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Abstract: 
 
High throughput DNA sequencing technologies have undergone tremendous development over the past decade.  

Although optical detection-based sequencing has constituted the majority of data output, it requires a large 

capital investment and aggregation of samples to achieve optimal cost per sample.  We have developed a novel 

electronic detection-based platform capable of accurately detecting single base incorporations.  The GenapSys 

technology with its electronic detection modality allows the system to be compact, accessible, and affordable.  

We demonstrate the performance of the system by sequencing several different microbial genomes with 

varying GC content.  The platform is capable of generating 1.5 Gb of high-quality nucleic acid sequence in a 

single run.  We routinely generate sequence data that exceeds 99% raw accuracy with read lengths of up to 175 

bp.  The utility of the platform is highlighted by targeted sequencing of the human genome.  We show high 

concordance of SNP detection on the human NA12878 HapMap cell line with data generated on the Illumina 

sequencing platform.  In addition, we sequenced a targeted panel of cancer-associated genes in a well 

characterized reference standard.  With multiple library preparation approaches on this sample, we were able to 

identify low frequency mutations at expected allele frequencies. 
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Introduction: 
 
Soon after the finished version of the human genome was released in 2004 (1), there was an initiative from the 

National Human Genome Research Institute (NHGRI) to sequence a human genome for $1000 (2).  This 

initiative, in part, ushered in a period of development of a number of different DNA sequencing technologies (3-

8).  Today, a variety of commercial platforms exist that enable massively parallel, high throughput, and low-cost 

genomic sequencing, revolutionizing the nature of scientific and biomedical research. Despite continued 

technical improvements that have reduced the per base cost of DNA sequencing, the majority of sequencing is 

still carried out on large, expensive instruments with high costs per run (9). 

 

We have developed a novel sequencing-by-synthesis approach that employs electrical detection of nucleotide 

incorporations.  With electrical-based detectors, simple fluidics, no optics, and no robotics or moving parts, our 

automated sequencer is compact, robust, easy to use, and inexpensive.  The instrument detects a steady-state 

signal, providing several key advantages over current commercially available sequencing platforms and allowing 

for highly accurate sequence detection.  Sequencing is carried out on microfluidic chips that have a scalable 

number of detectors, supporting applications ranging from targeted sequencing of specific amplicons to 

genome-scale data collection. We believe that sequencing instruments that are compact, scalable, easy to use, 

and affordable to purchase and run will permit a more distributed model, in which genomic assays are put back 

into the hands of individual researchers.  Here, we demonstrate the capabilities of the Genapsys sequencing 

platform in a variety of applications across multiple sample types. 
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Results: 

 

Detection of single base incorporation via electrical impedance modulation: 

 

An overview of the Genapsys sequencing platform is outlined in Figure 1.  Briefly, a library of DNA fragments is 

clonally amplified with DNA primers conjugated to GenapSys beads.  Amplified beads are loaded onto the fluidic 

chamber on top of a fully integrated Complementary Metal-Oxide Semiconductor (CMOS) sequencing chip.  The 

sequencing chip is then inserted into the GS111 instrument, which uses fluidics to inject reagents that will 

disperse evenly over the entire chip surface (Figure 2A).  The GS111 instrument has fluidics to control reagent 

injection.  Nucleotides are injected one base at a time and incorporations are measured as electrical signals from 

each sensor that collect on the instrument’s Solid-State Device (SSD) storage unit.  The incorporation data files 

are transferred in real time to a secure cloud-hosted server and storage environment.  At the end of the run, the 

final FASTQ base call file becomes available. 

 

 

Other Sequencing by Synthesis (SBS) approaches have been used successfully in several different commercial 

DNA sequencing platforms (6,7).  The novelty of our approach lies in the detection modality.  Other sequencing 

methods have relied upon transient signals such as pH or fluorescent-based detection.  In contrast, our 

sequencer, measures a direct steady-state electrical signal from clonally amplified DNA strands.  The steady-

state nature of our signal allows for multiple measurements over time to increase precision, which in turn 

improves the signal-to-noise ratio (SNR) and leads to higher accuracy base calls.  On the surface of the CMOS 

sequencing chip, there are millions of sensors, each having a pair of electrodes, and designed to capture one 

clonally amplified bead (Figure 2A).  These sensors are tuned to measure the steady state electrical impedance 

signal between the sensor electrodes determined by buffer and DNA strands on the bead (Figure 2A).  Since 

nucleotide incorporation into a growing DNA strand changes the medium between the sensor electrodes, it  

changes the steady state impedance signal measured by the sensor (10,11).  The magnitude of the signal change 

is correlated to the number of incorporated nucleotides. 

 

 

Detection modality, signal processing and base calling: 

 

An example of the raw signal is shown in Supplementary Figure 1.  Total signal of a sequencing bead increases 

with each successful incorporation (red line).  A fraction of the sensors is purposefully loaded with amplified 

beads containing a sequencing primer blocked from amplification by virtue of a chemical modification at the 

 
FIGURE 1:  Overview of the Genapsys Sequencing Platform 
An overview of the process for generating sequence data on the GenapSys sequencing platform.  Libraries are clonally 
amplified onto beads, which are subsequently loaded onto the sequencing chip.  Automated sequencing takes place on 
the GS111 instrument, which utilizes a cloud-based system for instrument control and data analysis, with the ultimate 
output being a FASTQ file of millions of individual DNA sequences with per-base quality scores. 
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primer’s 3’ end.  Data from these sensors are used to normalize and remove any signal drift (blue line).  The 

measured signal does not change significantly when a nucleotide is added that is not a match to the next DNA 

base in the template strand.    When a nucleotide is incorporated, the measured impedance value of that sensor 

will jump creating a graph that resembles a staircase.  Information on how the signal has changed upon injection 

of a given nucleotide can be summarized as differential signal (Figure 2B).  The magnitude of the differential 

signal correlates with the number of incorporated nucleotides.  Thus, if the template contains more than one of 

the same consecutive base, the size of the signal change will be larger.  Due to the steady-state nature of the 

impedance metric, the measured values do not significantly change over time.  Thus, if desired, multiple 

measurements can be taken to improve precision.  Figure 2B contains a representative example of acquired data 

showing the distribution of measured differential signal across multiple nucleotide flows for a single template 

sequence.  Flows that are expected to have nucleotide incorporations are highlighted in red.  Non-incorporating 

flows are shown in blue and do not deviate significantly from the baseline.  The inferred sequence, including the 

number of nucleotides in each incorporation are shown below the plot (Figure 2B). 

 
 

 

 
 
FIGURE 2:  Sequencing Chip and Raw Data 
(A) The CMOS sequencing chip contains millions of individual sensors, which are each loaded with a clonally amplified 
bead.  The electrodes in each sensor are capable of measuring minute changes in impedance when nucleotides are 
incorporated opposite the bead-bound templates.  (B) Raw data from each sensor is summarized as a differential signal 
for each nucleotide flow.  This box plot represents the distribution of signal for a subset of nucleotide flows for a control 
template.  Red boxes denote incorporating flows and blue boxes are flows with no nucleotide incorporation.  The 
identity of the injected nucleotide and number of incorporated bases is shown below the plot. 
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For each base, a quality score is predicted using a pre-trained Phred quality table (12).  Low quality reads can be 

filtered based on the average quality score of their base calls.  The substitution error rate is particularly low (~ 

0.01%) which compares favorably to other sequencing technologies (13-15).  A breakout of the error types and a 

distribution of Q-score relative to position in the read for a typical run is shown in Supplementary Figure 2. 

 

Sequencing of Microbial Genomes: 

 

To test the performance of our platform, we used it to sequence the E. coli genome.  Results are summarized in 

Table 1.  The sequencing workflow is fully automated on the GS111 instrument with average run times that vary 

depending on the number of nucleotide flows.  The average read length is 141 bp with base call lengths that 

range from 100 to 175 bp.  The distribution of base call lengths is shown in Supplementary Figure 3.  Average 

coverage across the 4.69 Mb E. coli genome is 320x (Figure 3A-B), and the sequencing data shows relatively even 

coverage across the entire E. coli genome (Figure 3A).  The average accuracy of the reads is 99.9% at 75 bp, 

more than 99.8% at 100 bp, and remains well above 99% past 150 bp (Figure 3C).  More than 97% of the bases 

have Q-scores that exceed Q20. 

 

 

Number of Reads 12,066,883 

Number of Bases 1,694,270,754 

Number of Mapped Reads 10,820,542 

Number of Mapped Bases 1,485,017,178 

Average Mapped Read Length 141 bp 

Average Cumulative Accuracy at Position 100 99.8% 

Percentage of Bases with Q>20 97.4% 

Percentage of Bases with Q>30 63.9% 

Genome Size 4.69 Mb 

Average Coverage 319.9 

 
Table 1:  Sequencing Statistics (E. coli) 
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To further evaluate the system’s performance across a range of sequence contexts and a range of GC contents, 

we made libraries from additional microbial genomes.  Details regarding the genomic DNA samples can be found 

in Supplementary Table 1.  We selected microbial genomes with a range of average GC content.  For example, 

Campylobacter jejuni is a low GC organism with an average GC content of about 30%.  To address the higher GC 

content range, we sequenced Bifidobacterium animalis subsp. Lactis with an average GC content of 61%.  Average 

coverage of each of these genomes exceeded 800x, with similar read lengths and accuracy statistics to the E. coli 

run.  Statistics from the sequencing runs are outlined in Supplementary Figure 4.  Figure 3D shows the 

distribution of sequencing coverage broken down into bins of GC content.  For comparison, we also show 

Illumina data generated from the same genomic DNA.  This data shows that the sequencing system is robust and 

relatively uniform across a wide variety of sequence contexts and GC content.  While there is some decrease in 

normalized coverage at the GC content extremes, the bias is consistent with what is typically observed for 

sequencing technologies that rely upon amplification (16). 

 

 
  

 
FIGURE 3:  Microbial Genome Sequencing Statistics 
(A) Coverage plot across the E. coli genome.  (B) Histogram of mapped read depth for sequencing of the E. coli genome.  
(C) Average cumulative sequencing accuracy by read position.  (D) Normalized coverage for sequencing of three 
different microbial genomes.  Coverage is binned by percent GC content in a 100 bp window.  The red histogram 
represents the abundance of each GC content bin in the genome.  Blue circles are normalized coverage from the 
GenapSys platform and green circles are from data generated on the Illumina platform. 
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SNP Discovery in a Human Exome Sample: 

 

As a demonstration of the technology applied to human samples, we carried out whole exome sequencing of 

DNA from the extremely well characterized human cell line NA12878.  NA12878 is a lymphoblastoid cell line 

(LCL) prepared from a normal female Caucasian participant of the international HapMap project (17).  This DNA 

sample has served as human reference standard for the Genome in a Bottle (GIAB) Consortium and has been 

well characterized using a variety of different genomic technologies (18). 

 

Targeted sequencing libraries made from NA12878 genomic DNA were generated via probe-based capture using 

the IDT xGEN Exome Research Panel (v1.0).  The exome library was sequenced to approximately 96x average 

coverage across the 39 Mb targeted region.  Approximately 78% of the sequencing reads mapped to the target 

region with relatively uniform coverage (Supplementary Table 2).  The read length and accuracy are similar to 

the E. coli run detailed above. 

 

Using standard methods, we identified single nucleotide polymorphisms (SNPs) relative to the human genome 

reference (hg38).  When carrying out the variant analysis with a focus on the high confidence regions from the 

GIAB v3.3.2 consortium, the GenapSys sequencing data of the NA12878 exome generated 20,609 SNP 

variants.  To benchmark the performance of the GenapSys platform for SNP detection, we subjected the same 

library to Illumina sequencing with an average coverage of approximately 280x.  Using the same analysis 

parameters, the Illumina data identified 21,212 SNPs.  The overlap between the two platforms was extremely 

high.  This is illustrated in Figure 4A, where the Venn diagram shows a sensitivity of 96.5% and a precision of 

99.4%, with low levels of both false positives and false negatives for the GenapSys data relative to the Illumina 

data.  If we consider the GIAB high confidence call set as ground truth, we maintain high concordance with 

95.6% sensitivity and 99.0% precision as shown in Figure 4B.  Furthermore, if instead of the high confidence 

regions, we consider all SNP variants from the Illumina dataset as a comparison, we obtain a sensitivity of 94.8% 

and precision of 98.3% (data not shown).  The ratio of transition to transversion SNPs (TiTv ratio) is 2.85.  

Overall, this compares very favorably to similar comparisons done between different sequencing platforms (19). 
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In an effort to evaluate other variant calling methods, we employed DeepVariant (20), a deep learning approach, 

to call SNP variants from the same NA12878 exome dataset.  DeepVariant has shown better performance than 

conventional tools and is, reportedly, more generalizable to the error profiles of different sequencing 

technologies (20).  The results of this method for SNPs when focusing on the same high confidence regions are 

shown in Supplementary Figure 5.  The Venn diagrams show significant overlap between variant calls from the 

Illumina and GenapSys data for both the test dataset as well as the entire exome with 97.5% sensitivity and 

99.8% precision for the latter.  As a more generalizable variant calling algorithm, the DeepVariant approach 

could be preferred for use with GenapSys sequencing data over other commonly used tools such as GATK (21), 

which is specifically tuned to the particular error modes present in Illumina sequencing data. 

 

Low Frequency Variant Detection in a Targeted Human Cancer Reference Sample: 

 

Quantitation of low frequency somatic mutations in cancer samples requires a sequencing platform with high 

accuracy.  To evaluate the performance of the Genapsys platform for this application, we performed targeted 

sequencing of a quantitative multiplex reference standard (Horizon Discovery) using a Pan-Cancer probe panel 

from IDT.  The genomic DNA sample is a mixture of genomic DNA from 3 cell lines, HCT116, RKO and SW48, with 

verified oncology-relevant mutations, with allele frequencies that range from 1% to 24.5%.  One sequencing run 

generates more than sufficient coverage for detection of low frequency alleles.  The on-target rate across the 

 

 
FIGURE 4:  Human Exome Variant Concordance 
Venn diagrams illustrating the overlap of SNPs identified in the NA12878 Exome sample from GenapSys data. BCFtools 
was used to call variants.  (A) GenapSys SNPs relative to SNPs called from the Illumina dataset using high confidence 
regions from the GIAB consortium.  (B) GenapSys SNPs relative to the GIAB high confidence call set. 
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800 Mb panel was more than 62% and read length and accuracy statistics were similar to the E. coli runs 

(Supplementary Table 2). 

 

Table 2 shows the concordance of our SNP variant calls with the expected allelic frequencies for 11 different 

mutations.  The allele frequencies measured by the GenapSys sequencing platform closely match the expected 

allele frequencies determined by the vendor of the quantitative multiplex reference standard using Droplet 

Digital PCR.  Mutant alleles with frequencies as low as 1.0% were correctly identified.  As an example, aligned 

reads visualized in the IGV browser for EGFR variant L858R are shown in Supplementary Figure 6.  There are 925 

reads that map to this genomic location and 28 of them show the variant, correlating well to the expected allele 

frequency of 3.0%.  There is a relatively balanced proportion of forward and reverse reads from both the mutant 

and wild type alleles.  As a benchmark, we sent the same library out for sequencing on the Illumina sequencing 

platform and used the same analysis methods on both sets of sequencing data.  The measured allele frequencies 

are similar.  These data demonstrate comparable performance of the GenapSys sequencing platform with well-

established methods. 

 

 

We also investigated low frequency mutation detection with a library preparation approach using multiplex PCR 

amplicons. The Ion AmpliSeq Hotspot Cancer Panel v2 consists of 207 primer pairs and generates amplicons 

targeting genomic ‘hot spot’ regions that are commonly mutated in human cancers.  An amplicon library was 

generated using the AmpliSeq panel with the Horizon HD701 gDNA sample.  Sequencing of this library using the 

GenapSys platform led to the identification of the expected mutations, including low-frequency mutations.  

Gene Variant Expected GenapSys Illumina 

EGFR T790M 1.0 1.0 1.0 
EGFR delE746-A750 2.0 2.5 1.7 
EGFR L858R 3.0 3.0 2.8 
KRAS G12D 6.0 3.5 4.3 

PIK3CA E545K 9.0 3.8 6.6 
KIT D816V 10.0 8.5 6.9 

BRAF V600E 10.5 7.8 8.9 
NRAS Q61K 12.5 10.4 10.6 
KRAS G13D 15.0 14.1 15.4 

PIK3CA H1047R 17.5 14.2 15.2 
EGFR G719S 24.5 23.2 23.3 

 
 
Table 2:  Low Frequency Variant Detection via Hybrid Capture Probe-based Targeted Sequencing 
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Figure 5 shows the correlation of expected allele frequency to that measured by the GenapSys sequencing 

platform.  The correlation is very high with an R2 of greater than 0.99. 

 

 

Conclusions: 

 
We have demonstrated that the Genapsys sequencing platform is capable of generating very accurate DNA 

sequence data.  The system’s architecture, including CMOS-based electronic detection, an absence of moving 

parts and optics, minimal computational requirements, and simple fluidic controls, allows for an instrument that 

is compact, scalable, and affordable. 

 

As with many other sequencing technologies, we believe this platform is capable of rapid technological 

improvements that will increase accuracy, throughput, and speed. In particular, significantly higher sensor 

densities are feasible and would make dramatic improvements to throughput. Thanks to the instrument’s 

flexible architecture, such enhancements could be realized by modifying the consumables without substantially 

altering the instrument itself. Therefore, additional sequencing throughput would come without significant 

additional investment or run time increases, which could dramatically improve the cost per base. 

 

 
 
FIGURE 5:  Low Frequency Variant Correlation via Amplicon-based Targeted Sequencing 
Scatter plot showing high correlation between measured and expected allelic frequency for 11 variants from the 
HD701 Quantitative Multiplex Reference Standard.  The x-axis represents the expected allelic frequency in the 
HD701 gDNA as measured by ddPCR and the y-axis represents the measured allelic frequency for AmpliSeq Cancer 
Hotspot Panel v2 targeted sequencing on the GenapSys platform.  The Pearson correlation coefficient is 0.992. 
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Further improvements to the sequencer and workflow have the potential to improve the performance and 

usability of the platform. Enhanced nucleotide modification chemistries could increase the signal to noise ratio, 

improving accuracy and allowing for longer read lengths. Better optimization of flow times could reduce the 

duration of sequencing runs. Automation and integration of sample preparation prior to sequencing could 

further increase the ease of use. Our detection architecture is compatible with bead-less techniques, in which 

the sequencing libraries are clonally amplified directly on the surface of the chip. All steps of the sequencing 

process could be automated in a single instrument. 

 

In the past two decades, a few DNA sequencing technologies have been developed and made commercially 

available.  Currently, the vast majority of DNA sequence data is generated using optical based approaches.  

Dramatic improvements in throughput have made it possible, for example, to re-sequence a human genome at a 

cost approaching $1000 per sample.  However, these sequencing runs are carried out on large, expensive 

instrumentation with high per run costs.  Though a reduction in cost per base has been enabled by extremely 

high output runs and multiplexing of multiple samples into a single run, the instrument price and run price is still 

out of reach for many individual researchers. 

 

The breakthrough innovation of Genapsys’ platform is the steady-state electrical detection of base 

incorporations.  Combined with fully integrated CMOS chips, the system is small, accessible, and affordable.  Its 

flexible architecture allows the system to be highly scalable, with potential throughputs ranging from one million 

to hundreds of millions of sensors, all on an instrument with the same small footprint and ease of use.  The 

detection modality can also be extended to other types of nucleic acids, proteins, and live single cells using the 

same platform.  We believe our sequencing technology will ultimately extend the reach of the power of 

genomics to a wider audience and a wider range of applications. 

 
  
Materials and Methods: 

 

Library Preparation: 

 

Genomic DNA samples were purchased from various commercial sources.  A table of genomic DNA samples used 

in this study can be found in Supplementary Table 1.  Sequencing libraries were generated by random shearing 

of genomic DNA followed by ligation of custom adapters using the Kapa HyperPrep Kit (Roche).  Briefly, 

approximately 1 µg of genomic DNA was acoustically sheared to ~200 bp using a M220 Focused-ultrasonicator 

(Covaris).  Sheared DNA was end repaired, A-tailed, and ligated to custom adapters (Integrated DNA 
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Technologies) using the Kapa HyperPrep Kit per manufacturer’s recommendations.  Ligated fragments were 

purified with AMPure XP beads (Beckman Coulter) and size-selected on a Pippin Prep (Sage Science).  Size-

selected libraries were PCR amplified using the Kapa HiFi PCR Kit (Roche) and purified using AMPure XP beads.  

The qualities of final libraries were assayed using a Bioanalyzer High Sensitivity DNA Kit (Agilent). 

 

Target Capture and Multiplex PCR Amplicon Panels: 

Targeted sequencing libraries were enriched from standard sequencing libraries using xGen Lockdown Panels 

(Integrated DNA Technologies).  Genomic libraries from the NA12878 cell line (Coriell) were enriched with the 

xGen Exome Research Panel v1.0, and libraries from the Horizon Quantitative Multiplex Reference Standard 

gDNA (HD701) were enriched with the xGen Pan-Cancer Panel v1.5.  Enrichment was carried out per 

manufacturer’s recommendations using the xGen Hybridization and Wash Kit (Integrated DNA Technologies) 

and custom xGen Blocking Oligos complementary to our custom adapter sequences.  Enriched libraries were 

subsequently amplified using the Kapa HiFi PCR Kit and purified using AMPure XP beads. 

 

Multiplex PCR Amplicon panels for Cancer were generated using the Ion AmpliSeq Cancer Hotspot Panel v2 

(ThermoFisher Scientific). Multiplex PCR was performed on 10 ng of genomic DNA from the HD701 reference 

standard, followed by partial digestion of primer sequences by the FuPa reagent, according to the 

manufacturer’s recommendations. The amplified products were purified using AMPure XP beads, end-repaired, 

A-tailed, and ligated to custom adapters as above.  Ligated fragments were amplified by PCR and purified using 

AMPure XP beads, to give rise to the final library. 

 

Clonal Amplification and DNA Sequencing: 

 

Library molecules were clonally amplified onto beads following manufacturer’s recommendations (GenapSys).  

Clonally amplified and enriched beads were mixed with reference beads prior to addition to the sequencing 

chip.  Reference beads are amplified beads that have been annealed with a 3’ blocked sequencing primer.  

Beads were loaded onto the sequencing chip which has an array of sensors, each capable of capturing one bead. 

GenapSys Sequencing polymerase was injected into the chip and incubated for 5 minutes to allow for binding to 

the DNA templates per manufacturer’s recommendations.  

 

Sequencing begins with electrical calibration of the chip, followed by serial injection of individual nucleotide 

buffers.  For each injection, the chip was incubated for several seconds to allow for nucleotide incorporation, 

then the electrical signal of individual sensors was captured.  The chip was washed, and this process was then 
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repeated using a different nucleotide.  To sequence 150 base pairs, approximately 250-300 nucleotide flows 

were required. 

 

Signal Processing and Base Calling: 

 

Sequence data was generated using the Genapsys analysis pipeline.  The initial step of data analysis was sensor 

identification where sensors with beads are differentiated from those without a bead based on initial sensor 

calibration (Supplementary Figure 7A). The population of sensors with bead were further grouped into 

sequencing and reference based on the characteristics of their measured signal over a predetermined number 

of nucleotide flows (Supplementary Figure 7B). Reference sensors are those with blocked primer beads and 

were used to subtract the background noise from the sequencing sensors’ signal. 

  

Base calling was carried out using the GenapSys proprietary base calling pipeline.  Data from each sequencing 

sensor for each nucleotide flow was evaluated relative to the reference sensors.  The base caller was designed 

to identify the number of incorporations in the case of homopolymer sequence stretches.  For every base call, a 

set of predictor measures were computed that were used as input into a pre-trained Phred quality table (12) in 

order to obtain a quality score. 

 

Sequence Alignment and Variant Detection: 

 

The reference genomes were indexed using BWA (v0.7.17) and BWA-MEM was used to align the single-end 

reads to the reference genome (22).  Sequencing reads were aligned to the hg38 reference genome using BWA-

MEM.  To call variants, BCFtools and DeepVariant (20) were used.  The ‘mpileup’ command in BCFtools (v1.9) 

was used to generate the genotype likelihoods at each genomic position with sufficient coverage.  The BCFtools 

‘call’ command was then used to call the variant sites using default settings.  The BCFtools ‘isec’ command was 

used for variant evaluation.  Additional variant analysis was carried out using the DeepVariant (v0.7.2) approach 

(20).  The pre-trained DeepVariant model from Google was further trained on the GenapSys NA12878 exome 

dataset with 60% training, 20% cross-validation, and 20% test. 

 

Data Availability: 

 

Sequence data has been deposited into the Sequence Read Archive (SRA) under BioProject accession number 

PRJNA529876. 
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