1	Title: Shared morphological consequences of global warming in North American migratory
2	birds
3 4	Short Title: Recent morphological shifts in migratory birds
5	
6	Authors: Brian C. Weeks ^a , David E. Willard ^b , Aspen A. Ellis ^a , Max L. Witynski ^b , Mary
7	Hennen ^b , Benjamin M. Winger ^a
8	
9	Author Affiliations: ^a Museum of Zoology and Department of Ecology and Evolutionary
10	Biology, University of Michigan, Biological Sciences Building, 1105 N. University Avenue,
11	Ann Arbor, MI 48109. ^b Gantz Family Collection Center, The Field Museum, 1400 S. Lake
12	Shore Dr., Chicago, IL 60605.
13	
14	Corresponding Author: Benjamin M. Winger; address: 2018 Biological Sciences Building,
15	1105 N. University Avenue, Ann Arbor, MI 48109; tel: (734) 763-3379; wingerb@umich.edu.
16	
17	Keywords: climate change, body size, morphology, migration, allometry

18 ABSTRACT

19

20	Increasing temperatures associated with climate change are predicted to cause reductions in body
21	size, a key determinant of animal physiology and ecology. Using a four-decade specimen series
22	of 70,716 individuals of 52 North American migratory bird species, we demonstrate that
23	increasing annual summer temperature over the 40-year period drove consistent reductions in
24	body size across these diverse taxa. Concurrently, wing length – which impacts nearly all aspects
25	of avian ecology and behavior - has consistently increased across taxa. Our findings suggest that
26	warming-induced body size reduction is a general response to climate change, and reveal a
27	similarly consistent shift in an ecologically-important dimension of body shape. We hypothesize
28	that increasing wing length represents a compensatory adaptation to maintain migration as
29	reductions in body size have increased the metabolic cost of flight. An improved understanding
30	of warming-induced morphological changes, and their limits, are important for predicting biotic
31	responses to global change.

33 INTRODUCTION

34

35	Body size is an essential determinant of animal ecology and life history (Brown 1995;
36	McGill et al. 2006), influencing the allometry of physiological (Hudson et al. 2013) and
37	morphological (Gould 1966; Outomuro & Johansson 2017) functions, as well as fundamental
38	community ecology interactions (e.g. social hierarchies (Prum 2014), competition, and predator-
39	prey dynamics (Yodzis & Innes 2002)) (McGill et al. 2006). Within species, there is evidence
40	that individuals tend to be smaller in the warmer parts of their ranges (an intra-specific derivative
41	of Bergmann's rule (Bergmann 1847; Rensch 1938; Mayr 1956; Blackburn et al. 1999)). This
42	association between warmer temperatures and smaller bodies suggests that anthropogenic
43	climate change may cause intraspecific shifts toward smaller body size in a temporal analog to
44	geographic patterns. However, despite the widespread appreciation of the fundamental
45	importance of body size for ecological and evolutionary processes, the drivers and universality of
46	temperature-body size relationships across space and time remain contested (Riemer et al. 2018).
47	Understanding whether rapid body size reductions are occurring in response to increased
48	temperatures is essential to predicting the impacts of climate change on life history, ecosystem
49	dynamics, and the capacity of species to persist in a warming world.
50	Although the possibility of body size reduction in response to global warming has been
51	suggested for decades (Smith et al. 1995; Yom-Tov 2001), empirical support remains mixed
52	(Goodman et al. 2012; McCoy 2012; Salewski et al. 2014; Teplitsky & Millien 2014; Collins et
53	al. 2017a, b; Dubos et al. 2018). This uncertainty may be in part due to a scarcity of
54	morphological time series datasets containing sufficiently dense sampling to test the influence of
55	local temporal fluctuations on body size (as opposed to simply associating long-term

56	morphological trends with periods of global warming), and to do so across many co-distributed
57	species that experience similar climatic regimes. Additionally, densely sampled time-series
58	datasets frequently do not have measurements from enough body parts to distinguish changes in
59	body size from changes in body shape that may be driven by alternate selection pressures.
60	Consequently, the influence of warming-driven changes in body size on ecologically-important
61	dimensions of allometry remains largely unknown.

Migratory birds that breed at high latitudes are an important system for understanding the 62 63 adaptive responses of biota to increasing temperatures, as they are particularly vulnerable to the 64 impacts of climate change. Not only is the most accelerated change occurring at higher latitudes 65 (Soja et al. 2007; Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2014), but climate change impacts can vary across the geographically disparate 66 67 seasonal ranges of migratory species, resulting in complex dynamics such as phenological 68 mismatches between species' annual cycles and the resources upon which they depend 69 (Charmantier & Gienapp 2014). Migratory birds are under strong selection for high site fidelity, 70 and any perturbation that hinders an efficient return to the breeding grounds is likely to reduce 71 reproductive success (Winger *et al.* 2018). The extreme energetic demands of migration have 72 shaped the morphology of migratory birds for the efficiency necessary to conduct these long-73 distance flights; therefore, should warming temperatures force body size reductions in migratory 74 birds, concurrent changes in body shape related to the allometry of flight efficiency may be 75 necessary to maintain migratory patterns that have evolved over millennia (Møller et al. 2017; 76 Schmaljohann & Both 2017). Although migratory species have garnered significant attention from researchers interested in biotic responses to rapid environmental change, particularly as 77 78 relates to phenology and geographic range, the extent to which migratory birds are changing size

79	in response to anthropogenic global warming remains uncertain (Van Buskirk et al. 2010;
80	Salewski et al. 2014; Collins et al. 2017a; Dubos et al. 2018) and the implications of size change
81	for maintaining physiologically demanding seasonal migrations are unknown.
82	A persistent challenge in understanding recent morphological changes in migratory birds
83	is the characterization of size and shape (Yom-Tov et al. 2006; Salewski et al. 2010; Van
84	Buskirk et al. 2010). Frequently used indices to assess changes in avian body size through time,
85	such as mass and wing length, are problematic; mass is highly variable for migratory species,
86	given rapid fat gains and losses during migration (Alerstam & Lindström 1990; Morris et al.
87	1996), and wing length is highly correlated with migratory distance (Förschler & Bairlein 2011).
88	Nevertheless, studies on recent body size changes in birds have often represented body size using
89	univariate measures of wing length or mass, making it difficult to identify changes in body size
90	with precision and disentangle them from shifts in shape (e.g. relative wing length) that may be
91	driven by other factors. Wing length is a highly consequential trait in birds that reflects a
92	complex balance of selection pressures from predator avoidance (Witter & Cuthill 1993;
93	Kullberg et al. 1996; Swaddle & Lockwood 1998; Martin et al. 2018), to flight efficiency
94	(Rayner 1988; Pennycuick 2008), to foraging behavior (Norberg 1979; Fitzpatrick 1985; Miles et
95	al. 2002; Ricklefs & Cox 2006). Thus, distinguishing between body size change and shifts in
96	wing length is critical for understanding the ecological consequences of anthropogenically-
97	driven environmental change on migratory birds. This distinction is particularly important as
98	warming temperatures are predicted to reduce body size in birds (Yom-Tov et al. 2006; Van
99	Buskirk et al. 2010; Gardner et al. 2011; Andrew et al. 2017, 2018), whereas observed warming-
100	driven changes in migratory phenology, geographic range and habitat (Bowlin & Wikelski 2008;
101	Tingley et al. 2009; Förschler & Bairlein 2011; Hahn et al. 2016; Møller et al. 2017; Socolar et

102 al. 2017) have been predicted to select for increases in wing length, potentially resulting in an 103 ecologically-important change in shape (i.e. relative wing length). However, the conflation of 104 wing length and body size has, to-date, largely precluded nuanced analyses of changes in body 105 size and wing allometry (Zink, R. M. and Remsen 1986; Van Buskirk et al. 2010). 106 Here, using a densely-sampled specimen time series of 52 North American migratory 107 bird species, we develop a robust understanding of changes in body size and shape in migratory 108 birds throughout a four-decade period of rapid global change. We take advantage of the 109 ecological diversity of the species studied (see *Ecology and Natural History*, Supporting 110 Information) to test for the presence of consistent morphological change driven by fundamental physiological processes. Specifically, we tested whether increasing temperatures since 1978 have 111 driven reductions in body size. To isolate the impact of temperature on body size, we control for 112 113 alternate large-scale environmental and climatic variables (precipitation and primary 114 productivity) that could conceivably affect such a diverse set of species. Furthermore, we 115 leverage the multi-decadal and densely-sampled nature of our data to test the influence not only 116 of long-term trends in temperature but also of short-term fluctuations, and in doing so test causal 117 factors of body size change. The multidimensional nature of our mensural data further allowed 118 us to also test how relative wing has changed over the same time period alongside body size. 119 Species' capacities for shifts in ecologically-relevant morphological traits, like body size and 120 wing length, are an essential aspect of adaptation to changing local conditions (Hoffmann & 121 Sgró 2011). Therefore, when predicting biotic responses to anthropogenic global change, a 122 nuanced understanding of the trajectories of morphological size and shape across species in a 123 community is an important complement to studies of macroecological changes such as 124 phenology and geographic range.

125

126 Methods

127	Specimen and data collection. Since 1978, The Field Museum's collections personnel
128	and volunteers have operated a salvage operation to retrieve birds that collided with buildings in
129	Chicago, IL, USA during their spring or fall migrations (Fig. S1), resulting in approximately
130	87,000 bird carcasses of more than 200 species brought to the Field Museum from the Chicago
131	area. All measurements included in this study were made by a single person - David E. Willard -
132	who measured the following morphological characteristics on fresh or thawed carcasses prior to
133	preparation as specimens, which should improve the precision of measurements compared to
134	measurements of live birds or dried specimens: 1) tarsus length and bill length using digital
135	calipers; 2) the length of the relaxed wing using a wing rule; and 3) mass using a digital scale.
136	The carcasses were prepared as specimens, and skull ossification (an indication of age), fat
137	levels, sex (from gonadal inspection) and molt were recorded. Skull ossification (Pyle 1997)
138	enabled aging to Hatch Year (HY) or After Hatch Year (AHY). We filtered the dataset (see
139	Supporting Information for details) to 70,716 individuals from 52 species from 1978-2016.
140	These species are from 11 families and 30 genera of mostly passerines (Table S1). Most species
141	in this dataset breed in boreal or temperate forest or edge habitats, but some species are grassland
142	or marsh specialists, and their winter ranges, habitats, migratory distances, life histories and
143	ecologies are diverse (see Ecology and Natural History, Supporting Information).
144	To test for morphological change through time (eqn 1) and the impacts of environmental

145 and climatic variables on morphology (eqn 2), we used two different modeling approaches. We 146 conducted frequentist linear regressions, with the equation-specific independent variables as well 147 as species and year as fixed effects. We also built mixed-effects models, implemented within a

148	Bayesian framework, treating species as a random effect and accounting for phylogenetic
149	relatedness and auto-correlation of variables through time (these models are presented in the
150	Supporting Information, Bayesian mixed modeling framework, for details).
151	Characterizing change in body size through time. To quantify intra-specific changes in
152	body size from 1978 – 2016, we compared changes in three indices of body size: tarsus, mass
153	and the first axis of a principle component analysis of tarsus, wing, bill and mass.
154	We modeled the change in tarsus for all specimens that had data on tarsus, year, sex, age
155	(HY or AHY) and species ($n = 58,475$). We used the group-centered logarithms of tarsus for
156	each species as the dependent variable (the logarithm of each tarsus length was taken, and then
157	data within each species was scaled to have a mean of zero and standard deviation of one). For
158	the fixed effects modeling approach, we used a linear model implemented using the 'lm'
159	function in R (R Core Team 2018):
160	$log(tarsus)_{group centered} = B_0 + B_1*year + B_2*age + B_3*sex + species + species*year (eqn 1).$
161	We repeated our analysis of changing body size through time (eqn 1), using
162	log(mass) _{group centered} rather than tarsus as the proxy for body size.
163	We also conducted a principle components analysis (PCA) of log(tarsus), log(wing
164	length), log(bill length), and log(cube root of mass) for all specimens for which we had data on
165	all measurements ($n = 48,338$) using the 'princomp' function in R (R Core Team 2018). Species
166	scores on the first axis of the PCA (PC1) were used as a metric of body size (as is common
167	practice, e.g. (Grant & Grant 2008)). Because all variables were positively loaded onto PC1, and
168	are expected to scale positively with body size, we interpreted PC1 scores as positively related to
169	body size. As with tarsus and mass, we repeated eqn 1 with group centered PC1 scores.

170	Change in Wing Length Through Time. Wing length was modeled substituting log(wing
171	length) _{group centered} for tarsus in eqn 1 ($n = 62,628$). In addition to raw wing length, we modeled
172	body size-corrected wing length by regressing log(wing length) onto log(tarsus) for each species
173	(n = 58,304) and using the residuals as the dependent variable.
174	Environmental Variables. To test hypotheses on the mechanisms underlying changes in
175	body size and wing length, we generated species-specific estimates of climatic and
176	environmental variables (temperature, precipitation, and Normalized Difference Vegetation
177	Index [NDVI], a proxy for resource availability) on the breeding and wintering grounds through
178	time and tested whether they were associated with changes in adult body size. We cropped
179	breeding, wintering and resident ranges for all species (BirdLife International 2015) to exclude
180	unlikely breeding destinations for birds passing through Chicago; we also tested the sensitivity of
181	model results to variations in how ranges were cropped (Supporting Information, Fig. S1). For
182	each species, we then calculated mean temperature, mean precipitation, and maximum mean
183	NDVI through time (1981-2016) in the region representing the likely breeding grounds (June)
184	and on the likely wintering grounds (December) for each species (see Supporting Information).
185	Modeling morphology as a function of environmental and climatic variables. To test the
186	impacts of these variables on body size, we modeled tarsus for AHY specimens (HY birds were
187	excluded as they had not experienced winter conditions yet) from $1981 - 2016$ ($n = 29,702$).
188	Summer NDVI and summer precipitation were highly correlated ($R = 0.56$), so summer NDVI
189	was not included in the model. The environmental and climate data for the breeding and
190	wintering seasons preceding collection of an individual were used. In order to test whether the
191	relationships between summer variables and body size were similar across both age classes, we

modeled the tarsus length of all specimens using eqn 2, but excluding the winter variables, andincluding age as a predictor.

194	The analysis of body size as a function of environmental and climatic variables was
195	conducted separately using tarsus or PC1 as the index of body size: body size (i.e. tarsus _{adults, group}
196	<i>centered</i> or PC1 _{adults, group centered}) = $B_0 + B_1^*$ year + B_2^* breeding season precipitation + B_3^* breeding
197	season temperature + B_4 *wintering season precipitation + B_5 *wintering season temperature +
198	B_6 *wintering season NDVI + B_7 *sex + $B8$ *season + species + species*year (eqn 2). Wing length
199	was similarly modeled using eqn 2.
200	The relative importance of each variable for explaining variance in body size was
201	compared by re-fitting the model across all permutations of model specification and calculating
202	the R ² partitioning across those orders (Lindeman et al. 1980), implemented using the
203	"calc.relimp" function in the "relaimpo" package in R (Grömping 2006; R Core Team 2018).
204	To test the sensitivity of our results to uncertainty in AHY age, we compared the results
205	of the tarsus model (eqn 2) to those derived from using the climatic and environmental data from
206	each of the three years preceding collection (Supporting Information).
207	
208	RESULTS
209	
210	A consistent reduction in body size and increase in wing length in boreal-temperate
211	migratory birds
212	
213	Despite the ecological and phylogenetic diversity among species, we found consistent
214	reductions in body size across species over the course of the study (Fig. 1, Fig. 2, Fig. 3A, Fig.

215	S2). These reductions in body size were recovered regardless of whether we assessed body size
216	using univariate measurements of either mass or tarsus length, or a multivariate index of size
217	based on the first axis of a principle component analysis of mass, tarsus, wing length, and bill
218	length [PC1]. For simplicity, we present results using tarsus length, as it is the most appropriate
219	proxy of intra-specific body size (Zink, R. M. and Remsen 1986; Rising & Somers 1989; Senar
220	& Pascual 1997), particularly given the extreme variability of mass during migration (Supporting
221	Information). However, all results presented are qualitatively identical whether we measure body
222	size as the univariate tarsus length or the multi-variate PC1 (Supporting Information), and
223	whether we use fixed effects or Bayesian mixed effects models that incorporate phylogenetic
224	relatedness (Supporting Information). Across our dataset, tarsus (hereafter, body size) declined
225	significantly through time ($P < 0.01$) and in nearly all species, and these declines were consistent
226	across age and sex classes (Figs 1 and 2A, Fig. S2).
227	Body size is positively linearly correlated with wing length ($R = 0.84$ across all species,
228	mean of $R = 0.28$ within species). Nevertheless, as body size declined over time, wing length
229	increased ($P < 0.01$; Fig. 2, Fig. S2). This increase was consistent across all species in our study
230	that showed significant changes in wing length (Fig. 3B). Further, body size-corrected wing
231	length (the residuals of wing length regressed onto body size) similarly increased over the same
232	time period ($P < 0.001$), and this trend was nearly universal (90% of species had increases in
233	relative wing length, and all of the significant changes in relative wing length were positive; Fig.
234	3C), and was consistent across age and sex classes (Fig. S2). In other words, even those species
235	that have not undergone increases in absolute wing length nevertheless experienced shifts in
236	wing allometry that yielded smaller-bodied, longer-winged birds.
237	

238 Increasing summer temperatures drive body size decline

239

240	We found that the climatic and environmental variable with the greatest explanatory
241	power for body size—by an order of magnitude—was summer temperature on the breeding
242	grounds, with increased temperatures associated with reduced body size ($P < 0.001$; Table S7).
243	Although various factors beyond temperature, such as food abundance and quality, may
244	contribute to body size reductions (Gardner et al. 2011; Sheridan & Bickford 2011; Yom-Tov &
245	Geffen 2011; Teplitsky & Millien 2014), we did not find evidence that proxies for these factors
246	(NDVI and precipitation) have driven the trend in body size.
247	Although the exact breeding and wintering locations of individuals in the study are not
248	known, as specimens were collected from a passage site, all results are robust to uncertainty in
249	likely breeding locations (Fig. S1). Further, because populations were sampled at a passage site
250	south of the breeding range and north of the wintering range, rather than a single breeding or
251	wintering locality, we are likely collecting individuals from across the latitudinal extent of the
252	species' ranges, and thus observing broad population-level trends rather than single-site
253	dynamics (Van Buskirk et al. 2010).
254	
255	Selection during migration drives increases in wing length
256	
257	The observed increases in wing length were not explained by environmental variables on
258	either the breeding or wintering grounds (Supporting Information). All variables were either not
259	significantly associated with relative wing length ($P > 0.05$), or were significantly associated
260	with wing length but were not changing through time in a way that could produce the observed

261	long-term trend (e.g. a variable may have been significantly positively associated with wing
262	length, but was declining through time; Supporting Information). Additionally, within years,
263	wings were proportionately longer in spring populations than in populations collected during the
264	previous fall migration ($P < 0.05$; Fig. 4B). Notably, in addition to wing length being longer in
265	spring populations, wing length is increasing faster through time in spring birds (Fig. 4B),
266	suggesting selective pressures for increased wing length during migration have been increasing
267	over the course of the study period (see Discussion).
268	
269	DISCUSSION
270	
271	Despite a diversity of ecologies, habitats, and geographic ranges, we found a near-
272	universal reduction in body size over four decades for the 52 species in our data. The association
273	between temperature and body size recovered by our modeling approach does not reflect merely
274	a long-term correlation between body size and temperature; rather, it also reflects significantly
275	correlated short-term fluctuations after controlling for the long-term trends (Fig. 4A). This result
276	suggests a causal relationship (Methods; (Angrist J. D. and J. S. Pischke 2008)), wherein
277	increasing summer temperatures drive reductions in body size. While other studies have found
278	less consistent reductions in body size in migratory birds (Yom-Tov et al. 2006; Salewski et al.
279	2010), this is likely due to the use of mass or wing length as proxies for body size, or smaller
280	sample sizes. Our findings support the hypothesis that body size reduction may be a widespread
281	response to global warming (Gardner et al. 2011), occurring broadly across species that tend to
282	be smaller in warmer parts of their range.

283 Developmental plasticity and selection represent two potential, non-exclusive, 284 mechanisms underlying the observed changes in body size in our data. Experimental studies have 285 shown that increased temperatures during nesting can lead to a reduction in avian adult body size 286 through developmental plasticity (Andrew *et al.* 2017), raising the possibility that the consistent 287 patterns of body size reduction we observe may be a plastic response to increased temperatures 288 during development. Species could also be evolving in response to changing selection pressure 289 on body size. Cold weather metabolic demands are classically invoked to explain Bergmann's 290 rule (or are considered an integral part of the rule (Watt *et al.* 2010)), with the smaller ratio of 291 surface area to volume that accompanies increased body size considered beneficial in colder 292 climates (Gardner et al. 2011; Sheridan & Bickford 2011; Teplitsky & Millien 2014). As such, 293 warming temperatures could conceivably relax selection for larger body size, indirectly leading 294 to size reduction. However, the migratory birds in our study vacate the coldest parts of their 295 ranges during the winter (Winger et al. 2018) and also winter in a wide variety of climatic 296 conditions. We found that changes in temperatures on these diverse wintering grounds were not 297 strongly associated with body size changes, suggesting that relaxed cold-season selection 298 pressures on body size are unlikely to explain the observed trends. The observed correlated 299 short-term fluctuations between temperature and body size (Table S7), which were particularly 300 pronounced in hatch year birds (Fig. 4A), suggest a potentially important role for developmental 301 plasticity, particularly given recent experimental evidence for temperature-induced 302 developmental plasticity in body size in passerine birds (Andrew et al. 2018). However, it is 303 possible that a combination of developmental plasticity and relaxed selection against smaller 304 body size has yielded the near-universal pattern of body size reduction observed in our data.

305	More complex ecological dynamics of global change may also contribute to body size
306	reduction, such as food limitation as a result of climate change-driven phenological mismatches
307	(Both et al. 2006). Given the observational nature of our data, it is not possible to completely
308	rule out alternative, non-climatic selective pressures (e.g. reduced food availability), particularly
309	if these processes are themselves driven by cyclical fluctuations in temperature. However,
310	because the relationship between temperature and body size is evident after controlling for the
311	long-term trends in the data, an alternative mechanism would need to exhibit both a 40-year
312	correlation with body size as well as correlated short-term fluctuations matching those of body
313	size (Fig. 4A). Further, the near-universality of the morphological changes across the species in
314	our study — which are ecologically diverse and breed and winter in a wide variety of habitats
315	with different phenological dynamics — supports a role for fundamental metabolic or
316	physiological processes influencing the observed trends.
317	Why has relative wing length increased as body size has declined in nearly all 52 species
318	in our study? In our model results, no climatic or environmental variables on the breeding or
319	wintering grounds explained the long-term increase in wing length (Supporting Information).

320 Together with our finding that spring birds have longer wings than fall birds and that this 321 seasonal difference is widening through time, these results suggest that positive selection for 322 longer relative wings is occurring during migration. These seasonal differences in wing length 323 are likely driven in part by selection on hatch-year birds, which, in many species, tend to have 324 shorter wings [Fig. S2, 68]. Such a pattern of longer wings in spring versus fall could thus 325 alternatively be explained by elevated mortality rates for hatch-year birds that is unrelated to 326 selection on their shorter wing length. However, not only do we find that wing length is longer in 327 spring migrants than fall migrants, but this seasonal difference is increasing through time (Fig.

328	4B), and wing length is also increasing through time across all age classes (Fig. S2). We interpret
329	the total evidence of these patterns to be indicative of a selective advantage for longer wings
330	during migration that has been increasing over the study period.
331	Longer and more pointed wings are associated with more efficient flight in birds,
332	particularly for long distance flights such as during migration (Pennycuick 2008), suggesting that
333	some aspect of recent global change is selecting for more efficient flight across this diverse set of
334	migratory birds. Indeed, several global change dynamics have been proposed as mechanisms that
335	should select for increased wing length in migratory birds. These mechanisms include increasing
336	migratory distances associated with poleward range shifts (Förschler & Bairlein 2011),
337	phenological advances requiring faster migrations (Hahn et al. 2016; Møller et al. 2017), and
338	habitat fragmentation that could require individuals to make longer flights between stopover sites
339	or disperse further to find breeding territories (Desrochers 2010).
340	Increasing selection for proportionately longer wings during the migratory period could
341	be a result of increasing migratory distance through time. Migratory distance is positively
342	correlated with wing length both within and across species in passerines (Winkler & Leisler
343	1992; Förschler & Bairlein 2011), suggesting that increases in relative wing length through time
344	could be a response to northward shifts in breeding ranges if wintering ranges have remained
345	static. However, trajectories of warming-induced range shifts have been idiosyncratic across
346	North American bird species (Tingley et al. 2009; Mayor et al. 2017), while the observed
347	increase in wing length is remarkably consistent across the species in our dataset. Additionally,
348	our data should be robust to changes in geographic distribution, as has been noted in other
349	studies using migratory samples to examine morphological change (Van Buskirk et al. 2010). All
350	individuals sampled in our study are from populations that breed north of Chicago and winter

351 south of Chicago, meaning that individuals from across the latitudinal breadth of the breeding 352 grounds (Fig. S1) are likely to have been sampled in Chicago. As such, the majority of our data 353 are likely consistently derived from individuals that breed within the core of their species' range 354 (Van Buskirk et al. 2010), whereas range shifts should lead to selection for longer relative wing 355 lengths at the southern and northern edges of the range. However, identifying the geographic 356 provenance of individuals in our dataset, and how these may have changed through time, will be 357 necessary to directly test the relationship between ranges shifts and morphological change. In 358 addition to investigating how total migratory distances have changed due to latitudinal range 359 shifts, further research should also address the possibility that habitat fragmentation and 360 reduction could select for longer winged individuals (Desrochers 2010) without necessitating a 361 shift of the entire species' range. 362 Phenological studies have suggested that migratory birds may be advancing their spring 363 migratory timing in response to climate change (Charmantier & Gienapp 2014). In other studies, 364 birds that migrate earlier and arrive first on the breeding grounds tend to have longer wings than 365 birds that arrive later (Bowlin 2007; Hahn et al. 2016). By assuming that passage time through 366 Chicago is correlated with arrival time on the breeding grounds, we tested whether longer-367 winged birds arrive earlier within years (i.e. does size-corrected wing length predict passage date

in a single year; Supporting Information, eqn 3). Our data indicate that longer-winged (P < 0.01)

and larger (P < 0.05) birds do indeed migrate through Chicago earlier in spring than shorter-

370 winged and smaller individuals. However, mean spring passage time through Chicago did not

become earlier across years (P = 0.31), as would be expected if advancing phenology had

372

find strong evidence that selection for earlier migrations has driven increases in wing length.

17

selected for increasing wing length through time (Supporting Information). Therefore, we did not

374 Phenological changes, shifting ranges and habitat fragmentation are all plausible and non-375 exclusive selection pressures that could increase wing length among species; eliminating these 376 competing hypotheses will require a better understanding of the geographic provenance of 377 individuals through time. However, we suggest that the near-universal change in relative wing 378 length across the ecologically and geographically diverse species in our dataset may be evidence 379 of a more fundamental physiological impact of rapid climate change on migratory birds. 380 Specifically, we hypothesize that increased relative wing length confers a selective advantage as 381 body size declines — even for simply maintaining current migratory patterns — due to decreased 382 metabolic efficiency (increased energy required per unit mass; 48) as individuals get smaller. 383 Increased relative wing length improves flight efficiency by reducing wing loading (Rayner 384 1988), and may additionally reflect an increase in wing pointedness, which further increases 385 flight efficiency (Bowlin & Wikelski 2008; Pennycuick 2008). That is, we propose longer 386 relative wing length may reflect a compensatory adaptation to counter the consequences of 387 shrinking body size for powered flight in migrants. As expected if relative wing length is 388 increasing to compensate for reductions in body size, species in our dataset that have become 389 smaller at faster rates have also experienced faster increases in relative wing length (P < 0.05). 390 though this relationship is sensitive to the modeling approach taken (Supporting Information). 391 The complexities of the physics of flight and their relationship with migration (Alerstam & 392 Lindström 1990; Pennycuick 2008; Møller et al. 2017), coupled with the dynamic environmental 393 context of migration as the world changes, preclude definitively identifying a mechanistic link 394 between reductions in body size and an increase in wing length to maintain migration. However, 395 understanding if the observed morphological changes in body size and wing length represent a 396 coupled response to global warming — versus decoupled trends driven by alternate forces — is

397	an important avenue of future research, given the consistency with which body size and wing
398	length have changed across this diverse group of species.
399	While the increase in relative wing length we identified is likely the result of selection
400	during migration and may facilitate the maintenance of migration, it also carries trade-offs for
401	nearly all aspects of avian life history and ecology. Indeed, the tradeoffs associated with
402	variations in wing length are one of the most fundamental components of avian life history,
403	impacting nearly all aspects of ecology and behavior (Norberg 1990). Thus, the extent to which
404	these migratory birds can continue to adapt to rapid global change via shifting wing proportions
405	remains unknown.
406	
407	Conclusions
408	
409	We identify a significant influence of short-term fluctuations in summer temperature on
410	body size that is consistent with the long-term trends shown across species, providing strong
411	evidence that warming temperatures are driving reductions in body size across biota. Body size
412	reduction is likely to have far-reaching ecological consequences (McGill et al. 2006). The
413	concomitant increase in wing length may have similarly expansive ecological implications
414	(Norberg 1990), particularly as the divergent trends in body size and wing length combine to
415	drive a change in shape (i.e. increased relative wing length) that may face opposing constraints.
416	Should size and shape be a coupled response to increasing temperatures, tethered by allometric
417	relationships and with broad ecological impacts, understanding how temperature-driven
418	morphological change interacts with shifting phenology geographic range may be essential for
419	predicting biotic responses to climate change.

Λ	2	n
4	7	υ

421 Acknowledgements:

422	We thank the staff, curators and volunteers of the Field Museum, and the Chicago Bird Collision
423	Monitors, for their assistance in salvaging birds. For helpful comments, we thank S. Dubay, N.
424	Senner, J. Bates, S. Hackett, B. Marks, J. Voight, M. Jain, and M. Zelditch. We thank D.
425	Megahan for Fig. S1.
426	
427	References
428	Alatalo, R. V., Gustafsson, L. & Lundbkrg, A. (1984). Why do young passerine birds have
429	shorter wings than older birds? Ibis (Lond. 1859)., 126, 410-415.
430	Alerstam, T. & Lindström, Å. (1990). Optimal Bird Migration: The Relative Importance of
431	Time, Energy, and Safety. In: Bird Migration. pp. 331-351.
432	Andrew, S.C., Awashy, M., Griffith, A.D., Nakagawa, S. & Griffith, S.C. (2018). Clinal
433	variation in avian body size is better explained by summer maximum temperatures during
434	development than by cold winter temperatures. Auk, 135, 206–217.
435	Andrew, S.C., Hurley, L.L., Mariette, M.M. & Griffith, S.C. (2017). Higher temperatures during
436	development reduce body size in the zeb finch in the laboratory and in the wild. J. Evol.
437	<i>Biol.</i> , 30, 2156–2164.
438	Angrist J. D. and J. S. Pischke. (2008). Mostly Harmless Econometrics: An Empiricist's
439	Companion. Massachusettts Inst. Technol. London Sch. Econ.
440	Bergmann, C. (1847). Uber die verhaltnisse der warmeokonomie der thiere zu ihrer grosse.
441	<i>Gottinger Stud.</i> , 1, 595–708.

442 BirdLife International. (2015). *IUCN Red List for birds*. Available at: http://www.birdlife.org.

443 Last accessed 1 January 2015.

- Blackburn, T.M., Gaston, K.J. & Loder, N. (1999). Geographic gradients in body size: A
 clarification of Bergmann's rule. *Divers. Distrib.*, 5, 165–174.
- Both, C., Bouwhuis, S., Lessells, C.M. & Visser, M.E. (2006). Climate change and population
 declines in a long-distance migratory bird. *Nature*, 441, 81–83.
- Bowlin, M.S. (2007). Sex, wingtip shape, and wing-loading predic arrival date at stopover site in
 the Swainson's Thrush (*Catharus ustulatus*). *Auk*, 124, 1388–1396.
- Bowlin, M.S. & Wikelski, M. (2008). Pointed wings, low wingloading and calm air reduce
 migratory flight costs in songbirds. *PLoS One*, 3, 1–8.
- 452 Brown, J. (1995). *Macroecology*. The University of Chicago Press, Chicago and London.
- 453 Van Buskirk, J., Mulvihill, R.S. & Leberman, R.C. (2010). Declining body sizes in North
 454 American birds associated with climate change. *Oikos*, 119, 1047–1055.
- Charmantier, A. & Gienapp, P. (2014). Climate change and timing of avian breeding and
 migration: Evolutionary versus plastic changes. *Evol. Appl.*, 7, 15–28.
- 457 Collins, M.D., Relyea, G.E., Blustein, E.C. & Badami, S.M. (2017a). Heterogeneous changes in
 458 avian body size across and within species. *J. Ornithol.*, 158, 38–52.
- Collins, M.D., Relyea, G.E., Blustein, E.C. & Badami, S.M. (2017b). Neotropical Migrants
 Exhibit Variable Body-Size Changes Over Time and Space. *Northeast. Nat.*, 24, 82–96.
- 461 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
 462 (2014). Climate Change 2013 The Physical Science Basis. *Clim. Chang. 2013 Phys. Sci.*

463 *Basis*, 1542, 1–30.

464 Desrochers, A. (2010). Morphological response of songbirds to 100 years of landscape change in
 465 North America. *Ecology*, 91, 1577–82.

466	Dubos, N., Le Viol, I., Robert, A., Teplitsky, C., Ghislain, M., Dehorter, O., et al. (2018).
467	Disentangling the effects of spring anomalies in climate and net primary production on
468	body size of temperate songbirds. Ecography (Cop.)., 41, 1319-1330.
469	Fitzpatrick, J.W. (1985). Form, foraging behavior, and adaptive radiation in the Tyrannidae.
470	Ornithol. Monogr., 36, 447–470.
471	Förschler, M.I. & Bairlein, F. (2011). Morphological shifts of the external flight apparatus across
472	the range of a passerine (northern wheatear) with diverging migratory behaviour. PLoS One,
473	6, 1–9.
474	Gardner, J.L., Peters, A., Kearney, M.R., Joseph, L. & Heinsohn, R. (2011). Declining body size:
475	A third universal response to warming? Trends Ecol. Evol., 26, 285–291.
476	Goodman, R.E., Lebuhn, G., Seavy, N.E., Gardali, T. & Bluso-Demers, J.D. (2012). Avian body
477	size changes and climate change: Warming or increasing variability? Glob. Chang. Biol.,
478	18, 63–73.
479	Gould, S.J. (1966). Allometry and size in ontogeny and phylogeny. Biol. Rev., 41, 587-638.
480	Grant, P.R. & Grant, B.R. (2008). Pedigrees, assortative mating and speciation in Darwin's
481	finches. Proc. R. Soc. B Biol. Sci., 275, 661–668.
482	Grömping, U. (2006). R package relaimpo: relative importance for linear regression. J. Stat.
483	Softw., 17, 139–147.
484	Hahn, S., Korner-Nievergelt, F., Emmenegger, T., Amrhein, V., Csörgo, T., Gursoy, A., et al.
485	(2016). Longer wings for faster springs - wing length relates to spring phenology in a long-
486	distance migrant across its range. Ecol. Evol., 6, 68-77.
487	Hoffmann, A.A. & Sgró, C.M. (2011). Climate change and evolutionary adaptation. Nature, 470,
488	479-485.

- Hudson, L.N., Isaac, N.J.B. & Reuman, D.C. (2013). The relationship between body mass and
 field metabolic rate among individual birds and mammals. *J. Anim. Ecol.*, 82, 1009–1020.
- Kullberg, C., Fransson, T. & Jakobsson, S. (1996). Impaired predator evasion in fat blackcaps
 (Sylvia atricapilla). *Proc. R. Soc. B Biol. Sci.*
- Lindeman, R.H., Merenda, P.F. & Gold, R.Z. (1980). *Introduction to Bivariate and Multivariate Analysis*. Scott Foresman & Co, Glenview, IL.
- Martin, T.E., Tobalske, B., Riordan, M.M., Case, S.B. & Dial, K.P. (2018). Age and
 performance at fledging are a cause and consequence of juvenile mortality between life
 stages. *Sci. Adv.*
- Mayor, S.J., Guralnick, R.P., Tingley, M.W., Otegui, J., Withey, C., Elmendorf, S.C., *et al.*(2017). Increasing phenological asynchrony between spring green-up and arrival of
 migratory birds. *Sci. Rep.*, 7, 1–10.
- Mayr, E. (1956). Geographical character gradient and climatic adaptation. *Evolution*, 10, 105–
 108.
- McCoy, D.E. (2012). Connecticut Birds and Climate Change: Bergmann's Rule in the Fourth
 Dimension. *Northeast. Nat.*, 19, 323–334.
- McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006). Rebuilding community ecology
 from functional traits. *Trends Ecol. Evol.*, 21, 178–185.
- 507 Miles, D.B., Ricklefs, R.E. & Travis, J. (2002). Concordance of Ecomorphological Relationships
 508 in Three Assemblages of Passerine Birds. *Am. Nat.*, 129, 347-364.
- Møller, A.P., Rubolini, D. & Saino, N. (2017). Morphological constraints on changing avian
 migration phenology. *J. Evol. Biol.*, 30, 1177–1184.
- 511 Morris, S.R., Holmes, D.W. & Richmond, M.E. (1996). A ten-year study of the stopover patterns

- of migratory passerines during fall migration on Appledore Island, Maine. *Condor*, 98, 395–
 409.
- 514 Norberg, U.M. (1979). Morphology of the Wings, Legs and Tail of Three Coniferous Forest Tits,
- 515 The Goldcrest, and the Treecreeper in Relation to Locomotor Pattern and Feeding Station
- 516 Selection. *Philos. Trans. R. Soc. B Biol. Sci.*, 287, 131-165.
- 517 Norberg, U.M. (1990). Flight and ecology. In: *Vertebrate Flight*. Springer-Verlag, Berlin,
 518 Heidelberg, pp. 237–256.
- 519 Outomuro, D. & Johansson, F. (2017). A potential pitfall in studies of biological shape: Does
 520 size matter? *J. Anim. Ecol.*, 86, 1447–1457.
- 521 Pennycuick, C.J. (2008). *Modeling the flying bird*. Book. Academic Press, Burlington, MA.
- 522 Prum, R.O. (2014). Interspecific social dominance mimicry in birds. *Zool. J. Linn. Soc.*, 172,
 523 910–941.
- 524 Pyle, P. (1997). Aging, Sexing, and Molt. *Identif. Guid. to North Am. birds, part 1*, 1–6.
- 525 R Core Team. (2018). R: A language and environment for statistical computing.
- 526 Rayner, J.M. V. (1988). Form and function in avian flight. Curr. Ornithol., 5, 1-66.
- Rensch, B. (1938). Some problems of Geographical Variation and Species-formation. *Proc. Linn. Soc. London.*, 150, 275-285.
- Ricklefs, R.E. & Cox, G.W. (2006). Morphological Similarity and Ecological Overlap among
 Passerine Birds on St. Kitts, British West Indies. *Oikos.*, 29, 60-66.
- Riemer, K., Guralnick, R.P. & White, E.P. (2018). No general relationship between mass and
 temperature in endothermic species. *Elife.*, 7, e27166.
- Rising, J.D. & Somers, K.M. (1989). The measurement of overall body size in birds. *Auk*, 106,
 666–674.

535	Salewski, V., Hochachka, W.M. & Fiedler, W. (2010). Global warming and Bergmann's rule:
536	Do central European passerines adjust their body size to rising temperatures? Oecologia,
537	162, 247–260.
538	Salewski, V., Siebenrock, K.H., Hochachka, W.M., Woog, F. & Fiedler, W. (2014).
539	Morphological change to birds over 120 years is not explained by thermal adaptation to
540	climate change. PLoS One, 9, 1–14.
541	Schmaljohann, H. & Both, C. (2017). The limits of modifying migration speed to adjust to
542	climate change. Nat. Clim. Chang., 7, 573–576.
543	Senar, J.C. & Pascual, J. (1997). Keel and tersus length may provide a good predictor of avian
544	body size. Ardea, 85, 269–274.
545	Sheridan, J.A. & Bickford, D. (2011). Shrinking body size as an ecological response to climate
546	change. Nat. Clim. Chang., 1, 401–406.
547	Smith, F.A., Betancourt, J.L. & Brown, J.H. (1995). Evolution of body size in the woodrat over
548	the past 25,000 years of climate change. Science, 270, 2012–2014.
549	Socolar, J.B., Epanchin, P.N., Beissinger, S.R. & Tingley, M.W. (2017). Phenological shifts
550	conserve thermal niches in North American birds and reshape expectations for climate-
551	driven range shifts. Proc. Natl. Acad. Sci., 114, 12976-12981.
552	Soja, A.J., Tchebakova, N.M., French, N.H.F., Flannigan, M.D., Shugart, H.H., Stocks, B.J., et
553	al. (2007). Climate-induced boreal forest change: Predictions versus current observations.
554	<i>Glob. Planet. Change</i> , 56, 274–296.
555	Swaddle, J.P. & Lockwood, R. (1998). Morphological adaptations to predation risk in passerines.
556	<i>J. Avian Biol.</i> , 29, 172–176.
557	Teplitsky, C. & Millien, V. (2014). Climate warming and Bergmann's rule through time: Is there

558 any evidence? *Evol. Appl.*, 7, 156–168.

- Tingley, M.W., Monahan, W.B., Beissinger, S.R. & Moritz, C. (2009). Birds track their
 Grinnellian niche through a century of climate change. *Proc. Natl. Acad. Sci.*, 106, 1963719643.
- 562 Watt, C., Mitchell, S. & Salewski, V. (2010). Bergmann's rule; A concept cluster? *Oikos*, 119,
 563 89–100.
- Winger, B.M., Auteri, G.G., Pegan, T.M. & Weeks, B.C. (2018). A long winger for the Red
 Queen: rethinking the evolution of seasonal migration. *Biol. Rev.*
- Winkler, H. & Leisler, B. (1992). On the ecomorphology of migrants. *Ibis (Lond. 1859).*, 134,
 21–28.
- Witter, M.S. & Cuthill, I.C. (1993). The ecological costs of avian fat storage. *Philos. Trans. R. Soc. London, B.*, 340, 73-92.
- 570 Yodzis, P. & Innes, S. (2002). Body Size and Consumer-Resource Dynamics. *Am. Nat.*, 139,
 571 1151-1175.
- 572 Yom-Tov, Y. (2001). Global warming and body mass decline in Israeli passerine birds. *Proc. R.*573 *Soc. B Biol. Sci.*, 268, 947–952.
- 574 Yom-Tov, Y. & Geffen, E. (2011). Recent spatial and temporal changes in body size of
 575 terrestrial vertebrates: Probable causes and pitfalls. *Biol. Rev.*, 86, 531–541.
- 576 Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C.J.R. & Du Feu, R. (2006). Recent changes in
 577 body weight and wing length among some British passerine birds. *Oikos*, 112, 91–101.
- Zink, R. M. and Remsen, J. V. (1986). Evolutionary processes and patterns of geographic
 variation in birds. *Curr. Ornithol.*, 4, 1–69.

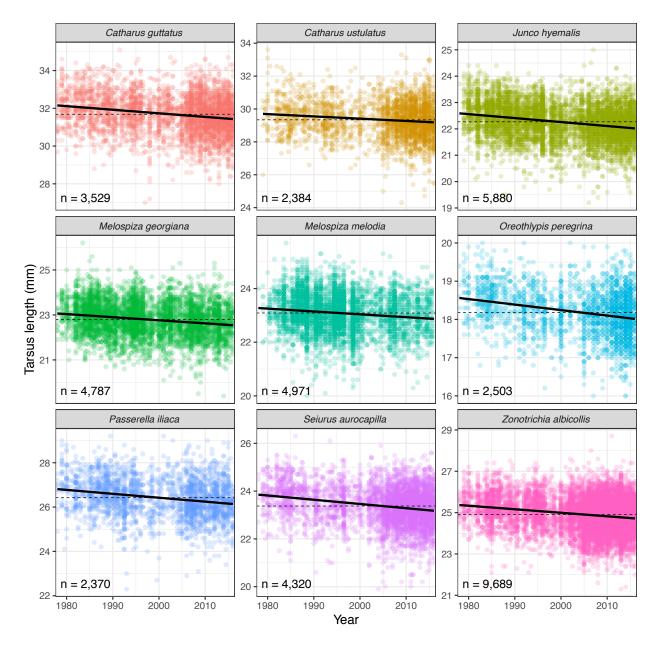
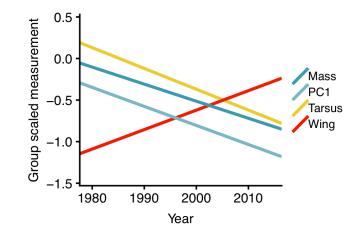
581 Figure Legends

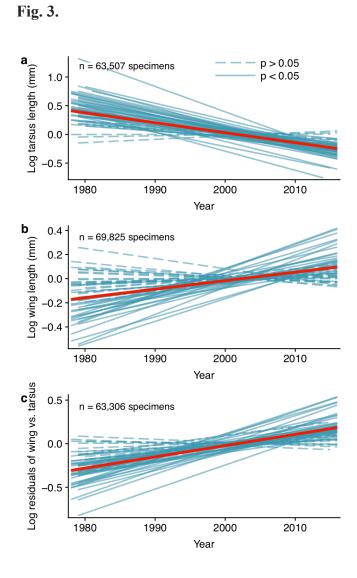
582 Fig. 1. Body size has become smaller through time. Tarsus length declined in nearly all 583 species in the dataset (Fig. 3A) with the 9 most highly sampled species shown here. Dashed lines 584 have a slope of zero and an intercept equal to the mean tarsus length for each species. 585 586 Fig. 2. While body size has become smaller, wing length has increased through time. Lines 587 represent all species, with measurements group mean centered by species (70,716 specimens 588 from 52 species). Wing length increased through time (P < 0.01), while body size declined 589 (tarsus, mass and the first principal component of a principal components analysis of tarsus, bill, wing and mass all declined through time across species; P < 0.01, P = 0.056, and P < 0.01, 590 591 respectively). 592 593 Fig. 3. Morphological change and relationships. Measurements are group mean centered by 594 species. Attributes of morphology have changed nearly universally across species (A-C), with 595 individual species trends in blue (slope p-values are shown), and the trend across all species in 596 red (all significantly different from zero). (A) Tarsus has declined in 50/52 species, and all 597 significant changes in tarsus (P < 0.05; n = 43), represent declines. (B) Wing length has 598 increased through time, and body size-corrected wing length (C) has increased in 47/52 species, 599 and all significant changes (P < 0.05; n = 35) represent increases. 600

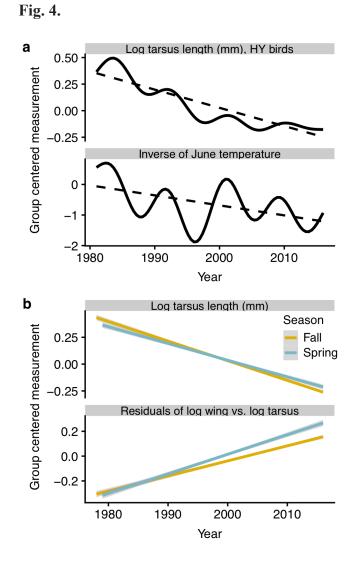
Fig. 4. Evidence for temperature-related body size declines and intra-annual selection on
 wing length. (A) In addition to long term correlated trends in tarsus decline and temperature
 increase, short term fluctuations in temperature are correlated with short term fluctuations in

- tarsus length, suggesting a causal relationship in which increasing temperatures are associated
- 605 with reductions in body size (dashed lines are linear models, solid lines are general additive
- 606 models). (B) Body size-corrected wing length is longer and is increasing at a more rapid rate in
- 607 spring birds, reflecting selection for increased wing length during migration.

609 Figures


Fig. 2.



- ----

1 Supporting Information

2		
3	Supplementary Methods	2
4	Data Filtering	2
5	Environmental Data	3
6	Bayesian Mixed Modeling Framework	4
7	Results	
8	Sample Sizes	5
9	Ecology and Natural History	5
10	Body Size Declined Through Time	
11	Wing Length Increased Through Time	8
12	Climatic and Environmental Predictors of Tarsus	8
13	Climatic and Environmental Predictors of Wing Length	9
14	Results Using a Bayesian Mixed Modeling Framework and Phylogenetic Correction	10
15	Arrival Time	11
16	Rates of Change in Tarsus Predict Rates of Change in Wing Length	12
17	Sensitivity of Results to Time Lag	13
18	Supplemental Figures	15
19	Supplementary Figure 1. Body Size Model Tesults Were Robust to Subsetting of Breedi	ng
20	Ranges	15
21	Supplementary Figure 2. Body Size Decline has been Consistent Across Age and Sex	
22	Classes	45
23	Supplemental Tables	16
24	Supplementary Table 1. Taxonomic Sampling in the Dataset	
25	Supplementary Table 2. Tarsus Length has Decreased through time	21
26	Supplementary Table 3. Mass has Declined through time.	
27	Supplementary Table 4. PC1 Shows Decline in Body Size through Time	
28	Supplementary Table 5. Wing Length has Increased through Time.	30
29	Supplementary Table 6. Relative Wing Length has Increased through Time.	
30	Supplementary Table 7. Tarsus as a Function of Environmental and Climatic Cariables of	on the
31	Breeding and Wintering Grounds.	
32	References and Notes	38
33		

35 Supplementary Methods

36

37 Data Filtering

38 For the present study, the following records were removed from the dataset prior to 39 analysis: those with no locality information or those from outside the Chicagoland, IL area 40 (considered here to include Cook, DeKalb, DuPage, Kane, Kendall, Lake, McHenry and Will 41 Counties, although more than 98% of specimens were from Cook County); those with no 42 measurement data; those with no collection date recorded and those unidentified to species. 43 Carcasses were kept in -20°C freezers prior to measurement and preparation as museum 44 specimens. We note that freezing specimens can result in reductions of measurements, 45 particularly mass, due to desiccation. For carcass desiccation to have biased our results, freezing 46 times prior to measurement would needed to have increased steadily over the course of our study, and we have no indication that this has occurred in any consistent way. The vast majority 47 48 of specimens came from the spring and fall migratory periods; fewer then 1,000 specimens were 49 collected from the summer months (June and July) and were removed because they may have 50 been nestlings or fledglings, and fewer than 300 specimens were collected from the winter 51 months (December, January and February) and were also removed as the focus of this study is on 52 migrants passing through Chicago.

To examine temporal trends in morphology across the broadest set of species, we excluded any species with fewer than 100 total specimens or with fewer than 10 specimens with complete measurement data (i.e., measurements for tarsus, wing and mass) in each period 1980 -1989,1990 - 1999, 2000 - 2009 and 2000 - 2016. The only exceptions to these criteria were the inclusion of *Certhia americana* and *Sphyrapicus varius*, which were each represented by >2,000 specimens but did not have tarsus measurements from the most recent decade.

59	Given the size of the dataset, some errors in specimen identification or data entry are
60	inevitable, such that most species contained a handful of obviously erroneous measurements. To
61	remove these, we filtered four measurements (tarsus, wing, bill and mass) to nullify any
62	measurement falling outside an interquartile range of 3 for that measurement for each species
63	(box-and-whisker plots typically identify outliers as those falling outside of a more conservative
64	1.5 interquartile range; we used a broader range so as to remove errors while attempting to retain
65	true outliers). This filtering procedure nullified only 326 out of 257,985 total measurements.
66	
67	Environmental Data
68	We calculated temperature on the breeding and wintering grounds using the NASA GISS
69	surface temperature anomaly dataset from 1981 – 2016 (Hansen et al. 2010). For each species, to
70	calculate the temperature on the breeding range, the mean June temperature anomaly of each
71	year across the cropped breeding range was used; to calculate the temperature on the wintering
72	range, the mean December temperature anomaly of each year across the cropped wintering range
73	was used (S1 Fig). Temperature data were obtained through the Columbia University IRI data
74	library (<u>https://iridl.ldeo.columbia.edu</u>). Precipitation data were obtained from 1981 – 2016 from
75	the Global Precipitation Climatology Project, provided by NOAA/OAR/ESRL PSD, Boulder,
76	Colorado, USA; https://www.esrl.noaa.gov/psd/ (Adler et al. 2003) and used to calculate mean
77	June and mean December precipitation across the cropped breeding and winter ranges,
78	respectively. As a metric for primary productivity, we calculated the maximum mean
79	Normalized Difference Vegetation Index (NDVI), obtained from the NOAA Climate Data
80	Record (Vermote et al. 2014) and analyzed using Google Earth Engine (Gorelick et al. 2017)
81	from 1981 – 2016. To characterize NDVI on the breeding and wintering ranges, we used the

82	maximum mean NDVI across the breeding range of each species in June and across the
83	wintering range in December.

- 84
- 85 Bayesian Mixed Modeling Framework

In order to test the sensitivity of our analyses to our treatment of the phylogenetic nonindependence of our data, we conducted analogous models of morphological change through time (eqn 1) and the influence of climatic and environmental variables on tarsus (eqn 2), using a Bayesian mixed model approach.

For all models examining changes in morphology through time (eqn 1), we conducted an analogous model but within a Bayesian framework in which we treated species identity as a random effect that incorporated a phylogenetic variance covariance matrix. We retrieved 1,000 of the most likely phylogenies for our species from the posterior distribution of a global phylogeny of the birds of the world (<u>https://birdtree.org (Jetz *et al.* 2012</u>)), and calculated a 50% majority rule consensus with branch lengths, following Rubolini *et al.* (2015) (Rubolini *et al.*

96 2015). All tips were represented in the phylogeny with genetic data.

97 Bayesian regression models analogous to the linear model structures we described above 98 (eqn 1) were fit using "brms" (Bürkner 2017) in R (R Core Team 2018). We modeled both the 99 phylogenetic covariance among species and included a parameter to account for species-specific 100 effects not captured in their phylogenetic relatedness. Aside from specifying uninformative prior 101 distributions for the independent variable parameter estimates (normal distribution, mean of 0, 102 standard deviation of 10), brms default prior settings were used. To fit each model, four 103 independent chains were run for 10,000 iterations with the first 1,000 discarded as burn-in;

104	convergence was assessed by examining the posterior distributions of parameter estimates, trace		
105	plots and \hat{R} values (with \hat{R} values of 1 considered to reflect convergence).		
106	Similarly, a Bayesian regression model was used to assess the relationship between		
107	environmental and climatic variables and body size (eqn 2). In this model, we incorporated		
108	phylogenetic relatedness (with the phylogeny constructed as described above) and treated the		
109	data as a time series by modeling temporal auto-correlation within brms (using an autoregressive		
110	order of 1).		
111	The signs and significance values (whether the significance of a parameter was above or		
112	below a threshold of $P = 0.05$) of all parameters were compared to those derived from the linear		
113	models (eqns $1-2$).		
114			
115 116	Results		
117	Sample Sizes		
118	After applying our species selection criteria, our dataset included 70,716 specimens from		
119	52 species that span 11 families and 30 genera (S1 Table). There was a mean of 1,360 specimens		
120	per species, with a range of 101-9,953 (S1 Table). Wing length was measured for 69,825 of the		
121	specimens, tarsus was measured for 63,511 specimens, and both wing length and tarsus were		
122	measured for 63,306 specimens. Skull ossification was used to specimens collected during the		
123	fall to either hatch year (HY) of after hatch year (AHY), and all spring birds were, by definition,		
124	characterized as AHY. The dataset contained 67,352 aged birds (32,873 HY; 34,479 AHY).		
125			
126	Ecology and Natural History		

127	The only non-passerines were Porzana carolina (Rallidae) and Sphyrapicus varius			
128	(Picidae). The majority of species in the dataset are boreal forest species with breeding ranges			
129	either entirely or mainly north of Chicago (e.g., Zonotrichia albicollis). However, the dataset			
130	also includes some species whose breeding ranges extend further south to encompass Chicago			
131	(e.g., Spizella pusilla), but whose individuals must have come from north of Chicago. Breeding			
132	habitat among the species is diverse, ranging from subarctic taiga (e.g., Catharus minimus,			
133	Spizelloides arborea) to eastern broadleaf forest (e.g., Piranga olivacea, Hylocichla mustelina)			
134	to marsh habitats (e.g., Cistothorus palustris), edge (e.g., Passerina cyanea) or grasslands (e.g.			
135	Ammodramus savannarum). The wintering ranges and habitats are also diverse, ranging from			
136	species in which all individuals winter in South America (e.g., Setophaga striata, Oporonis			
137	agilis), to those species whose winter ranges include Chicago (e.g., Junco hyemalis, Spizelloides			
138	arborea) but in which the sampled individuals must have originated south of Chicago. The			
139	species are also diverse in diet and foraging strategy; most species are principally insectivorous			
140	in the breeding season, but some adopt a more diverse diet in the winter including granivory or			
141	frugivory. The species are also diverse in nesting biology, ranging from ground nesters to canopy			
142	nesters. Most species build open cup nests, but the dataset also includes some species that nest in			
143	cavities or crevices (Troglodytes aedon and Troglodytes hiemalis) or build covered nests (e.g.,			
144	Seiurus aurocapilla).			

- 145
- 146 Body Size Declined Through Time

147All indices of body size (tarsus, mass, and PC1) declined through time. Tarsus declined148significantly through time (P < 0.01), controlling for age, sex, species effects, and species by149year interactions (S2 Table). The tarsus model (eqn 1), was significantly better than the null

150	model ($n = 58,475$, $F = 73.81$, $DF = 105$ and 58,369, $P \ll 0.001$, adjusted $R^2 = 0.12$). Similarly,
151	mass declined through time, though the relationship is only marginally significant ($P = 0.056$),
152	controlling for age, sex, species effects, and species by year interactions (S3 Table). The mass
153	model (eqn 1) was significantly better than the null model ($n = 52,390, F = 97.95, DF = 105$ and
154	52,284, $P \ll 0.001$, adjusted $R^2 = 0.16$).
155	The principal component analysis (PCA) of all species with data on wing length, tarsus,

bill length, age, sex, and species (n = 48,338), had four axes, the first of which (PC1) explained 82% of the variance, with positive loadings on log(wing length) (0.53), log(tarsus) (0.51), log(bill length) (0.44), and log(mass^{1/3}) (0.52). The second, third, and fourth axes captured the contrasts between the variables, with inconsistent signs across the loadings for the variables. PC1 declined through time (indicating body size has declined through time), and this decline was

significant (P < 0.01) after controlling for age, sex, species effects and species by year

162 interactions (S4 Table). This decline is particularly notable given the expectation that increasing

temperatures should drive increasing relative bill and, to a lesser degree, tarsus length (Allen's

164 rule (Symonds & Tattersall 2010)). The model was significantly better than the null model (n =

165 48,338, F = 284.8, DF = 105 and 48,232, P << 0.001, adjusted $R^2 = 0.38$).

Given the significant decline in tarsus and PC1, and the near-significant decline in mass, our interpretation is that overall body size has declined through time. Tarsus is a better indicator of intraspecific body size in passerines than wing length (Rising & Somers 1989; Senar & Pascual 1997). Mass is expected to have higher variance given rapid fat gains and losses of migratory birds in migration (Alerstam & Lindström 1990; Morris *et al.* 1996), so it is not surprising that the mass trend was consistent with the tarsus and PC1 trends, but less statistically significant. Although estimates of body size derived from multivariate principal components

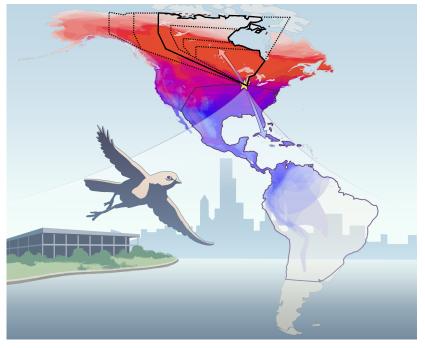
173	analyses are often desirable, we focus on tarsus as an indicator of intraspecific changes in body
174	size, as it is not as vulnerable to fluctuations in mass (either induced by actual variations in mass
175	that occur during migration or as a result of dehydration of specimens prior to measurement) that
176	may impact changes in PC1.
177	
178	Wing Length Increased Through Time
179	Raw wing length increased significantly through time ($P < 0.01$), controlling for age, sex,
180	species effects, and species by year interactions (S5 Table). The model was significantly better
181	than the null model ($n = 62,628$, $F = 496$, $DF = 105$ and $62,522$, $P \ll 0.001$, adjusted $R^2 = 0.45$)
182	Similarly, relative wing length increased significantly through time ($P < 0.001$),
183	controlling for age, sex, year, species effects, and species by year interactions (S6 Table). The
184	model was significantly better than the null model ($n = 58,304, F = 379.8, DF = 105$ and 58,198,
185	$P << 0.001$, adjusted $R^2 = 0.41$).
186	In addition to the long-term trends in relative wing length, we modeled the effect of
187	season on relative wing length, controlling for time, season, sex, species effects, and species by
188	year interactions. The model was significantly better than the null model ($n = 58,304, F = 366.6$,
189	$DF = 105$ and 58,198, $P \ll 0.001$, adjusted $R^2 = 0.4$). In this model, spring had a positive and
190	significant ($P < 0.05$) relationship with relative wing length.
191	
192	Climatic and Environmental Predictors of Tarsus

We modeled body size as a function of climatic and environmental predictors for AHY birds from 1981-2016 (eqn 2), using both tarsus and PC1 as the index of body size. Precipitation on the breeding grounds and NDVI on the breeding grounds were highly correlated (R = 0.56), 196 so NDVI on the breeding grounds was not included in the model. Of the variance explained by 197 the model (amounts of variance explained are for tarsus, followed by PC1), the variables that 198 contributed the most were sex (68%, 70%), year (22%, 24%), temperature on the breeding 199 grounds (3%, 2%), species by year interactions (3%, 1%), and species effects (2%, 2%; this 200 effect is small because the data were group-mean centered by species). Both tarsus and PC1 were 201 significantly larger in males (P < 0.001), declined through time (P < 0.05), and was significantly 202 negatively associated with temperature on the breeding grounds (P < 0.001). The remaining 203 climatic and environmental variables each explained less than 1% of the variance explained by the models. The tarsus model was significantly better than the null model (n = 29,702, F = 37.41). 204 205 137.5, DF = 110 and 23,901, $P \ll 0.001$, adjusted $R^2 = 0.38$) 206

207 In addition to modeling the impacts of both summer and winter variables on size, we 208 modeled tarsus for all specimens, including both HY and AHY birds, using eqn 2, without any of 209 the winter variables (as the HY birds had not yet lived through a winter season), and with the 210 addition of age as a covariate. The results were qualitatively similar to the model that only 211 included adult birds, with the most variance explained by sex (68%), year (24%), species effects 212 (3%), temperature on the breeding grounds (2%), and species by year interactions (2%). All 213 other variables, including age, explained less than 1% of the variance explained by the model. The model was significantly better than the null model (n = 57,718, F = 69.64, DF = 108 and 214 57,609, $P \le 0.001$, adjusted $R^2 = 0.11$). 215

217 *Climatic and Environmental Predictors of Wing Length*

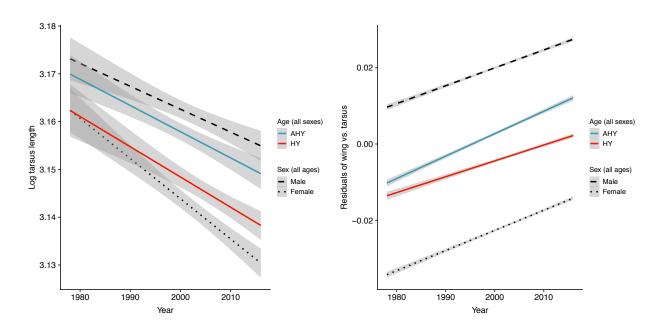
218	The model of wing length of AHY birds as a function of climatic and environmental			
219	variables was (eqn 2) was significantly better than the null model ($n = 31,987, F = 253.6, DF =$			
220	110 and 31,876, $P \ll 0.001$, adjusted $R^2 = 0.46$). Uncorrected wing length increased			
221	significantly through time ($P < 0.01$), and was significantly positively associated with winter			
222	NDVI ($P < 0.01$) and winter precipitation ($P < 0.001$). Despite the significant association, winter			
223	precipitation cannot explain the long-term increase in wing length, as winter precipitation has			
224	significantly declined through time ($P < 0.001$) but was positively associated with wing length.			
225	Winter NDVI is positively associated with wing length, and has significantly increased through			
226	time, making it a potential driver of the long-term trend in wing length. However, winter NDVI			
227	explained less than 1% of the variance explained by the model, suggesting it is not contributing			
228	to the long-term change in wing length. More generally, with the exception of year, which			
229	explained 2% of the variance explained by the model, no environmental or climatic variables			
230	explained more than 1% of the variance explained by the model.			
231	The most variance in body size-corrected wing length was explained by sex (88%), year			
232	(6%), season (4%), and species by time interactions (1%). All environmental and climatic			
233	variables, with the exception of winter temperature, were significantly associated with relative			
234	wing length ($P < 0.05$), but they all explained less than 1% of the variance explained by the			
235	model.			
236				
237	Results Using a Bayesian Mixed Modeling Framework and Phylogenetic Correction			
238	All parameter estimates converged, with \hat{R} values of 1. The relationship between year			
239	tarsus, mass, PC1, wing length, and body size-corrected wing length through time were			
240				


240 qualitatively similar (in sign) in the Bayesian models and the linear fixed effect model results

241	(eqn 1). The only differences in statistical significance across the models was a significant		
242	relationship between mass and year in the Bayesian model, while that relationship was only		
243	marginally significant ($P = 0.056$) in the fixed effects linear models.		
244	The relationships between environmental and climatic factors and AHY tarsus length		
245	were also qualitatively similar in both the frequentist fixed effects model (eqn 2) and the		
246	analogous Bayesian mixed effects model. All parameter estimates had converged, with \hat{R} values		
247	of 1. All parameter signs were the same across modeling frameworks. All relationships and		
248	significance values were similar in sign and significance when the relationships between		
249	environmental and climatic variables (eqn 2) and tarsus length was modeled for all birds		
250	(including HY birds) and only summer variables, except that the association with precipitation		
251	on the breeding ground changes from marginally significant to significant.		
252			
253	Arrival Time		
253 254	Arrival Time In order to test the influence of body size and wing length on arrival time within years,		
254	In order to test the influence of body size and wing length on arrival time within years,		
254 255	In order to test the influence of body size and wing length on arrival time within years, and shifts in arrival time across years, we modeled arrival time for individuals collected during		
254 255 256	In order to test the influence of body size and wing length on arrival time within years, and shifts in arrival time across years, we modeled arrival time for individuals collected during their spring migration from $1979 - 2016$. We filtered out any species that did not have arrival		
254 255 256 257	In order to test the influence of body size and wing length on arrival time within years, and shifts in arrival time across years, we modeled arrival time for individuals collected during their spring migration from $1979 - 2016$. We filtered out any species that did not have arrival data from at least ten years, after removing any years in which specimens from that species were		
254 255 256 257 258	In order to test the influence of body size and wing length on arrival time within years, and shifts in arrival time across years, we modeled arrival time for individuals collected during their spring migration from $1979 - 2016$. We filtered out any species that did not have arrival data from at least ten years, after removing any years in which specimens from that species were collected on fewer than five days. This left 26 species with data from at least ten years in which		
254 255 256 257 258 259	In order to test the influence of body size and wing length on arrival time within years, and shifts in arrival time across years, we modeled arrival time for individuals collected during their spring migration from $1979 - 2016$. We filtered out any species that did not have arrival data from at least ten years, after removing any years in which specimens from that species were collected on fewer than five days. This left 26 species with data from at least ten years in which specimens of that species were collected on at least five days ($n = 19,652$).		
254 255 256 257 258 259 260	In order to test the influence of body size and wing length on arrival time within years, and shifts in arrival time across years, we modeled arrival time for individuals collected during their spring migration from $1979 - 2016$. We filtered out any species that did not have arrival data from at least ten years, after removing any years in which specimens from that species were collected on fewer than five days. This left 26 species with data from at least ten years in which specimens of that species were collected on at least five days ($n = 19,652$). In order to test for the impact of body size on arrival time within years, we used the		

264 In order to test for shifts in the arrival time across years, we modeled within-year 265 collection date (again, scaled to have a mean of zero and a variance of one): collection date $= B_0$ 266 $+ B_1$ *vear + species + species*vear (eqn 4). 267 Within-year collection date was significantly negatively associated with tarsus (i.e. larger 268 birds arrived earlier; P < 0.01), and the model (eqn 3) was significantly better than a null model $(F = 1.688, DF = 52 \text{ and } 19.599, P \le 0.001, R^2 = 0.82)$. Within-year collection date was 269 270 similarly significantly negatively associated with group centered relative wing length (P < 0.01), and the model (eqn 3) was significantly better than a null model (F = 1,823, DF = 52 and 19,599, 271 $P \ll 0.001$, $R^2 = 0.83$). Across years, collection date has not changed significantly (eqn 4: P =272 273 0.31). 274 275 *Rates of Change in Tarsus Predict Rates of Change in Wing Length* 276 For each species, we modeled group-centered tarsus and body size-corrected wing length 277 through time for each species. We retained the slope of the model for each species as well as the 278 variance of the slope parameter estimate. In order to test the hypothesis that increases in size-279 corrected wing length are associated with reductions in body size, we modeled the rate of change 280 in size-corrected wing length as a function of the rate of change in tarsus length. (n = 52). The 281 uncertainty in the slope estimates was treated as measurement error, and phylogenetic correlation 282 was accounted for using the "GLSME" function in the GLSME package in R (Hansen & 283 Bartoszek 2012); our results were sensitive to our treatment of bias. 284 Because of the variable slopes in our data, and the different levels of error across slopes 285 and variables, we corrected for bias despite a low reliability ratio (Hansen & Bartoszek 2012). 286 Significance of the parameter estimate was assessed based on whether the distance of the

287	parameter estimate from zero was more than twice the estimated standard error of parameter
288	(Gelman & Hill 2009). Slope in wing length through time was negatively related to slope in
289	tarsus through time (i.e. those species with greater rates of loss in tarsus experienced greater rates
290	of increase in relative wing length; $n = 52$). The bias-corrected GLS parameter estimate (Hansen
291	& Bartoszek 2012) was $-1*10^{-4}$, which was more than twice the standard error in the bias
292	parameter estimate $(2*10^{-19})$, suggesting the parameter value is significantly different from zero
293	(Gelman & Hill 2009). Importantly, this result was sensitive to our decision to correct for bias
294	within the error structure of the measurement error; the parameter estimate, when not correcting
295	for bias, was not significant.
296	
297	Sensitivity of Results to Time Lag
298	The relationships between temperature on the breeding grounds and tarsus length was
299	robust to our treatment of year, despite not knowing the exact age of AHY birds. Tarsus was
300	significantly negatively related to temperature on the breeding grounds across all models. With
301	the exception of the three-year lag, temperature on the breeding grounds was consistently
302	responsible for explaining more of the variance explained by the model than any other
303	environmental or climatic predictor, and in two of the three models, it explained an order of
304	magnitude more variance than the next most important predictor. In the one treatment of time in
305	which summer breeding temperature was not the most significant predictor (when climate and
306	environmental data from three years earlier was used), the most important variable was
307	precipitation on the wintering grounds. Winter precipitation could not explain the long-term
308	trend in tarsus, as winter precipitation was positively related to tarsus, but increased through time
309	while tarsus declined.


311 Supplemental Figures

- 312
- 313

314 *Supplementary Figure 1.* Data collection and sensitivity to Subsetting of breeding ranges.

315 All individuals included in the study were collected after they collided with buildings in 316 Chicago, IL during fall or spring migration. The species' breeding ranges span North America 317 (individual species' breeding ranges are outlined in red) and winter ranges extend from the southern United States through the Neotropics (individual species' wintering ranges are outlined 318 319 in blue). Likely destinations (solid and dashed lines) were determined based on known migratory 320 paths, and environmental and climatic variables were calculated for the intersection of each 321 species' range and their likely destinations; modeling results were robust to how these regions were defined. We modeled the relationship between body size and environmental variables (eqn 322 2) using different subsets of the breeding ranges of each species to calculate the environmental 323 variables. The model results reported in the text are based on the region outlined with the solid 324 325 line. We found similar results – temperature had a significant negative relationship with body size, and explained the most variance of any variable – using all areas outlined in dashed lines. 326

329 Year
 330 Supplementary Figure 2. Body Size has Declined and Relative Wing Length has Increased
 331 Across Age and Sex Classes. While relative wing length has increased in both age classes
 332 (right), this increase is more pronounced in adult (AHY) birds. This is consistent with selection
 333 for increased wing length during migration as a mechanism for long-term increases in wing
 334 length, rather than simple intra-annual shifts in demography.

335

328

336 Supplemental Tables

Family	Genus	Species	Number of Specimens
Rallidae	Porzana	carolina	380
Picidae	Sphyrapicus	varius	2,057
Regulidae	Regulus	satrapa	1,020
C	Regulus	calendula	412
Troglodytidae	Troglodytes	hiemalis	449
	Troglodytes	aedon	101
Certhiidae	Certhia	americana	2607
Mimidae	Dumetella	carolinensis	582
	Toxostoma	rufum	153
Turdidae	Catharus	guttatus	3,662
	Catharus	ustulatus	2,485
	Catharus	minimus	849
	Catharus	fuscescens	744
	Hylocichla	mustelina	462
_	Turdus	migratorius	570
Passerellidae	Ammodramus	savannarum	103
	Junco	hyemalis	6164
	Melospiza	melodia	5070
	Melospiza	georgiana	4897
	Melospiza	lincolnii	1986
	Passerculus	sandwichensis	277
	Passerella	iliaca	2433
	Spizella	pusilla	320
	Spizelloides	arborea	1247
	Zonotrichia	albicollis	9953
	Zonotrichia	leucophrys	1107
Icteridae	Quiscalus	quiscula	227
Parulidae	Cardellina	canadensis	250
	Cardellina	pusilla	181
	Geothlypis	trichas	1569
	Geothlypis	philadelphia	427
	Mniotilta	varia	618
	Oporornis	agilis	361
	Oreothlypis	peregrina	2649
	Oreothlypis	ruficapilla	1665

	Oreothlypis	celata	232
	Parkesia	noveboracensis	928
	Seiurus	aurocapilla	4518
	Setophaga	magnolia	1220
	Setophaga	coronata	892
	Setophaga	ruticilla	853
	Setophaga	striata	791
	Setophaga	palmarum	680
	Setophaga	pensylvanica	296
	Setophaga	castanea	282
	Setophaga	virens	215
	Setophaga	fusca	199
	Setophaga	caerulescens	183
	Setophaga	tigrina	183
Cardinalidae	Passerina	cyanea	711
	Pheucticus	ludovicianus	377
	Piranga	olivacea	119

_

Supplementary Table 1. Taxonomic Sampling in the Dataset. After filtering the data (*Materials and Methods*), the dataset included 70,716 specimens from 52 species spanning 11 families and 30 genera.

$log(tarsus)_{group\ centered} = B_0 + B_1 * Year + B_2 * Age + B_3 * Sex + Species + Species * Year$			
Variable	Parameter Estimate		
Intercept	53.045***		
Year	-0.027***		
Age	-0.036***		
Sex (male)	0.557***		
Species e	effects		
Cardellina canadensis	-4.4		
Cardellina pusilla	15.8		
Catharus fuscescens	-26.6		
Catharus guttatus	-19.2		
Catharus minimus	-22.0		
Catharus ustulatus	-27.6		
Certhia americana	15.5		
Dumetella carolinensis	-25.3		
Geothlypis philadelphia	-5.4		
Geothlypis trichas	-5.1		
Hylocichla mustelina	-31.0		
Junco hyemalis	-13.8		
Melospiza georgiana	-18.5		
Melospiza lincolnii	-21.3		
Melospiza melodia	-23.9		
Mniotilta varia	-2.6		
Oporornis agilis	-28.1		
Oreothlypis celata	-12.3		
Oreothlypis peregrina	-10.1		
Oreothlypis ruficapilla	-5.3		
Parkesia noveboracensis	-1.0		
Passerculus sandwichensis	-36.0		
Passerella iliaca	-18.2		
Passerina cyanea	-9.9		
Pheucticus ludovicianus	-40.0*		
Piranga olivacea	-26.4		
Porzana carolina	-56.5**		
Quiscalus quiscula	-59.4**		
Regulus calendula	-40.4*		
Regulus satrapa	-30.6		
Seiurus aurocapilla	-11.8		
Setophaga caerulescens	-1.6		

log(tarsus) $= B_0 + B_1 * V_{ear} + B_2 * \Delta \sigma e + B_2 * S_{ex} + B_3 * S_{ex} + B_4 * S_{ex} + B_5 * S_{ex$

Setophaga castanea	-6.2
Setophaga coronata	-13.5
Setophaga fusca	39.5
Setophaga magnolia	-4.0
Setophaga palmarum	-16.5
Setophaga pensylvanica	-18.6
Setophaga ruticilla	0.3
Setophaga striata	-9.1
Setophaga tigrina	-5.0
Setophaga virens	-2.3
Sphyrapicus varius	-47.8
Spizella pusilla	-8.2
Spizelloides arborea	-36.0*
Toxostoma rufum	-70.1***
Troglodytes aedon	-20.0
Troglodytes hiemalis	-27.9
Turdus migratorius	-27.8
Zonotrichia albicollis	-15.1
Zonotrichia leucophrys	-23.7
Species by year inte	eractions
Year: Cardellina canadensis	0.002
Year: Cardellina pusilla	-0.008
Year: Catharus fuscescens	0.013
Year: Catharus guttatus	0.01
Year: Catharus minimus	0.011
Year: Catharus ustulatus	0.014
Year:Certhia americana	-0.008
Year:Dumetella carolinensis	0.013
Year: Geothlypis philadelphia	0.003
Year: Geothlypis trichas	0.003
Year:Hylocichla mustelina	0.016
Year:Junco hyemalis	0.007
Year:Melospiza georgiana	0.009
Year:Melospiza lincolnii	0.011
Year:Melospiza melodia	0.012
Year:Mniotilta varia	0.001
Year: Oporornis agilis	0.014
Year: Oreothlypis celata	0.006
Year: Oreothlypis peregrina	0.005
Year: Oreothlypis ruficapilla	0.003

Year: Parkesia noveboracensis	0.001
Year: Passerculus sandwichensis	0.018
Year:Passerella iliaca	0.009
Year:Passerina cyanea	0.005
Year: Pheucticus ludovicianus	0.020*
Year:Piranga olivacea	0.013
Year:Porzana carolina	0.028**
Year: Quiscalus quiscula	0.030**
Year:Regulus calendula	0.020*
Year:Regulus satrapa	0.015
Year:Seiurus aurocapilla	0.006
Year:Setophaga caerulescens	0.001
Year:Setophaga castanea	0.003
Year:Setophaga coronata	0.007
Year:Setophaga fusca	-0.019
Year:Setophaga magnolia	0.002
Year:Setophaga palmarum	0.008
Year:Setophaga pensylvanica	0.009
Year:Setophaga ruticilla	0.00003
Year:Setophaga striata	0.005
Year:Setophaga tigrina	0.003
Year:Setophaga virens	0.001
Year: Sphyrapicus varius	0.024
Year:Spizella pusilla	0.004
Year:Spizelloides arborea	0.018*
Year: Toxostoma rufum	0.035***
Year: Troglodytes aedon	0.01
Year: Troglodytes hiemalis	0.014
Year: Turdus migratorius	0.014
Year:Zonotrichia albicollis	0.008
Year:Zonotrichia leucophrys	0.012
Observations	58,475
R^2	0.117
Adjusted R ²	0.116
Residual Std. Error	0.940 (df = 58,369)
F Statistic	73.8*** (df = 105; 58,369)
*p<0.1, **p<0.05, ***p<0.01	

Supplementary Table 2. Tarsus Length has Decreased through Time. All species and species by year interaction terms are relative to the reference taxon, *Ammodramus savannorum*.

VariableParameter EstimateIntercept39.940*Year-0.020*Age-0.073***Sex (male)0.782***Species EffectsCardellina canadensis-40.393*Cardellina canadensis-40.393*Cardellina canadensis-40.393*Cardellina canadensis-40.393*Cardellina canadensis-10.68Catharus guttatus-19.68Catharus guttatus-20.413Certhia americana11.069Dumetella carolinensis-55.384**Geothlypis philadelphia-59.840***Geothlypis trichas-42.655**Hylocichla mustelina-31.793Junco hyemalis-21.893Melospiza georgiana-34.813Melospiza georgiana-34.813Melospiza lincolnii-30.026Melospiza anelodia-25.975Minotilta varia-39.182*Oporornis agilis-6.563Oreothlypis ruficapilla-28.88Passerulus sandwichensis-41.3	$log(mass)_{group \ centered} = B_0 + B_1 * Year + B_2 * Age + B_3 * Sex + Species + Species * Year$		
Year -0.020^* Age -0.073^{***} Sex (male)Sex (male) 0.782^{***} Species EffectsCardellina canadensis-40.393* Cardellina pusillaCardellina canadensis-40.393* Cardellina pusillaCardellina canadensis-40.393* Cardellina pusillaCardellina pusilla-77.162*** Catharus guttatusCatharus guttatus-19.68 Catharus ustulatus-20.413 Certhia americana11.069 Dumetella carolinensis-55.384** Geothlypis philadelphia-59.840*** Geothlypis trichas-42.655** Hylocichla mustelina-31.793 Junco hyemalis-21.893 Melospiza georgiana-34.813 Melospiza melodia-25.975 Mniotilta varia-39.182* Oporornis agilis-6563 Oreothlypis ruficapilla-24.88 Oreothlypis peregrina-14.333 Oreothlypis sufficapilla-28.319 Parkesia noveboracensis-36.364* Passerculus sandwichensis-41.306 Passerella iliaca-29.888 Passerina cyanea-27.7 Pheucticus ludovicianus-37.289 Piranga olivacea-26.774 Porzana carolina-24.687 Quiscalus quiscula <td colspan<="" th=""><th>Variable</th><th>Parameter Estimate</th></td>	<th>Variable</th> <th>Parameter Estimate</th>	Variable	Parameter Estimate
Year -0.020^* Age -0.073^{***} Sex (male)Sex (male) 0.782^{***} Cardellina canadensis -40.393^* Cardellina pusilla -77.162^{***} Catharus fuscescensCatharus fuscescens -22.669 Catharus guttatus -19.68 Catharus guttatus -19.68 Catharus ustulatusCatharus guttatus -20.413 Certhia americana 11.069 Dumetella carolinensisDumetella carolinensis -55.384^{**} Geothlypis philadelphia -59.840^{***} Geothlypis trichasGeothlypis prichas -42.655^{**} Hylocichla mustelina -31.793 Junco hyemalisJunco hyemalis -21.893 Melospiza georgiana -34.813 Melospiza melodiaMelospiza melodia -25.975 Mniotilta varia -39.182^* Oporornis agilisOporontis agilis -6.563 Oreothlypis ruficapilla -24.88 Oreothlypis ruficapillaParkesia noveboracensis -36.364^* Passerculus sandwichensis -41.306 Passerella iliacaPasserina cyanea -27.7 Pheucticus ludovicianus -37.289 Piranga olivaceaPiranga olivacea -26.774 Porzana carolina -24.864	Intercept	39.940*	
Sex (male)0.782***Species EffectsCardellina canadensis-40.393*Cardellina pusilla-77.162***Catharus fuscescens-22.669Catharus guttatus-19.68Catharus guttatus-20.413Certhia americana11.069Dumetella carolinensis-55.384**Geothlypis philadelphia-59.840***Geothlypis trichas-42.655**Hylocichla mustelina-31.793Junco hyemalis-34.813Melospiza lincolnii-39.182*Oporornis agilis-6.563Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	-	-0.020*	
Sex (male) 0.782*** Species Effects -40.393* Cardellina canadensis -40.393* Cardellina pusilla -77.162*** Catharus fuscescens -22.669 Catharus guttatus -19.68 Catharus guttatus -19.68 Catharus minimus -0.694 Catharus ustulatus -20.413 Certhia americana 11.069 Dumetella carolinensis -55.384** Geothlypis philadelphia -59.840*** Geothlypis trichas -42.655** Hylocichla mustelina -31.793 Junco hyemalis -21.893 Melospiza georgiana -34.813 Melospiza melodia -25.975 Mniotilta varia -39.182* Oporornis agilis -6.563 Oreothlypis ruficapilla -28.319 Parkesia noveboracensis -36.364* Passerculus sandwichensis -41.306 Passerina cyanea -27.7 Pheucticus ludovicianus -37.289 Piranga olivacea -26.774 Porzana	Age	-0.073***	
Species Effects Cardellina canadensis -40.393* Cardellina pusilla -77.162*** Catharus fuscescens -22.669 Catharus guttatus -19.68 Catharus guttatus -19.68 Catharus minimus -0.694 Catharus ustulatus -20.413 Certhia americana 11.069 Dumetella carolinensis -55.384** Geothlypis philadelphia -59.840*** Geothlypis trichas -42.655** Hylocichla mustelina -31.793 Junco hyemalis -21.893 Melospiza georgiana -34.813 Melospiza melodia -25.975 Mniotilta varia -39.182* Oporornis agilis -6.563 Oreothlypis peregrina -14.333 Oreothlypis ruficapilla -28.319 Parkesia noveboracensis -36.364* Passerculus sandwichensis -41.306 Passerina cyanea -27.7 Pheucticus ludovicianus -37.289 Piranga olivacea -26.774 Porzana carolina	-	0.782***	
Cardellina pusilla-77.162***Catharus fuscescens-22.669Catharus guttatus-19.68Catharus minimus-0.694Catharus ustulatus-20.413Certhia americana11.069Dumetella carolinensis-55.384**Geothlypis philadelphia-59.840***Geothlypis trichas-42.655**Hylocichla mustelina-31.793Junco hyemalis-21.893Melospiza georgiana-34.813Melospiza melodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.867Quiscalus quiscula-22.878Regulus calendula-22.878Regulus calendula-24.864		s Effects	
Catharus fuscescens -22.669 Catharus guttatus -19.68 Catharus minimus -0.694 Catharus ustulatus -20.413 Certhia americana 11.069 Dumetella carolinensis -55.384^{**} Geothlypis philadelphia -59.840^{***} Geothlypis trichas -42.655^{**} Hylocichla mustelina -31.793 Junco hyemalis -21.893 Melospiza georgiana -34.813 Melospiza melodia -25.975 Mniotilta varia -39.182^* Oporornis agilis -6.563 Oreothlypis ruficapilla -28.319 Parkesia noveboracensis -36.364^* Passerculus sandwichensis -41.306 Passerina cyanea -27.7 Pheucticus ludovicianus -37.289 Piranga olivacea -22.878 Regulus calendula -22.878 Regulus calendula -24.864	Cardellina canadensis	-40.393*	
Catharus guttatus-19.68Catharus minimus-0.694Catharus ustulatus-20.413Certhia americana11.069Dumetella carolinensis-55.384**Geothlypis philadelphia-59.840***Geothlypis trichas-42.655**Hylocichla mustelina-31.793Junco hyemalis-21.893Melospiza georgiana-34.813Melospiza lincolnii-30.026Melospiza melodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Cardellina pusilla	-77.162***	
Catharus minimus-0.694Catharus ustulatus-20.413Certhia americana11.069Dumetella carolinensis-55.384**Geothlypis philadelphia-59.840***Geothlypis trichas-42.655**Hylocichla mustelina-31.793Junco hyemalis-21.893Melospiza georgiana-34.813Melospiza lincolnii-30.026Melospiza melodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Catharus fuscescens	-22.669	
Catharus ustulatus-20.413Certhia americana11.069Dumetella carolinensis-55.384**Geothlypis philadelphia-59.840***Geothlypis trichas-42.655**Hylocichla mustelina-31.793Junco hyemalis-21.893Melospiza georgiana-34.813Melospiza nelodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.887Quiscalus quiscula-22.878Regulus calendula-22.878Regulus calendula-24.864	Catharus guttatus	-19.68	
Certhia americana11.069Dumetella carolinensis-55.384**Geothlypis philadelphia-59.840***Geothlypis trichas-42.655**Hylocichla mustelina-31.793Junco hyemalis-21.893Melospiza georgiana-34.813Melospiza lincolnii-30.026Melospiza melodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis celata-24.88Oreothlypis peregrina-14.333Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.864	Catharus minimus	-0.694	
Dumetella carolinensis-55.384**Geothlypis philadelphia-59.840***Geothlypis trichas-42.655**Hylocichla mustelina-31.793Junco hyemalis-21.893Melospiza georgiana-34.813Melospiza lincolnii-30.026Melospiza melodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis celata-24.88Oreothlypis peregrina-14.333Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.864	Catharus ustulatus	-20.413	
Geothlypis philadelphia-59.840***Geothlypis trichas-42.655**Hylocichla mustelina-31.793Junco hyemalis-21.893Melospiza georgiana-34.813Melospiza lincolnii-30.026Melospiza melodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis celata-24.88Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.864	Certhia americana	11.069	
Geothlypis trichas-42.655**Hylocichla mustelina-31.793Junco hyemalis-21.893Melospiza georgiana-34.813Melospiza lincolnii-30.026Melospiza melodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis celata-24.88Oreothlypis peregrina-14.333Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.864	Dumetella carolinensis	-55.384**	
Hylocichla mustelina-31.793Junco hyemalis-21.893Melospiza georgiana-34.813Melospiza lincolnii-30.026Melospiza melodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis celata-24.88Oreothlypis peregrina-14.333Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Geothlypis philadelphia	-59.840***	
Junco hyemalis-21.893Melospiza georgiana-34.813Melospiza lincolnii-30.026Melospiza melodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis celata-24.88Oreothlypis peregrina-14.333Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Geothlypis trichas	-42.655**	
Melospiza georgiana-34.813Melospiza lincolnii-30.026Melospiza melodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis celata-24.88Oreothlypis peregrina-14.333Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Hylocichla mustelina	-31.793	
Melospiza lincolnii-30.026Melospiza melodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis celata-24.88Oreothlypis peregrina-14.333Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Junco hyemalis	-21.893	
Melospiza melodia-25.975Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis celata-24.88Oreothlypis peregrina-14.333Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Melospiza georgiana	-34.813	
Mniotilta varia-39.182*Oporornis agilis-6.563Oreothlypis celata-24.88Oreothlypis peregrina-14.333Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Melospiza lincolnii	-30.026	
Oporornis agilis-6.563Oreothlypis celata-24.88Oreothlypis peregrina-14.333Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Melospiza melodia	-25.975	
Oreothlypis celata-24.88Oreothlypis peregrina-14.333Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Mniotilta varia	-39.182*	
Oreothlypis peregrina-14.333Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Oporornis agilis	-6.563	
Oreothlypis ruficapilla-28.319Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Oreothlypis celata	-24.88	
Parkesia noveboracensis-36.364*Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Oreothlypis peregrina	-14.333	
Passerculus sandwichensis-41.306Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Oreothlypis ruficapilla	-28.319	
Passerella iliaca-29.888Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Parkesia noveboracensis	-36.364*	
Passerina cyanea-27.7Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Passerculus sandwichensis	-41.306	
Pheucticus ludovicianus-37.289Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Passerella iliaca	-29.888	
Piranga olivacea-26.774Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Passerina cyanea	-27.7	
Porzana carolina-24.687Quiscalus quiscula-22.878Regulus calendula-24.864	Pheucticus ludovicianus	-37.289	
Quiscalus quiscula-22.878Regulus calendula-24.864	Piranga olivacea	-26.774	
Regulus calendula -24.864	Porzana carolina	-24.687	
0	Quiscalus quiscula	-22.878	
Regulus satrapa -4.766	Regulus calendula	-24.864	
	Regulus satrapa	-4.766	
Seiurus aurocapilla -36.539*	Seiurus aurocapilla	-36.539*	
Setophaga caerulescens -45.315*	Setophaga caerulescens	-45.315*	

Setophaga castanea	8.706
Setophaga coronata	-0.49
Setophaga fusca	-42.113
Setophaga magnolia	-33.13
Setophaga palmarum	-13.173
Setophaga pensylvanica	-38.026
Setophaga ruticilla	-40.986*
Setophaga striata	-3.937
Setophaga tigrina	-4.867
Setophaga virens	-47.004*
Sphyrapicus varius	-18.083
Spizella pusilla	-20.458
Spizelloides arborea	-34.536
Toxostoma rufum	3.564
Troglodytes aedon	-20.06
Troglodytes hiemalis	6.796
Turdus migratorius	-27.86
Zonotrichia albicollis	-30.804
Zonotrichia leucophrys	-38.853*
Species by Year Ir	nteractions
Year: Cardellina canadensis	0.020*
Year:Cardellina pusilla	0.039***
Year: Catharus fuscescens	0.011
Year: Catharus guttatus	0.01
Year: Catharus minimus	0.0004
Year: Catharus ustulatus	0.01
Year: Certhia americana	-0.005
Year:Dumetella carolinensis	0.028**
Year: Geothlypis philadelphia	0.030***
Year: Geothlypis trichas	0.021**
Year:Hylocichla mustelina	0.016
Year:Junco hyemalis	0.011
Year:Melospiza georgiana	0.017
Year:Melospiza lincolnii	0.015
Year:Melospiza melodia	0.013
Year:Mniotilta varia	0.020*
Year: Oporornis agilis	0.000
1 cui. Oporornis agins	0.003
Year:Oreothlypis celata	0.003 0.013
Year:Oreothlypis celata	0.013

Voor Drukening voor hours on nie	
Year: <i>Parkesia noveboracensis</i> 0.018*	
Year:Passerculus sandwichensis0.021*Verm Durangella ilinan0.015	
Year:Passerella iliaca0.015Voor: Dragering and the second	
Year: <i>Passerina cyanea</i> 0.014	
Year:Pheucticus ludovicianus0.019VDiagonal0.012	
Year: <i>Piranga olivacea</i> 0.013	
Year: <i>Porzana carolina</i> 0.012	
Year: <i>Quiscalus quiscula</i> 0.011	
Year: <i>Regulus calendula</i> 0.012	
Year: <i>Regulus satrapa</i> 0.003	
Year: <i>Seiurus aurocapilla</i> 0.018*	
Year: <i>Setophaga caerulescens</i> 0.023*	
Year: Setophaga castanea -0.004	
Year: <i>Setophaga coronata</i> 0.0003	
Year: <i>Setophaga fusca</i> 0.021	
Year: <i>Setophaga magnolia</i> 0.017	
Year: <i>Setophaga palmarum</i> 0.007	
Year: <i>Setophaga pensylvanica</i> 0.019	
Year: <i>Setophaga ruticilla</i> 0.021*	
Year: <i>Setophaga striata</i> 0.002	
Year: <i>Setophaga tigrina</i> 0.003	
Year: <i>Setophaga virens</i> 0.024*	
Year: <i>Sphyrapicus varius</i> 0.009	
Year: <i>Spizella pusilla</i> 0.01	
Year: <i>Spizelloides arborea</i> 0.017	
Year: <i>Toxostoma rufum</i> -0.002	
Year: Troglodytes aedon 0.01	
Year: Troglodytes hiemalis -0.003	
Year: <i>Turdus migratorius</i> 0.014	
Year: <i>Zonotrichia albicollis</i> 0.016	
Year: <i>Zonotrichia leucophrys</i> 0.020*	
Observations 52,390	
R^2 0.164	
Adjusted R^2 0.163	
Residual Std. Error $0.915 (df = 52,284)$	
F Statistic 97.954^{***} (df = 105; 52	
*p<0.1, **p<0.05, ***p<0.01	<u>,</u> ,,

*p<0.1, **p<0.05, ***p<0.01
 347 Supplementary Table 3. Mass has Declined through Time. All species and species by year

348 interaction terms are relative to the reference taxon *Ammodramus savannorum*.

Variable	Parameter Estimate
Constant	54.005***
Year	-0.027***
Age (HY)	-0.269***
/	0.975***
Sex (male) 0.975*** Species Effects	
Cardellina canadensis	32.94
Cardellina pusilla	19.05
Catharus fuscescens	14.42
Catharus guttatus	14.52
Catharus minimus	20.73
Catharus ustulatus	11.84
Certhia americana	7.97
Dumetella carolinensis	12.54
Geothlypis philadelphia	-3.84
Geothlypis trichas	-5.03
Hylocichla mustelina	11.94
Junco hyemalis	7.8
Melospiza georgiana	7.84
Melospiza lincolnii	0.75
Melospiza melodia	-2.45
Mniotilta varia	30.28
Oporornis agilis	-1.45
Oreothlypis celata	8.08
Oreothlypis peregrina	12.22
Oreothlypis ruficapilla	13.04
Parkesia noveboracensis	14.62
Passerculus sandwichensis	-16.68
Passerella iliaca	13.47
Passerina cyanea	17.41
Pheucticus ludovicianus	-11.8
Piranga olivacea	6.13
Porzana carolina	-13.64
Quiscalus quiscula	-33.78
Regulus calendula	30.12
Regulus satrapa	28.05
Seiurus aurocapilla	15.63
Setophaga caerulescens	21.54

Setophaga castanea	31.94
Setophaga coronata	32.09
Setophaga fusca	2.14
Setophaga magnolia	17.83
Setophaga palmarum	17.79
Setophaga pensylvanica	9.1
Setophaga ruticilla	23.84
Setophaga striata	21.66
Setophaga tigrina	32.91
Setophaga virens	29.32
Sphyrapicus varius	-110.8**
Spizella pusilla	32.46
Spizelloides arborea	-3.06
Toxostoma rufum	-20.68
Troglodytes aedon	13.15
Troglodytes hiemalis	6.34
Turdus migratorius	-23.85
Zonotrichia albicollis	3.61
Zonotrichia leucophrys	-3.78
Species by Year In	teractions
Year: Cardellina canadensis	-0.02
Year:Cardellina pusilla	-0.01
Year: Catharus fuscescens	-0.01
Year: Catharus guttatus	-0.01
Year: Catharus minimus	-0.01
Year: Catharus ustulatus	-0.01
Year: Certhia americana	-0.004
Year:Dumetella carolinensis	-0.01
Year: Geothlypis philadelphia	0.002
Year: Geothlypis trichas	0.003
Year:Hylocichla mustelina	-0.01
Year:Junco hyemalis	-0.004
Year:Melospiza georgiana	-0.004
Year:Melospiza lincolnii	-0.0002
Year:Melospiza melodia	0.001
Year:Mniotilta varia	-0.02
Year: Oporornis agilis	0.001
Year: Oreothlypis celata	-0.004
Year: Oreothlypis peregrina	-0.01
Year: Oreothlypis ruficapilla	-0.01

Year: Parkesia noveboracensis	-0.01
Year: Passerculus sandwichensis	0.01
Year:Passerella iliaca	-0.01
Year: Passerina cyanea	-0.01
Year: Pheucticus ludovicianus	0.01
Year:Piranga olivacea	-0.003
Year:Porzana carolina	0.01
Year:Quiscalus quiscula	0.02
Year:Regulus calendula	-0.02
Year:Regulus satrapa	-0.01
Year:Seiurus aurocapilla	-0.01
Year:Setophaga caerulescens	-0.01
Year:Setophaga castanea	-0.02
Year:Setophaga coronata	-0.02
Year:Setophaga fusca	-0.001
Year:Setophaga magnolia	-0.01
Year:Setophaga palmarum	-0.01
Year:Setophaga pensylvanica	-0.004
Year:Setophaga ruticilla	-0.01
Year:Setophaga striata	-0.01
Year:Setophaga tigrina	-0.02
Year:Setophaga virens	-0.01
Year: Sphyrapicus varius	0.06**
Year:Spizella pusilla	-0.02
Year:Spizelloides arborea	0.002
Year: Toxostoma rufum	0.01
Year: Troglodytes aedon	-0.01
Year: Troglodytes hiemalis	-0.003
Year: Turdus migratorius	0.01
Year: Zonotrichia albicollis	-0.002
Year:Zonotrichia leucophrys	0.002
Observations	48,338
R^2	0.383
Adjusted R ²	0.381
Residual Std. Error	0.786 (df = 48,232)
F Statistic	284.778*** (<i>df</i> = 48,232)
*p<0.1, **p<0.05, ***p<0.01	

350 Supplementary Table 4. PC1 Shows Decline in Body Size through Time. All species and species
 351 by year interaction terms are relative to the reference taxon Ammodramus savannorum.

Variable	Parameter Estimate
Intercept	-48.117***
Year	0.024***
Age	-0.201***
Sex (male)	1.323***
Species	Effects
Cardellina canadensis	30.0*
Cardellina pusilla	16.0
Catharus fuscescens	45.0***
Catharus guttatus	38.9**
Catharus minimus	44.2***
Catharus ustulatus	48.3***
Certhia americana	12.9
Dumetella carolinensis	44.2***
Geothlypis philadelphia	31.4*
Geothlypis trichas	16.4
Hylocichla mustelina	63.6***
Junco hyemalis	28.9*
Melospiza georgiana	12.5
Melospiza lincolnii	4.6
Melospiza melodia	12.7
Mniotilta varia	33.7*
Oporornis agilis	18.1
Oreothlypis celata	55.0***
Oreothlypis peregrina	26.1*
Oreothlypis ruficapilla	19.9
Parkesia noveboracensis	26.4
Passerculus sandwichensis	8.7
Passerella iliaca	37.9**
Passerina cyanea	27.4*
Pheucticus ludovicianus	29.8*
Piranga olivacea	51.0***
Porzana carolina	36.3**
Quiscalus quiscula	41.6**
Regulus calendula	43.4**
Regulus satrapa	19.7
Seiurus aurocapilla	25.9*
Setophaga caerulescens	29.8

 $log(Wing Length)_{group centered} = B_0 + B_1 * Year + B_2 * Age + B_3 * Sex$

Satarhaga agatanag	57 (***
Setophaga castanea	57.6*** 34.2**
Setophaga coronata	16.6
Setophaga fusca	20.0
Setophaga magnolia	20.0 27.1
Setophaga palmarum	
Setophaga pensylvanica	27.7 50.2***
Setophaga ruticilla	
Setophaga striata	34.3**
Setophaga tigrina	30.2
Setophaga virens	31.0
Sphyrapicus varius	74.6***
Spizella pusilla	25.9
Spizelloides arborea	21.6
Toxostoma rufum	54.1***
Troglodytes aedon	-5.2
Troglodytes hiemalis	37.0**
Turdus migratorius	19.7
Zonotrichia albicollis	22.1
Zonotrichia leucophrys	16.1
Species by Year	
Year:Cardellina canadensis	-0.015*
Year:Cardellina pusilla	-0.008
Year: Catharus fuscescens	-0.023***
Year: Catharus guttatus	-0.019**
Year: Catharus minimus	-0.022***
Year: Catharus ustulatus	-0.024***
Year:Certhia americana	-0.006
Year:Dumetella carolinensis	-0.022***
Year:Geothlypis philadelphia	-0.016*
Year: Geothlypis trichas	-0.008
Year:Hylocichla mustelina	-0.032***
Year:Junco hyemalis	-0.014*
Year:Melospiza georgiana	-0.006
Year:Melospiza lincolnii	-0.002
Year:Melospiza melodia	-0.006
Year:Mniotilta varia	-0.017*
Year: Oporornis agilis	-0.009
Year: Oreothlypis celata	-0.027***
Year: Oreothlypis peregrina	-0.013*
Year:Oreothlypis ruficapilla	-0.01

Year:Parkesia noveboracensis	-0.013
Year: Passerculus sandwichensis	-0.004
Year:Passerella iliaca	-0.019**
Year: Passerina cyanea	-0.014*
Year: Pheucticus ludovicianus	-0.015*
Year:Piranga olivacea	-0.026***
Year: Porzana carolina	-0.018**
Year:Quiscalus quiscula	-0.021**
Year:Regulus calendula	-0.022**
Year:Regulus satrapa	-0.01
Year:Seiurus aurocapilla	-0.013*
Year:Setophaga caerulescens	-0.015
Year:Setophaga castanea	-0.029***
Year:Setophaga coronata	-0.017**
Year:Setophaga fusca	-0.008
Year:Setophaga magnolia	-0.01
Year:Setophaga palmarum	-0.014
Year:Setophaga pensylvanica	-0.014
Year:Setophaga ruticilla	-0.025***
Year:Setophaga striata	-0.017**
Year:Setophaga tigrina	-0.015
Year:Setophaga virens	-0.015
Year:Sphyrapicus varius	-0.037***
Year:Spizella pusilla	-0.013
Year:Spizelloides arborea	-0.011
Year: Toxostoma rufum	-0.027***
Year:Troglodytes aedon	0.003
Year: Troglodytes hiemalis	-0.018**
Year: Turdus migratorius	-0.01
Year:Zonotrichia albicollis	-0.011
Year:Zonotrichia leucophrys	-0.008
Observations	62,628
\mathbb{R}^2	0.454
Adjusted R ²	0.454
Residual Std. Error	0.739 (df = 62,522)
F Statistic	496.017^{***} (df = 105; 62,522)
*p<0.1, **p<0.05, ***p<0.01	

Supplementary Table 5. Wing Length has Increased through Time. All species and species by year interaction terms are relative to the reference taxon Ammodramus savannorum.

$B_3*Sex + Species + Species*Year$		
Variable	Parameter Estimate	
Intercept	-57.594***	
Year	0.029***	
Age (hatch year)	-0.203***	
Sex (male)	1.224***	
Species	Effects	
Cardellina canadensis	31.7	
Cardellina pusilla	25.9	
Catharus fuscescens	40.1**	
Catharus guttatus	36.1**	
Catharus minimus	39.5**	
Catharus ustulatus	46.5***	
Certhia americana	37.1	
Dumetella carolinensis	50.2***	
Geothlypis philadelphia	27.8	
Geothlypis trichas	14.7	
Hylocichla mustelina	64.3***	
Junco hyemalis	24.5	
Melospiza georgiana	6.9	
Melospiza lincolnii	-1.6	
Melospiza melodia	12.4	
Mniotilta varia	40.8**	
Oporornis agilis	22.9	
Oreothlypis celata	50.0**	
Oreothlypis peregrina	24.5	
Oreothlypis ruficapilla	20.5	
Parkesia noveboracensis	19.5	
Passerculus sandwichensis	5.3	
Passerella iliaca	33.5**	
Passerina cyanea	30.3*	
Pheucticus ludovicianus	35.2*	
Piranga olivacea	57.5***	
Porzana carolina	52.2***	
Quiscalus quiscula	74.4***	
Regulus calendula	46.7**	
Regulus satrapa	24.4	
Seiurus aurocapilla	29.3*	
Setophaga caerulescens	31.7	

Relative Wing Length_{group centered} = $B_0 + B_1*Year + B_2*Age + B_2*Sex + Species + Species*Year$

Setophaga castanea	48.4**
Setophaga coronata	24.8
Setophaga fusca	4.5
Setophaga magnolia	17.8
Setophaga palmarum	27.5
Setophaga pensylvanica	21.9
Setophaga ruticilla	48.0***
Setophaga striata	28.2
Setophaga tigrina	24.0
Setophaga virens	30.7
Sphyrapicus varius	70.7*
Spizella pusilla	23.7
Spizelloides arborea	23.4
Toxostoma rufum	66.2***
Troglodytes aedon	-3.7
Troglodytes hiemalis	35.5*
Turdus migratorius	18.8
Zonotrichia albicollis	11.4
Zonotrichia leucophrys	10.0
Species by Year I	
Year:Cardellina canadensis	-0.016
Year:Cardellina pusilla	-0.013
Year: Catharus fuscescens	-0.020**
Year: Catharus guttatus	-0.018**
Year: Catharus minimus	-0.020**
Year: Catharus ustulatus	-0.023***
Year:Certhia americana	-0.018
Year:Dumetella carolinensis	
	-0.025***
Year: Geothlypis philadelphia	-0.025*** -0.014
Year:Geothlypis philadelphia Year:Geothlypis trichas	
Year:Geothlypis philadelphia Year:Geothlypis trichas Year:Hylocichla mustelina	-0.014
Year: Geothlypis trichas	-0.014 -0.007
Year:Geothlypis trichas Year:Hylocichla mustelina	-0.014 -0.007 -0.032***
Year:Geothlypis trichas Year:Hylocichla mustelina Year:Junco hyemalis	-0.014 -0.007 -0.032*** -0.012
Year:Geothlypis trichas Year:Hylocichla mustelina Year:Junco hyemalis Year:Melospiza georgiana	-0.014 -0.007 -0.032*** -0.012 -0.003
Year:Geothlypis trichas Year:Hylocichla mustelina Year:Junco hyemalis Year:Melospiza georgiana Year:Melospiza lincolnii	-0.014 -0.007 -0.032*** -0.012 -0.003 0.001
Year:Geothlypis trichas Year:Hylocichla mustelina Year:Junco hyemalis Year:Melospiza georgiana Year:Melospiza lincolnii Year:Melospiza melodia	-0.014 -0.007 -0.032*** -0.012 -0.003 0.001 -0.006
Year:Geothlypis trichas Year:Hylocichla mustelina Year:Junco hyemalis Year:Melospiza georgiana Year:Melospiza lincolnii Year:Melospiza melodia Year:Mniotilta varia	-0.014 -0.007 -0.032*** -0.012 -0.003 0.001 -0.006 -0.020**
Year:Geothlypis trichas Year:Hylocichla mustelina Year:Junco hyemalis Year:Melospiza georgiana Year:Melospiza lincolnii Year:Melospiza melodia Year:Mniotilta varia Year:Oporornis agilis	-0.014 -0.007 -0.032*** -0.012 -0.003 0.001 -0.006 -0.020** -0.011

Year:Parkesia noveboracensis	-0.01
Year: Passerculus sandwichensi.	-0.003
Year:Passerella iliaca	-0.017**
Year:Passerina cyanea	-0.015*
Year: Pheucticus ludovicianus	-0.018*
Year: Piranga olivacea	-0.029***
Year:Porzana carolina	-0.026***
Year:Quiscalus quiscula	-0.037***
Year:Regulus calendula	-0.023**
Year:Regulus satrapa	-0.012
Year:Seiurus aurocapilla	-0.015*
Year:Setophaga caerulescens	-0.016
Year:Setophaga castanea	-0.024**
Year:Setophaga coronata	-0.012
Year:Setophaga fusca	-0.002
Year:Setophaga magnolia	-0.009
Year:Setophaga palmarum	-0.014
Year:Setophaga pensylvanica	-0.011
Year:Setophaga ruticilla	-0.024***
Year:Setophaga striata	-0.014
Year:Setophaga tigrina	-0.012
Year:Setophaga virens	-0.015
Year:Sphyrapicus varius	-0.035*
Year:Spizella pusilla	-0.012
Year:Spizelloides arborea	-0.012
Year: Toxostoma rufum	-0.033***
Year: Troglodytes aedon	0.002
Year: Troglodytes hiemalis	-0.018*
Year: Turdus migratorius	-0.009
Year:Zonotrichia albicollis	-0.006
Year:Zonotrichia leucophrys	-0.005
Observations	58,304
R^2	0.407
Adjusted R ²	0.406
Residual Std. Error	0.771 (df = 58,198)
F Statistic	379.777*** (df = 105; 58,198)
*p<0.1, **p<0.05, ***p<0.01	

Supplementary Table 6. Relative Wing Length has Increased through Time. All species and species by year interaction terms are relative to the reference taxon Ammodramus savannorum.

 $Tarsus_{adults, group centered} = B_0 + B_1 * Year + B_2 * Breeding$ Precipitation + B_3 * Breeding Temperature + B_4 * Wintering Precipitation + B_5 * Wintering Temperature + B_6 * Wintering NDVI + B_7 * Sex + B8 * Season + Species + Species * Year

Variable	Parameter Estimate
Intercept	-0.493***
Year	-0.285**
Breeding Temperature	-0.045***
Breeding Precipitation	-0.006
Wintering Temperature	0.042***
Wintering Precipitation	-0.043***
Wintering NDVI	0.016**
Sex (male)	0.581***
Season (spring)	0.011
Spec	ies Effects
Cardellina canadensis	0.3**
Cardellina pusilla	0.1
Catharus fuscescens	0.3**
Catharus guttatus	0.2*
Catharus minimus	0.3**
Catharus ustulatus	0.3**
Certhia americana	0.1
Dumetella carolinensis	0.1
Geothlypis philadelphia	0.1
Geothlypis trichas	0.1
Hylocichla mustelina	0.2
Junco hyemalis	0.1
Melospiza georgiana	0.1
Melospiza lincolnii	0.2
Melospiza melodia	0.1
Mniotilta varia	0.5***
Oporornis agilis	0.3*
Oreothlypis celata	0.2
Oreothlypis peregrina	0.2*
Oreothlypis ruficapilla	0.2
Parkesia noveboracensis	0.2*
Passerculus sandwichensis	0.1
Passerella iliaca	0.2*
Passerina cyanea	-0.03
Pheucticus ludovicianus	0.1

Piranga olivacea	0.2	
Porzana carolina	0.2	
Quiscalus quiscula	0.3*	
Regulus calendula	0.1	
Regulus satrapa	0.3**	
Seiurus aurocapilla	0.2*	
Setophaga caerulescens	0.3	
Setophaga castanea	0.4**	
Setophaga coronata	0.2	
Setophaga fusca	0.6***	
Setophaga magnolia	0.3**	
Setophaga palmarum	0.2	
Setophaga pensylvanica	0.3**	
Setophaga ruticilla	0.4***	
Setophaga striata	0.3*	
Setophaga tigrina	0.2	
Setophaga virens	0.5***	
Sphyrapicus varius	0.02	
Spizella pusilla	-0.05	
Spizelloides arborea	0.3**	
Toxostoma rufum	0.1	
Troglodytes aedon	0.2	
Troglodytes hiemalis	0.3*	
Turdus migratorius	0.2	
Zonotrichia albicollis	0.3**	
Zonotrichia leucophrys	0.2*	
Species by Year Interactions		
Year: Cardellina canadensis	0.027	
Year:Cardellina pusilla	0.029	
Year: Catharus fuscescens	0.113	
Year: Catharus guttatus	0.112	
Year: Catharus minimus	0.141	
Year: Catharus ustulatus	0.221*	
Year:Certhia americana	0.055	
Year:Dumetella carolinensis	0.077	
Year:Geothlypis philadelphia	0.018	
Year: Geothlypis trichas	0.026	
Year:Hylocichla mustelina	0.15	
Year: Junco hyemalis	0.108	
Year:Melospiza georgiana	0.079	

Year: <i>Melospiza lincolnii</i>	0.093
Year: <i>Melospiza melodia</i>	0.13
Year: <i>Mniotilta varia</i>	-0.097
Year: Oporornis agilis	0.064
Year: Oreothlypis celata	0.042
Year: Oreothlypis peregrina	0.041
Year: Oreothlypis ruficapilla	0.112
Year: Parkesia noveboracensis	-0.008
Year: Passerculus sandwichensis	0.12
Year:Passerella iliaca	0.135
Year: Passerina cyanea	0.056
Year: Pheucticus ludovicianus	0.178
Year:Piranga olivacea	0.211
Year:Porzana carolina	0.389**
Year: Quiscalus quiscula	0.354**
Year:Regulus calendula	0.258*
Year:Regulus satrapa	0.175
Year:Seiurus aurocapilla	0.057
Year:Setophaga caerulescens	0.12
Year:Setophaga castanea	0.099
Year:Setophaga coronata	0.052
Year:Setophaga fusca	-0.197
Year:Setophaga magnolia	0.035
Year:Setophaga palmarum	-0.058
Year:Setophaga pensylvanica	0.049
Year:Setophaga ruticilla	-0.042
Year:Setophaga striata	0.041
Year:Setophaga tigrina	0.172
Year:Setophaga virens	-0.168
Year: Sphyrapicus varius	0.112
Year:Spizella pusilla	0.019
Year:Spizelloides arborea	0.213*
Year: Toxostoma rufum	0.349**
Year: Troglodytes aedon	0.154
Year: Troglodytes hiemalis	0.13
Year: Turdus migratorius	0.142
Year:Zonotrichia albicollis	0.101
Year: Zonotrichia leucophrys	0.119
Observations	29,702
R^2	0.122

Adjusted R ²	0.119
Residual Std. Error	0.938 (df = 29,591)
F Statistic	37.409*** (df = 110; 29,591)
*p<0.1; **p<0.05; ***p<0.01	

Supplementary Table 7. Tarsus as a Function of Environmental and Climatic Variables on the

- *Breeding and Wintering Grounds*. All species and species by year interaction terms are relative 362 to the reference taxon *Ammodramus savannorum*.

366 **References and Notes**

364 365

- Adler, R.F., Huffman, G.J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., *et al.* (2003). The
 Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis
 (1979–Present). *J. Hydrometeorol.*, 4, 1147–1167.
- Alerstam, T. & Lindström, Å. (1990). Optimal Bird Migration: The Relative Importance of
 Time, Energy, and Safety. In: *Bird Migration*. pp. 331–351.
- Bürkner, P.-C. (2017). brms : An R Package for Bayesian Multilevel Models Using Stan. J. Stat.
 Softw., 80, 1–28.
- Gelman, A. & Hill, J. (2009). *Data Analysis Using Regression and Multilevel/Hierarchical Models*. Book. Cambridge University Press, New York, NY.
- Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. & Moore, R. (2017). Google
 Earth Engine: Planetary-scale geospatial analysis for everyone. *Remote Sens. Environ.*, 202, 18–27.
- Hansen, J., Ruedy, R., Sato, M. & Lo, K. (2010). Global surface temperature change. *Rev. Geophys.*, 48, RG4004.
- Hansen, T.F. & Bartoszek, K. (2012). Interpreting the evolutionary regression: The interplay
 between observational and biological errors in phylogenetic comparative studies. *Syst. Biol.*,
 61, 413–425.
- Jetz, W., Thomas, G.H., Hartmann, K. & Mooers, A.O. (2012). The global diversity of birds in
 space and time. *Nature*, 491, 444-448.
- Morris, S.R., Holmes, D.W. & Richmond, M.E. (1996). A ten-year study of the stopover patterns
 of migratory passerines during fall migration on Appledore Island, Maine. *Condor*, 98, 395–
 409.
- 390 R Core Team. (2018). R: A language and environment for statistical computing.
- Rising, J.D. & Somers, K.M. (1989). The measurement of overall body size in birds. *Auk*, 106, 666–674.
- Rubolini, D., Liker, A., Garamszegi, L.Z., Møller, A.P. & Saino, N. (2015). Using the
 birdtree.org website to obtain robust phylogenies for avian comparative studies: A primer.
 Curr. Zool., 61, 959–965.
- Senar, J.C. & Pascual, J. (1997). Keel and tersus length may provide a good predictor of avian
 body size. *Ardea*, 85, 269–274.
- Symonds, M.R.E. & Tattersall, G.J. (2010). Geographical Variation in Bill Size across Bird
 Species Provides Evidence for Allen's Rule. *Am. Nat.*
- 400 Vermote, E., Justice, C., Csiszar, I., Eidenshink, J., Myneni, R., Baret, F., *et al.* (2014). NOAA
 401 Climate Data Record (CDR) of normalized Difference Vegetation Index (NDVI), Version
 402 4. NOAA Natl. Clim. Data Cent.
- 403