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S.1 Bayesian errors-in-variables regression

The Bayesian errors-in-variables linear regression model used in the article closely fol-
lows the treatment presented in [I]. We start by defining the likelihood model for
the observed voltage recordings ys = (Ys,1,---,Ys, ~)T and simulation results Xem =
(Tsm1s--- ,xs,m,N)T. Here, s denotes subject, m denotes one of the four different simu-
lation methods, and N is the number of measurements. The likelihood model is assumed
to be a multivariate normal:

N
p (ys? stm‘u’s,m,nv Esﬁﬂ) = H p ((y&n? xs,m,n)|”’s,m,na zs,m) (Sl)
n=1
N
= H N ((ys,n7 xs,m,n)‘us,m,n7 Es,m) 3 (82)
n=1
where we assumed that each pair n of recordings and simulations are drawn indepen-
dently. The mean vector is defined as: pg , ,, = (Bs.m, 1)¥5 ,, ,, Where 27, ,, denotes the



unobserved noiseless simulation and f; ,, is the slope term of the linear regression. The
noise covariance matrix is defined as:

2
o 0
_ Y,S
Ysm = { 0 o2 } ) (S.3)
T,8,m
where 05 s and o2 are the noise variances of the recordings and simulations re-

spectively. Note that the observed values are conditionally independent of each other
given the unobserved noiseless simulation parameter z7 ,,, .
Next we define the distributions on the unobserved simulation parameter and the

regression slope:

2
p(x:,m,n|at757m> = N(x:,m,nm’ Ut,s,m) (84)
p(ﬁs,me» O',B,m) = N(BS,mmma Ug,m),
where 0,527 s,m 18 the variance of the unobserved simulation parameters, 3, is the group

average slope for method m, and a% . the slope variation.
Finally, we define prior distributions on the means and the scales of the distributions:

P(Bm) = N(Bm|0,4), (S.6)
p(ogm) =C (05ml0,1), (S.7)
P(0tsm) = C(01.6ml0,0.2), (S.8)
P(0z.5.m) = CT(02.5m[0,0.2), (S.9)
p(oy,s) = C(0y,50,0.2) (S.10)

where CT(-) is a half-Cauchy distribution. The prior distributions are shown in
lure S.11

The Stan toolbox relies on sampling to do the inference in the joint distribution
defined by the model above. To limit the number of parameters, we marginalize over
the unobserved noiseless simulation parameter. Following [I] this becomes:

p ((ys,n; xs,m,n) |6s,m7 Oy,s50x,5,m> O't,s,m) =

(S.11)

* *
/ p ((ys,na $s,m,n)7 $57m’n|/887m5 Oy,sy0x,5,m)5 Ut,s,m) dﬂfs7m7n,
x

*
s,m,n

where

*
p ((ys,m ms,m,n)v xs,m,n‘ﬂs,ma Oy,s,0x,5,m> Jt,s,m) =

: (5.12)
p ((ys,na xs,m,n) |Ms,m,na z]s,m) p(x57m7n|0't,s,m)-

The joint distribution of the observations and unobserved simulation variable is a
product of two Gaussian distributions, so the resulting distribution is also Gaussian.
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Figure S.1: Prior distributions

The integration yields [1]:

b ((ys,na xs,m,n) ’Bs,ma Oy,sy0x,5,m) O-t,s,m) =N ((ys,n7 xs,m,n)‘oa 0'152737m25,s,m + 2s,m) 5

(S.13)
where
Spam = | Pom (5.14)
B,s,m Bs’m 1 : N
Finally the marginalized likelihood becomes:
N
D (YSa Xs,m’Ut,s,m; Eﬁ,s,m, 2s,m) = H p ((ys,na xs,m,n)lat,s,ma Eﬁ,s,ma 2s,m) (815)
n=1

N
= H N ((ysma xS,myn)|07 Utz,s,mzﬂ,sym + Esym) . (S.16)

n=1

Note that the observation are now dependent through X3 g ,,. The posterior distribution
over the model parameters can now be written as:

p(ﬁs,m, ﬂma 0B,msO0t,s;my Ox,s,m> Uy,sb’s, Xs,m) X

p (y$7 Xs,m|0't,s,ma Eﬂ,s,mv 2s,m) p(ﬁs,m|ﬁma Uﬂ,m)p(ﬁm)p(aﬂ,m)p(at,s,m)p(gaz,s,m)p(ay,s)
(S.17)



Listing 1: Stan code for sampling from the model
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