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Abstract

Background: Linear mixed-effects models (LMM) are a leading method in conducting genome-wide
association studies (GWAS) but require residual maximum likelihood (REML) estimation of variance
components, which is computationally demanding. Previous work has reduced the computational burden of
variance component estimation by replacing direct matrix operations with iterative and stochastic methods and
by employing loose tolerances to limit the number of iterations in the REML optimization procedure. Here, we
introduce two novel algorithms, stochastic Lanczos derivative-free REML (SLDF_REML) and Lanczos first-order
Monte Carlo REML (L_FOMC_REML), that exploit problem structure via the principle of Krylov subspace
shift-invariance to speed computation beyond existing methods. Both novel algorithms only require a single
round of computation involving iterative matrix operations, after which their respective objectives can be
repeatedly evaluated using vector operations. Further, in contrast to existing stochastic methods, SLDF_REML
can exploit precomputed genomic relatedness matrices (GRMs), when available, to further speed computation.
Results: Results of numerical experiments are congruent with theory and demonstrate that
interpreted-language implementations of both algorithms match or exceed existing compiled-language software
packages in speed, accuracy, and flexibility.
Conclusions: Both the SLDF_REML and L_FOMC_REML algorithms outperform existing methods for REML
estimation of variance components for LMM and are suitable for incorporation into existing GWAS LMM
software implementations.
Keywords: GWAS; linear mixed-effects models; variance components; REML; conjugate gradients; stochastic
trace estimation; stochastic Lanczos quadrature

Background
Linear mixed-effects modeling (LMM) is a leading
methodology employed in genome-wide association
studies (GWAS) of complex traits in humans, offering
the dual benefits of controlling for population strat-
ification while permitting the inclusion of data from
related individuals [1]. However, the implementation
of LMM comes at the cost of increased computational
burden relative to ordinary least-squares regression,
particularly in performing residual maximum likeli-
hood (REML) estimation of genomic variance com-
ponents. Conventional REML algorithms require mul-
tiple O(n3) or O(mn2) matrix operations, where m
and n are the numbers of markers and individuals, re-
spectively, rendering them infeasible for large biobank
scale data sets. As a result, the problem of increasing
*Correspondence: richard.border@colorado.edu
1Institute for Behavioral Genetics, University of Colorado Boulder, 80309,
Boulder, CO, United Sates
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the computational efficiency of REML estimation of
genomic variance components has generated consider-
able research activity [2–6].
In the case of the standard two variance compo-

nent model (1), the estimation of which is the focus of
the current research, previous efforts toward increas-
ing computational efficiency fit into two primary cate-
gories: 1., reducing the number of cubic time complex-
ity matrix operations needed to achieve convergence;
and 2., substituting stochastic and iterative matrix op-
erations for deterministic, direct methods to obtain
procedures with quadratic time complexity. The first
approach is embodied by the methods implemented in
the FaST-LMM and GEMMA packages [2, 4], which
take advantage of the fact that the genetic relatedness
matrix (GRM) and identity matrix comprising the co-
variance structure are simultaneously diagonalizable.
As a result, after performing a single spectral decom-
position of the GRM and a small number of matrix-
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vector multiplications, the REML criterion and its
gradient and Hessian can be repeatedly evaluated us-
ing only vector operations. The second approach is ex-
emplified by the popular BOLT-LMM software [5, 6],
which avoids all cubic operations by solving linear sys-
tems via the method of conjugate gradients (CG) and
employing stochastic trace estimators in place of de-
terministic computations.
In the current research, we propose two algorithms,

stochastic Lanczos derivative-free residual maximum
likelihood (SLDF_REML; Algorithm 3) and Lanczos
first-order Monte Carlo residual maximum likelihood
(L_FOMC_REML; Algorithm 4), that combine features of
both approaches (Figure 1). Here, we translate the si-
multaneous diagonalizability of the heritable and non-
heritable components of the covariance structure to
stochastic and iterative methods via the principle of
Krylov subspace shift-invariance. As a result, we only
need to compute the costliest portions of the objec-
tive function once (via stochastic/iterative methods),
computing all subsequent iterations of the REML opti-
mization problem only using vector operations. We de-
velop the theory underlying these methods and demon-
strate their performance relative to previous methods
via numerical experiment.

Method
We consider the two component genomic variance com-
ponents model commonly employed in LMM associa-
tion studies [1], which is of the form

y = Xβ + 1√
m
Zu+ e,

u
i.i.d.∼ N (0, σ2

g), e
i.i.d.∼ N (0, σ2

e), (1)

where y is a measured phenotype, the c� n columns
of X ∈ Rn×c are covariates (including an intercept
term) with corresponding fixed effects β, and Z ∈
Rn×m is a matrix of n individuals’ standardized geno-
types at m loci. Without loss of generality, we assume
that X has full column rank; in the case of numerical
rank deficiency we can simply replace X by the opti-
mal full rank approximation generated by its economy
singular value decomposition or rank revealing QR de-
composition. The latent genetics effects u ∈ Rm and
residuals e ∈ Rn are random variables with distribu-
tions parametrized by the heritable and non-heritable
variance components, σ2

g and σ2
e , respectively. The

REML criterion corresponds to the marginal likeli-
hood of σ2

g , σ
2
e |KT y , where KT projects to an (n− c)-

dimensional subspace orthogonal to the covariate vec-
tors such that the null space of KT is exactly the col-
umn space of X [7]. In other words KT : Rn → S ⊂
Rn−c such that Rn = S ⊕ col X . The transformed

random variable KT y has the marginal distribution
KT y ∼MVN (0, σ2

g
1
mK

TZZTK+σ2
eKK

T ), which we
reparametrize as KT y ∼MVN (0, σ2

gK
THτK), where

Hτ = 1
m
ZZT + τIn, τ = σ2

e/σ
2
g . (2)

Here, 1
mZZ

T , which indicates the average covariance
between individuals’ standardized genotypes, is often
referred to as the genomic relatedness matrix (GRM).
The REML criterion, or marginal log likelihood, can
be expressed as a function of τ :

`(τ |KT y) ∝− (n− c) ln(σ̂2
g(τ))− σ̂2

e(τ)−1yTPτy

− ln(det(KTHτK)), (3)

where Pτ = K(KTHτK)−1KT , and, as implied by
the REML first-order (stationarity) conditions, σ̂2

e(τ)
is the expected residual variance component given τ
and σ̂2

g(τ) = σ̂2
e(τ)/τ [7, 8]. In practice, K is never

explicitly formed.
Naïve procedures for maximizing the REML crite-

rion require evaluating (3) or its derivatives at each it-
eration of the optimization procedure. Previous meth-
ods either reduce the number of necessary cubic time
complexity operations to one by exploiting problem
structure, or subsitute quadratic time complexity iter-
ative and stochastic matrix operations for direct com-
putations (Figure 1). Here, we unify these approaches
via the principle of Krylov subspace shift invariance to
achieve methods that only require a single iteration of
quadratic time complexity operations.
In what follows, we first present a brief survey of

the Lanczos process, its applications to families of
shifted linear systems, and its use in constructing
Gaussian quadratures for spectral matrix functions.
We assume familiarity with the method of conjugate
gradients and Gaussian quadrature; if not, see [9] and
[10], respectively. We present methods toward the goal
of efficiently evaluating the quadratic form and log-
determinant terms appearing in the REML criterion
(3). We then present the details of the SLDF_REML and
L_FOMC_REML algorithms, both of which exploit prob-
lem structure via Lanczos process-based methods in
order to speed computation. Finally, we derive expres-
sions for the computational complexity of the present
algorithms, which we confirm via numerical experi-
ment.

Preliminaries
The notation in this section is self-contained. Our pre-
sentation borrows from the literature extensively; fur-
ther details on the (block) Lanczos procedure [9, 11],
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Figure 1 Time complexity analogies with respect to existing and proposed methods. Heuristically, the novel algorithms (bottom
right) are to the stochastic, iterative algorithm implemented in the BOLT-LMM software [5, 6] (bottom left) as the direct methods
exploiting the shifted structure of the the two component genomic variance component model (1) (e.g., FaST-LMM and GEMMA
[2, 4]; top right) are to standard direct methods (top left). For simplicity, we assume here that the number of markers is equal to the
number of observations and omit low-order terms related to the spectral conditioning of the covariance structure and the number of
random vectors generated by the stochastic methods; further details are provided in Table 1. neval denotes the number of objective
function evaluations needed to achieve convergence.

conjugate gradients for shifted linear systems [12, 13],
stochastic trace estimation [14, 15], and stochastic
Lanczos quadrature [16–18] are suggested in the bibli-
ography.

Krylov subspaces
Consider a symmetric positive-definite matrix A and
nonzero vector b. Define the mth Krylov subspace by
the span of the first m − 1 monomials in A applied
to b; that is, Km(A, b) = span {Akb : k = 0, . . . ,m −
1}. Krylov subspaces are shift invariant—i.e., for real
numbers σ, we have Km(A, b) = Km(A+ σI, b).

The Lanczos procedure
The Lanczos procedure generates the decomposition
AUm = UmTm, where the columns u1, . . . , um of Um
form an orthonormal basis for Km(A, b) and the Ja-
cobi matrices Tm ∈ Rm×m are symmetric tridiagonal.
Choosing u1 = b/‖b‖, successive columns are uniquely
determined by the sequence of Lanczos polynomials
{pk}m−1

k=1 such that each uk = pk−1(A)u1 and each pk is
the characteristic polynomial of Jacobi matrix Tk con-
sisting of the first k rows and columns of Tm. The Lanc-
zos procedure is equivalent to the well-known method
of conjugate gradients (CG) for solving the linear sys-
tem Ax = b in that the mth step CG approximate
solution x(m) is obtained from the above decomposi-
tion using only vector operations (see Algorithm 1).

The number of steps m prior to termination corre-
sponds to the number of CG iterations need to bound
the norm of the residual below a specified tolerance:
‖Ax(m) − b‖ < ε. The rate of convergence depends on
the spectral properties of A and can be controlled in
terms of the spectral condition number κ(A). In the
present application, the fact that all complex traits
of interest generally have a non-trivial non-heritable
component results in well-conditioned systems [5, 19].

Solving families of shifted linear systems
Having applied the Lanczos process to the seed system
Ax = b, shift-invariance can be exploited to obtain the
mth step CG approximate solution x(m)

σ to the shifted
linear system Aσxσ = (A+σI)xσ = b, only using vec-
tor operations [12]. It can be shown that any positive
shift by σ ≥ 0 improves the rate of convergence such
that ‖Aσx(m)

σ − b‖ = δm
δm+σ‖Ax

(m) − b‖, where δm > 0
is the mth diagonal element of the Lanczos Jacobi ma-
trix corresponding to Km(A, b).

Lanczos polynomials and Gaussian quadrature
Additionally, the Lanczos polynomials comprise a se-
quence of orthogonal polynomials with respect to the
spectral measure

µA,v(t) =
`:λ`≤t∑
j=1

(QT v)2
j ,
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Algorithm 1: Lanczos conjugate gradients
solver for shifted systems (L_Solve)
input : shift σ ≥ 0, right hand sides B = {bj ∈ Rn}cj=1

and their Lanczos decompositions Uj ∈ Rn×m,
Tj ∈ Rm×m where col Uj = Km(A, bj).

output: Approximate solution X(m)
σ ≈ (A+ σI)−1B.

1 begin
2 for j = 1, . . . , c do // iterate over RHSs

// initialize coefficients:
3 δ1:m ← {(Tj)i,i}mi=1 + σ~1m // recycle Jacobi
4 β2:m ← {(Tj)i,i−1}mi=2 // coefficients
5 ω0 ← 0
6 γ0 ← 1
7 ρ1 ← ‖bj‖

// initialize vectors:
8 xj ← ~0n // CG approx solutions
9 rj ← bj // CG residuals

10 pj ← bj // search directions
// main loop:

11 for k = 1, . . . ,m do
// update coefficients

12 γk ← (δk − ωk−1/γk−1)−1

13 ωk ← (βk+1γk)2

14 ρk+1 ← −βk+1γkρk
// update CG soln, residual, search dir

15 xj ← xj + γkpj
16 rj ← ρk+1({Uj}k+1) // recycle basis
17 pj ← rj + ωkpj
18 end
19 end
20 return X

(m)
σ = [x1| · · · |xc]

21 end

where A = QΛQT is the spectral decomposition
[16, 17]. Quadratic forms vT f(A)v involving spectral
functions f(A) = Qf(Λ)QT , e.g., for the matrix loga-
rithm, vT (logA)v =

∑n
i=1[ln(λi)(QT v)2

i ], can be writ-
ten as Riemann–Stieltjes integrals of the form

vTQf(Λ)QT v =
∫ λn

λ1

f(t)dµA,v(t). (4)

The Lanczos decomposition AUm = UmTm gener-
ates the weights and nodes for an m-point Gaussian
quadrature approximating the above integral. Denot-
ing the spectral decomposition of the jth Jacobi matrix
Tj = WjDjW

T
j for j = 1, . . . ,m, we approximate (4)

as

∫ λn

λ1

f(t)dµA,v(t) ≈
m∑
`=1

ωj,`f(θj,`),

where θj,` = {Dj}`,` and ωj,` = {eT1 Wj}`. As m here
corresponds to the number of CG iterations needed to
ensure that ‖Ax(m)−v‖ is smaller than a specified tol-
erance, the tridiagonal Jacobi matrices are small and

Algorithm 2: Stochastic Lanczos quadrature
approximate log determinant of shifted systems
(SLQ_LDet)
input : shift σ ≥ 0, eigenvectors and eigenvalues

WVj ∈ Rm×m, DVj ∈ Rm of Jacobi matrices
corresponding to K(A, vj) for each probing vector,
j = 1, . . . , nrand

output: approximate log determinant
soln ≈ log(det(A+ σI))

1 begin
2 soln = 0
3 for j = 1, . . . , nrand do
4 for i = 1, . . . ,m do
5 soln← soln + (WVj )2

i,1 ln((DVj )i + σ)
6 end
7 end
8 return (n/nrand)soln
9 end

calculating their spectral decompositions is computa-
tionally trivial.

Stochastic Lanczos quadrature
Stochastic Lanczos quadrature (SLQ) combines the
above quadrature formulation with Hutchinson-type
stochastic trace estimators [16]. Such estimators
approximate the trace of a matrix H ∈ Rn×n
by a weighted sum of quadratic forms tr(H) ≈
n

nrand

∑nrand
k=1 vTkHvk for normalized, suitably dis-

tributed i.i.d. random probing vectors {vj}nrand
j=1 [14].

The SLQ approximate trace of a spectral function of
a matrix, tr(f(A)), is then

tr(f(A)) ≈ n

nrand

nrand∑
k=1

vTk Qf(A)QT vk

= n

nrand

nrand∑
k=1

∫ λn

λ1

f(t)dµA,vk(t)

≈ n

nrand

nrand∑
k=1

mκ∑
`=1

ωk,`f(θk,`). (5)

Whereas the number of probing vectors nrand is chosen
a priori, the number quadrature nodesmκ corresponds
to the number of conjugate gradient iterations needed
to ensure ‖Aσx(mκ)

jσ − vj‖ is less than a specified tol-
erance for each j = 1, . . . , nrand.

SLQ and shift invariance
For a fixed probing vector vi, we can exploit the shift
invariance of Km(A, vi) to efficiently update Gaus-
sian quadrature generated by the corresponding Lanc-
zos decomposition AUm = UmTm. Again denoting
the spectral decomposition of the Jacobi matrix Ti =
WiDiW

T
i , the Lanczos decomposition of the shifted
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system is simply AσUm = UmWm(Dm + σIm)WT
m.

Thus, given the approximation (5) for tr(f(A)), we can
efficiently compute an approximation of tr(f(Aσ)) for
any σ > 0. In Algorithm 2 we implement a method for
estimating tr(log(Aσ)) in O(nrand) operations given
the spectral decompositions of the Jacobi matrices cor-
responding to Km(A, vj) for probing vectors {vj}nrand

j=1 .

Block methods
For multiple right hand sides B = [b1| · · · |bc], the
Lanczos procedure can be generalized to the block
Krylov subspace Km(A,B) =

⊗c
j=1Km(A, bj), result-

ing in a collection of Lanczos decompositions AUj =
UjTj such that {Uj}1 = bj/‖bj‖ for j = 1, . . . , c. This
process is equivalent to block CG methods in that
the Jacobi matrices can again be used to generate
an approximate solution X(m) to the matrix equation
AX(m) = B. We provide an implementation of the
block Lanczos procedure in L_Seed [20], employing a
conservative convergence criterion defined in terms of
the magnitude of the (1, 2) operator norm of the resid-
ual ‖AB−X(m)‖1→2 = maxj ‖Abj−x(m)

j ‖2. Compared
to performing c separate Lanczos procedures with re-
spect to {Km(A, bj)}cj=1, block Lanczos with respect
to Km(A,B), with B = [b1| · · · |bc], produces the same
result (for a fixed number of steps). However, block
Lanczos employs BLAS-3 operations and is thus more
performant, especially when implemented on top of
parallelized linear algebra subroutines.

A derivative-free REML algorithm
We propose the stochastic Lanczos derivative-free
residual maximum likelihood algorithm (SLDF_REML;
Algorithm 3), a method for efficiently and repeatedly
evaluating the REML criterion, which is then subject
to a zeroth-order optimization scheme. To achieve this
goal, we first identify the parameter space of inter-
est with a family of shifted linear systems. We then
develop a scheme for evaluating the quadratic form
yTPτy and log determinant ln(det(KTHτK)) terms
in the REML criterion (3) that use the previously dis-
cussed Lanczos methods to exploit this shifted struc-
ture. Specifically, after obtaining a collection of Lanc-
zos decompositions, we can repeatedly solve the lin-
ear systems involved in the quadratic form term via
Lanczos conjugate gradients and approximate the log
determinant term via stochastic Lanczos quadrature.

The parameter space as shifted linear systems
Given a range of possible values of the standardized
genetic variance component, or heritability,

h2 = σ2
g/(σ2

g + σ2
e), h2 ∈ [h2

min, h
2
max], (6)

we set τ0 = (1 − h2
max)/h2

max and define H0 = Hτ0 ,
noting that for all τ ∈ Θ = {(1 − h2)/h2 : h2 ∈
[h2

min, h
2
max]}, the spectral condition number of Hτ will

be less than that of H0 as the identity component of
Hτ will only increase. Further, we have now identified
elements of our parameter space τ ∈ Θ with the family
of shifted linear systems

Hτ0 = {Hσ = Hτ = H0 + σIn : σ = τ − τ0}.

For any vector v for which we have computed the Lanc-
zos decomposition H0U = UT with the first column
of U equal to v/‖v‖, we can use Algorithm 1 to obtain
the CG approximate solution xσ ≈ H−1

σ v for all σ ≥ 0
in O(n) operations.

The quadratic form
Directly evaluating the quadratic form

yTPτy = yTK(KTHτK)−1KT y (7)

is computationally demanding and is typically avoided
in direct estimation methods [7, 8]. Writing the com-
plete QR decomposition of the covariate matrix X =
[QX |QX⊥ ]R allows us to define KT = QTX⊥ , not-
ing that substituting QX⊥QTX⊥ for KT preserves the
value of (7). QX⊥QTX⊥ is equivalent to the orthog-
onal projection operator S : v 7→ v − QXQ

T
Xv,

which admits an efficient implicit construction and
is computed in O(nc2) operations via the economy
QR decomposition X = QXRX . Then, reexpress-
ing (7) as yTS(SHτS)†Sy, we can use the Lanczos
process to construct an orthonormal basis and cor-
responding Jacobi matrix for the Krylov subspace
K(SH0S, Sy). We can then obtain the CG approx-
imation of yTS(SHσS)−1Sy using vector operations
as, for any shift σ, we have yTS(SHσS)†Sy =
yTS(SH0S+σIn)−1Sy (see Lemma 1 in Appendix for
proof).

The log determinant
We use an equivalent formulation [7, 21] of the term
ln(det(KTHτK)), rewriting it as

ln(det(Hτ )) + ln(det(XTH−1
τ X))− ln(det(XTX)).

The det(XTX) term is constant with respect to τ and
can be disregarded. For c� n, det(XTH−1

τ X) is com-
putationally trivial via direct methods given H−1

τ X,
which we can compute for all parameter values of in-
terest in O(n) operations having first applied the block
Lanczos process with respect to K(H0, X). Comput-
ing the block Lanczos decomposition corresponding to
K(H0, X), which is only performed once, unfortunately
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Algorithm 3: Stochastic Lanczos derivative-
free residual maximum likelihood (SLDF-REML)
input : standardized genotype matrix Z ∈ Rn×m or

genomic relatedness matrix ZZT ∈ Rn×n,
phenotype vector y ∈ Rn covariate matrix
X ∈ Rn×c with c� n, range of values to consider
for standardized genomic variance component
Θ = [h2

min, h
2
max], number of probing vectors for

trace estimator nrand, scalar optimization routine
over search interval optimize(f : Θ→ R, a, b)

output: estimated variance components σ̂2
g , σ̂

2
e

define : qr: economy QR decomposition, Rademacher:
generates Rademacher random samples, L_Seed:
block Lanczos procedure as implemented in [20],
eigh_tridiagonal: spectral decomposition of
Hermitian tridiagonal matrix

1 begin
2 τ0 ← (1− h2

max)/h2
max // minimum value of τ

3 τmax ← (1− h2
min)/h2

min // maximal value of τ

4 Q,R← qr(X) // economy QR decomp. of X

5 H0 : u 7→ 1
m
ZZTu+ τ0u // LHS of seed system

6 S : u 7→ u−QQTu // projection to (col X)⊥
7 for j = 1, . . . , nrand do // draw random probes
8 Vj ← Rademacher(n)
9 Vj ← Vj/‖Vj‖

10 end
// Lanczos decompositions of seed systems:

11 Uy , Ty ← L_Seed(SH0S, Sy) // proj. pheno.
12 for j = 1, . . . , c do
13 UXj , TXj ← L_Seed(H0, Xj) // covariates
14 end
15 for j = 1, . . . , nrand do
16 UVj , TVj ← L_Seed(H0, Vj) // probes

// decompose Jacobi matrices for SLQ:
17 WVj , DVj = eigh_tridiagonal (TVj )
18 end

// construct REML criterion function:
19 def REML_criterion (h2 ≤ h2

max):
20 global σ̂2

g , σ̂
2
e

21 τ = (1− h2)/h2

22 σ ← τ − τ0
23 γ ← (1 + τ)−1

24 ldet ← XT (L_Solve(σ, {UXj , TXj }cj=1))
25 ldet ←ldet +SLQ_LDet(σ, {WVj , DVj }

nrand
j=1 )

26 qform ← yTS(L_Solve(σ, Uy , Ty))
27 σ̂2

e ← qform/(n− c)
28 σ̂2

g ← σ̂2
g/τ

29 return (n− c) ln(σ̂2
g)− ldet− qform/σ̂2

e

// apply zeroth-order optimization routine:
30 optimize(REML_criterion,h2

min, h
2
max)

31 return σ̂2
g , σ̂

2
e

32 end

scales with the number of covariates c, a disadvantage
not shared by our second algorithm (Algorithm 4). The
remaining term, ln(det(Hτ )), is approximated by ap-
plying SLQ (Algorithm 2) to a special case of (5): We
rewrite the log determinant as the trace of the matrix

logarithm

ln(det(Hτ )) = tr (log(Hτ ))
= trQ[ln(λ1 + σ)| · · · | ln(λn + σ)]QT ,

where we have spectrally decomposed H0 = QΛQT
for some τ0 ≤ τ with σ = τ − τ0. We draw nrand i.i.d.
normalized Rademacher random vectors v1, . . . , vnrand ,
where each element of each vector vi takes values of
either 1/‖vi‖ or −1/‖vi‖ with equal probability. The
SLQ approximate of the log determinant for the seed
system is

ln(det(Hσ)) ≈ n

nrand

nrand∑
i=1

mi∑
`=1

ωi,` ln(θi,` + σ),

where the weights wi,` and nodes θi,` are respectively
derived by using the Lanczos process to construct or-
thonormal bases for K(H0, vi) (in practice, we apply
block Lanczos to K(H0, (v1, . . . , vnrand))) [16, 17].

The SLDF_REML algorithm
Stochastic Lanczos derivative-free residual maximum
likelihood (SLDF_REML; Algorithm 3), conceptually
similar to the derivative-free algorithm of Graser and
colleagues [8], applies the previously introduced Lanc-
zos methods to approximate the above reparametriza-
tion of the REML criterion. Shift-invariance is then
exploited such that, with the exception of the initial
Lanczos decompositions, the REML log likelihood can
be repeatedly evaluated using only vector operations.
SLDF_REML takes a phenotype vector y ∈ Rn, a covari-
ate matrix X ∈ Rn×c, either the genetic relatedness
matrix ZZT ∈ Rn×n or the standardized genotype ma-
trix Z ∈ Rn×m (in which case the action of the GRM of
a linear operator is coded implicitly as v 7→ Z(ZT v)),
and a range of possible standardized genomic vari-
ance component values Θ = [h2

min, h
2
max] as arguments

and generates a function REML_criterion: Θ → R
that efficiently computes the log-likelihood of τ |KT y.
This function is then subject to scalar optimization via
Brent’s method, which is feasible given the low cost of
evaluation and low dimension of Θ. Hyperparameters
include the number of probing vectors to be used for
the SLQ approximation of the log determinant nrand,
as well as tolerances corresponding to the REML cri-
terion, parameter estimates, and the Lanczos residual
norms. Convergence to a given tolerance on a sensible
scale is ensured by optimizing over the standardized
genomic variance component value h2 ∈ Θ ⊆ [0, 1] and
evaluating the REML criterion at τ = (1−h2)/h2. The
REML criterion can be repeatedly evaluated in O(n)
operations, making high accuracy computationally fea-
sible.
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Algorithm 4: Lanczos first-order Monte Carlo
residual maximum likelihood (L_FOMC_REML)
input : standardized genotype matrix Z ∈ Rn×m,

phenotype vector y ∈ Rn, covariate matrix
X ∈ Rn×c with c� n, range of values to
consider for standardized genomic variance
component Θ = [h2

min, h
2
max], number of Monte

Carlo samples nrand, zeroth order scalar root
finding routine root(f : Θ→ R, h2

min, h
2
max)

output: estimated value of heritable variance component
σ̂2
g

define : qr: economy QR decomposition, Gaussian:
generates standard normal random samples,
L_Seed: block Lanczos procedure as implemented
in [20]

1 begin
2 τ0 ← (1− σ2

g max)/σ2
g max // minimum value of τ

3 τmax ← (1− σ2
g min)/σ2

g min // maximal value of τ

4 Q,R← qr(X) // economy QR decomp. of X

5 S : u 7→ u−QQTu // projection to (col X)⊥

6 H́0 : u 7→ 1
m
SZZTSu+ τ0u // LHS of seed system

7 for k = 1, . . . , nrand do // sample latent
variables

8 ǔk ← Gaussian(m)
9 ěk ← Gaussian(n)

10 ěk ← Sěk // latent residual
11 ǧk ← m−1/2SZǔk // latent genetic load
12 end

// Lanczos decompositions of seed systems:
13 Uy , Ty ← L_Seed(H́0, Sy)
14 for k = 1, . . . , nrand do // can use block Lanczos
15 Uěk , Těk ← L_Seed(H0, ěk)
16 Uǧk , Tǧk ← L_Seed(H0, ǧk)
17 end

// construct objective for root finding:
18 def f_reml (h2 ≤ h2

max):
19 global σ̂2

e

20 τ = (1− h2)/h2

21 σ ← τ − τ0
// compute BLUPs:

22 soln ← L_Solve(σ, Uy , Ty)
23 ũ← m−1/2ZTS(soln)
24 ẽ←

√
τ(soln)

25 for k = 1, . . . , nrand do // MC samples
26 soln_u[k] ← L_Solve(σ, Uǔk , Tǔk)
27 soln_e[k] ← L_Solve(σ, Uěk , Těk)
28 ˇ̃uk ← m−1/2ZTS(soln_u[k] +

√
τsoln_e[k])

29 ˇ̃ek ←
√
τ(soln_u[k]+

√
τsoln_e[k])

30 end
31 E[ũT ũ] ← n−1

rand
∑nrand

k=1 ‖ˇ̃uk‖
2

32 E[ẽT ẽ] ← n−1
rand
∑nrand

k=1 ‖ˇ̃ek‖
2

33 σ̂2
e ← ẽT ẽ/(n− c)

34 return ln(ũT ũ/ẽT ẽ)− ln(T ũ/E[ẽT ẽ])
// apply zeroth-order root finding routine:

35 ĥ2 ← root(f_reml,h2
min, h

2
max)

36 σ̂2
g ← σ̂2

g(ĥ2/(1− ĥ2))
37 return σ̂2

g , σ̂
2
e

38 end

A first-order Monte Carlo REML algorithm
We additionally propose the Lanczos first-order
Monte Carlo residual maximum likelihood algorithm

(L_FOMC_REML; Algorithm 4), which also takes advan-
tage of the shifted structure of the standard genomic
variance components model to speed computation. We
first present the related first-order algorithm imple-
mented in the efficient and widely-used BOLT-LMM
software [5, 6], which we refer to as BOLT_LMM and
of which the proposed L_FOMC_REML algorithm is a
straightforward extension.

BOLT_LMM (First-order Monte Carlo REML)
The BOLT_LMM algorithm is based on the observation
that at stationary points of the REML criterion (3),
the first order REML conditions (i.e., ∇` = 0) imply
that

E[ũT ũ|y] = ũT ũ, E[ẽT ẽ|y] = ẽT ẽ, (8)

where ũ and ẽ are the best linear unbiased predictions
(BLUPs) of the latent genetic effects and residuals,
respectively [22]. The BLUPs are functions of τ given
by

ũ(τ) = m−1/2ZTSH́−1
τ Sy,

ẽ(τ) = τH́−1
τ Sy, (9)

where we have defined H́τ = 1
mSZZ

TS + τIn. The
expectations (8) are approximated via the follow-
ing stochastic procedure: Monte Carlo samples of
the latent variables, ǔk

i.i.d∼ MVN (0, Im), ěk
i.i.d∼

MVN (0, S) are used to generate samples of the pro-
jected phenotype vector

y̌k = m−1/2SZǔk + ěk, k = 1, . . . nrand.

BLUPs are then computed as in (9), yielding the ap-
proximations

E
MC

[ũT ũ|y] = n−1
rand√
m

nrand∑
k=1

∥∥∥ZTSH́−1
τ Sy̌k

∥∥∥2
,

E
MC

[ẽT ẽ|y] = n−1
rand

nrand∑
k=1

∥∥∥τH́−1
τ Sy̌k

∥∥∥2
.

Using the above expressions, Loh et al. [5, 6] apply a
zeroth-order root-finding algorithm to the quantity

fr(τ) = ln
[
ũT ũ

ẽT ẽ

]
− ln

[
EMC[ũT ũ|y]
EMC[ẽT ẽ|y]

]
,

noting that fr = 0 is a necessary condition (and, in
practice, a sufficient condition) for (8). Using CG to
approximate solutions to the linear systems involved
in BLUP computations results in an efficient REML
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estimation procedure involving O(n ·m · nrand) oper-
ations for well-conditioned covariance structures (i.e.,
for nontrivial non-heritable variance component val-
ues). As noted in [6], implicit preconditioning of H0
can be achieved by including the first few right singu-
lar vectors of the genotype matrix (or eigenvectors of
the GRM) as columns of the covariate matrix X.

The L_FOMC_REML algorithm
The BOLT_LMM algorithm described above involves
solving nrand + 1 linear systems

H́−1
τ`
Sy̌, H́−1

τ`
Sy̌1, . . . , H́

−1
τ`
Sy̌nrand ,

at each iteration of the optimization scheme in or-
der to compute BLUPs of the latent variables for
the observed phenotype vector and each of the Monte
Carlo samples. However, each iteration involves spec-
tral shifts of the left hand side of the form

H́−1
τ`+1

= (H́τ` + σIn)−1, σ = (τ`+1 − τ`).

As in the SLDF_REML algorithm, the underlying
block Krylov subspace is invariant to these shifts
(i.e., Km(H́τ , Y ) = Km(H́τ + σI, Y ), where Y =
[y|y̌1| · · · |y̌nrand ]). Thus, having performed the Lanc-
zos process for an initial parameter value τ0, we can
use L_Solve (Algorithm 1) to obtain the block CG ap-
proximate solution X(m)

σ ≈ H́−1
τ+σY in O(n ·nrand) op-

erations. We are thus able to avoid solving linear sys-
tems in all subsequent iterations, though the relatively
small number of matrix-vector products involved in
computing BLUPs for the latent genetic effects at each
step are unavoidable. The requirement of the genotype
matrix for computing (9) prevents both L_FOMC_REML
and BOLT_LMM from efficiently exploiting precomputed
GRMs.

Comparison of methods
We compare theoretical and empirical properties of our
proposed algorithms, SLDF_REML and L_FOMC_REML, to
those of BOLT_LMM.

Computational complexity
In contrast to BOLT_LMM, the Lanczos-decomposition
based algorithms we have proposed only need to
perform the computationally demanding operations
necessary to evaluate the REML criterion once. As
such, we differentiate between overhead computations,
which occur once and do not depend on the num-
ber of iterations needed to achieve convergence, and
per-iteration computations, which are repeated un-
til convergence of the optimization process (Table 1
and Fig. 4).

The overhead computations of SLDF_REML are domi-
nated by the need to construct bases for the nrand+c+1
subspaces K(H0, [v̌1, . . . , v̌nrand , x1, . . . , xc, y]), and are
thus O(n2(nrand + c)nκ) when a precomputed GRM is
available and O(2m · n(nrand + c)nκ) otherwise. Here,
nκ denotes the number of Lanczos iterations needed
to achieve convergence at a pre-specified tolerance and
increases with h2

max. Subsequent iterations are domi-
nated by the cost of solving c + 1 shifted linear sys-
tems via L_Solve and are thus O(n · c · nκ). The
overhead computations in L_FOMC_REML are dominated
by the Lanczos decompositions corresponding to the
2nrand + 1 seed systems, where the GRM is implicitly
represented in terms of the standardized genotype ma-
trix, and is thus O(4m · n · nrand · nκ). Operations of
equivalent complexity are needed at every iteration of
BOLT_LMM.

Numerical experiments
We compared wall clock times for genomic variance
component estimation for height in nested random
subsets of 16,000, 32,000, 64,000, 128,000, and 256,000
unrelated (π̂ < .05) European ancestry individuals
from the widely used UK Biobank data set [23]. All
analyses included 24 covariates consisting of age, sex,
and testing center and used hard-called genotypes
from 330,723 array SNPs remaining after enforcing
a 1% minor allele frequency cutoff. We compared
SLDF_REML, with and without a precomputed GRM,
to L_FOMC_REML which requires the genotype matrix.
For the novel algorithms, absolute tolerances for the
Lanczos iterations and the REML optimization pro-
cedure were set to 5e-5 and 1e-5, respectively. Ad-
ditionally, we compared our interpreted Python 3.6
code to BOLT-LMM versions 2.1 and 2.3.3 (C++ code
compiled against the Intel MKL and Boost libraries)
[5, 6, 24, 25]. We ran each algorithm twenty times per
condition, trimming away the two most extreme tim-
ings in each condition. Mirroring the default settings of
the BOLT-LMM software packages, we set nrand = 15
across both of our proposed methods.
Novel algorithms were implemented in the Python

v3.6.5 computing environment [20], using NumPy
v1.14.3 and SciPy v1.1.0 compiled against the In-
tel Math Kernel Library v2018.0.2 [25–27]. Optimiza-
tion was performed using SciPy’s implementation of
Brent’s method, with convergence determined via ab-
solute tolerance of the standardized genomic variance
component ĥ2. Timing results (Table 2 and Figs. 3
and 5) do not include time required to read geno-
types into memory, or, when applicable, to compute
GRMs, and reflect total running time on an Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10GHz with 32 physical
cores and 1 terabyte of RAM. Timing experiments ex-
cluded methods with cubic time complexity, including
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Table 1 Time complexity of stochastic algorithms. n denotes the number of individuals, m the number of markers, and c the number of
covariates. nrand indicates the number of random probing vectors and is fixed at 15 in all numerical experiments. nκ reflects the number
of conjugate gradient iterations required to achieve convergence at a specified tolerance and can be bounded in terms of the spectral
condition number of H0. As noted in [6], implicit preconditioning of H0 can be achieved by including the first few right singular vectors
of the genotype matrix (or eigenvectors of the GRM) as covariates.

Method Overhead Objective function evaluation

SLDF_REML
{
with precomputed GRM O(n2 · (nrand + c) · nκ) O(n · c · nκ)
with genotype matrix O(2m · n · (nrand + c) · nκ) O(n · c · nκ)

L_FOMC_REML O(4m · n · nrand · nκ) O(m · n · nrand)
BOLT_LMM O(n · c2 +m · c) O(4m · n · nrand · nκ)

GCTA, FaST-LMM, and GEMMA. Accuracy was as-
sessed by comparing heritability estimates generated
by the stochastic algorithms to those estimated via
the direct, deterministic average-information Newton–
Raphson algorithm as implemented in the GCTA soft-
ware package v1.92.0b2 [3] (Figures 2 and 5).

Results
Across 20 replications per condition for ran-
dom subsamples of n=16,000 to 256,000 unre-
lated European-ancestry individuals, both SLDF_REML
and L_FOMC_REML produced heritability estimates for
height consistent with those generated by the GCTA
software package (Figures 2 and 5). For large sam-
ples, the novel algorithms achieved greater accuracy
than either version of BOLT-LMM. With respect
to timings, SLDF_REML dramatically outperformed all
other methods when the precomputed GRM was avail-
able (Table 2 and Fig. 3), which we expect when-
ever the number of markers exceeds the sample size.
Examining methods taking genotype matrices as in-
puts, SLDF_REML and L_FOMC_REML performed sim-
ilarly, whereas BOLT-LMM v2.3.2 converged more
quickly than either in smaller samples (Figure 3),
though the differences for n=256,000 were relatively
minor (e.g., t=91.09 minutes for BOLT-LMM v2.3.2
versus 99.73 minutes for SLDF_REML; Table 2). The
older version of BOLT-LMM, v2.1, performed signif-
icantly more slowly than any of the other implemen-
tations examined (e.g., average wall clock time was
177.95 minutes at n=256,000), demonstrating the im-
portance of implementation optimization.
As the computations needed to compute the Lanc-

zos decompositions in L_FOMC_REML and BOLT-LMM
v2.3.2 are equivalent in time and memory complexity,
we expect that an optimized compiled-language im-
plementation of L_FOMC_REML would reduce the over-
head computation time by a significant linear factor
(≈3 for n=256,000, comparing the sum of the over-
head time and single objective function evaluation
time for BOLT-LMM v2.3.2 to its total running time;
Table 2). Consistent with theory, the wall clock times
per objective function evaluation for the novel algo-
rithms were trivial given the Lanczos decompositions

(e.g., for n=256,000, t = 2.06 versus 20.07 minutes
for L_FOMC_REML and BOLT-LMM v2.3.2, respectively;
Table 2 and Fig. 4).

Discussion
We have proposed stochastic algorithms for estimat-
ing the two component genomic variance component
model (1), both of which theoretically offer substan-
tial time savings relative to existing methods. Our
methods capitalize on the principal of Krylov subspace
shift invariance to reduce the number of steps involv-
ing O(n2) or O(mn) computations to one, whereas
existing methods perform equivalent computations
at each iteration of the REML optimization proce-
dure. For large samples, when taking genotype ma-
trices as inputs, our interpreted-language implemen-
tations of L_FOMC_REML and SLDF_REML [20] produced
more accurate variance component estimates than the
highly-optimized, compiled BOLT-LMM implementa-
tions, while taking similar amounts of time. Thus, we
expect comparably-optimized implementations of the
novel algorithms to compute high accuracy REML es-
timates in close to the time required by BOLT-LMM
v2.3.2 for a single objective function evaluation. Fur-
ther, in contrast to the BOLT_LMM algorithm, which
requires the genotype matrix, SLDF_REML can exploit
precomputed GRMs to reduce operation count by an
O(2m/n) factor (Table 1), which yields dramatic time
savings when the number of markers greatly exceeds
the number of individuals (Figure 3). While GRM pre-
computation is itself O(mn2), it can be effectively and
asynchronously parallellized across multiple compute
nodes, substantially mitigating computational burden
(though we note that serial input/output can interfere
with efficient parallelization).
There are several limitations to the proposed ap-

proaches. First, SLDF_REML, which benefits from the
ability to take GRMs as input, depends linearly on
the number of included covariates, which might grow
prohibitive in samples spanning numerous genotyping
batches and ascertainment locations. However, as in
BOLT_LMM, L_FOMC_REML requires O(mn) matrix mul-
tiplications for BLUP computation at each step of the
REML optimization procedure, whereas SLDF_REML
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Table 2 Overhead and per objective function evaluation timings of stochastic algorithms for n=256,000. Data reflect trimmed mean
wall clock time in minutes over 20 iterations per condition.

Method Overhead Per evaluation Evaluation count Total
BOLT-LMM v2.1 34.63 35.83 4 177.95
BOLT-LMM v2.3.2 10.82 20.07 4 91.09
L_FOMC_REML 89.87 2.06 6 102.21
SLDF_REML

{
with genotype matrix 90.22 1.06 9 99.73
with precomputed GRM 28.95 1.07 9 38.60

requires only vector operations. Thus, though the op-
tions provided by the two novel algorithms increase
researchers’ flexibility overall, the choice of whether
to employ SLDF_REML versus L_FOMC_REML is problem-
specific and necessitates greater researcher attention
to resource allocation. Second, neither algorithm mit-
igates the substantial O(mn) or O(n2) memory com-
plexity common to all algorithms for REML estimation
of genomic variance components, requiring that re-
searchers have access to high-memory compute nodes
to work with large samples (though we note that nei-
ther of the novel algorithms substantial increases this
burden either). Finally, for the same reasons that the
spectral decomposition-based direct methods imple-
mented in the FaST-LMM and GEMMA packages
[2, 4] are restricted to the simple two component model
(1) (i.e., whereas the GRM and identity matrix are si-
multaneously diagonalizable, the same doesn’t hold for
arbitrary collections of three or more symmetric pos-
itive semidefinite matrices), the shift-invariance prop-
erty exploited by the proposed methods does not ex-
tend to multiple genomic variance components. Given
that the two component model is insufficient for pre-
cise heritability estimation for many complex traits
[28], our novel algorithms apply to the singular, though
common, task of variance component estimation for
LMM in association studies.
Despite these limitations, the proposed algorithms

have clear advantages over existing methods in terms
of flexibility, accuracy, and speed of computation.
We provide both pseudocode and heavily annotated
Python 3 implementations [20] to facilitate their incor-
poration into existing software packages. Finally, we
suggest that the methods presented in our theoretical
development, in particular stochastic trace estimation
and stochastic Lanczos quadrature, are likely to find
uses in REML estimation of other models of interest
to researchers in genomics.
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Proof of result used to efficiently compute the quadratic form (7).
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Figure 2 Accuracy results. Comparison of heritability estimates for height generated by BOLT-LMM versions 2.1 and 2.3.2,
SLDF_REML, and L_FOMC_REML versus those generated by the deterministic algorithm implemented in the GCTA software package∗
[3], for varying sub-samples of 16,000 to 256,000 unrelated European-ancestry UK Biobank participants. Data are comprised of
twenty independent replications per condition. Red dashed lines indicate standard errors of GCTA estimate. Points represent
individual observations whereas boxes indicate the 95% confidence intervals for the trimmed mean estimate after a Bonferroni
correction for 25 comparisons. The bias evidenced by the BOLT-LMM estimators is likely due to the combination of performing a
small number of secant iterations with fixed start values and loose tolerances for determining convergence. ∗For n=256,000, memory
requirements prohibited the use of GCTA, so we instead averaged ten estimates generated by the high-accuracy stochastic estimator
implemented in BOLT-REML [29] (standard errors were 6.32e-5 and 2.45e-7 for the mean REML heritability estimate and its
standard error, respectively).
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Figure 3 Timing results. Trimmed mean wall clock time across twenty replications for per condition on the log10 scale (a) and
natural scale (b). Error bars reflect per condition standard errors and lines connect per condition trimmed means.
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Figure 4 Overhead versus iterative optimization procedure timing results. Trimmed mean wall clock time for overhead
computations and iterative REML optimization procedures across twenty replications per condition on the log10 scale (a) and
natural scale (b). Error bars reflect per condition standard errors and lines connect per condition means.
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Figure 5 Numerical experiments: accuracy versus time. Average absolute error on the log10 scale with respect to the GCTA
estimate∗ versus trimmed mean wall clock time across twenty replications per condition. Error bars reflect per condition standard
errors and lines connect per condition trimmed means. ∗For n=256,000, memory requirements prohibited the use of GCTA, so we
instead averaged ten estimates generated by the high-accuracy stochastic estimator implemented in BOLT-REML v2.3.2 [29]
(standard errors were 6.32e-5 and 2.45e-7 for the mean heritability and its standard error, respectively).
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