functional classes were significantly enriched among the sets of differentially 223	

expressed genes. We used DAVID 15 to identify significantly over-represented functional 224	

clusters (Figure 4D). Only one class, ‘oxidation-reduction process’, was enriched among 225	

genes up-regulated during stress both using RNA-Seq and Ribo-Seq data. This is 226	

consistent with transcriptional activation of this set of genes upon stress, increasing the 227	

signal for both total mRNA and the translated fraction.  228	

 229	

Three other classes – ‘translation’, ‘ATPase’ and ‘proteasome’ – showed increased 230	

mRNA levels during stress, but this was not reflected in an increase in the translated 231	

fraction. These classes may be particularly prone to undergo compensated mRNA 232	
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changes. Among genes that were differentially expressed only when we used Ribo-Seq 233	

data ‘cell wall’, ‘mitochondrial intermembrane space’ and ‘catalytic activity’ were 234	

enriched among up-regulated genes, whereas ‘cell cycle’ was enriched among down-235	

regulated genes (Figure 4D).  236	

 237	

Translational efficiency and protein level changes 238	

 239	

To obtain further insights into the regulatory mechanisms of gene expression during 240	

oxidative stress in yeast we also compared the translational efficiency (TE; Ribo-Seq 241	

normalized counts divided by RNA-Seq normalized counts) of the different genes in the 242	

two conditions using the program Ribodiff 16. We detected 470 genes that showed 243	

significantly increased TE during stress (adjusted p-value < 0.05; see Methods); about 82% 244	

of them were cases in which the relative mRNA levels had decreased during stress but 245	

this change had been compensated by an increase in ribosome density so that no 246	

significant changes in the amount of translated protein would be expected (transcriptome 247	

downregulated, Table 1). In only about 3% of cases increased TE was associated with 248	

translational activation and increased protein production (translatome upregulated, Table 249	

1).  250	

 251	

In the case of genes with significantly lower TE in stress than in normal conditions the 252	

percentage of compensatory cases was also the predominant scenario, accounting for 50% 253	

of the genes in the class (356 out of 714, Table 1). The second most numerous group were 254	

genes likely to be actively repressed at the level of translation, accounting for 29% of the 255	

genes with significantly decreased TE (29%). The latter genes showed no change in 256	

mRNA levels but the relative number of associated ribosomes was lower in stress than in 257	
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normal conditions, which would be expected to lead to a decrease in the protein levels. 258	

This group included 12 genes from the cell cycle functional category (Supplementary 259	

Table S7).  260	

 261	

Discussion  262	

 263	

The adaptation of organisms to variations in different environmental conditions is 264	

associated with the activation or repression of gene expression. These changes are usually 265	

studied at the level of complete mRNA molecules using microarrays or next generation 266	

sequencing. However, changes in mRNA concentration do not necessarily reflect changes 267	

in their encoded protein products 7,11 .  268	

 269	

Here we have explored the usefulness of ribosome profiling data to close the gap between 270	

mRNA and protein abundance estimates. Each ribosome profiling read corresponds to 271	

one translating ribosome and thus the number of reads that map to a gene reflects the 272	

amount of protein that is being made 8,17. Numerous recent studies have used ribosome 273	

profiling to gain insights into novel translation regulatory mechanisms 18,19 or to discover 274	

new translated RNA sequences 20-23. However, there is a lack of studies addressing how 275	

ribosome profiling can be used to improve the estimates of protein abundance changes 276	

over RNA-Seq-based estimates. Our study shows that Ribo-Seq provides better estimates 277	

of protein abundance than RNA-Seq and that the results of differential gene expression 278	

analyses are drastically altered if we use Ribo-Seq of RNA-Seq as the source sequencing 279	

data. 280	

 281	
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The abundance of the different proteins in the cells is usually estimated using mass 282	

spectrometry proteomics data 24,25. This provides a direct measurement of protein 283	

abundance that can account for the variations in the stability of different proteins; 284	

however, proteomics methods are much less sensitive than current RNA sequencing 285	

approaches and not all proteins can be detected in routine analyses 26. In addition, the 286	

results obtained with high-throughput sequencing are more reproducible across biological 287	

replicates than those obtained with mass spec proteomics; this confers the former studies 288	

increased power to perform differential gene expression analyses. 289	

 290	

Previous studies in yeast indicated that Ribo-Seq showed a higher correlation with 291	

proteomics data than RNA-Seq, but these conclusions were drawn after comparing data 292	

obtained from different laboratories 8. Here we generated RNA-Seq, Ribo-Seq and 293	

proteomics data for yeast grown in identical conditions, leading to less biased 294	

comparisons. These results support the hypothesis that the Ribo-Seq read counts provide 295	

a better approximation to protein levels than RNA-Seq read counts.  296	

 297	

We observed that many of the genes that were detected as significantly up- or down-298	

regulated in stress by RNA-Seq did not show any significant changes using the Ribo-Seq 299	

data, indicating frequent post-transcriptional buffering of gene expression. Intriguingly, 300	

studies comparing the expression of orthologous genes from closely related species have 301	

also reported that gene expression is in general more variable when measured by RNA-302	

Seq than Ribo-Seq 11,27. We found that, during oxidative stress, genes encoding ribosomal 303	

proteins and members of the proteasome and ATPase complexes tended to show 304	

increased mRNA levels but, at the same time, the rate of translation decreased. We also 305	

have to consider that some mRNAs could be transiently stored in P-bodies or stress 306	
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granules 28–30, becoming inaccessible to the translation machinery. Translation of these 307	

transcript could be rapidly reactivated when the stress disappears. 308	

 309	

Transcripts encoding proteins involved in the cell cycle appeared to be modulated 310	

differently. In this case there was no apparent change in the number of mRNA molecules 311	

but ribosome density decreased, presumably reflecting lower translation rates. Repression 312	

of this class of proteins may be related to a slow down of cell division under stress; the 313	

cells grown under oxidative stress showed approximately half doubling times when 314	

compared to those grown in rich media.  315	

 316	

 The results of this study illustrate the importance of performing ribosome profiling 317	

experiments to differentiate between changes in mRNA that are likely to result in changes 318	

in the protein levels to those that are not. Although obtaining Ribo-Seq data is more 319	

labour-intensive than RNA-Seq, the protocols are being simplified and its use is rapidly 320	

growing 31–33. The methodological framework we have developed can be applied to other 321	

datasets and help advance our understanding of gene regulation in other conditions.  322	

 323	

Methods 324	

 325	

Biological material 326	

 327	

We grew S. cerevisiae (S288C) in 500 ml of rich media 34. In order to induce oxidative 328	

stress, 30 minutes before harvesting we added diluted H2O2 to the media for a final 329	

concentration of 1.5 mM.  The cells were harvested in log growth phase (OD600 of ~0.25) 330	

via vacuum filtration and frozen with liquid nitrogen. 	331	
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 332	

Ribosome profiling 333	

 334	

In order to capture ribosome protected mRNAs, cyclohexamide was added one minute 335	

before the cells were harvested. Cyclohexamide is commonly used as a protein synthesis 336	

inhibitor in order to prevent ribosome run-off and the subsequent loss of ribosome-337	

transcript complexes. One third of each culture was used for ribosome profiling (Ribo-338	

Seq); the rest was reserved for RNA-Seq.	339	

 340	

Cells were lysed using the freezer/mill method (SPEX SamplePrep); after preliminary 341	

preparations, lysates were treated with RNaseI (Ambion), and subsequently with 342	

SUPERaseIn (Ambion). Monosomal fractions were collected; SDS was added to stop any 343	

possible RNAse activity, then samples were flash-frozen with N2(l). Digested extracts 344	

were loaded in 7%-47% sucrose gradients. RNA was isolated from monosomal fractions 345	

using the hot acid phenol method. Ribosome-Protected Fragments (RPFs) were selected 346	

by isolating RNA fragments of 28-32 nucleotides (nt) using gel electrophoresis. The 347	

preparation of sequencing libraries for Ribo-Seq and RNA-Seq was based on a previously 348	

described protocol 35. Pair-end sequencing reads of size 35 nucleotides (2x35bp) were 349	

produced for Ribo-Seq and RNA-Seq on MiSeq and NextSeq platforms, respectively. 350	

The data has been deposited at NCBI Bioproject PRJNA435567 351	

(https://www.ncbi.nlm.nih.gov/bioproject/435567).	352	

 353	

Processing of the sequencing data 354	

 355	
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The RNA-Seq data was filtered using Trimmomatic with default parameters (version 356	

0.36)36. In the Ribo-Seq data we discarded the second read pair as it was redundant and 357	

of poorer quality than the first read, and then used Cutadapt 37 to eliminate the adapters 358	

and to trim five and four nucleotides at 5’ and 3’ edges, respectively. Ribosomal RNA 359	

was depleted from the Ribo-Seq data in silico by removing all reads which mapped to 360	

annotated rRNAs. Ribo-Seq reads shorter than 25 nucleotides were not used.	361	

 362	

After quality check and read trimming, the reads were aligned against the S. cerevisiae 363	

genome (S288C R64-2-1) using Bowtie 2 38. For annotation we used a previously 364	

generated S. cerevisiae transcriptome containing 6,184 annotated coding sequences plus 365	

1,009 non-annotated assembled transcripts (see Supplementary data).  SAMtools 39 was 366	

used to filter out unmapped reads. 	367	

 368	

We counted the number of reads that mapped to each gene with HTSeq-count 40. We used 369	

the mode ‘intersection strict’ to generate a table of counts from the data; the procedure 370	

removed about 5% of the reads in the case of RNA-Seq, and 8% in the case of Ribo-Seq. 371	

Only genes in which the average read count of the two replicates was larger than 10 in all 372	

conditions (normal and stress, for RNA-Seq and for Ribo-Seq) were kept. The filtered 373	

table of counts contained data for 5,419 genes; nearly all of them corresponded to 374	

annotated genes (5,312 genes). 	375	

 376	

For subsampling the number of mapped reads we used SAMtools 39. We used the function 377	

‘samtools view’ with option ‘-s 0.X’, where X is the percentage of reads that we wish to 378	

keep.   379	

 380	
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Analysis of three nucleotide periodicity in the mapped Ribo-Seq reads 381	

 382	

We used RibORF 10 to analyze the mapped Ribo-Seq. We analyzed all possible ORFs 383	

with a minium length of 9 amino acids and at least 10 mapped reads. WE analyzed 5,304 384	

annotated ORFs. RibORF counts the number of reads that fall in each frame and 385	

calculates the distribution of reads along the length of the ORF. We used the original 386	

proposed cutoff (score > 0.7) to predict translated ORFs. 387	

 388	

Quantification of protein abundance by mass spectrometry	389	

 390	

For our proteomics experiment, we analysed 3 replicates per condition by LCMSMS 391	

using a 90-min gradient in the Orbitrap Fusion Lumos. These samples were not treated 392	

with cyclohexamide. As a quality control measure, BSA controls were digested in parallel 393	

and ran between each sample to avoid carry-over and assess the instrument performance. 394	

The peptides were searched against SwissProt Yeast database, using the Mascot v2.5.1 395	

search algorithm. The search was performed with the following parameters: peptide mass 396	

tolerance MS1 7 ppm and peptide mass tolerance MS2 0.5 Da; three maximum missed 397	

cleavages; trypsin digestion after K or R except KP or KR; dynamic modifications 398	

oxidation (M) and acetyl (N-term), static modification carbamidomethyl (C). Protein 399	

areas were obtained from the average area of the three most intense unique peptides per 400	

protein group. Considering the data from all 6 samples, we detected proteins from 3,336 401	

genes. We limited our quantitative analysis to a subset of 2,200 proteins which had 402	

proteomics hits for at least 3 unique peptides; this filter eliminates noise arising from 403	

technical challenges of quantifying lowly abundant proteins with LCMSMS.  404	

 405	
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Differential gene expression analysis 406	

 407	

The table of counts was normalized to log2 Counts per Million (log2CPM) using the 408	

function ‘cpm’ in the R package edgeR 41. Before performing differential gene expression 409	

analysis, we normalized the data using Trimmed Mean of M-values (TMM) from the 410	

same package. Finally, we applied the Limma voom method 13 to identify differentially 411	

expressed genes, separately for RNA-Seq and Ribo-Seq data (adjusted p-value < 0.05 and 412	

|log2FC| > 1 SD(log2FC)) . 	413	

 414	

We applied the same pipeline to the proteomics data using normalized area values as a 415	

quantitative measure of protein abundance. To ensure robustness of the differential 416	

expression analysis we used genes which had at least 3 unique peptides and could be 417	

quantified in all 6 replicates (1,580 genes); the procedure did not identify any significantly 418	

up or down regulated genes, using an adjusted p-value < 0.05. Low sensitivity of this 419	

procedure is expected considering the relatively poor correlation of the mass spec 420	

replicates (r between 0.83 and 0.93).	421	

 422	

Analysis of functional clusters 423	

 424	

We identified significantly enriched functional clusters in differentially expressed genes 425	

using DAVID 15. The analysis was done separately for over- and under-expressed genes 426	

and for RNA-Seq and Ribo-Seq derived data. Only clusters with enrichment score ≥ 1.5 427	

and adjusted p-val < 0.05 were retained. In each cluster we chose a representative Gene 428	

Ontology (GO) term 42, with the highest number of genes inside the cluster. Figure 4 429	
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integrates the results obtained with the Ribo-Seq and the RNA-Seq data, the log10 fold 430	

enrichment of the significant GO terms is plotted.	431	

 432	

Analysis of translational efficiency 433	

 434	

We searched for genes with significantly increased or decreased translational efficiency 435	

(TE)8 using the RiboDiff program 16. We selected genes significant at an adjusted p-value 436	

< 0.05 and showing log2(TEstress/TEnormal) higher than 0.67 or lower than -0.67 (plus or 437	

minus one standard deviation of the distribution).  	438	

 439	
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 479	

Figure 1. Experimental design. Baker’s yeast (S. cerevisiae) was grown in rich media 480	

and oxidative stress conditions in parallel. The cultures were used to extract total RNA, 481	

ribosome-protected RNA fragments and proteins. 482	

 483	

Figure 2. Representative gene expression correlations between RNA sequencing 484	

samples. A. RNA-Seq normal replicate 1 versus Ribo-Seq normal replicate 1. B. RNA-485	

Seq stress replicate 1 versus Ribo-Seq stress replicate 1. C. RNA-Seq normal replicate 1 486	

versus RNA-Seq normal replicate 2. D. Ribo-Seq normal replicate 1 versus Ribo-Seq 487	

normal replicate 2. Expression units are CPM in logarithm scale; R: Spearman correlation 488	

value. N: normal growth conditions (two replicates N1 and N2); S: stress conditions (two 489	

replicates S1 and S2).  490	

 491	

Figure 3. Proteomics shows a stronger correlation with Ribo-Seq than with RNA-492	

Seq data. A. RNA-Seq versus proteomics, normal growth conditions. B. RNA-Seq versus 493	

proteomics, oxidative stress. C. Ribo-Seq versus proteomics, normal growth conditions. 494	

D. Ribo-Seq versus proteomics, oxidative stress. CPM: counts per million for RNA-Seq 495	

and RNA-Seq data (represented in logarithmic scale, average between replicates). log2 496	

normalized area: relative abundance for proteomics data (average between replicates). R: 497	

Spearman correlation value. Plot and correlations comprise 2200 genes for which >3 498	

unique peptides were detected by LCMSMS.	499	

 500	

Figure 4. Integrated analysis of RNA sequencing and ribosome profiling data. A. 501	

Distribution of gene expression fold change (FC) values. FC was calculated as the ratio 502	

between the number of reads in oxidative stress and normal conditions. We took the 503	

average number of reads per gene among the replicates. The standard deviation of log2FC 504	

was 0.44 for Ribo-Seq (RP) and 0.57 for RNA-Seq (RNA). B. Multidimensional scaling 505	

(MDS) plot using the gene expression values of each sample. MDS was based on the 506	

log2CPM values for each gene. Data was for 5,419 S. cerevisiae genes. RP: Ribo-Seq data; 507	

RNA: RNA-Seq data; N: normal growth conditions; S: stress conditions. Two sequencing 508	

replicates were generated per condition. C. Correlation between log fold change (FC) 509	

gene expression values. The X axis corresponds to the RNA-Seq data, or transcriptome, 510	
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the Y axis to the Ribo-Seq data, or translatome. Coloured dots correspond to differentially 511	

expressed genes. In the legend homodirectional means up-regulated, or down-regulated, 512	

both at the transcriptome and translatome levels; opposite_change is up-regulated at one 513	

level and down-regulated at the other one; translatome means significant differences in 514	

Ribo-Seq only; transcriptome means significant differences in RNA-Seq only. D. 515	

Significant gene functional classes among differentially expressed genes. Shown is a 2-516	

D plot of the enrichment score values, in logarithmic scale, provided by the software 517	

DAVID for differentially expressed genes using RNA-Seq (transcriptome) or Ribo-Seq 518	

(translatome) data. Significant enrichment scores are associated with a p-val < 0.05. 519	

Functional classes associated with positive values are significantly enriched among up-520	

regulated genes, and functional classes with negative values are significantly enriched 521	

among down-regulated genes. Non-significant enrichment scores are given a value of 0 522	

in the plot.  523	

	524	
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Tables 627	

 Translatome 
upregulated  

Translatome 
downregualted 

Transcriptome 
upregulated 

Transcriptome 
downregulated  

Other 

Increased 
TE  under 
stress 

14 0 0 385 71 

Decreased 
TE under 
stress 

0 208 356 0 150 

 628	

Table	1.	Genes	with	significantly	increased	or	decrease	translational	efficiency	during	629	

oxidative	stress.	TE:	gene	translational	efficiency.	Ribodiff	p-value	<	0.05	and	630	

|log2(TEstress/TEnormal)|	>	0.67.	Translatome/Transcriptome	defintions	as	in	Figure	5.	631	

	632	
  633	
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Figures 634	

 635	

Figure 1 636	

 637	
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Figure 2 639	

 640	

 641	
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Figure 3 643	

 644	
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Figure 4 646	
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