Validity and reliability of extrastriatal [¹¹C]raclopride binding quantification in the living human brain

- 3
- 4 Jonas E Svensson¹, Martin Schain², Pontus Plavén-Sigray¹, Simon Cervenka¹, Mikael
- 5 Tiger¹, Magdalena Nord¹, Christer Halldin¹, Lars Farde^{1,3}, Johan Lundberg¹
- 6
- 7 ¹Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska
- 8 Institutet & Stockholm Health Care Services, Stockholm County Council, Karolinska
- 9 University Hospital, SE-171 76 Stockholm, Sweden
- ¹⁰ ²Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- ³PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit,
- 12 AstraZeneca, Karolinska Institutet, Sweden
- 13
- 14
- 15 Corresponding author:
- 16 Jonas Svensson, MD, PhD-student
- 17 Centre for Psychiatry Research, Department of Clinical Neuroscience
- 18 Karolinska Institutet & Stockholm Health Care Services
- 19 Karolinska University Hospital
- 20 SE-171 76 Stockholm
- 21 Sweden
- 22 Phone: +46702753831
- 23 Fax: +468051771753
- 24 Mail: Jonas.svensson@ki.se
- 25

26

- 27 Funding: This project was supported by the Swedish Research Council (523-2013-2982);
- a donation by Birgitta and Sten Westerberg, PRIMA psykiatri and the Stockholm County
- 29 Council (ALF project). Part of the data included in this study was collected for a study
- 30 funded by AstraZeneca.
- 31

34 Abstract

36	[¹¹ C]raclopride is a well established PET tracer for the quantification of dopamine 2/3
37	receptors $(D_{2/3}R)$ in the striatum. Outside of the striatum the receptor density is up to two
38	orders of magnitude lower. In contrast to striatal binding, the characteristics of
39	extrastriatal [¹¹ C]raclopride binding quantification has not been thoroughly described.
40	Still, binding data for e.g., neocortex is frequently reported in the scientific literature.
41	Here we evaluate the validity and reliability of extrastriatal [¹¹ C]raclopride binding
42	quantification. Two sets of healthy control subjects were examined with HRRT and
43	[¹¹ C]raclopride: i) To assess the validity of extrastriatal [¹¹ C]raclopride binding estimates,
44	eleven subjects were examined at baseline and after dosing with quetiapine, a $D_{2\!/\!3}R$
45	antagonist. ii) To assess test-retest repeatability, nine subjects were examined twice. Non
46	displaceable binding potential (BP_{ND}) was quantified using the simplified reference tissue
47	model. Quetiapine dosing was associated with decrease in [¹¹ C]raclopride BP_{ND} in
48	temporal cortex (18 \pm 17% occupancy) and thalamus (20 \pm 17%), but not in frontal cortex.
49	Extrastriatal occupancy was lower than in putamen (51±4%). The mean absolute
50	variation was 4-7% in the striatal regions, 17% in thalamus, and 13-59% in cortical
51	regions. Our data indicate that $[^{11}C]$ raclopride PET is not a suitable tool for $D_{2/3}R$ binding
52	quantification in extrastriatal regions.
53	Keywords: dopamine, extrastriatal, positron emission tomography,
54	raclopride, reference region
55	

57 Introduction

58

59	The dopamine (DA) system is of key interest both in normal brain function and in the
60	pathophysiology of neurological ¹ , and psychiatric ^{2,3} disorders. Striatum is the brain
61	region with the highest concentration of dopamine receptors ⁴ and also the most studied
62	using positron emission tomography (PET). In recent years, quantification of dopamine
63	receptors in extrastriatal regions has received more interest ^{2,5} . Specifically, striatal and
64	extrastriatal availability of the dopamine D2 receptor family has been of particular
65	interest in psychiatry research as drugs targeting $D_{2/3}$ receptors ($D_{2/3}R$) is an established
66	treatment of psychosis and mood disorders ⁶ .
67	
68	The dopamine D2/3R radioligand $[^{11}C]$ raclopride was developed in the 80's ⁷ and is one
69	of the most frequently used PET radioligands to date. Due to its relatively low affinity to
70	$D_{2/3}R$ (Kd = 1.3 nM) [¹¹ C]raclopride has primarily been used to study receptor
71	availability in striatal regions. Extrastriatally, the concentration of $D_{2/3}R$ is up to two
72	orders of magnitude lower than in striatum 8 . To study regions with low levels of $D_{2/3}R$,
73	high affinity radioligands have been developed, e.g. $[^{11}C]FLB-457$ (Kd = 0.02 nM) and
74	[¹⁸ F]fallypride (Kd=0.03 nM) ^{9,10} . These tracers are, however, not ideally suited to
75	quantify $D_{2/3}R$ in striatum. If [¹¹ C]raclopride binding to extrastriatal $D_{2/3}R$ could be
76	shown to be validly and reliably quantifiable, fewer PET-examinations would be required
77	for studies where $D_{2/3}R$ in the whole brain is of interest. Although there is some
78	indication of reliable quantification of the extrastriatal $[^{11}C]$ raclopride signal ^{11,12} (i.e.,
79	adequate test-retest properties), there is a lack of data supporting quantifiable specific

80 binding in these regions. In spite of this, several PET-laboratories, including our own, 81 have applied $[^{11}C]$ raclopride to measure extrastriatal $D_{2/3}R$ availability in thalamus¹³⁻¹⁵. and in cortical regions $^{16-18}$. 82 83 84 In a statistical context, reliability is the repeatability or consistency of a measurement. In 85 PET research, the reliability of a binding measurement is typically assessed in a test-86 retest design, where PET-experiments are performed twice in a group of individuals, and 87 the between- and within-individual variability of the measurements are evaluated¹⁹. 88 Validity is the degree to which a measurement corresponds to what it is supposed to 89 measure. A common approach to assess validity, i.e., determine whether, and the extent 90 by which, the radioligand binds to the target of interest, is to perform a pharmacological 91 challenge where PET measurements are conducted before and after administration of a 92 competitor from a different chemical class. Several such studies have been published for $[^{11}C]$ raclopride and striatum²⁰⁻ 93 94 ²². Extrastriatally, however, the data is sparse. Using haloperidol as a competitor 95 Mawlawi (2001) showed that while achieving an occupancy of ~90% in striatum, only half of the purported specific binding in thalamus was displaced²¹. To our knowledge no 96 97 competition experiments assessing $[^{11}C]$ raclopride binding in cortex have been published. 98 99 The aim of the present study was to explore both the validity and reliability of 100 [¹¹C]raclopride binding in extrastriatal regions. We performed a competition study in 101 healthy controls attempting to replicate the results from Mawlawi (2001) for thalamus, 102 but also to assess [¹¹C]raclopride binding in cortex. This part of the study will from here

103 on be referred to as COMP. In the second part, from here on referred to as TRT, we

104 evaluated the reliability of [¹¹C]raclopride binding in extrastriatal regions using a test-

105 retest design in a separate sample of healthy controls.

106

107 Material and Methods

108 <u>Study design</u>

109 Two independent datasets were used for the competition and the test-retest design. In

110 COMP eleven healthy male subjects (21 - 29 (25±2.5) years) participated in a previously

111 published occupancy study of quetiapine²³, clinical trial registration number:

112 NCT00832221 (http://www.clinicaltrials.gov/). Quetiapine is a multimodal drug with

113 $D_{2/3}R$ antagonist properties (K_i = 245 nM)²⁴. Extended release (XR) or immediate release

114 (IR) quetiapine was given once-daily during 12 days. After 4 days of dose titration of

115 quetiapine XR from 50 mg to 300 mg, each subject received 300 mg quetiapine XR for 4

116 days. Treatment was then directly switched to 300 mg quetiapine IR for 4 days. The

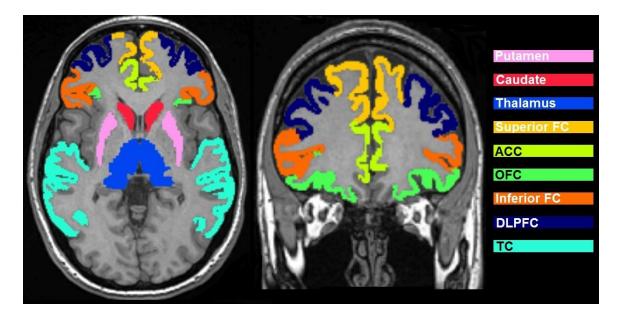
117 subjects participated in five PET measurements with [¹¹C]raclopride: at baseline and at

118 time for expected peak (T_{max}) and trough (T_{min}) plasma concentration for both drug

119 formulations. The PET-experiments at T_{max} were performed on the fourth day of

120 administration of XR and IR respectively and the T_{min} examination the morning after the

121 last dose of each formulation. See the original publication for details 23 .


122

123 TRT consist of data from nine (six females) healthy subjects (37 - 71 (53±12) years) not

124 previously published. The subjects participated in two PET measurements with

125 $[^{11}C]$ raclopride. Time between measurements was 14 to 27 days (20±5, mean±SD).

127	All subjects in both studies were healthy according to a clinical interview of medical
128	history; physical examination; psychiatric interview; blood and urine chemistry; and
129	magnetic resonance imaging (MRI) of the brain. The procedures in both studies were
130	approved by the Research Ethics Committee in Stockholm, Sweden, and the Radiation
131	Safety Committee at Karolinska University Hospital, Stockholm, and were performed in
132	accordance with the 2004 revision of the Declaration of Helsinki. All subjects gave their
133	written informed consent before participation.
134	
135	MRI
136	T1-weighted MRI images were acquired using a 1.5 T (COMP) or a 3 T (TRT) GE Signa
137	system (GE Medical Systems, USA).
138	
139	Regions of interest
140	FreeSurfer (version 6.0, <u>http://surfer.nmr.mgh.harvard.edu/</u>) ²⁵ was used to define ten
141	regions of interest (ROIs) on the T1-weighted MRIs of all subjects (Figure 1). ROIs were
142	chosen based on their relevance for both neurological and psychiatric disorders, as well
143	as for comparison with previous test-retest studies on extrastriatal [¹¹ C]raclopride
144	binding ^{11,12} .
145	

146

147 **FIGURE 1.** MRI for one subject from the COMP data with regions of interest overlaid.

148 Nucleus accumbens not visible. ACC, Anterior cingulate cortex; DLPFC, dorsolateral

- 149 prefrontal cortex; FC, frontal cortex; OFC, orbitofrontal cortex; TC, temporal cortex.
- 150

151 Radiochemistry

- 152 [¹¹C]raclopride was prepared as described previously²⁶. The injected radioactivity in
- 153 COMP ranged between 227-235 MBq (232±2) for the baseline examination; 207-236
- 154 (225±10) for Tmax XR (p=0.11); and 223-236 (231±5) for Tmax IR (p=0.67). The
- specific radioactivity was 336±264 GBq/µmol for the baseline examination;
- 156 342±280 GBq/µmol for Tmax XR (p=0.96); and 198±89 for Tmax IR (p=0.17). Injected
- 157 mass was $0.32\pm0.17 \mu g$ for the baseline examination; $0.36\pm0.29 \mu g$ for Tmax XR
- 158 (p=0.67); and 0.49±0.26 for Tmax IR (p=0.12). In TRT the injected radioactivity ranged
- 159 between 296-524 MBq (397±98) for PET1 and 156-561 (411±135) for PET2 (p=0.80).
- 160 The specific radioactivity was 148 ± 49 GBq/µmol for PET1 and 206 ± 75 GBq/µmol for
- 161 PET2 (p=0.07) corresponding to an injected mass of 1.08±0.64 µg for PET1 and
- 162 0.82±0.52 μg for PET2 (p=0.37).

163	
-----	--

164 <u>PET experimental procedure</u>

165	In each PET-experiment a saline solution containing [¹¹ C]raclopride was injected into a
166	antecubital vein as a bolus (<10s). The cannula was then immediately flushed with 10 mL
167	saline.
168	All subjects were examined using a high-resolution research tomograph (HRRT;
169	Siemens Molecular Imaging, USA) with a maximum spatial resolution of ~2mm full-
170	width-half-maximum ²⁷ . Transmission scans were performed prior to each PET
171	measurement in order to correct for signal attenuation.
172	Brain radioactivity was measured continuously, in COMP for 63 minutes and in
173	TRT for 51 minutes. The radioactivity was reconstructed in consecutive time frames, in
174	COMP, four 15 s, four 30 s, six 1 min, six 3 min and six 6 min frames. In TRT the initial
175	frame sequence was identical to COMP whereas the number of 6 min frames at end of
176	data acquisition was reduced to four.
177	
178	Quantitative analysis
179	PET images were corrected for head motion using a frame-to-first-minute realignment
180	procedure ²⁸ . Using SPM5 (Wellcome Department of Cognitive Neurology, University
181	College, London, UK), the T1-weighted MR-images were co-registered to a summed
182	PET-image. To obtain regional time-activity curves, the ROIs were projected onto the
183	realigned dynamic PET-image.
184	

185	From the time-activity curves, BP_{ND} was estimated using the simplified reference
186	tissue model (SRTM) ²⁹ . Cerebellum, a region where specific binding has been considered
187	negligible ⁸ , was used as reference. The cerebellar cortex volume was first defined using
188	FreeSurfer, then trimmed in an automated process to include only voxels above lowest
189	plane of pons; behind and below the posterior tip of the 4th ventricle. Only voxels located
190	laterally of the left- and rightmost point of the 4 th ventricle was included. The outer layer
191	of the resulting mask was then eroded by one voxel (Suplementary Figure S1).
192	
193	Calculations and statistics
194	Statistical analyses and data visualization were performed using R (version 3.3.3).

195 Occupancy (%) of quetiapine was calculated according to the equation:

196

197
$$Occupancy = \frac{(BP_{ND}^{baseline} - BP_{ND}^{drug})}{BP_{ND}^{baseline}} \times 100$$
(1)

198

199The validity of extrastriatal [11 C]raclopride BP_{ND} was tested comparing the baseline200examination with examinations after pretreatment with quetiapine XR and IR201respectively. Specific binding was defined as present when a significant (p < 0.05)</td>202decrease was showed using paired one sided t test.203204204Test-retest reproducibility for the TRT data was assessed using the following metrics:205206206Absolute variability (VAR):207

208
$$VAR = \frac{|BP_{ND}^{PET1} - BP_{ND}^{PET2}|}{\frac{1}{2}(BP_{ND}^{PET1} + BP_{ND}^{PET2})} \times 100$$
 (2)

209

VAR is a measure of the absolute reliability of a measurement expressed as a percentage of the average BP_{ND} value. PET1 refers to the first PET measurement, and PET2 refers to the second PET measurement. The reported value is the average VAR for all subjects.

- 214 Intraclass correlation coefficient (ICC):
- 215

$$216 \quad ICC = \frac{MS_B - MS_W}{MS_B + MS_W} \tag{3}$$

217

218 where MS_B denote the between subjects mean sum of squared variance and MS_W the 219 within subject mean sum of squared variance. ICC normalizes the measurement error to 220 the between-subject variance and will give information on how well a test can distinguish 221 between individuals. The score can vary between -1 and 1, values closer to 1 indicate that most of the variance is due to between-subject rather than within-subject variation³⁰. 222 223 224 Standard error of measurement (SEM): 225 $SEM = SD\sqrt{(1 - ICC)}$ 226 (4) 227 228 SEM is expressed in the same unit as the outcome (in this study BP_{ND}). It is an estimate 229 of the standard deviation of the measurement error and can be viewed as the uncertainty

surrounding the outcome in a single examination³⁰. Notably, though similarly named, the
standard error of the *mean* and standard error of *measurement* are diverse statistical
concepts.

233

234 **Results**

235

236	In the COMP dataset, two subjects were excluded before image analysis due to excessive
237	head movement during the baseline measurement. Excessive head movement was defined
238	as more than 3 mm displacement from the reference position in more than 10% of the
239	frames as seen in the realignment plot. In addition, PET acquisition data from the
240	quetiapine IR measurement for one subject was excluded due to a delay of the
241	examination of two hours beyond expected T_{max} for the plasma concentration of the drug.
242	Nine subjects were included in the final analysis of baseline and quetiapine XR data. For
243	the quetiapine IR data eight subjects were analyzed. In the TRT dataset SRTM failed in
244	the anterior cingulate cortex in one individual producing a negative BP_{ND} value. This
245	value was excluded from further analysis.
246	
247	Results from COMP are shown in Figure 2. In extrastriatal regions a significant decrease
248	of BP_{ND} was seen only in thalamus and temporal cortex (TC) after treatment with XR as
249	well as IR formulations of quetiapine (Table 1). In putamen the occupancy was $33\pm11\%$
250	and $51\pm4\%$ (mean \pm SD) in the quetiapine XR and IR measurements respectively.
251	Occupancy was lower in extrastriatal regions: $10\pm14\%$ and $20\pm17\%$ in thalamus and

252 12±11% and 18±17% in TC (Table 1).

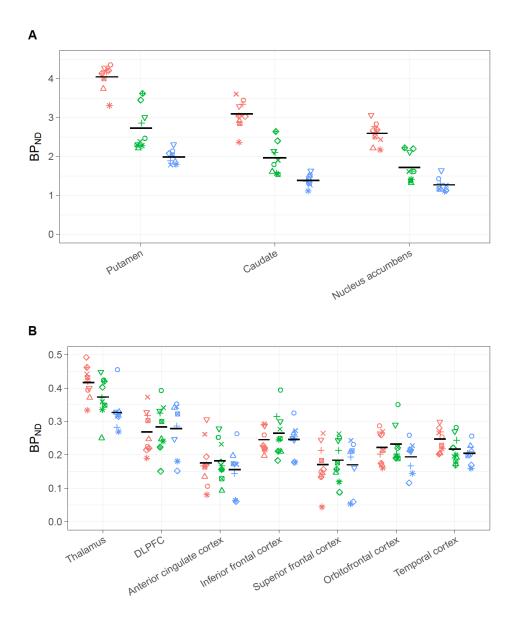


FIGURE 2. COMP [¹¹C]raclopride binding data. A) Striatal ROIs (for reference). Each ROI represents three PET examinations, from left to right: Baseline (red); at T_{max} post quetiapine XR (green); at T_{max} post quetiapine IR (blue). Horizontal bars represent mean *BP_{ND}*. B) Extrastriatal ROIs, same order of PET examinations as in A. DLPFC, dorsolateral prefrontal cortex.

- 259
- 260
- 261
- 262

Region	Baseline (n = 9)	Quetiapine XR (n = 9)			Quetiapine IR (n = 8)		
		test vs			test vs		
	Mean ± SD	Mean ± SD	baseline	000	Mean ± SD	baseline	<i>(-)</i>
	(BP _{ND})	(BP _{ND})	(p)	(%)	(BP _{ND})	(p)	осс (%)
Putamen	4.05±0.33	2.73±0.53	<0.001	32.58	1.99±0.19	< 0.001	50.62
Caudate	3.1±0.37	1.97±0.39	<0.001	36.14	1.39±0.16	<0.001	54.96
Nucleus Accumbens	2.6±0.29	1.72±0.36	<0.001	33.86	1.27±0.18	<0.001	50.75
Thalamus	0.42±0.05	0.37±0.06	0.029	9.93	0.33±0.06	0.007	19.53
DLPFC	0.27±0.06	0.28±0.07	0.747	-7.49	0.28±0.08	0.556	-3.19
Anterior cingulate	0.18±0.07	0.18±0.06	0.616	-15.82	0.16±0.07	0.287	-2.48
Inferior frontal cortex	0.25±0.04	0.26±0.07	0.865	-7.7	0.25±0.05	0.465	-0.44
Superior frontal cortex	0.17±0.07	0.18±0.06	0.782	-23.26	0.17±0.07	0.418	-2.67
OFC	0.22±0.05	0.23±0.06	0.602	-2.37	0.19±0.05	0.059	12.63
Temporal cortex	0.25±0.03	0.22±0.04	0.007	12.07	0.2±0.03	0.01	17.75

TABLE 1. Quetiapine occupancy data

P-values calculated using one sided paired t tests. BP_{ND}, binding potential using simplified reference tissue model; DLPFC, dorsolateral prefrontal cortex; occ, occupancy; OFC, orbitofrontal cortex; SD, standard deviation

263

264 TRT was completed in nine control subjects. ICC values were higher and VAR values

265 were lower in striatal ROIs, compared to extrastriatal regions (Table 2).

Region		Scan 1 (BP _{ND})	Scan 2 (BP _{ND})	Differenc	e			
	n	Mean ± SD	Mean ± SD	Range	SD	VAR (%)	ICC	SEM
Putamen	9	3.59±0.35	3.66±0.33	-0.17 to 0.36	0.16	3.71	0.88	0.12
Caudate	9	2.61±0.3	2.62±0.19	-0.28 to 0.28	0.19	6.15	0.74	0.12
Nucleus Accumbens	9	2.21±0.27	2.22±0.22	-0.35 to 0.43	0.24	7.42	0.57	0.15
Thalamus	9	0.42±0.08	0.45±0.06	-0.1 to 0.13	0.08	16.33	0.27	0.06
DLPFC	9	0.16±0.07	0.17±0.05	-0.03 to 0.08	0.03	25.96	0.81	0.03
Anterior cingulate	8	0.17±0.09	0.21±0.05	-0.03 to 0.15	0.06	35.43	0.57	0.05
Inferior frontal cortex	9	0.22±0.06	0.22±0.05	-0.05 to 0.06	0.04	12.91	0.82	0.02
Superior frontal cortex	9	0.13±0.08	0.15±0.04	-0.04 to 0.09	0.04	58.88	0.81	0.03
OFC	9	0.14±0.07	0.13±0.04	-0.13 to 0.04	0.05	21.63	0.64	0.03
Temporal cortex	9	0.21±0.05	0.21±0.03	-0.04 to 0.05	0.03	13.83	0.70	0.02

TABLE 2. [¹¹C]raclopride test-retest data; BP_{ND} values and statistics

BP_{ND}, binding potential using simplified reference tissue model; DLPFC, dorsolateral prefrontal cortex; ICC, interclass correlation coefficient; OFC, orbitofrontal cortex; SD, standard deviation; SEM, standard error of measurement; VAR, absolute variability

267 **Discussion**

268

269	We have examined the validity and reliability of the extrastriatal binding characteristics
270	of [¹¹ C]raclopride. No specific raclopride binding could be detected in most examined
271	cortical areas, as determined using a pharmacological competition analysis. In the
272	thalamus and TC ROIs we observed some indication of specific binding, although
273	occupancy was lower than in striatum. Further, the test-retest repeatability of extrastriatal
274	BP_{ND} was low in our data.
275	
276	Our results have implications when interpreting and planning clinical studies. Similar to
277	Mawlawi (2001) the COMP data indicate that only half of the calculated BP_{ND} in
278	thalamus reflect specific binding. Estimations of effect sizes need to be adjusted
279	accordingly. Assuming that 10% difference in the density of $D_{2/3}R$ in thalamus is
280	considered a relevant clinical finding in a cross-sectional study, the corresponding
281	apparent effect size would be ~0.8, requiring 25 subjects per group for 80% power. Our
282	results however indicate that the actual effect size would be ~0.3, translating into 175
283	subjects per group. Importantly, a non-significant finding in an extrastriatal region in a
284	[¹¹ C]raclopride study powered for striatal regions will give very little information on
285	whether an effect is present or not.
286	
287	We investigated the test-retest repeatability of [¹¹ C]raclopride binding in a sample with a
288	clinically relevant age- and gender diversity. We observed a VAR of 3.7-7.4% and ICC
289	between 0.57-0.88 in striatal regions. The results are similar to a previous test-retest study

290	of [¹¹ C]raclopride in a bolus-constant infusion protocol and a high resolution PET
291	system ¹¹ , and numerically superior to previously published lower resolution PET
292	data ^{31,32} . The reliability of our data was lower in extrastriatal regions compared to
293	striatum (Table 2). We were not able to replicate the VAR values of 3.7-13.1% or ICC of
294	0.64-0.92 in the extrastriatal regions reported by Alakurtti et al (2015). Further, it should
295	be noted that before validity is proven it is difficult to interpret ICC and VAR, or rather:
296	poor values still indicate a problem even if the validity is good, but before accepting a
297	high ICC or low VAR as indicative of reliable specific binding, validity need to be
298	established.
299	
300	Our data indicate that the greater part of $[^{11}C]$ raclopride BP_{ND} measured in neocortex
301	does not reflect specific binding. However, since we consistently measure higher
302	[¹¹ C]raclopride signal in, e.g., frontal cortex, compared to cerebellum the question arises
303	to what this difference should be ascribed if not to specific binding? The explanation
304	suggested by Mawlawi (2001) is a systematically lower non-displaceable compartment
305	(V_{ND}) in cerebellum compared to cerebral target regions ²¹ , a V_{ND} -bias. This interpretation
306	is in line with our observations of lower occupancy in regions with lower densities of
307	$D_{2/3}R$ (see Figure S2 for an explanation on how V_{ND} -bias propagates to occupancy
308	values). The presence of a discrete difference in V_{ND} between target and reference will
309	not matter much in receptor rich regions (i.e. striatum) but will become a serious validity
310	issue in low-binding regions. If, for example, V_{ND} is 10% lower in the reference region
311	then the "true" BP_{ND} in the target region will be falsely increased with 0.1 and 10% ³³ . In,

812 e.g., frontal cortex where we might have a "true" [¹¹C]raclopride BP_{ND} of 0.05 or less,

even a small V_{ND} -bias would thus be highly problematic. However, since the protocol did not include arterial blood sampling, a more detailed analysis of V_{ND} in different ROIs was not possible.

316

317 There are other possible explanations for the observed differences in quetiapine

318 occupancy between high and low density $D_{2/3}R$ regions: (i) quetiapine could have

319 different occupancy in different brain regions. In the time span between baseline- and

320 post drug examinations quetiapine could (ii) cause the extrastriatal expression of $D_{2/3}R$ to

321 increase, or (iii) cause the concentration of endogenous dopamine to decrease. However,

322 several previous occupancy studies of quetiapine at steady-state using high affinity

323 radioligands have shown similar or higher occupancy of $D_{2/3}R$ in cortex compared to

324 striatum^{34,35} and no study has, to our knowledge, shown lower occupancy. This makes i-

325 iii unlikely explanations to our findings.

326

327 There are some limitations to this study. The standardized uptake value (SUV) in

328 cerebellum was lower in the examinations performed after pretreatment with quetiapine

329 compared to baseline (supplement, Figure S3 and Table S1). This may be explained by (i)

330 presence of specific [¹¹C]raclopride binding to $D_{2/3}R$ in cerebellum; (ii) that quetiapine

displaces non-specific binding of raclopride, or (iii) that quetiapine decreases

332 [¹¹C]raclopride brain uptake. (i) will result in an underestimation of occupancy equally in

low- and high binding regions and would thus not alter the conclusions of our results^{33,36}.

The same is true for (ii) given that the displacement of non-specific binding is equal in all

regions. Additionally, we observed that centrum semiovale (Figure S1), a region

336	containing only white matter, showed similar decrease of SUV (Figure S3) which lends
337	support to explanation (ii) and (iii). The explanation we find most probable, (iii), would
338	also likely not affect our results since the decrease of measured radioactivity would be
339	proportional in target and reference regions.
340	Regarding the test-retest dataset, a caveat that should be highlighted is the fact
341	that time between examinations was 20 ± 5 days. Most commonly, PET test-retest
342	examinations are performed within 1-2 days. This protocol was chosen to mimic that of
343	typical clinical studies where patients are examined repeatedly under an extended period
344	of time, an established test-retest design for evaluation of clinical applicability ^{32,37} .
345	
346	Conclusions

347

In most brain regions outside striatum, we could not find proof of valid [¹¹C]raclopride 348 349 binding quantification, as little or no decrease in BP_{ND} was seen after administration of a 350 competitor. Further, we found extrastriatal test-retest repeatability to be poor. While confirming the validity and reliability of [¹¹C]raclopride binding quantification in 351 352 striatum, our findings indicate that $[^{11}C]$ raclopride PET not is a suitable tool for $D_{2/3}R$ 353 binding quantification in extrastriatal regions. Before validity is proven strong caution is warranted when interpreting studies applying $[^{11}C]$ raclopride for measuring of $D_{2/3}R$ 354 355 availability in extrastriatal regions.

356

357 **References**

358

359	1.	Kalia L V, Lang AE, Shulman G. Parkinson 's disease. Lancet 2015; 386: 896-
360		912.
361	2.	Howes OD, Kambeitz J, Kim E, et al. The nature of dopamine dysfunction in
362		schizophrenia and what this means for treatment: Meta-analysisof imaging studies.
363		Arch Gen Psychiatry 2012; 69: 776–786.
364	3.	Volkow ND, Wiers CE, Shokri-Kojori E, et al. Neurochemical and metabolic
365		effects of acute and chronic alcohol in the human brain: Studies with positron
366		emission tomography. Neuropharmacology 2017; 122: 175-188.
367	4.	Hall H, Farde L, Halldin C, et al. Autoradiographic localization of extrastriatal D2-
368		dopamine receptors in the human brain using [125I]epidepride. Synapse. 1996; 23:
369		115–123.
370	5.	Aalto S. Frontal and Temporal Dopamine Release during Working Memory and
371		Attention Tasks in Healthy Humans: a Positron Emission Tomography Study
372		Using the High-Affinity Dopamine D2 Receptor Ligand [11C]FLB 457. J
373		Neurosci 2005; 25: 2471–2477.
374	6.	Piel M, Vernaleken I, Rösch F. Positron emission tomography in CNS drug
375		discovery and drug monitoring. J Med Chem 2014; 57: 9232-9258.
376	7.	Farde L, Ehrin E, Eriksson L, et al. Substituted benzamides as ligands for
377		visualization of dopamine receptor binding in the human brain by positron
378		emission tomography. Proc Natl Acad Sci 1985; 82: 3863-3867.
379	8.	Hall H, Farde L, Hallden C, et al. Autoradiographic localization of extrastriatal
380		D2-dopamine receptors in the human brain using [125I]epidepride. Synapse 1996;
381		23: 115–123.
382	9.	Mukherjee J, Christian BT, Dunigan KA, et al. Brain imaging of 18F-fallypride in
383		normal volunteers: Blood analysis, distribution, test-retest studies, and preliminary
384		assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse
385		2002; 46: 170–188.
386	10.	Farde L, Suhara T, Nyberg S, et al. A PET-study of [11C]FLB 457 binding to
387		extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-
388		treated patients. Psychopharmacology (Berl) 1997; 133: 396-404.
389	11.	Alakurtti K, Johansson JJ, Joutsa J, et al. Long-term test-retest reliability of striatal

390		and extrastriatal dopamine D2/3 receptor binding: study with [11C]raclopride and
391		high-resolution PET. J Cereb Blood Flow Metab 2015; 35: 1199–1205.
392	12.	Hirvonen J, Aalto S, Lumme V, et al. Measurement of striatal and thalamic
393		dopamine D2 receptor binding with 11C-raclopride. Nucl Med Commun 2003; 24:
394		1207–14.
395	13.	Hirvonen J, Karlsson H, Kajander J, et al. Striatal dopamine D2 receptors in
396		medication-naive patients with major depressive disorder as assessed with
397		[11C]raclopride PET. Psychopharmacology (Berl) 2008; 197: 581–590.
398	14.	Volkow ND, Wang G-J, Fowler JS, et al. Decreased striatal dopaminergic
399		responsiveness in detoxified cocaine-dependent subjects. Nature 1997; 386: 830-
400		833.
401	15.	Talvik M, Nordström AL, Okubo Y, et al. Dopamine D2receptor binding in drug-
402		naïve patients with schizophrenia examined with raclopride-C11 and positron
403		emission tomography. Psychiatry Res - Neuroimaging 2006; 148: 165–173.
404	16.	Köhncke Y, Papenberg G, Jonasson L, et al. Self-rated intensity of habitual
405		physical activities is positively associated with dopamine D 2/3 receptor
406		availability and cognition. <i>Neuroimage</i> 2018; 181: 605–616.
407	17.	Stokes PRA, Egerton A, Watson B, et al. Significant decreases in frontal and
408		temporal [11C]-raclopride binding after THC challenge. <i>Neuroimage</i> 2010; 52:
409		1521–1527.
410	18.	Pavese N, Andrews TC, Brooks DJ, et al. Progressive striatal and cortical
411		dopamine receptor dysfunction in Huntington's disease: A pet study. Brain 2003;
412		126: 1127–1135.
413	19.	Matheson GJ. We need to talk about reliability: Making better use of test retest
414		studies for study design and interpretation. <i>bioRxiv</i> .
415	20.	Farde L, Ehrin E, Eriksson L, et al. Substituted benzamides as ligands for
416		visualization of dopamine receptor binding in the human brain by positron
417		emission tomography. Proc Natl Acad Sci 1985; 82: 3863 LP-3867.
418	21.	Mawlawi O, Martinez D, Slifstein M, et al. Imaging human mesolimbic dopamine
419		transmission with positron emission tomography: I. Accuracy and precision of
420		D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow

421		<i>Metab</i> 2001; 21: 1034–57.
422	22.	Yokoi F, Gründer G, Biziere K, et al. Dopamine D2 and D3 Receptor Occupancy
423		in Normal Humans Treated with the Antipsychotic Drug Aripiprazole (OPC
424		14597): A Study Using Positron Emission Tomography and [11C]Raclopride.
425		Neuropsychopharmacology 2002; 27: 248.
426	23.	Nord M, Nyberg S, Brogren J, et al. Comparison of D2 dopamine receptor
427		occupancy after oral administration of quetiapine fumarate immediate-release and
428		extended-release formulations in healthy subjects. Int J Neuropsychopharmacol
429		2011; 14: 1357–1366.
430	24.	Jensen NH, Rodriguiz RM, Caron MG, et al. N-Desalkylquetiapine, a Potent
431		Norepinephrine Reuptake Inhibitor and Partial 5-HT1A Agonist, as a Putative
432		Mediator of Quetiapine's Antidepressant Activity.
433		Neuropsychopharmacology 2007; 33: 2303.
434	25.	Fischl B. FreeSurfer. Neuroimage 2012; 62: 774–781.
435	26.	Langer O, Någren K, Dolle F, et al. Precursor synthesis and radiolabelling of the
436		dopamine D2 receptor ligand [11C]raclopride from [11C]methyl triflate. J Label
437		Compd Radiopharm 1999; 42: 1183–1193.
438	27.	Varrone A, Sjöholm N, Eriksson L, et al. Advancement in PET quantification
439		using 3D-OP-OSEM point spread function reconstruction with the HRRT. Eur J
440		Nucl Med Mol Imaging 2009; 36: 1639–1650.
441	28.	Schain M, Tóth M, Cselényi Z, et al. Quantification of serotonin transporter
442		availability with [11C]MADAM - A comparison between the ECAT HRRT and
443		HR systems. Neuroimage 2012; 60: 800-807.
444	29.	Lammertsma AA, Hume SP. Simplified Reference Tissue Model for PET Receptor
445		Studies. Neuroimage 1996; 4: 153–158.
446	30.	Weir JP. Quantifying Test-Retest Reliability Using the Intraclass Correlation
447		Coefficient and the Sem. J Strength Cond Res 2005; 19: 231-240.
448	31.	Hietala J, Någren K, Lehikoinen P, et al. Measurement of striatal D2 dopamine
449		receptor density and affinity with $[11C]$ -raclopride in vivo: a test-retest analysis. J
450		Cereb Blood Flow Metab 1999; 19: 210–7.
451	32.	Schlösser R, Brodie JD, Dewey SL, et al. Long-term stability of neurotransmitter

452		activity investigated with 11C-raclopride PET. Synapse 1998; 28: 66–70.
453	33.	Salinas CA, Searle GE, Gunn RN. The simpli fi ed reference tissue model : model
454		assumption violations and their impact on binding potential. J Cereb Blood Flow
455		& Metab 2014; 35: 304–311.
456	34.	Kessler RM, Ansari MS, Riccardi P, et al. Occupancy of Striatal and Extrastriatal
457		Dopamine D2 Receptors by Clozapine and Quetiapine. Neuropsychopharmacology
458		2006; 31: 1991–2001.
459	35.	Vernaleken I, Janouschek H, Raptis M, et al. Dopamine D2/3 receptor occupancy
460		by quetiapine in striatal and extrastriatal areas. Int J Neuropsychopharmacol 2010;
461		13: 951–960.
462	36.	Olsson H, Halldin C, Farde L. Differentiation of extrastriatal dopamine D2
463		receptor density and affinity in the human brain using PET. 2004; 22: 794-803.
464	37.	Lundberg J, Halldin C, Farde L. Measurement of serotonin transporter binding
465		with PET and [11C]MADAM: A test-retest reproducibility study. Synapse 2006;
466		60: 256–263.
467		