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Supplementary Methods 

Overview of elementary reaction step decomposition 

The complex catalytic mechanism of enzyme catalysis can be decomposed into a series of 

elementary steps that are modeled using mass action kinetics. Each elementary step is treated as 

reversible with one forward and one reverse elementary reaction. Each elementary reaction is 

associated with one of three types of events: (i) binding of one metabolite with an enzyme complex, 

(ii) release of one metabolite from an enzyme complex, or (iii) conversion of the enzyme-reactant 

complex to the enzyme-product complex. The flux through each elementary reaction is termed 

elementary flux and is related to the concentration of metabolites and enzyme complexes using 

mass-action kinetics. The following example details the decomposition of an enzyme-catalyzed 

reaction into elementary steps and establishes the basic terms used in the kinetic parameterization 

algorithm. 

Consider the conversion of a metabolite A to B catalyzed by an enzyme E, regulated by a non-

competitive inhibitor C, and an activator D. The reaction mechanism can be decomposed into six 

elementary steps as shown in Table 1. The set of elementary steps 𝐿 is defined as 𝐿 = {1,2,3,4,5,6}. 

Elementary steps 1, 2, and 3 describe the conversion of A to B and are therefore termed catalytic 

elementary steps. Elementary steps 4 and 5 model the inhibition of enzyme catalysis by metabolite 

C and step 6 denotes the activation of the inactive enzyme complex for catalysis by metabolite D. 

Steps 4, 5, and 6 do not participate in the reaction; instead they regulate enzyme function and are 

thus referred to as regulatory elementary steps. The set of catalytic elementary steps, denoted by 

𝐿𝑐𝑎𝑡, is defined here as 𝐿𝑐𝑎𝑡 = {1,2,3}. The corresponding set of regulatory elementary steps 𝐿𝑟𝑒𝑔 

is defined as 𝐿𝑟𝑒𝑔 = {4,5,6}. From Table 1, we see that the number of unique enzyme complexes 

formed over the course of the reaction is equal to the number of elementary steps required to model 

the catalytic and regulatory functions of the enzyme. 

Each elementary step is modeled to be reversible with two separate elementary reactions in the 

forward and reverse directions. Thus, an enzyme-catalyzed reaction that decomposes into 𝑛𝐿 

elementary steps will involve 𝑛𝑃 = 2𝑛𝐿 elementary reactions. The index of any elementary step 

𝑙 ∈ 𝐿 is related to the corresponding indices of its forward and reverse elementary reactions (𝑓𝑤𝑑 

and 𝑟𝑒𝑣, respectively) as follows: 

 

 

 

 

 

𝑓𝑤𝑑 = 2𝑙 − 1  

𝑟𝑒𝑣 = 2𝑙 
(1) 

(2) 
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Type of 

Elementary Step 

Elementary 

step # 
Elementary Step 

Description of 

elementary step 

Catalytic Steps 

1 𝐴 + 𝐸 
𝑘̂1
⇌
𝑘̂2

𝐸𝐴 
Reactant binding to 

free enzyme 

 

2 𝐴𝐸 
𝑘̂3
⇌
𝑘̂4

𝐸𝐵 
Conversion of reactant 

to product 

3 𝐸𝐵 
𝑘̂5
⇌
𝑘̂6

𝐸 + 𝐵 
Product release from 

bound complex 

 

Regulatory Steps 

4 𝐶 + 𝐸 
𝑘̂7
⇌
𝑘̂8

𝐸𝐶 
Inhibition of free 

enzyme 

5 𝐶 + 𝐸𝐴 
𝑘̂9
⇌
𝑘̂10

𝐸𝐴𝐶 
Inhibition of enzyme-

substrate complex 

6 𝐷 + 𝐸∗ 
𝑘̂11
⇌
𝑘̂12

𝐸 
Activation of inactive 

enzyme form 

 

Table 1: List of elementary steps describing the catalytic mechanism and regulation of enzyme 𝐸 

  

Based on this, the set of elementary reactions is defined as 𝑃 = {𝑝|𝑝 = 1,2, … ,2𝐿}. This implies 

that there is a sequence of alternating forward and reverse elementary reactions contained within 

set P.  Each elementary step is associated with its own kinetic rate constant 𝑘̂𝑝∀𝑝 ∈ 𝑃. We define 

[𝐴], [𝐵], [𝐶], and [𝐷] to be the concentrations of metabolite 𝐴, 𝐵, 𝐶, and 𝐷, respectively, and [𝐸∗] 

[𝐸], [𝐸𝐴] and [𝐸𝐵] to denote the concentrations of the un-activated enzyme 𝐸∗, active free enzyme 

𝐸, substrate-bound complex 𝐸𝐴 and the product-bound complex 𝐸𝐵, respectively. [𝐸𝐶] and [𝐸𝐴𝐶] 

denote concentrations of the inhibitor-bound complexes 𝐸𝐶 and 𝐸𝐴𝐶, respectively. As stated 

earlier, flux through elementary steps is referred to as elementary flux. For the example reaction, 

the elementary flux through the twelve elementary steps, 𝑣𝑝 ∀𝑝 ∈ 𝑃 can be computed by 

expressing the reaction rate of each elementary reaction using mass-action kinetics as described 

by Tran et al [1] and is shown in Equations (3): 
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𝑣1 = 𝑘̂1[𝐴][𝐸] 𝑣2 = 𝑘̂2[𝐸𝐴] 

(3) 

𝑣3 = 𝑘̂3[𝐸𝐴] 𝑣4 = 𝑘̂4[𝐸𝐵] 

𝑣5 = 𝑘̂5[𝐸𝐵] 𝑣6 = 𝑘̂6[𝐵][𝐸] 

𝑣7 = 𝑘̂7[𝐶][𝐸] 𝑣8 = 𝑘̂8[𝐸𝐶] 

𝑣9 = 𝑘̂9[𝐶][𝐸𝐴] 

𝑣11 = 𝑘̂11[𝐷][𝐸
∗] 

𝑣10 = 𝑘̂10[𝐸𝐴𝐶] 

𝑣12 = 𝑘̂12[𝐸] 
 

Consistent with the convention introduced by Tran et al [1], the concentration of metabolites 𝐴, 

𝐵, 𝐶, and 𝐷 are normalized with respect to the concentrations in the Wild-Type (WT) strain 𝐴𝑊𝑇, 

𝐵𝑊𝑇, 𝐶𝑊𝑇, and 𝐷𝑊𝑇, respectively. The corresponding relative concentrations 𝑎, 𝑏, 𝑐, and 𝑑 are 

defined as: 

𝑎 = [𝐴]/[𝐴𝑊𝑇] 

(4) 
𝑏 = [𝐵]/[𝐵𝑊𝑇] 
𝑐 = [𝐶]/[𝐶𝑊𝑇] 
𝑑 = [𝐷]/[𝐷𝑊𝑇] 

 

The total concentration [𝐸0] of the enzyme catalyzing the conversion of 𝐴 to 𝐵 is related to the 

concentration of various enzyme forms/complexes as: 

 

[𝐸0] = [𝐸] + [𝐸𝐴] + [𝐸𝐵] + [𝐸𝐶] + [𝐸𝐴𝐶] + [𝐸
∗] (5) 

 

Enzyme fractions are defined as the fractional abundance of each enzyme form relative to the total 

enzyme [𝐸0]. 

 

𝑒 = [𝐸]/[𝐸0] 𝑒𝑐 = [𝐸𝐶]/[𝐸0] 
(6) 𝑒𝑎 = [𝐸𝐴]/[𝐸0] 𝑒𝑎𝑐 = [𝐸𝐴𝐶]/[𝐸0] 

𝑒𝑏 = [𝐸𝐵]/[𝐸0] 𝑒∗ = [𝐸∗]/𝐸0] 
 

Metabolite and total enzyme concentrations in the WT strain are often unavailable and are 

therefore, lumped together with kinetic rate constants yielding the following aggregated kinetic 

parameters: 

 

 

𝑘1 = 𝑘̂1[𝐴𝑊𝑇][𝐸0] 𝑘2 = 𝑘̂2[𝐸0] 

(7) 
𝑘3 = 𝑘̂3[𝐸0] 𝑘4 = 𝑘̂4[𝐸0] 

𝑘5 = 𝑘̂5[𝐸0] 𝑘6 = 𝑘̂6[𝐵𝑊𝑇][𝐸0] 

𝑘7 = 𝑘̂7[𝐶𝑊𝑇][𝐸0] 𝑘8 = 𝑘̂8[𝐸0] 
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𝑘9 = 𝑘̂9[𝐶𝑊𝑇][𝐸0] 

𝑘11 = 𝑘̂11[𝐷𝑊𝑇][𝐸0] 

𝑘10 = 𝑘̂10[𝐸0] 

𝑘12 = 𝑘̂12[𝐸0] 
 

Upon substituting the definitions from Equations (4), (6) and (7) in Equation (3) expressions are 

derived for all fluxes as a function of aggregated kinetic parameters, relative metabolite 

concentrations and fractional enzyme abundances: 

𝑣1 = 𝑘1𝑎𝑒 𝑣2 = 𝑘2𝑒𝑎 

(8) 

𝑣3 = 𝑘3𝑒𝑎 𝑣4 = 𝑘4𝑒𝑏 

𝑣5 = 𝑘5𝑒𝑏 𝑣6 = 𝑘6𝑏𝑒 

𝑣7 = 𝑘7𝑐𝑒 𝑣8 = 𝑘8𝑒𝑐 
𝑣9 = 𝑘9𝑐𝑒𝑎 

𝑣11 = 𝑘11𝑑𝑒
∗ 

𝑣10 = 𝑘10𝑒𝑎𝑐 
𝑣12 = 𝑘12𝑒 

   

Conservation of mass across all enzyme fractions at pseudo-steady-state yields the following linear 

equalities: 

𝑑𝑒

𝑑𝑡
= 𝑣2 + 𝑣5 + 𝑣8 + 𝑣11 − 𝑣1 − 𝑣6 − 𝑣7 − 𝑣12 = 0 (9) 

𝑑𝑒𝑎
𝑑𝑡

= 𝑣1 + 𝑣4 + 𝑣10 − 𝑣2 − 𝑣3 − 𝑣9 = 0 (10) 

𝑑𝑒𝑏
𝑑𝑡

= 𝑣3 + 𝑣6 − 𝑣4 − 𝑣5 = 0 (11) 

𝑑𝑒𝑐
𝑑𝑡

= 𝑣7 − 𝑣8 = 0 (12) 

𝑑𝑒𝑎𝑐
𝑑𝑡

= 𝑣9 − 𝑣10 = 0 (13) 

𝑑𝑒∗

𝑑𝑡
= 𝑣12 − 𝑣11 (14) 

 

Upon substituting the flux expressions from Equations (8) in Equations (9) - (14), an [𝑛𝐿 × 𝑛𝐿] 
square system of linear algebraic equations with the enzyme fractions as the only variables is 

obtained assuming that the relative metabolite concentrations (𝑎, 𝑏, 𝑐, and 𝑑) and kinetic 

parameters (𝑘𝑝∀𝑝 ∈ 𝑃) are specified. 

 

𝑑𝑒

𝑑𝑡
= 𝑘2𝑒𝑎  + 𝑘5𝑒𝑎  + 𝑘8𝑒𝑐 + 𝑘11𝑑𝑒

∗ − (𝑘1𝑎 + 𝑘6𝑏 + 𝑘7𝑐 + 𝑘12)𝑒 = 0 (15) 

𝑑𝑒𝑎
𝑑𝑡

= 𝑘1𝑎𝑒 + 𝑘4𝑒𝑏 + 𝑘10𝑒𝑎𝑐 − (𝑘2 + 𝑘3 + 𝑘9𝑐)𝑒𝑎 = 0 (16) 
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𝑑𝑒𝑏
𝑑𝑡

= 𝑘3𝑒𝑎  + 𝑘6𝑏𝑒 − (𝑘4 + 𝑘5)𝑒𝑏  = 0 (17) 

𝑑𝑒𝑐
𝑑𝑡

= 𝑘7𝑐𝑒 − 𝑘8𝑒𝑐 = 0 (18) 

𝑑𝑒𝑎𝑐
𝑑𝑡

= 𝑘9𝑐𝑒𝑎 − 𝑘10𝑒𝑎𝑐 = 0 (19) 

𝑑𝑒∗

𝑑𝑡
= 𝑘12𝑒 − 𝑘11𝑑𝑒

∗ = 0 (20) 

 

Note that Equation (15) can be reconstituted as a linear combination of Equations (16) - (20) 

because the free enzyme must be regenerated at the end of the catalytic cycle to maintain steady-

state. This results in a rank-deficiency in this system of equations that can be rectified by appending 

Equation (21) which ensures that the total enzyme concentration is maintained constant at 

metabolic steady-state. Equation (21) is obtained by substituting Equations (6) in Equation (5):  

 

𝑒 + 𝑒𝑎 + 𝑒𝑏 + 𝑒𝑐 + 𝑒𝑎𝑐 = 1 (21) 

 

Equation (21) replaces Equation (15) resulting in an [𝑛𝐿 × 𝑛𝐿] system of equations of full-rank for 

computing enzyme fractions given kinetic parameters and relative metabolite concentrations. This 

means that given WT-normalized concentrations 𝑎, 𝑏, 𝑐, and 𝑑, and kinetic parameters 𝑘𝑝∀𝑝 ∈ 𝑃, 

solving the system of linear equations yields a unique assignment for the enzyme fractions 𝑒, 𝑒𝑎, 

𝑒𝑏, 𝑒𝑐, 𝑒𝑎𝑐 and 𝑒∗. Fluxes through the elementary reactions are computed by substituting the newly 

computed enzyme fractions in Equations (8). Using the mapping of elementary flux indices to 

elementary step indices described in Equations (1) and (2), the net flux through any elementary 

step 𝑙 = {1,2,3,4,5,6} can be recovered as follows: 

 

𝑣𝑙
(𝑛𝑒𝑡)

= 𝑣2𝑙−1 − 𝑣2𝑙 (22) 

 

The net flux through all the catalytic steps (𝑙 = {1,2,3}) is equal to the net flux through the overall 

reaction 𝑉. 

 

𝑣𝑙
(𝑛𝑒𝑡)

= 𝑉 𝑙 = {1,2,3} (23) 

 

From the steady-state conditions on the “dead-end” complexes formed via substrate-level 

regulation (see Equations (12), (13), and (14)), it can be derived that the net flux through the 

regulatory elementary steps is always equal to zero. 
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𝑣𝑙
(𝑛𝑒𝑡)

= 0 𝑙 = {4,5,6} (24) 

 

The automated calculation of the net flux through a reaction given elementary kinetic parameters 

and relative metabolite concentrations is facilitated by deriving generalized expressions for 

Equations (8) - (14) using the following quantities: 

𝒗 is the [𝑛𝑃 × 1] vector of elementary fluxes whose elements 𝑣𝑝 denote the flux through 

elementary reaction 𝑝 ∈ 𝑃 

𝒆 is the [𝑛𝐿 × 1] vector of enzyme fractions whose elements 𝑒𝑙 represent the fractional abundance 

of enzyme complex 𝑙 ∈ 𝐿 

𝐼 = {𝑖|𝑖 = 1,2, … , 𝑛𝑀} is the set of all metabolites. In the above example 𝑛𝑀 = 4. 

𝒔 is the [𝑛𝑀 × 1] matrix of relative metabolite concentrations whose elements 𝑠𝑖 represent the fold-

change in concentration of metabolite 𝑖 ∈ 𝐼 relative to WT. 

 𝑬 is the enzyme complex stoichiometry matrix of dimensions [𝑛𝐿 × 𝑛𝑃] whose elements 𝐸𝑙𝑝 

represent the stoichiometric coefficient of enzyme complex 𝑙 ∈ 𝐿 in elementary reaction 𝑝 ∈ 𝑃 

𝑬 is defined as follows for the above example: 

  𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣8 𝑣10 𝑣11 𝑣12   

𝑬 = 

 -1 1 0 0 0 0 -1 1 0 0 1 -1  𝑒 

 1 -1 -1 1 0 0 0 0 -1 1 0 0  𝑒𝑎 

 0 0 1 -1 -1 1 0 0 0 0 0 0  𝑒𝑏 

 0 0 0 0 0 0 1 -1 0 0 0 0  𝑒𝑐 
 0 0 0 0 0 0 0 0 1 -1 0 0  𝑒𝑎𝑐 
 0 0 0 0 0 0 0 0 0 0 -1 1  𝑒∗ 

 

Note that all the elements in 𝑬 can assume only a value of -1, 0, or 1 and that 𝑬 has exactly one 

negative and one positive entry per column. This is because, by definition, elementary reactions 

operate on a single enzyme form (either metabolite-bound of free) which is converted into another 

form but never destroyed. In contrast, the same enzyme form can participate in multiple elementary 

reactions and there exists at least one elementary reaction that consumes it (entry of -1) and at least 

one that produces it (i.e. entry of 1). 

𝑺 is the metabolite stoichiometry matrix of dimensions [𝑛𝑀 × 𝑛𝑃] whose elements 𝑆𝑖𝑝 represent 

the stoichiometric coefficient of metabolite 𝑖 ∈ 𝐼 in elementary reaction 𝑝 ∈ 𝑃 

𝑺 is defined as follows for the above example: 

 

 



 

7 
 

  𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣8 𝑣10 𝑣11 𝑣12   

𝑺 = 

 -1 1 0 0 0 0 0 0 0 0 0 0  𝑎 

 0 0 0 0 1 -1 0 0 0 0 0 0  𝑏 

 0 0 0 0 0 0 -1 1 -1 1 0 0  𝑐 
 0 0 0 0 0 0 0 0 0 0 -1 1  𝑑 

 

As was the case for matrix E, all elements of 𝑺 are equal to either -1, 0 or 1. In addition, 𝑺 has at 

most one non-zero entry per column. This is because an elementary reaction can represent only a 

single binding, release, or catalysis event [2]. Catalytic elementary reactions do not involve 

metabolites, whereas binding and release events either consume or produce a metabolite, 

respectively. 

The flux 𝑣𝑝 through elementary reaction 𝑝 (𝑣𝑝) is related to the concentration of metabolites and 

enzyme complexes using mass-action kinetics [3]: 

 

𝑣𝑝 = 𝑘𝑝

(

 ∏ 𝑒𝑙,𝑐
 

𝑙
𝐸𝑙𝑝<0 )

 

(

 ∏ 𝑠
𝑖

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0 )

  

 

∀𝑝 ∈ 𝑃 (25) 

In Equation (25), the product operator in (∏ 𝑒𝑙
 

𝑙
𝐸𝑙𝑝<0

) serves to identify the only reactant enzyme 

complex participating in elementary reaction 𝑝. Recall that matrix E has a single element equal to 

-1 per column.  Likewise, the product operator in (∏ 𝑠
𝑖

−𝑆𝑖𝑝
𝑖

𝑆𝑖𝑝≤0
) serves to identify the only 

reactant metabolite (if any) in elementary reaction 𝑝. Recall that matrix 𝑺 has at most one non-

zero element per column equal to -1 or 1. Therefore, elementary reactions representing catalysis 

or product release do not involve a metabolite on the reactant side thus yielding a zero exponent.  

Elementary reactions modeling binding of a metabolite with an enzyme complex always involve 

a single reacting metabolite which yield an exponent of 1 (negative of -1 stoich. coeff.). This 

implies that in Equation (25) the exponent on the metabolite concentration is always equal to either 

0 or 1. Equation (25) thus captures either a linear relation between 𝑣𝑝 and 𝑒𝑙 when there is no 

participating metabolite or a bilinear relation when a metabolite is a co-reactant in the elementary 

reaction. The kinetic parameter 𝑘𝑝 for elementary reaction 𝑝 ∈ 𝑃 is a lumped parameter expressed 

as the product of the kinetic rate constant 𝑘̂𝑝, the total enzyme concentration 𝐸0, and the metabolite 

concentration in the WT as described by Equation (7). 
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Conservation of mass across the 𝑙𝑡ℎ enzyme complex is mathematically represented as: 

 

𝑑𝑒𝑙
𝑑𝑡
= ∑𝐸𝑙𝑝𝑣𝑝

𝑛𝑃

𝑝=1

  

 

∀𝑝 ∈ 𝑃 (26) 

At pseudo-steady-state Equation (26) simplifies to: 

 

∑𝐸𝑙𝑝𝑣𝑝

𝑛𝑃

𝑝=1

= 0  

 

∀𝑝 ∈ 𝑃 (27) 

The net flux through the 𝑙𝑡ℎ elementary step (𝑣𝑙
(𝑛𝑒𝑡)

) is computed as the difference between the 

flux through the corresponding forward and reverse elementary reactions as described by Equation 

(22). The net flux through all catalytic elementary steps is equal to the net overall flux through the 

reaction. As a convention, we assign the “net” flux through the last catalytic elementary step as an 

index indicator of the net flux (𝑉) through the overall reaction. This information is stored in the 

set 𝐿(𝑛𝑒𝑡) which is 𝐿(𝑛𝑒𝑡) = {3} for the above example. This index mapping the last catalytic step 

to the net flux through the overall reaction is accomplished using a [1 × 𝑛𝐿] indicator vector 𝑵 

whose elements are as follows: 

𝑁𝑗 = {
1, 𝑖𝑓 𝑙 ∈ 𝐿(𝑛𝑒𝑡)

0, Otherwise
  (28) 

 

In reference to the above example, 𝑵 is a [1 × 6] vector ***vector would be [6 x 1] *** defined 

as 𝑵 = [0 0 1 0 0 0]. The net flux (𝑉) through the overall reaction is recovered by the 

summation operator in Equation (29). Only a single term in the sum is non-zero. 

𝑉 =∑𝑁𝑙𝑣𝑙
(𝑛𝑒𝑡)

𝑛𝐿

𝑙=1

  (29) 

 

Even though the above treatment refers to a reversible uni-molecular reaction with non-

competitive inhibition the same concepts can be generalized to any ordered or ping-pong 

mechanism of enzyme catalysis involving 𝑛𝑠𝑢𝑏𝑠 substrates, 𝑛𝑝𝑑𝑡 products, activators, competitive 

inhibitors and uncompetitive inhibitors. Examples of elementary step decomposition for various 

reaction mechanisms is shown in Table 2. The above definitions and concepts form the foundation 

for the K-FIT procedure for estimating kinetic parameters given flux distributions.  
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Table 2: Elementary step decomposition for various reactions 

 

Reaction Reaction Mechanism 
Elementary Step 

Decomposition 

Example from 

Central Metabolism 

𝐴 ⇌ 𝐵 Uni-Uni 

𝐸 + 𝐴 ⇌ 𝐸𝐴 

𝐸𝐴 ⇌ 𝐸𝐵 

𝐸𝐵 ⇌ 𝐸 + 𝐵 

Phosphoglucose 

isomerase 

𝐴 ⇌ 𝐵 + 𝐶 Uni-Bi 

𝐸 + 𝐴 ⇌ 𝐸𝐴 

𝐸𝐴 ⇌ 𝐸𝐵𝐶 

𝐸𝐵𝐶 ⇌ 𝐸𝐶 + 𝐵 

𝐸𝐶 ⇌ 𝐸 + 𝐶 

Fructose 

bisphosphate aldolase 

𝐴 + 𝐵 ⇌ 𝐶 + 𝐷 Ordered Bi-Bi 

𝐸 + 𝐴 ⇌ 𝐸𝐴 

𝐸𝐴 + 𝐵 ⇌ 𝐸𝐴𝐵 

𝐸𝐴𝐵 ⇌ 𝐸𝐶𝐷 

𝐸𝐶𝐷 ⇌ 𝐸𝐷 + 𝐶 

𝐸𝐷 ⇌ 𝐸 + 𝐷 

Phosphoglycerate 

kinase 

𝐴 + 𝐵 ⇌ 𝐶 + 𝐷 Bi-substrate Ping-Pong 

𝐸 + 𝐴 ⇌ 𝐸𝐴 

𝐸𝐴 ⇌ 𝐸𝐶 

𝐸𝐶 ⇌ 𝐸∗ + 𝐶 

𝐸∗ + 𝐵 ⇌ 𝐸∗𝐵  
𝐸∗𝐵 ⇌ 𝐸𝐷 

𝐸𝐷 ⇌ 𝐸 + 𝐷 

Transketolase 
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Nonlinear least-squares regression-based procedure for kinetic parameterization 

The K-FIT kinetic parameterization procedure is designed to make use of steady-state flux 

measurements for multiple genetic perturbations to parameterize a single kinetic model of 

metabolism. Kinetic parameters values are estimated by solving a least-squares problem that 

minimizes the deviation between predicted and experimentally measured steady-state flux 

distributions across all perturbed networks. The formal description of this least-squares 

optimization problem requires the definition of the following sets, parameters, variables and 

constraints: 

Sets 

Set of metabolites 𝐼 = {𝑖|𝑖 = 1,2, … , 𝑛𝑀} 

Set of reactions 𝐽 = {𝑗|𝑗 = 1,2, … , 𝑛𝑅} 

Set of elementary steps 𝐿 = {𝑙|𝑙 = 1,2, … , 𝑛𝐿} 

𝐿𝑗
𝑐𝑎𝑡 ⊆ 𝐿 is the subset of all catalytic elementary steps for reaction 𝑗 

𝐿𝑗
𝑟𝑒𝑔

⊂ 𝐿 is the subset of all regulatory elementary steps for reaction 𝑗 

Set of elementary reactions 𝑃 = {𝑝|𝑝 = 1,2, … , 𝑛𝑃} 

Set of perturbation mutants 𝐶 = {𝑐|𝑐 = 1,2, … , 𝑛𝐶} with 𝑐 = 1 denoting wild-type WT (or 

reference) network 

𝐽𝑐
𝑚𝑒𝑎𝑠 ⊆ 𝐽 is the subset of all reactions with available flux measurements under perturbation mutant 

𝑐 ∈ 𝐶. The cardinality of 𝐽𝑐
𝑚𝑒𝑎𝑠 is 𝑛𝑐

𝑚𝑒𝑎𝑠. 

Parameters 

𝑺 is the metabolite stoichiometry matrix of dimensions [𝑛𝑀 × 𝑛𝑃] whose elements 𝑆𝑖𝑝 represent 

the stoichiometric coefficient of metabolite 𝑖 ∈ 𝐼 in elementary reaction 𝑝 ∈ 𝑃 

𝑬 is the enzyme complex stoichiometry matrix of dimensions [𝑛𝐿 × 𝑛𝑃] whose elements 𝐸𝑙𝑝 

represent the stoichiometric coefficient of enzyme complex (or free enzyme) 𝑙 ∈ 𝐿 in elementary 

reaction 𝑝 ∈ 𝑃 

𝑽𝑐
(𝑚𝑒𝑎𝑠)

 is the [𝑛𝑐
𝑚𝑒𝑎𝑠 × 1] vector of flux measurements in mutant 𝑐 ∈ 𝐶 whose elements 𝑉𝑗,𝑐

(𝑚𝑒𝑎𝑠)
 

represent the measured flux through reaction 𝑗 ∈ 𝐽𝑐
𝑚𝑒𝑎𝑠 with standard deviation 𝜎𝑗,𝑐

(𝑚𝑒𝑎𝑠)
 

𝑳(𝑛𝑒𝑡) is the [𝑛𝑅 × 1] net flux mapping vector whose elements (𝐿𝑗
(𝑛𝑒𝑡)

) store the index of the last 

catalytic elementary step 𝑙 ∈ 𝐿 that quantifies the net flux through the overall reaction 𝑗 ∈ 𝐽.   
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Variables 

𝒌 is the [𝑛𝑃 × 1] vector of kinetic parameters whose elements 𝑘𝑝 denote the kinetic parameter for 

elementary reaction 𝑝 ∈ 𝑃 

𝒔 is the [𝑛𝑀 × 𝑛𝐶] matrix of relative metabolite concentrations whose elements 𝑠𝑖𝑐 represent the 

fold-change in concentration of metabolite 𝑖 ∈ 𝐼 in mutant 𝑐 ∈ 𝐶 relative to WT. The 𝑐𝑡ℎ column 

representing the [𝑛𝑀 × 1] vector of relative metabolite concentrations in mutant 𝑐 ∈ 𝐶 is denoted 

as 𝒔𝑐. 

𝒆 is the [𝑛𝐿 × 𝑛𝐶] matrix of enzyme fractions whose elements 𝑒𝑙𝑐 represent the fractional 

abundance of enzyme complex 𝑙 ∈ 𝐿 in mutant 𝑐 ∈ 𝐶. The 𝑐𝑡ℎ column representing the [𝑛𝐿 × 1] 

vector of enzyme fractions for mutant 𝑐 ∈ 𝐶 is denoted as 𝒆𝑐. The number of enzyme complexes 

is equal to the number of elementary steps as discussed earlier.  

𝒗 is the [𝑛𝑃 × 𝑛𝐶] matrix of elementary fluxes whose elements 𝑣𝑝,𝑐 denote the flux through 

elementary reaction 𝑝 ∈ 𝑃 in mutant 𝑐 ∈ 𝐶. The 𝑐𝑡ℎ column representing the [𝑛𝑝 × 1] vector of 

elementary fluxes in mutant 𝑐 ∈ 𝐶 is denoted as 𝒗𝑐. 

𝒗𝑛𝑒𝑡 is the [𝑛𝐿 × 𝑛𝐶] matrix of net elementary fluxes whose elements 𝑣𝑙,𝑐
𝑛𝑒𝑡 represent the net flux 

through elementary step 𝑙 ∈ 𝐿 in mutant 𝑐 ∈ 𝐶. The 𝑐𝑡ℎ column representing the [𝑛𝐿 × 1] vector 

of net elementary fluxes in mutant 𝑐 ∈ 𝐶 is denoted as 𝒗𝑐
𝑛𝑒𝑡. 

𝑽 is the [𝑛𝑅 × 𝑛𝐶] matrix of reaction fluxes whose elements 𝑉𝑗,𝑐 denote the flux through reaction 

𝑗 ∈ 𝐽 in mutant 𝑐 ∈ 𝐶. The 𝑐𝑡ℎ column representing the [𝑛𝑅 × 1] vector of elementary fluxes in 

mutant 𝑐 ∈ 𝐶 is denoted as 𝑽𝑐. 

In addition to these variable declarations the following three matrices are defined: 

𝑹 is an [𝑛𝑅 × 𝑛𝐿] grouping matrix that indicates which enzyme complexes 𝑙 ∈ 𝐿 participate in 

reaction 𝑗 ∈ 𝐽. It is defined as:  

𝑅𝑗𝑙 = {
1 if 𝑙 ∈ {𝐿𝑗

𝑐𝑎𝑡⋃𝐿𝑗
𝑟𝑒𝑔
}

 
0, otherwise

  

𝑵 is an [𝑛𝑅 × 𝑛𝐿] indicator matrix that is used to map net flux through elementary steps 𝑙 to flux 

through the overall reaction 𝑗 ∈ 𝐽. Based on the convention established in the Introduction section 

(Equation (28)), the last catalytic step serves as a measure of flux through the overall reaction. It 

is defined as:  

𝑁𝑗𝑙 = {
1 𝑖𝑓 𝑙 = 𝐿𝑗

(𝑛𝑒𝑡)

0, otherwise
  

𝒁 is an [𝑛𝑅 × 𝑛𝐶] indicator matrix that maps the abundance of the enzyme catalyzing reaction 𝑗 in 

mutant 𝑐 ∈ 𝐶 relative to its abundance in the WT strain. It is defined as:  
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𝑍𝑗,𝑐 = {
0 if reaction 𝑗 ∈ 𝐽 is eliminated under condition 𝑐 ∈ 𝐶
1, otherwise

 

The definition of matrix 𝒁 implies that the mutant networks are derived by eliminating one or more 

reactions from the metabolic network of the reference strain. This definition can be generalized to 

incorporate other genetic perturbations such as over-expression and down-regulation of gene 

expression. In the absence of proteomic data in mutant strains, we assume that the enzymes 

maintain levels as in the WT. 
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Least-squares minimization problem P1 

Using the definitions introduced above the least-squares minimization problem for kinetic 

parameterization is formulated for the general case as the following nonlinear optimization 

problem: 

 

min
𝒌,𝒆,𝒔,𝒗,𝑽

𝜙 =∑ ∑ (
𝑉𝑗𝑐 − 𝑉𝑗𝑐

(𝑚𝑒𝑎𝑠)

𝜎𝑗𝑐
)

2

𝑗∈𝐽𝑐
𝑚𝑒𝑎𝑠

𝑛𝐶

𝑐=1

 

 
 
 

subject to: 

 

𝑣𝑝,𝑐 = 𝑘𝑝

(

 ∏ 𝑒𝑙,𝑐
 

𝑙
𝐸𝑙𝑝<0 )

 

(

 ∏ 𝑠
𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0 )

  

 

∀𝑝 ∈ 𝑃 
∀𝑐 ∈ 𝐶 

(30) 

𝑣𝑙,𝑐
(𝑛𝑒𝑡)

= 𝑣(2𝑙−1),𝑐
 − 𝑣2𝑙,𝑐

  
∀𝑙 ∈ 𝐿 
∀𝑐 ∈ 𝐶 

(31) 

∑(𝐸𝑙𝑝𝑣𝑝𝑐)

𝑃

𝑝=1

= 0 
∀𝑙 ∈ 𝐿 
∀𝑐 ∈ 𝐶 

(32) 

∑(𝑅𝑗𝑙𝑒𝑙,𝑐)

𝑛𝐿

𝑙=1

= 𝑍𝑗𝑐  
∀𝑗 ∈ 𝐽 
∀𝑐 ∈ 𝐶 

(33) 

∑(𝑆𝑖𝑝𝑣𝑝𝑐)

𝑃

𝑝=1

= 0 
∀𝑖 ∈ 𝐼 
∀𝑐 ∈ 𝐶 

(34) 

𝑉𝑗,𝑐 =∑(𝑁𝑗𝑙𝑣𝑙,𝑐
(𝑛𝑒𝑡))

𝑛𝐿

𝑙=1

 
∀𝑗 ∈ 𝐽 
∀𝑐 ∈ 𝐶 

(35) 

𝑠𝑖,𝑐 ≥ 0 
∀𝑖 ∈ 𝐼 
∀𝑐 ∈ 𝐶 

(36) 

𝑠𝑖,1 = 1 ∀𝑖 ∈ 𝐼 (37) 

0 ≤  𝑒𝑙,𝑐 ≤ 1 
∀𝑙 ∈ 𝐿 
∀𝑐 ∈ 𝐶 

(38) 

𝑘𝑝 ≥ 0 ∀𝑝 ∈ 𝑃 (39) 
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Equation (30) in the above formulation represents the rate law for any elementary reaction 

governed by mass-action kinetics. It is a generalized form of Equation (25) accounting for reaction 

rates across all mutants 𝑐 ∈ 𝐶. As discussed before, the role of the product operators is to select 

the single enzyme complex and (possibly) metabolite participating in the elementary reaction rate 

equation. Therefore, Equation (30) involves either a bilinear term (product of enzyme fraction 

times a relative metabolite concentration) or linear term (enzyme fraction term) in the right-hand 

side. Equation (32) and (34) enforce conservation of mass across all enzyme complexes and 

metabolites, respectively. Equation (32) is an extension of Equation (27) to include enzyme 

complex balances across all mutants. Equation (33) ensures that the total amount of the enzyme in 

all of its forms catalyzing reaction 𝑗 remains constant. It is a generalization of Equations (21) to 

account for enzyme presence or absence in different mutants. Thus, the presence or absence of 

reaction 𝑗 in mutant 𝑐 is captured by Equation (33). Equation (31) computes the net flux through 

any elementary step based on the mapping of elementary reactions to elementary steps established 

with Equations (1), (2) and (22). Equation (35) links the net flux through the elementary steps (i.e., 

last catalytic step) of a reaction to the overall flux through reaction 𝑗. Equation (38) ensures that 

the enzyme fractional abundances are bounded between zero and one. Equation (36) and (39) 

enforce non-negativity of relative metabolite concentrations and kinetic parameters, respectively. 

Since all metabolite concentrations are normalized with respect to the corresponding 

concentrations in the WT strain as described in Equations (4), Equation (37) sets all relative 

concentrations for the WT strain (𝑐 = 1) equal to one. 

Equation (30) involving (at most) bilinear terms is the only set of nonlinear constraints in NLP 

problem P1. This constraint renders the optimization formulation nonconvex making even the 

identification of a feasible point challenging let alone convergence to the optimum value. 

Therefore, any attempt to solve problem P1 using an off-the-self NLP solver such MINOS [4], 

CONOPT [5], or fmincon from the Optimization Toolbox in MATLABTM is unlikely to succeed 

due to difficulties in maintaining feasibility and progressively reduced step-length in the line-

search. Conceptually, this can be remedied by integrating Equations (32) and (34) to steady-state 

after substituting the expression for elementary flux from Equation (30). However, this tends to be 

rather time consuming (i.e., order of minutes) due to the stiffness of the differential equations and 

the loss of accuracy arising from taking large time steps. Furthermore, the inability to integrate 

Equations (32) and (34) to steady-state for some sets of kinetic parameters results in the premature 

termination of any gradient-based optimization algorithm. Therefore, past efforts in kinetic 

parameterization have relied on meta-heuristic optimization algorithms such as Genetic Algorithm 

[6] and particle swarm optimization [7]. The lack of gradient information in this class of methods 

limits efficient traversal of the kinetic space in search of an acceptable solution which may or may 

not be optimal or even near-optimal for the least squares objective function. This computational 

inefficiency in performing kinetic model parameterization prevents any follow up calculations to 

assess uncertainties in kinetic parameters due to experimental errors or internal kinetic parameter 

dependencies. This computational inefficiency is one of the contributing factors that have so far 

throttled back the parameterization of large-scale and wide application of kinetic models in strain 

design. Faced with these challenges, we put forth a customized procedure that can reliably identify 

optimal or near optimal kinetic model parameterizations while achieve orders of magnitude 
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improvement in computational time over stochastic approaches. The following subsections will 

describe strategies to transform problem P1 into a successive sequence of easier-to-solve 

subproblems. These strategies form the basis of the kinetic parameterization algorithm, K-FIT. K-

FIT allows for the efficient solution of NLP problem P1 using three main tasks/procedures: 

I. Procedure K-SOLVE anchors kinetic parameters 𝑘𝑝 to the specified steady-state flux 

distribution in the WT network 𝑽1 such that such that conservation of mass across 

metabolites (Equation (34)), pseudo-steady-state condition across all enzyme complexes 

(Equation (32)), and normalization of metabolite concentrations (Equation (37)) are 

simultaneously satisfied for the WT network. This is accomplished by rearranging 

Equation (30) to express 𝒌 as a function of the WT enzyme fractions 𝒆1 and the flux through 

the reverse elementary reactions 𝒗𝑟 ⊂ 𝒗1 while maintaining the relative metabolite 

concentrations 𝑠𝑖,1 = 1 ∀𝑖 ∈ 𝐼 (i.e., 𝒌 = 𝑓(𝒗𝑟 , 𝒆1)). 

II. Procedure SSF-Evaluator computes the steady-state fluxes 𝑽𝑐 and relative metabolite 

concentrations 𝒔𝑐 across all mutants (𝑐 > 1) using the kinetic parameters 𝒌 computed in 

procedure K-SOLVE. Procedure SSF-Evaluator decomposes the system of bilinear 

equations in 𝒔𝑐 and 𝒆𝑐 defined by Equations (30), (32), (33), and (34) into two blocks of 

equations representing conservation of mass across enzyme complexes and metabolites, 

respectively. The bilinear equations become linear when one of either (𝒔𝑐 or 𝒆𝑐) is 

specified. When 𝒔𝑐 is specified, Equations (32) and (33) form an exactly determined 

[𝑛𝐿 × 𝑛𝐿] system of linear algebraic equations in 𝒆𝑐. Similarly, Equation (34) represents 

an exactly determined [𝑛𝑀 × 𝑛𝑀] system of linear algebraic equations in 𝒔𝑐 when 𝒆𝑐 is 

specified. SSF-Evaluator iterates between these two blocks using originally a fixed-point 

iteration (FPI) scheme (or Newton / Richardson extrapolation if needed) until a steady-

state is found. This strategy allows for the direct evaluation of both fluxes and 

concentration across all mutants that automatically satisfy all the nonlinear equality 

constraints from problem P1 and leaves only linear (in)equalities in the constraint set. 

III. Procedure K-UPDATE computes the sensitivity of net flux through all reactions 𝑽 to WT 

enzyme fractions 𝒆1 and reverse elementary fluxes 𝒗𝑟, which is then used to compute the 

approximate gradient 𝑮 and the approximate 𝑯 for the objective function 𝜙. 𝑮 and 𝑯 are 

then used to check for optimality and update 𝒆1 and 𝒗𝑟 using a Newton step if optimality 

is not achieved. The updated values for 𝒆1 and 𝒗𝑟 are then fed to the K-SOLVE procedure 

which evaluates updated kinetic parameters 𝒌 and the calculation sequence described 

above is repeated. 

The K-FIT procedure is illustrated with Figure 1 and Supplementary Figure S1 which details the 

overall information flow loop, variable designations and calculation schema.  The mathematical 

details and implementation of all the component subroutines of K-FIT are described in the 

following subsections. 
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I. KSOLVE: Anchoring kinetic parameters to the WT flux distribution 

K-SOLVE computes a set of kinetic parameters 𝒌 that satisfy Equations (30) - (39) for the WT 

network (𝑐 = 1) when the WT flux distribution 𝑽1, enzyme fractions 𝒆1 and non-negative 

elementary fluxes 𝒗1 are specified. This anchoring is required because conservation of mass across 

all enzyme fractions, mass balance across metabolites, and normalization of metabolite 

concentrations may not be simultaneously satisfied. To demonstrate this, we recast Equations (32), 

(33), and (34) after substituting the expression for elementary fluxes in terms of mass-action 

kinetics described in Equation (30) and setting 𝑠𝑖,1 = 1∀𝑖 ∈ 𝐼 based on Equation (37). 

∑(𝑅𝑗𝑙𝑒𝑙,1)

𝑛𝐿

𝑙=1

= 1 
∀𝑙 ∈ 𝐿 
∀𝑐 ∈ 𝐶 

(40) 

∑

(

  
 
𝐸𝑙𝑝𝑘𝑝

(

 
 
∏ 𝑒𝑙,𝑐

 

𝑙′
𝐸𝑙′𝑝<0 )

 
 

)

  
 

𝑛𝑃

𝑝=1

= 0 
∀𝑙 ∈ 𝐿  

  ∀𝑐 ∈ 𝐶 

∀𝑙′ ∈ 𝐿 
(41) 

∑

(

  
 
𝑆𝑖𝑝𝑘𝑝

(

 
 
∏ 𝑒𝑙,𝑐

 

𝑙
𝐸𝑙𝑝<0 )

 
 

)

  
 

𝑛𝑃

𝑝=1

= 0 
∀𝑖 ∈ 𝐼  

 ∀𝑐 ∈ 𝐶 
(42) 

 

Equations (40), (41), and (42) form an overdetermined system of (𝑛𝐿 + 𝑛𝑀) linear algebraic 

equations in 𝑛𝐿 unknown enzyme fractions 𝒆1 when kinetic parameters 𝒌 are specified. This 

system of equations for arbitrary values of 𝒌 will likely be infeasible indicating that not possible 

values for kinetic parameters 𝒌 simultaneously satisfy conservation of mass across all metabolites 

and enzyme complexes. This necessitates the development of the K-SOLVE procedure which 

derives a link between 𝒌, and 𝒆1 so that conservation of mass is always satisfied. This is achieved 

by rearranging Equation (30) for the WT network and exploiting the property that the product term 

containing relative metabolite concentrations (∏ 𝑠
𝑖,1

−𝑆𝑖𝑝
𝑖

𝑆𝑖𝑝≤0
) will always be equal to one because 

the metabolite concentrations are scaled with respect to WT (i.e. 𝑠𝑖,1 = 1): 

 

𝑘𝑝 = 𝑣𝑝,1

(

 ∏ 𝑒𝑙,1
 

𝑙
𝐸𝑙𝑝<0 )

 

−1

 

 

∀𝑝 ∈ 𝑃 (43) 
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Note that Equation (43) reveals that 𝑘𝑝 can be uniquely determined when both 𝒗1 and 𝒆1 are 

specified. Of these variables, 𝒆1 is bounded between 0 and 1, and further constrained by the 

following relations: 

∑(𝑅𝑗𝑙𝑒𝑙,1)

𝑛𝐿

𝑙=1

= 1 ∀𝑙 ∈ 𝐿 (40) 

0 ≤ 𝑒𝑙,1 ≤ 1 ∀𝑙 ∈ 𝐿 (44) 

Equation (43) relates 2𝑛𝐿 kinetic parameters to 𝑛𝐿 enzyme fractions and 2𝑛𝐿 elementary fluxes. 

Enzyme fractions are further constrained by Equation (40) and bounded as shown in Equation (44) 

implying that there exists multiple value assignments for the 2𝑛𝐿 elementary fluxes that could 

yield the same 𝑘𝑝 values. This implies that the assignment of values for the elementary fluxes 𝑣𝑝 

is not unique and that there exist unsatisfied degrees of freedom as only a subset of 𝑣𝑝 are 

independent variables.  The reason for this dependency is the presence of pairs of forward and 

reverse fluxes that can assume an infinity of possibly combinations of values with the same net 

flux 𝑣𝑙
(𝑛𝑒𝑡)

 through the elementary step. We extract an independent subset of 𝒗1 by arbitrarily 

selecting the reverse flux as the independent variables and relating the forward fluxes as a function 

of the reverse and net fluxes. This requires the definition of two separate [𝑛𝐿 × 1] vectors 𝒗𝑓 and 

𝒗𝑟 denoting fluxes through forward and reverse elementary reactions, respectively in the WT 

strain. Elements of vectors 𝒗𝑓 and 𝒗𝑟 are mapped to the [2𝑛𝐿 × 1] vector of elementary fluxes in 

the WT network (𝒗1) using Equations (45) and (46). 

𝑣𝑓,𝑙 = 𝑣2𝑙−1,1 

𝑣𝑟,𝑙 = 𝑣2𝑙,1 

(45) 

(46) 

 

Because the net flux through an elementary step 𝑣𝑙,1
(𝑛𝑒𝑡)

 is the difference between the forward and 

reverse elementary fluxes we obtain 

𝑣𝑓𝑙
= 𝑣𝑙,1

(𝑛𝑒𝑡)
+ 𝑣𝑟𝑙 ∀𝑙 ∈ 𝐿 (47) 

 

The net flux through all elementary steps of an enzyme-catalyzed reaction in the WT strain is 

related to the net flux through the reaction in the WT (𝑐 = 1) by Equations (48) and (49). 

𝑣𝑙,1
(𝑛𝑒𝑡)

= 𝑉𝑗,1 
∀𝑙 ∈ 𝐿𝑗

𝑐𝑎𝑡 

∀𝑗 ∈ 𝐽 
(48) 

𝑣𝑙,1
(𝑛𝑒𝑡)

= 0 
∀𝑙 ∈ 𝐿𝑗

𝑟𝑒𝑔
 

∀𝑗 ∈ 𝐽 
(49) 
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When 𝑽1 is specified then the values of the net fluxes 𝑣𝑙
(𝑛𝑒𝑡)

 through all elementary steps (both 

catalytic and regulatory) can be recovered from Equations (48) and (49). These values can then be 

plugged into Equation (47) to calculate 𝒗𝑓 for a given assignment of value of the independent 

variables 𝒗𝑟. Since vector 𝑽1 stores the steady-state fluxes in the WT, equality constraints 

representing conservation of mass across metabolites in the WT in problem P1 are inherently 

satisfied. 

Therefore when 𝒗1
(𝑛𝑒𝑡)

, 𝒗𝑟, and 𝒆1 are specified, a unique set of kinetic parameters 𝒌 can be 

obtained by solving the following [𝑛𝑃 × 𝑛𝑃] system of linear algebraic equations. 

𝑣𝑟,𝑙 + 𝑣𝑙
(𝑛𝑒𝑡)

= 𝑘(2𝑙−1)

(

 ∏ 𝑒𝑙′,1
𝑙′

𝐸𝑙′𝑝<0 )

  

∀𝑝 ∈ 𝑃 

∀𝑙 ∈ 𝐿 

∀𝑙′ ∈ 𝐿 

(50) 

𝑣𝑟,𝑙 = 𝑘(2𝑙)

(

 ∏ 𝑒𝑙′,1
𝑙′

𝐸𝑙′𝑝<0 )

  

Note that the rate law expressions in Equations (50) are derived by setting the relative metabolite 

concentrations in Equation (30) for WT to one.  The vector of kinetic parameters 𝒌 is recovered 

from Equation (51) as the following explicit relations 

 

𝑘(2𝑙−1) = (𝑣𝑟𝑙 + 𝑣𝑙
(𝑛𝑒𝑡))

(

 
 
∏ 𝑒𝑙′,1
𝑙′

𝐸𝑙′𝑝<0 )

 
 

−1

 

 
∀𝑝 ∈ 𝑃 

∀𝑙 ∈ 𝐿 

∀𝑙′ ∈ 𝐿 

(51) 

𝑘(2𝑙) = (𝑣𝑟𝑙)

(

 
 
∏ 𝑒𝑙′,1
𝑙′

𝐸𝑙′𝑝<0 )

 
 

−1

 

 

Values assumed by 𝒆1 and 𝒗𝑟 are constrained by the following (in)equalities: 

∑𝑅𝑗𝑙𝑒𝑙,1

𝑛𝐿

𝑙=1

= 1 ∀𝑗 ∈ 𝐽 (40) 

0 ≤ 𝑒𝑙,1 ≤ 1 ∀𝑙 ∈ 𝐿 (44) 
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𝑣𝑟,𝑙 ≥ 0 ∀𝑙 ∈ 𝐿 (52) 

𝑣𝑟,𝑙 + 𝑣𝑙,1
(𝑛𝑒𝑡)

≥ 0 ∀𝑙 ∈ 𝐿 (53) 

 

Since all elementary fluxes and enzyme fractions are non-negative, non-negativity of the kinetic 

parameters 𝒌 computed in Equation (51) is always guaranteed. The steps for computing this 

feasible set of kinetic parameters is provided in the following algorithmic description. K-SOLVE 

accepts WT enzyme fractions 𝒆1 and reverse elementary fluxes 𝒗𝑟 as inputs and returns kinetic 

parameters 𝒌 as the output. 

Algorithm procedure K-SOLVE 

Begin 

 Specify and fix flux distribution in the WT strain 𝑽1. 

Specify and fix 𝒆1 and 𝒗𝑟 satisfying Equation (40), (44), (52), and (53). 

Set 𝑣𝑙,1
(𝑛𝑒𝑡)

 ∀𝑙 ∈ 𝐿𝑗
𝑐𝑎𝑡 to 𝑉𝑗,1∀𝑗 ∈ 𝐽 

Set 𝑣𝑙,1
(𝑛𝑒𝑡)

 ∀𝑙 ∈ 𝐿𝑗
𝑟𝑒𝑔

 to 0 

Compute kinetic parameters 𝒌 by substituting 𝒆1, 𝒗𝑟, and 𝒗1
(𝑛𝑒𝑡)

 in Equation (51) 

 return 𝒌 

end 
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II. SSF-Evaluator: Evaluation of steady-state fluxes for the mutant networks using the 

kinetic parameter assignments of K-SOLVE 

Having computed a set of kinetic parameters 𝒌 satisfying Equations (30) - (39) for the WT strain 

(𝑐 = 1) using K-SOLVE, the objective of SSF-Evaluator is to compute the flux distributions in 

the mutant strains. Typically, this is achieved by integrating the ODEs describing conservation of 

mass across all metabolites and enzyme complexes. To circumvent the unreliability and high 

computational cost associated with numerical integration, we put forth a decomposition-based 

approach that leverages the bilinear structure of the underlying system of equations. In this section, 

we derive updating formulae for the metabolite concentrations (Equations (57), (59), and (82)) in 

response to the altered enzyme concentrations compared to WT in the mutant networks (see 

Equation (33)). These update formulae are then fed into the SSF-Evaluator procedure that 

evaluates fluxes and metabolite concentrations in mutants when the kinetic parameters 𝒌 are 

provided.  

Substituting the expression for 𝑣𝑝,𝑐 from Equation (30) that pose metabolite and enzyme mass 

balances as functions of enzyme fractions 𝒆𝑐 and relative metabolite concentrations 𝒔𝑐 across all 

mutant networks 𝑐 ∈ 𝐶 into Equations (32) and (34) yields Equations (54) and (55), respectively: 

∑

(

  
 
𝐸𝑙𝑝𝑘𝑝

(

 
 
∏ 𝑒𝑙,𝑐

 

𝑙′
𝐸𝑙′𝑝<0 )

 
 

(

 
 
∏ 𝑠

𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0 )

 
 

)

  
 

𝑛𝑃

𝑝=1

= 0 

 
∀𝑙 ∈ 𝐿  

  ∀𝑐 ∈ 𝐶 
 

 

(54) 

∑

(

  
 
𝑆𝑖𝑝𝑘𝑝

(

 
 
∏ 𝑒𝑙,𝑐

 

𝑙
𝐸𝑙𝑝<0 )

 
 

(

 
 
∏ 𝑠

𝑖,𝑐

−𝑆𝑖′𝑝

𝑖′
𝑆𝑖′𝑝≤0 )

 
 

)

  
 

𝑛𝑃

𝑝=1

= 0 

 
∀𝑖 ∈ 𝐼  

 ∀𝑐 ∈ 𝐶 
 

 

(55) 

 

Equations (54) and (55) must be supplemented by Equation (33) that imposes that the sum of the 

fractional abundance of all enzyme complexes of a particular enzyme must be equal to the fold-

change in the total enzyme level relative to WT. Thus, for every mutant network 𝑐, the enzyme 

fractions 𝒆𝑐 encode any changes to enzyme level by means of upregulation, downregulation or 

absence as described by Equation (33). 

∑(𝑅𝑗𝑙𝑒𝑙,𝑐)

𝑛𝐿

𝑙=1

= 𝑍𝑗𝑐  
∀𝑗 ∈ 𝐽 
∀𝑐 ∈ 𝐶 

(33) 

Equations (33) and (54) form a [𝑛𝐿 × 𝑛𝐿] system of linear algebraic equations of full rank in 𝒆𝑐 

that can efficiently be solved for the fractional enzyme complex abundances in all mutant networks 

given the values for the relative metabolite concentrations 𝒔𝑐 and kinetic parameters 𝒌 [8]. It is 

important to note that the steady-state enzyme fractions 𝒆𝑐 encode any changes to enzyme presence 

in mutant 𝑐 through Equation (33). 
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Elementary binding and release steps bind only one reactant or release only one product at a time. 

This ensures that the only possible exponent for the metabolite concentration term in Equations 

(54) and (55) is equal to one. Equations (55) therefore simplifies to a system of linear algebraic 

equations in 𝒔𝑐 when 𝒆𝑐 is specified and can be recast as: 

∑

(

  
 
𝑆𝑖𝑝𝑘𝑝

(

 
 
∏ 𝑒𝑙,𝑐

 

𝑙
𝐸𝑙𝑝<0 )

 
 

)

  
 

 

𝑝∈𝑃
𝑆𝑖𝑝>0

+ ∑

(

 
 
𝑆𝑖𝑝𝑘𝑝

(

 
 
∏ 𝑒𝑙,𝑐

 

𝑙
𝐸𝑙𝑝<0 )

 
 
𝑠𝑖,𝑐

)

 
 

 

𝑝∈𝑃
𝑆𝑖𝑝<0

= 0 
∀𝑖 ∈ 𝐼 
∀𝑐 ∈ 𝐶 

(56) 

 

The relative metabolite concentrations can then be directly calculated from the following explicit 

expression: 

 

𝑠𝑖,𝑐 = −  

∑

(

  
 
𝑆𝑖𝑝𝑘𝑝

(

 
 
∏ 𝑒𝑙,𝑐

 

𝑙
𝐸𝑙𝑝<0 )

 
 

)

  
 

 

𝑝∈𝑃
𝑆𝑖𝑝>0

 

 

∀𝑖 ∈ 𝐼 
∀𝑐 ∈ 𝐶 

(57) 

∑

(

  
 
𝑆𝑖𝑝𝑘𝑝

(

 
 
∏ 𝑒𝑙,𝑐

 

𝑙
𝐸𝑙𝑝<0 )

 
 

)

  
 

 

𝑝∈𝑃
𝑆𝑖𝑝<0

 

 

Equation (57) relates relative metabolite concentrations 𝒔𝑐 to enzyme fractions 𝒆𝑐 at metabolic 

steady-state for a given set of elementary step kinetic parameters 𝒌. When 𝒔𝑐 and 𝒆𝑐 do not 

represent steady-state relative metabolite concentrations and enzyme fractions, the left hand-side 

of Equation (56) quantifies the mass imbalance of metabolite 𝑖 in network 𝑐 as shown in Equation 

(58). 

𝑑𝑠𝑖,𝑐
𝑑𝑡

= ∑

(

  
 
𝑆𝑖𝑝𝑘𝑝

(

 
 
∏ 𝑒𝑙,𝑐

 

𝑙
𝐸𝑙𝑝<0 )

 
 

)

  
 

 

𝑝∈𝑃
𝑆𝑖𝑝>0

+ ∑

(

 
 
𝑆𝑖𝑝𝑘𝑝

(

 
 
∏ 𝑒𝑙,𝑐

 

𝑙
𝐸𝑙𝑝<0 )

 
 
𝑠𝑖,𝑐

)

 
 

 

𝑝∈𝑃
𝑆𝑖𝑝<0

 
∀𝑖 ∈ 𝐼  
∀𝑐 ∈ 𝐶 

(58) 

 

i. Fixed-Point Iteration (FPI) 

In summary, the enzyme fractions 𝒆𝑐 can be computed from the kinetic parameters 𝒌 and 

metabolite concentrations 𝒔𝑐 by solving the system of linear equations (33) and (54) and in turn 
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the computed enzyme fractions 𝒆𝑐 can be used to update metabolite concentrations 𝒔𝑐. This 

establishes the following fixed-point iteration (FPI) procedure to solve for the unknown 

concentrations 𝒔𝑐 and enzyme fractions 𝒆𝑐 given kinetic parameters 𝒌: 

Algorithmic Implementation of FPI  

Begin 

 Specify and fix 𝒌 

set 𝑠𝑡𝑜𝑙: =  10−6, 𝑖𝑡𝑒𝑟:= 1 

Initialize 𝑠𝑖,𝑐
(0): = 1, ∀𝑖 ∈ 𝐼 and 𝑐 ∈ 𝐶 

Compute 𝒆𝑐
(𝑖𝑡𝑒𝑟)

 by solving Equations (33) and (54) with 𝒔𝑐: = 𝒔𝑐
(0)

 

Compute 𝒔𝑐
(𝑖𝑡𝑒𝑟) by solving Equation (57) with 𝒆𝑐:= 𝒆𝑐

(𝑖𝑡𝑒𝑟)
 

Compute 
𝑑𝒔𝑐

𝑑𝑡
 by solving Equation (58) with 𝒔𝑐: = 𝒔𝑐

(𝑖𝑡𝑒𝑟) and 𝒆𝑐: = 𝒆𝑐
(𝑖𝑡𝑒𝑟)

 

While ‖
𝑑𝑠𝒄

𝑑𝑡
‖
∞
> 𝑠𝑡𝑜𝑙 or ‖𝒔𝑐

(𝑖𝑡𝑒𝑟+1)
− 𝒔𝑐

(𝑖𝑡𝑒𝑟)
‖
∞
> 10−4 

 𝑖𝑡𝑒𝑟 ≔ 𝑖𝑡𝑒𝑟 + 1 

 Compute 𝒆𝑐
(𝑖𝑡𝑒𝑟)

 by solving Equations (33) and (54) with 𝒔𝑐: = 𝒔𝑐
(𝑖𝑡𝑒𝑟)

 

Compute 𝒔𝑐
(𝑖𝑡𝑒𝑟)

  by solving Equation (57) with 𝒆𝑐: = 𝒆𝑐
(𝑖𝑡𝑒𝑟)

 

Compute 
𝑑𝑠𝒄

𝑑𝑡
 by solving Equation (58) with 𝒔𝑐: = 𝒔𝑐

(𝑖𝑡𝑒𝑟)
 and 𝒆𝑐:= 𝒆𝑐

(𝑖𝑡𝑒𝑟)
 

 return 𝒔𝑐
(𝐹𝑃𝐼)

≔ 𝒔𝑐
(𝑖𝑡𝑒𝑟) and 𝒆𝑐

(𝐹𝑃𝐼)
≔ 𝒆𝑐

(𝑖𝑡𝑒𝑟)
 

end 

It is important to note that the FPI algorithm has linear convergence which causes the method to 

slow down as we approach metabolic steady-state. This can be accelerated by switching to 

Newton’s method which has quadratic convergence. We switch to Newton’s method when either 

the mass imbalance is within the specified threshold of 𝑠𝑡𝑜𝑙 or the progress towards steady-state 

becomes too slow. This happens when the change in metabolite concentrations between iterations 

falls below a pre-specified threshold of 10−4. 

ii. Newton’s method for accelerating convergence 

 Let 𝒔𝑐
(𝐹𝑃𝐼)

 and 𝒆𝑐
(𝐹𝑃𝐼)

 be current iterates that do not represent steady-state relative metabolite 

concentrations and enzyme fractions, respectively. They can be used as starting points for 

Newton’s method where relative metabolite concentrations are updated in the 𝑛𝑡ℎ iteration as: 

𝒔𝑐
(𝑛+1)

= 𝒔𝑐
(𝑛)
−(

𝜕 (
𝑑𝒔𝑐
𝑑𝑡
)

𝜕𝒔𝑐
)

−1

𝑑𝒔𝑐 
𝑑𝑡

 

 

(59) 
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In Equation (59), 
𝑑𝒔𝑐

𝑑𝑡
 is computed using Equation (58). The quantity (

𝜕(
𝑑𝒔𝑐
𝑑𝑡
)

𝜕𝒔𝑐
) represents the 

Jacobian 𝑱 of the function 
𝑑𝒔𝑐

𝑑𝑡
 described in Equation (59) and can be recast in terms of elementary 

fluxes as: 

𝑑𝑠𝑖,𝑐
𝑑𝑡

= ∑(𝑆𝑖𝑝𝑣𝑝𝑐)

𝑃

𝑝=1

= 0 
∀𝑖 ∈ 𝐼 

 ∀𝑐 ∈ 𝐶 
(60) 

 

The Jacobian 𝐽 obtained by differentiating Equation (60) with respect to 𝒔𝑐 yields: 

𝐽𝑖𝑖′,𝑐 =
𝜕

𝜕𝑠𝑖′,𝑐
(
𝑑𝑠𝑖,𝑐
𝑑𝑡
) = ∑𝑆𝑖𝑝 (

𝜕𝑣𝑝𝑐
𝜕𝑠𝑖′,𝑐

)

𝑃

𝑝=1

 
∀𝑖 ∈ 𝐼 
∀𝑐 ∈ 𝐶 
∀𝑖′ ∈ 𝐼 

(61) 

 

Recall that 𝑣𝑝𝑐 is related to kinetic parameters 𝒌, enzyme fractions 𝒆𝑐, and relative metabolite 

concentrations 𝒔𝑐 using the mass-action kinetics of Equation (30). The sensitivity of 𝑣𝑝𝑐 to the 

relative metabolite concentrations is obtained by differentiating Equation (30) with respect to 𝒔𝑐: 

𝑣𝑝,𝑐 = 𝑘𝑝

(

 
 
∏ 𝑒𝑙,𝑐
𝑙

𝐸𝑙𝑝<0 )

 
 

(

 
 
∏ 𝑠

𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝<0 )

 
 

 
∀𝑝 ∈ 𝑃 
∀𝑐 ∈ 𝐶 

(30) 

 

𝜕𝑣𝑝𝑐
𝜕𝑠𝑖′,𝑐

= ∑

(

  
 
𝑘𝑝

(

 
 

(

 ∏ 𝑠𝑞,𝑐
−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝<0 )

 
𝜕

𝜕𝑠𝑖,𝑐
(

 ∏ 𝑒𝑙,𝑐
𝑙

𝐸𝑙𝑝<0 )

 +

(

 ∏ 𝑒𝑙,𝑐
𝑙

𝐸𝑙𝑝<0 )

 
𝜕

𝜕𝑠𝑖′,𝑐
(

 ∏ 𝑠𝑞,𝑐
−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝<0 )

 

)

 
 

)

  
 

𝑙
𝐸𝑙𝑝<0

 

∀𝑝 ∈ 𝑃 
∀𝑐 ∈ 𝐶 
∀𝑖 ∈ 𝐼 
∀𝑖′ ∈ 𝐼 

(62) 

 

Since only one enzyme complex and (at most) one metabolite participates in any elementary 

reaction, the derivatives in Equation (62) can be simplified as: 

 

𝜕

𝜕𝑠𝑖′,𝑐
(

 ∏ 𝑒𝑙,𝑐
𝑙

𝐸𝑙𝑝<0 )

 = − ∑ 𝐸𝑙𝑝 (
𝜕𝑒𝑙,𝑐
𝜕𝑠
𝑖′,𝑐

)

𝑙
𝐸𝑙𝑝≤0

 
∀𝑖′ ∈ 𝐼 
∀𝑝 ∈ 𝑃 
∀𝑐 ∈ 𝐶 

(63) 

𝜕

𝜕𝑠𝑖′,𝑐

(

 
 
∏ 𝑠𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0 )

 
 
=− ∑ 𝑆𝑖𝑝(

𝜕𝑠𝑖,𝑐
𝜕𝑠
𝑖′,𝑐

)

𝑖
𝑆𝑖𝑝≤0

 
∀𝑖′ ∈ 𝐼 
∀𝑝 ∈ 𝑃 
∀𝑐 ∈ 𝐶  

(64) 
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Equation (62) can therefore be simplified by substituting the expressions for the derivatives in 

Equations (63) and (64) as: 

 

𝜕𝑣𝑝𝑐
𝜕𝑠𝑖′,𝑐

= −𝑘𝑝

(

 
 
 

(

 ∏ 𝑠
𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝<0 )

 

(

 
 
∑ 𝐸𝑙𝑝

𝜕𝑒𝑙,𝑐
𝜕𝑠𝑖′,𝑐𝑙

𝐸𝑙𝑝≤0 )

 
 
+

(

 ∏ 𝑒𝑙,𝑐
𝑙

𝐸𝑙𝑝<0 )

 

(

 
 
∑ 𝑆𝑖𝑝

𝜕𝑠𝑖,𝑐
𝜕𝑠𝑖′,𝑐𝑖

𝑆𝑖𝑝≤0 )

 
 

)

 
 
 

 
∀𝑝 ∈ 𝑃 
∀𝑐 ∈ 𝐶 
∀𝑖′ ∈ 𝐼 

(65) 

 

The partial derivatives  
𝜕𝑒𝑙,𝑐

𝜕𝑠𝑖′,𝑐
 must be computed to quantify the sensitivity of elementary fluxes to 

substrate concentrations. This is achieved by differentiating Equations (33) and (54) with respect 

to 𝑠𝑖′,𝑐: 

∑(𝑅𝑗𝑙
𝜕𝑒𝑙,𝑐
𝜕𝑠𝑖′,𝑐

 )

𝑛𝐿

𝑙=1

= 0 
∀𝑙 ∈ 𝐿 
∀𝑐 ∈ 𝐶 
∀𝑖′ ∈ 𝐼 

(66) 

∑

(

 
 
𝐸𝑙𝑝𝑘𝑝

(

 
 
∏ 𝑠𝑖,𝑐

 

𝑖
𝑆𝑖𝑝≤0 )

 
 
∑ (

𝜕𝑒𝑙,𝑐
𝜕𝑠𝑖′,𝑐

)
𝑙

𝐸𝑙𝑝<0 )

 
 

𝑃

𝑝=1

−∑

(

  
 
𝑆𝑖′𝑝𝐸𝑙𝑝𝑘𝑝

(

 
 
∏ 𝑒𝑙,𝑐

 

𝑙
𝐸𝑙𝑝<0 )

 
 

)

  
 

𝑃

𝑝=1

= 0 

 
∀𝑙 ∈ 𝐿 

 ∀𝑐 ∈ 𝐶 
∀𝑖′ ∈ 𝐼 

 

(67) 

 

𝜕𝑒𝑙,𝑐

𝜕𝑠𝑖′,𝑐
 is computed by solving an exactly determined [𝑛𝐿 × 𝑛𝐿] system of linear algebraic equations 

formed by Equations (66) and (67). The computed 
𝜕𝑒𝑙,𝑐

𝜕𝑠𝑖′,𝑐
 is then substituted in Equation (65) to 

compute 
𝜕𝑣𝑝𝑐

𝜕𝑠𝑖,𝑐
 which is subsequently substituted in Equation (61) to compute all elements in the 

Jacobian 𝑱. Having computed 𝑱, metabolite concentrations can be updated using Equation (59) 

until the steady-state concentrations are reached or 𝑱 becomes singular. An alternative updating 

scheme for when 𝑱 become singular is detailed in the following subsection. The following 

algorithm details the steps involved in the identification of steady-state metabolite concentrations 

using Newton’s method. 

Algorithmic Implementation of Newton’s Method 

Begin 

 Specify and fix 𝒌 

Set 𝑠𝑡𝑜𝑙: =  10−6, 𝑖𝑡𝑒𝑟: = 1 

Initialize 𝑠𝑖,𝑐
(𝑖𝑡𝑒𝑟):= 𝑠𝑖,𝑐

𝐹𝑃𝐼 , ∀𝑖 ∈ 𝐼 and 𝑐 ∈ 𝐶 

Compute 𝒆𝑐
(𝑖𝑡𝑒𝑟) by solving Equations (33) and (54) with 𝒔𝑐: = 𝒔𝑐

(𝑖𝑡𝑒𝑟) 

Compute 
𝑑𝒔𝑐

𝑑𝑡
 by substituting 𝒔𝑐: = 𝒔𝑐

(𝑖𝑡𝑒𝑟) and 𝒆𝑐: = 𝒆𝑐
(𝑖𝑡𝑒𝑟)

 into Equation (58) 
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Compute 
𝜕𝒆𝑐

𝜕𝒔
 by solving Equations (66) and (67) with 𝒔𝑐: = 𝒔𝑐

(𝑖𝑡𝑒𝑟)
 and 𝒆𝑐:= 𝒆𝑐

(𝑖𝑡𝑒𝑟)
 

Compute 
𝜕𝒗𝑐

𝜕𝒔
 by substituting 

𝜕𝒆𝑐

𝜕𝒔
 into Equation (65) 

Compute 𝑱 by substituting 
𝜕𝒗𝑐

𝜕𝒔
 Equation (61) 

While (‖
𝑑𝒔𝑐

𝑑𝑡
‖
∞
> 𝑠𝑡𝑜𝑙) and 𝑱 is not singular 

 𝑖𝑡𝑒𝑟 ≔ 𝑖𝑡𝑒𝑟 + 1 

 Update 𝒔𝑐
(𝑖𝑡𝑒𝑟)

 by substituting 
𝜕(
𝑑𝒔𝑐
𝑑𝑡
)

𝜕𝒔𝑐
= 𝑱 and 𝒔𝑐

(𝑛)
= 𝒔𝑐

(𝑖𝑡𝑒𝑟−1)
 into Equation (59) 

 Compute 𝒆𝑐
(𝑖𝑡𝑒𝑟)

 by solving Equations (33) and (54) with 𝒔𝑐: = 𝒔𝑐
(𝑖𝑡𝑒𝑟)

 

Compute 
𝑑𝒔𝑐

𝑑𝑡
 by substituting 𝒔𝑐: = 𝒔𝑐

(𝑖𝑡𝑒𝑟)
 and 𝒆𝑐: = 𝒆𝑐

(𝑖𝑡𝑒𝑟)
 into Equation (58) 

Compute 
𝜕𝒆𝑐

𝜕𝒔
 by solving Equations (66) and (67) with 𝒔𝑐: = 𝒔𝑐

(𝑖𝑡𝑒𝑟)
 and 𝒆𝑐:= 𝒆𝑐

(𝑖𝑡𝑒𝑟)
 

Compute 
𝜕𝒗𝑐

𝜕𝒔
 by substituting 

𝜕𝒆𝑐

𝜕𝒔
 into Equation (65) 

Compute 𝑱 by substituting 
𝜕𝒗𝑐

𝜕𝒔
 Equation (61) 

 return 𝒔𝑐
(𝑁𝑀) ≔ 𝒔𝑐

(𝑖𝑡𝑒𝑟) and 𝒆𝑐
(𝑁𝑀) ≔ 𝒆𝑐

(𝑖𝑡𝑒𝑟) 

end 

On average we find 𝑱 becomes singular in only approximately 5% of the all mutant flux evaluations 

using SSF-Evaluator, thus requiring a different updating formula. 

iii. Richardson’s Extrapolation when J becomes singular 

If singularity for the Jacobian is detected then we switch to a semi-implicit first-order integrator 

[9] using Richardson’s extrapolation  by initializing the relative metabolite concentrations at the 

current point (𝒔𝑐
(𝑁𝑀)

). The update formula for the metabolite concentrations (Equation (72)) is 

derived using the following procedure. The initial value problem described by Equation (60) can 

be expressed in matrix form as: 

 

𝑑𝒔𝑐

𝑑𝑡
= 𝑺. 𝒗𝑐 = 𝒇(𝒔𝑐)  ∀𝑐 ∈ 𝐶 (68) 

 

Equation (68) is integrated starting from the initial condition 𝒔(0) =  𝒔𝑐
(𝑁𝑀)

 where 𝒔𝑐
(𝑁𝑀)

 is the 

vector of relative metabolite concentrations when Newton’s method fails (J becomes singular). We 

use the implicit Euler’s method to update substrate concentrations 𝒔 upon taking a time step of ℎ. 

This is due to the stiffness of the system of equations that precludes the use of a less costly explicit 

method. The update formula for the 𝑛𝑡ℎ iteration is: 
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𝒔𝑐
(𝑛+1)

−𝒔𝑐
(𝑛)

ℎ
= 𝒇(𝒔𝑐

(𝑛+1))  
∀𝑐 ∈ 𝐶 (69) 

 

Since 𝒔𝑐
(𝑛+1)

 is unknown, 𝒇(𝒔𝑐
(𝑛+1)

)  cannot be evaluated a priori and must be approximated using 

Taylor series expansion. 

𝒇 (𝒔𝑐
(𝑛+1)

) = 𝒇 (𝒔𝑐
(𝑛)
) +

𝜕𝒇

𝜕𝒔𝑐 
(𝒔𝑐
(𝑛+1)

− 𝒔𝑐
(𝑛)
)  ∀𝑐 ∈ 𝐶 (70) 

 

Equation (70) is substituted back in Equation (69) to yield: 

𝒔𝑐
(𝑛+1)

− 𝒔𝑐
(𝑛)
= ℎ𝒇 (𝒔𝑐

(𝑛)
) + ℎ

𝜕𝒇

𝜕𝒔 
(𝒔𝑐
(𝑛+1)

− 𝒔𝑐
(𝑛)
)  ∀𝑐 ∈ 𝐶 (71) 

 

Equation (71) is rearranged to obtain the semi-implicit update formula for 𝒔𝑐 : 

𝒔𝑐
(𝑛+1) = 𝒔𝑐

(𝑛) + (𝑰 − ℎ
𝜕𝒇

𝜕𝒔𝑐 
)
−1

ℎ𝒇 (𝒔𝑐
(𝑛))  

∀𝑐 ∈ 𝐶 (72) 

 

𝜕𝒇

𝜕𝒔𝑐 
 in Equation (72) is the Jacobian matrix 𝑱 also present in Equation (61) and is calculated as 

described earlier. Equation (72) is integrated using the error-controlled integration algorithm 

Richardson extrapolation until either the time step ℎ exceeds a maximum time step of ℎ𝑚𝑎𝑥 or the 

desired threshold on Equation (68) is reached (‖
𝑑𝒔𝑐

𝑑𝑡
‖
∞
≤ 𝑠𝑡𝑜𝑙). If ℎ exceeds ℎ𝑚𝑎𝑥, Newton’s 

method is reinitialized using concentrations at the termination point of the semi-implicit 

integration procedure (𝒔𝑐
(𝐼𝑁𝑇)

) and solved until ‖
𝑑𝒔𝑐

𝑑𝑡
‖
∞
≤ 𝑠𝑡𝑜𝑙 is achieved.  

Algorithmic Implementation of Semi-implicit integration using Richardson’s extrapolation 

Begin 

 Specify and fix 𝒌 

Set 𝑠𝑡𝑜𝑙: =  10−6, 𝑖𝑡𝑒𝑟: = 1, ℎ ≔ 2 × 10−6, ℎ𝑚𝑎𝑥 ≔ 1010, 𝑡𝑜𝑙 ≔ 10−4 

Initialize 𝑠𝑖,𝑐
(𝑖𝑡𝑒𝑟):= 𝑠𝑖,𝑐

(𝑁𝑀)
, ∀𝑖 ∈ 𝐼 and 𝑐 ∈ 𝐶 

Compute 𝒆𝑐
(𝑖𝑡𝑒𝑟) by solving Equations (33) and (54) with 𝒔𝑐: = 𝒔𝑐

(𝑖𝑡𝑒𝑟) 

Compute 
𝑑𝒔𝑐

𝑑𝑡
 by substituting 𝒔𝑐: = 𝒔𝑐

(𝑖𝑡𝑒𝑟) and 𝒆𝑐: = 𝒆𝑐
(𝑖𝑡𝑒𝑟)

 into Equation (58) 

Compute 𝑱 by solving Equations (61), (65), (66) and (67) with 𝒔𝑐: = 𝒔𝑐
(𝑖𝑡𝑒𝑟) and 𝒆𝑐:= 𝒆𝑐

(𝑖𝑡𝑒𝑟)
 

Set 𝑖𝑡𝑒𝑟 ≔ 𝑖𝑡𝑒𝑟 + 1 
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While (‖
𝑑𝒔𝑐

𝑑𝑡
 ‖
∞
> 𝑠𝑡𝑜𝑙) or ℎ < ℎ𝑚𝑎𝑥  

Compute 𝒔𝑐
(𝑛)

 by substituting 𝒔𝑐
(𝑛−1)

:= 𝒔𝑐
(𝑖𝑡𝑒𝑟−1)

, 𝒇 (𝒔𝑐
(𝑛−1)

) ≔
𝑑𝒔𝑐

𝑑𝑡
,  

𝜕𝒇

𝜕𝒔𝑐 
≔ 𝑱, and ℎ ≔ ℎ into Equation (72) 

 Set 𝒔𝑐
(𝑜𝑛𝑒−𝑠𝑡𝑒𝑝 )

≔ 𝒔𝑐
(𝑛) 

Compute 𝒔𝑐
(𝑛)

 by substituting 𝒔𝑐
(𝑛−1)

:= 𝒔𝑐
(𝑖𝑡𝑒𝑟−1)

, 𝒇 (𝒔𝑐
(𝑛−1)

) ≔
𝑑𝒔𝑐

𝑑𝑡
,  

𝜕𝒇

𝜕𝒔𝑐 
≔ 𝑱, and ℎ ≔

ℎ

2
 into Equation (72). 

Compute 𝒆𝑐
(𝑖𝑡𝑒𝑟)

 by solving Equations (33) and (54) with 𝒔𝑐: = 𝒔𝑐
(𝑛)

 

Compute 
𝑑𝒔𝑐

𝑑𝑡
  by substituting 𝒔𝑐: = 𝒔𝑐

(𝑛)
 and 𝒆𝑐: = 𝒆𝑐

(𝑖𝑡𝑒𝑟)
 into Equation (58). 

Compute 𝑱 by solving Equations (61), (65), (66) and (67) with 𝒔𝑐: = 𝒔𝑐
(𝑛)

 and 𝒆𝑐:= 𝒆𝑐
(𝑖𝑡𝑒𝑟)

 

Compute 𝒔𝑐
(𝑛) by substituting 𝒔𝑐

(𝑛−1):= 𝒔𝑐
(𝑛), 𝒇 (𝒔𝑐

(𝑛−1)) ≔
𝑑𝒔𝑐

𝑑𝑡
, 

𝜕𝒇

𝜕𝒔𝑐 
≔ 𝑱, 

and ℎ ≔
ℎ

2
 into Equation (72). 

 Set 𝒔𝑐
(𝑡𝑤𝑜−𝑠𝑡𝑒𝑝 )

≔ 𝒔𝑐
(𝑛)

 

 if (‖𝒔𝑐
(𝑡𝑤𝑜−𝑠𝑡𝑒𝑝 )

− 𝒔𝑐
(𝑜𝑛𝑒−𝑠𝑡𝑒𝑝 )

‖
∞
< 𝑡𝑜𝑙) 

  Set  𝒔𝑐
(𝑖𝑡𝑒𝑟) ≔ 𝒔𝑐

(𝑡𝑤𝑜−𝑠𝑡𝑒𝑝 )
 

 Compute 𝒆𝑐
(𝑖𝑡𝑒𝑟)

 by solving Equations (33) and (54) with 𝒔𝑐: = 𝒔𝑐
(𝑖𝑡𝑒𝑟)

 

Compute 
𝑑𝒔𝑐

𝑑𝑡
  by substituting 𝒔𝑐: = 𝒔𝑐

(𝑖𝑡𝑒𝑟) and 𝒆:= 𝒆𝑐
(𝑖𝑡𝑒𝑟) into Equation (58). 

Compute 𝑱 by solving Equations (61), (65), (66) and (67) with 𝒔𝑐: = 𝒔𝑐
(𝑖𝑡𝑒𝑟)

  

and 𝒆:= 𝒆𝑐
(𝑖𝑡𝑒𝑟) 

Set ℎ ≔
ℎ×√𝑡𝑜𝑙

√‖𝒔(𝑡𝑤𝑜−𝑠𝑡𝑒𝑝)−𝒔(𝑜𝑛𝑒−𝑠𝑡𝑒𝑝)‖
∞

 

  Set 𝑖𝑡𝑒𝑟 ≔ 𝑖𝑡𝑒𝑟 + 1 

 

 else 

   Set ℎ ≔
ℎ

2
 

 return 𝒔𝑐
(𝐼𝑁𝑇) ≔ 𝒔𝑐

(𝑖𝑡𝑒𝑟) and 𝒆𝑐
(𝐼𝑁𝑇) ≔ 𝒆𝑐

(𝑖𝑡𝑒𝑟) 

end 
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For the large-scale kinetic model (k-ecoli307) parameterized in this study (see Results section in 

the main manuscript), the average computation time required to evaluate steady-state fluxes in 

mutants by FPI, Newton’s method, and semi-implicit integration was 10 seconds, 4 seconds, and 

37 seconds, respectively. In contrast, steady-state flux evaluation using numerical integration alone 

required over 6 minutes to achieve the same mass imbalance of 10−3 mol%. CPU times are 

reported are reported for an Intel-i7 (4-core processor, 2.6GHz, 12GB RAM) computer using a 

single core implementation. 

The three separate methods of updating metabolite concentrations (i) FPI, (ii) Newton’s method 

and (iii) semi-implicit integration and switching criteria are integrated into the SSF-Evaluator 

procedure. SSF-Evaluator initially solves for steady-state concentrations using FPI and switches 

to Newton’s method when the change in metabolite concentrations between successive iterations 

falls below a pre-specified threshold of 10−4. Newton’s method fails when the Jacobian 𝑱 becomes 

singular, which prompts the switch to semi-implicit integration using Richardson’s extrapolation.  

The following summarizes in detail the algorithmic steps involved: 

Algorithmic Implementation of Steady-State Flux Estimator (SSF-Evaluator) 

Begin 

 Specify and fix 𝒌 

Specify 𝑚𝑢𝑡𝑎𝑛𝑡 𝑐 

Set 𝑠𝑡𝑜𝑙: =  10−6 

Initialize 𝑠𝑖,𝑐
(𝑖𝑛𝑖𝑡): = 1, ∀𝑖 ∈ 𝐼 

Compute 𝒆𝑐
(𝑖𝑛𝑖𝑡)

 by solving Equations (33) and (54)with 𝒔𝑐: = 𝒔𝑐
(𝑖𝑛𝑖𝑡)

 

Compute 
𝑑𝒔𝑐

𝑑𝑡
 by substituting 𝒔𝑐: = 𝒔𝑐

(𝑖𝑛𝑖𝑡)
 and 𝒆𝑐: = 𝒆𝑐

(𝑖𝑛𝑖𝑡)
 into Equation (58). 

While (‖
𝑑𝒔𝑐

𝑑𝑡
‖
∞
> 𝑠𝑡𝑜𝑙) 

 Compute 𝒔𝑐
(𝐹𝑃𝐼) by using the FPI algorithm using 𝒔𝑐

(0) = 𝒔𝑐
(𝑖𝑛𝑖𝑡) 

 Compute 𝒆𝑐
(𝐹𝑃𝐼) by solving Equations (33) and (54) with 𝒔𝑐: = 𝒔𝑐

(𝐹𝑃𝐼) 

Compute 
𝑑𝒔𝑐

𝑑𝑡
 by substituting 𝒔𝑐: = 𝒔

(𝐹𝑃𝐼) and 𝒆𝑐: = 𝒆
(𝐹𝑃𝐼) into Equation (58). 

if (‖
𝑑𝒔𝑐

𝑑𝑡
‖
∞
≤ 𝑠𝑡𝑜𝑙) 

 Set 𝒔𝑐
(𝑆𝑆) ≔ 𝒔𝑐

(𝐹𝑃𝐼) 

else 

 Set 𝒔𝑐
(𝐼𝑁𝑇) ≔ 𝒔𝑐

(𝐹𝑃𝐼) 

  while (‖
𝑑𝒔𝑐

𝑑𝑡
‖
∞
> 𝑠𝑡𝑜𝑙) 
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   Compute 𝒔𝑐
(𝑁𝑀)

 by solving the Newton’s method using 𝒔𝑐
(0)
= 𝒔𝑐

(𝐼𝑁𝑇)
 

   Compute 𝒆𝑐
(𝑁𝑀) by solving Equations (33) and (54) with 𝒔𝑐: = 𝒔

(𝑁𝑀) 

Compute 
𝑑𝒔𝑐

𝑑𝑡
 by substituting 𝒔𝑐: = 𝒔

(𝑁𝑀) and 𝒆𝑐:= 𝒆
(𝑁𝑀) into Equation 

(58). 

   if (‖
𝑑𝒔𝑐

𝑑𝑡
‖
∞
> 𝑠𝑡𝑜𝑙) 

Compute 𝒔𝑐
(𝐼𝑁𝑇)

 using Semi-implicit integration using 

 𝒔𝑐
(0) = 𝒔𝑐

(𝑁𝑀) 

Compute 𝒆𝑐
(𝐼𝑁𝑇) by solving Equations (33) and (54) with 

 𝒔𝑐: = 𝒔
(𝐼𝑁𝑇) 

Compute 
𝑑𝒔𝑐

𝑑𝑡
 by substituting 𝒔𝑐: = 𝒔

(𝐼𝑁𝑇) and 

 𝒆𝑐:= 𝒆
(𝐼𝑁𝑇) into Equation (58). 

   if (‖
𝑑𝒔𝑐

𝑑𝑡
‖
∞
≤ 𝑠𝑡𝑜𝑙) 

    Set 𝒔𝑐
(𝑆𝑆)

≔ 𝒔𝑐
(𝐼𝑁𝑇) 

  else 

   Set 𝒔𝑐
(𝑆𝑆) ≔ 𝒔𝑐

(𝑁𝑀) 

 Compute 𝒆𝑐
(𝑆𝑆)

 by solving Equations (33) and (54) with 𝒔𝑐: = 𝒔𝑐
(𝑆𝑆)

 

Compute steady-state fluxes 𝑽𝑐
(𝑆𝑆) by solving Equations (30), (31), and (35) with 𝒔𝑐: = 𝒔𝑐

(𝑆𝑆) 

 and 𝒆𝑐:= 𝒆𝑐
(𝑆𝑆) 

return 𝑽𝑐
(𝑆𝑆), 𝒔𝑐

(𝑆𝑆) and 𝒆𝑐
(𝑆𝑆) 

end 

Overall, SSF-Evaluator provides an integrated procedure for calculating steady-state relative 

metabolite concentrations and enzyme fractions across all mutant networks given a set of kinetic 

parameters bypassing integration in almost all cases. Steady-state elementary fluxes are then 

computed by substituting the known 𝒌, 𝒔(𝑆𝑆) and 𝒆(𝑆𝑆) into Equation (30). Elementary fluxes are 

then related to the net flux through the reaction using Equations (31) and (35).  

It is important to note that SSF-Evaluator is parallelizable across all mutant networks as reactions 

fluxes in any particular mutant are independent of metabolite concentrations and enzyme 

abundances in any other mutant. Based on this, K-SOLVE and SSF-Evaluator generate steady-

state reaction fluxes 𝑽(𝑆𝑆), relative metabolite concentrations 𝒔(𝑆𝑆), and enzyme fractions 𝒆(𝑆𝑆) 
across all mutants given enzyme fractions 𝒆1 and reverse elementary fluxes 𝒗𝑟 for the WT. 
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III. K-UPDATE: Checking for convergence and updating the current WT enzyme 

fractions and WT reverse elementary fluxes using an implicit Newton step 

Procedure K-UPDATE performs an implicit Newton step in the space of of 𝑒1 and 𝑣𝑟. The updated 

values for 𝑒1 and 𝑣𝑟 then yield a new vector of kinetic parameter values 𝑘 by procedure K-SOLVE. 

The SSF-Evaluator procedure, in turn, allows for the calculation of the relative metabolite 

concentrations and enzyme fractions using as input the kinetic parameters estimated by K-SOLVE. 

This implies that metabolic fluxes 𝑽𝑐 in the mutant networks can be expressed as implicit functions 

of 𝒆1 and 𝒗𝑟. Executing procedure K-SOLVE and SSF-Evaluator allows for the calculation of the 

value of these implicit functions 𝑽𝑐 = 𝑽𝑐(𝒆1, 𝒗𝑟).  This means that NLP problem P1 can be recast 

as the following NLP problem with only linear constraints described below. No equality 

constraints describing conservation of mass across all metabolites and enzyme complexes in the 

WT need to be explicitly imposed in formulation K-FIT as they are implicitly enforced by K-

SOLVE. This limits kinetic parameter values to only those that simultaneously satisfy conservation 

of mass (for both enzymes and metabolites) and concentration scaling with respect to WT. By 

propagating the calculated 𝒌, SSF-Evaluator identifies fluxes 𝑽𝑐 across all mutants that 

automatically satisfy conservation of mass constraints. The objective function 𝜙 as defined in K-

FIT below includes the sum of squared errors between metabolic fluxes for only the mutant 

networks. This is because the measured metabolic fluxes for WT are treated as equality constraints 

and used for expressing the forward elementary fluxes as a function of the reverse ones (see 

Equation 47). Note that relative metabolite concentration data for the mutant networks, whenever 

available, can be appended in the sum of least squares errors objective function in a similar manner.    

min
𝒆1,𝒗𝑟

𝜙(𝒆1, 𝒗𝑟) =∑ ∑ (
𝑉𝑗𝑐(𝒆1, 𝒗𝑟) − 𝑣𝑗𝑐

(𝑚𝑒𝑎𝑠)

𝜎𝑗𝑐
)

2

𝑗∈𝐽𝑐
𝑚𝑒𝑎𝑠

𝐶

𝑐=2

 (K-FIT) 

 
Subject to: 𝑣𝑙,1

(𝑛𝑒𝑡)
= 𝑉𝑗,1 

∀𝑙 ∈ 𝐿𝑗
𝑐𝑎𝑡 

∀𝑗 ∈ 𝐽  
(48) 

𝑣𝑙,1
(𝑛𝑒𝑡)

= 0 
∀𝑙 ∈ 𝐿𝑗

𝑟𝑒𝑔
 

∀𝑗 ∈ 𝐽 
(49) 

∑(𝑅𝑗𝑙𝑒𝑙,1)

𝑛𝐿

𝑙=1

= 1 ∀𝑗 ∈ 𝐽 (40) 

0 ≤  𝑒𝑙,1 ≤ 1 ∀𝑙 ∈ 𝐿 (44) 

𝑣𝑟,𝑙 ≥ 0 ∀𝑙 ∈ 𝐿 (52) 

𝑣𝑙,1
(𝑛𝑒𝑡)

+ 𝑣𝑟,𝑙 ≥ 0 ∀𝑙 ∈ 𝐿 (53) 
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Since all constraints in formulation K-FIT are linear, K-FIT can efficiently be solved using a 

gradient-based method that requires as inputs the first- and second-order gradients of the objective 

function with respect to the variables 𝒆1 and 𝒗𝑟 to construct the update formula and check for 

convergence. However, it is important to note that the nonlinear coupling between 𝒆1, 𝒗𝑟 and 𝑉𝑗𝑐 

remains in the objective function as an implicit relation. The expressions that relate the 

approximate gradient and Hessian to the sensitivity of the predicted steady-state fluxes can be 

derived by constructing a quadratic approximation for the objective function 𝜙. The following 

steps describe the construction of the quadratic approximation of 𝜙 used to update 𝒆1 and 𝒗𝑟 at 

each iteration of K-FIT. 

 

The variables 𝒆1 and 𝒗𝑟 are first assembled for convenience into a single [2𝑛𝐿 × 1] vector 𝒙  

𝒙 = [(𝒆1)
𝑻|(𝒗𝒓 )

𝑻]𝑻  (73) 

 

The objective function 𝝓 and flux through reaction 𝑗 in mutant 𝑐 are recast as implicit functions 

of 𝒙 as 𝜙(𝒙) and 𝑉𝑗,𝑐(𝒙). The objective function is expressed in vector form as 

𝜙(𝒙) = (𝑽(𝒙) − 𝑽
(𝒎𝒆𝒂𝒔))

𝑇
𝑾−𝟏(𝑽(𝒙) − 𝑽(𝒎𝒆𝒂𝒔))   (74) 

 

𝑽(𝒙) is the [𝑛𝑚𝑒𝑎𝑠 × 1] vector of the calculated steady-state fluxes in mutants. 

𝑛𝑚𝑒𝑎𝑠 =∑(cardinality 𝑜𝑓 𝐽𝑐
(𝑚𝑒𝑎𝑠)

)

𝑐

 

𝑽(𝒎𝒆𝒂𝒔)  is the [𝑛𝑚𝑒𝑎𝑠 × 1] vector of measured fluxes. 

𝑾 is the [𝑛𝑚𝑒𝑎𝑠 × 𝑛𝑚𝑒𝑎𝑠] diagonal matrix storing the variance of the flux measurements, thus 

𝑊𝑖𝑖 = 𝜎𝑖
−2 ∀𝑖 = {1,2, … , 𝑛𝑛𝑒𝑎𝑠} 

Upon defining the residual 𝒓(𝒙) = (𝑽(𝒙) − 𝑽(𝒎𝒆𝒂𝒔)), the objective function is expressed more 

compactly as 

𝜙(𝒙) = (𝒓(𝒙))
𝑇
𝑾−𝟏𝒓(𝒙)  (75) 

 

For a small perturbation ∆𝒙 to the parameter vector 𝒙, the objective function at 𝒙 + ∆𝒙 becomes 

equal to 

𝜙(𝒙 + ∆𝒙) = (𝒓(𝒙 + ∆𝒙))
𝑇
𝑾−𝟏𝒓(𝒙 + ∆𝒙)  (76) 

 

Equation (73) is identical to the least squares representation of isotope tracer-based flux elucidation 

using 13C-MFA [10]. A popular and successful solution strategy involves constructing a quadratic 
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approximation of the objective function described by Equation (76). Using Taylor series 

expansion, 𝒓(𝒙 + ∆𝒙) linearized about 𝒙 as described by Antoniewicz et al. [10] as: 

𝑟(𝒙 + ∆𝒙) = 𝒓(𝒙)
 +
𝜕𝒓

𝜕𝒙
∆𝒙 

 
(77) 

 

 
𝜕𝒓

𝜕𝒙
 is the [𝑛𝑚𝑒𝑎𝑠 × 2𝑛𝐿] matrix representing the local sensitivity of 𝒓(𝒙) with respect to 𝒙.  𝜙(𝒙 +

∆𝒙) is computed by substituting Equation (77) in Equation (76) yielding: 

𝜙(𝒙 + ∆𝒙) = (𝒓(𝒙 + ∆𝒙))
𝑇
𝑾−𝟏𝒓(𝒙 + ∆𝒙) = (𝒓(𝒙) +

𝜕𝒓

𝜕𝒙
∗ ∆𝒙)

𝑇

𝑾−𝟏 (𝒓(𝒙) +
𝜕𝒓

𝜕𝒙
∗ ∆𝒙) 

= (𝒓(𝒙))
𝑇
𝑾−𝟏𝒓(𝒙) + 𝟐(∆𝒙)𝑻 ∗ (

𝜕𝒓

𝜕𝒙
)
𝑻

𝑾−𝟏𝒓(𝒙) + (∆𝒙)𝑻 (
𝜕𝒓

𝜕𝒙
)
𝑻

𝑾−𝟏
𝜕𝒓

𝜕𝒙
∗ ∆𝒙 

 

(78) 

 

The approximate gradient 𝑮 and the approximate Hessian 𝑯 are defined using Equation (79).  

𝑮 = (
𝜕𝒓

𝜕𝒙
)
𝑻

𝑾−𝟏𝒓(𝒙) 

𝑯 = (
𝜕𝒓

𝜕𝒙
)
𝑻

𝑾−𝟏
𝜕𝒓

𝜕𝒙
 

 

(79) 

Upon replacing the relevant terms in Equation (78) using the definitions of the objective function 

𝜙(𝒙) from Equation (75) and the approximate Gradient and Hessian from Equation (79), Equation 

(78) is simplified as 

𝜙(𝒙 + ∆𝒙) = 𝜙(𝒙) + 2∆𝒙
𝑇𝑮+ ∆𝒙𝑇𝑯∆𝒙    (80) 

 

Equation (80) is the local quadratic approximation [10] of the objective function 𝜙(𝒙). In the 

above expression, 𝑮 = (
𝜕𝒓

𝜕𝒙
)
𝑻

𝑾−𝟏𝒓(𝒙) and 𝑯 = (
𝜕𝒓

𝜕𝒙
)
𝑻

𝑾−𝟏 𝜕𝒓

𝜕𝒙
 are the approximate gradient and 

Hessian, respectively. Upon subtracting Equation (75) from Equation (80) we obtain: 

∆𝜙 = 𝜙(𝒙 + ∆𝒙) − 𝜙(𝒙) = 2∆𝒙𝑇𝑮+ ∆𝒙𝑇𝑯∆𝒙   (81) 
 

A stationary point (i.e., local minimum) for the (approximated) objective function is reached when 
𝑑(∆𝜙)

𝑑(∆𝒙)
= 0, which yields: 

∆𝒙 = −𝑯−1𝑮  (82) 
 

Equation (82) computes the unconstrained search direction at each iteration. Note that 
𝜕𝒓

𝜕𝒙
 is needed 

in to update 𝒙. Because the residual vector 𝒓(𝒙) only contains steady-state fluxes, 
𝜕𝒓

𝜕𝒙
 is assembled 

using the sensitivity of fluxes to 𝒙 based on the chain rule: 
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𝜕𝒗𝑐
𝜕𝒙

=
𝜕𝒗𝑐
𝜕𝒌
 
𝜕𝒌

𝜕𝒙
 

 

(83) 

 

𝜕𝒗

𝜕𝒌
 is computed by differentiating Equation (30) with respect to 𝒌 to yield: 

 

 

𝜕𝑣𝑝𝑐
𝜕𝒌

= 𝑘𝑝

(

 
 

(

 ∏ 𝑠
𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0 )

 
𝜕

𝜕𝒌

(

 ∏ 𝑒𝑙′,𝑐
𝑙

𝐸𝑙𝑝<0 )

 +

(

 ∏ 𝑒𝑙′,𝑐
𝑙

𝐸𝑙𝑝<0 )

 
𝜕

𝜕𝒌

(

 ∏ 𝑠
𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0 )

 

)

 
 

+

(

 ∏ 𝑠
𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0 )

 

(

 ∏ 𝑒𝑙,𝑐
𝑙

𝐸𝑙𝑝<0 )

 
𝜕𝑘𝑝
𝜕𝒌

 

 ∀𝑝 ∈ 𝑃 
 ∀𝑐 ∈ 𝐶 
 ∀𝑖 ∈ 𝐼 

(84) 

 

In Equation (84), both 
𝜕𝒆𝑐

𝜕𝒌
 and 

𝜕𝒔𝑐

𝜕𝒌
 are unknown. They can be inferred by solving the system of 

linear algebraic equations formed by differentiating Equations (33), (54), and (56), respectively, 

with respect to 𝒌 as follows: 

∑(𝑅𝑗𝑙
𝜕𝑒𝑙,𝑐
𝜕𝒌

 )

𝑛𝐿

𝑙=1

= 0 

 

  ∀𝑐 ∈ 𝐶  
∀𝑗 ∈ 𝐽  

(85) 

∑𝐸𝑙𝑝

(

 
 
𝑘𝑝

(

 
 
(∏ 𝑠

𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0

)
𝜕

𝜕𝒌
(∏ 𝑒𝑙,𝑐

 

𝑙
𝐸𝑙𝑝<0

) +(∏ 𝑒𝑙,𝑐
 

𝑙
𝐸𝑙𝑝<0

)
𝜕

𝜕𝒌
(∏ 𝑠

𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0

)

)

 
 

𝑃

𝑝=1

+(∏ 𝑠
𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0

)(∏ 𝑒𝑙,𝑐
 

𝑙
𝐸𝑙𝑝<0

)
𝜕𝑘𝑝

𝜕𝒌
 

)

 
 
= 0 

∀𝑙 ∈ 𝐿 
 ∀𝑐 ∈ 𝐶 
∀𝑖 ∈ 𝐼 

(86) 

∑𝑆𝑖𝑝

(

 
 
𝑘𝑝

(

 
 
(∏ 𝑠

𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0

)
𝜕

𝜕𝒌
(∏ 𝑒𝑙,𝑐

 

𝑙
𝐸𝑙𝑝<0

) +(∏ 𝑒𝑙,𝑐
 

𝑙
𝐸𝑙𝑝<0

)
𝜕

𝜕𝒌
(∏ 𝑠

𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0

)

)

 
 

𝑃

𝑝=1

+(∏ 𝑠
𝑖,𝑐

−𝑆𝑖𝑝

𝑖
𝑆𝑖𝑝≤0

)(∏ 𝑒𝑙,𝑐
 

𝑙
𝐸𝑙𝑝<0

)
𝜕𝑘𝑝

𝜕𝒌
 

)

 
 
= 0 

∀𝑙 ∈ 𝐿  
 ∀𝑐 ∈ 𝐶  
∀𝑖 ∈ 𝐼  

(87) 
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The partial derivatives of the product operators 𝜕
𝜕𝒌
(∏ 𝑒𝑙,𝑐

 
𝑙

𝐸𝑙𝑝<0
) and 𝜕

𝜕𝒌
(∏ 𝑠

𝑖,𝑐

−𝑆𝑖𝑝
𝑖

𝑆𝑖𝑝≤0
) can be expressed in 

summation form as shown in Equations (63) and (64). Equations (85), (86), and (87) therefore 

form a [(𝑛𝐿 + 𝑛𝑀) × (𝑛𝐿 + 𝑛𝑀)] system of linear algebraic equations that can be solved to obtain 
𝜕𝒆𝑐

𝜕𝒌
 and 

𝜕𝒔𝑐

𝜕𝒌
 when 𝒌, 𝒆𝑐, and 𝒔𝑐 are specified. 

𝜕𝒗𝑐

𝜕𝒌
 is calculated by substituting 

𝜕𝒆𝑐

𝜕𝒌
 and 

𝜕𝒔𝑐

𝜕𝒌
 into 

Equation (84). Because 𝒙 contains both WT enzyme fractions and elementary fluxes, 
𝜕𝒌

𝜕𝒙
 is 

calculated by differentiating by parts Equation (50) with respect to 𝒙 to yield: 

𝜕

𝜕𝒙
(𝑣𝑟,𝑙 + 𝑣𝑙,1

(𝑛𝑒𝑡)) =
𝜕𝑘(2𝑙−1)

𝜕𝒙

(

 ∏ 𝑒𝑙,1
𝑙

𝐸𝑙𝑝<0 )

 + 𝑘(2𝑙−1)
𝜕

𝜕𝒙

(

 ∏ 𝑒𝑙,1
−𝐸𝑙𝑝

𝑙
𝐸𝑙𝑝<0 )

  

∀𝑝 ∈ 𝑃 

∀𝑙 ∈ 𝐿 
(88) 

𝜕𝑣𝑟,𝑙
𝜕𝒙

=
𝜕𝑘(2𝑙)

𝜕𝒙

(

 ∏ 𝑒𝑙,1
𝑙

𝐸𝑙𝑝<0 )

 + 𝑘(2𝑙)
𝜕

𝜕𝒙

(

 ∏ 𝑒𝑙,1
−𝐸𝑙𝑝

𝑙
𝐸𝑙𝑝<0 )

  

 

Solution to the [𝑛𝑃 × 𝑛𝑃] square system of linear algebraic equations formed by Equation (88)  

yields 
𝜕𝒌

𝜕𝒙
. Flux sensitivities can be obtained by substituting 

𝜕𝒌

𝜕𝒙
 in Equation (84). Having computed 

the sensitivity of elementary fluxes, the sensitivity of all net reaction fluxes is calculated by 

substituting 
𝜕𝒗

𝜕𝒙
 in Equations (89) and (90), which are obtained by differentiating Equations (31) 

and (35) with respect to 𝒙 as shown below. 

𝜕𝑣𝑙,𝑐
(𝑛𝑒𝑡)

𝜕𝒙
=
𝜕𝑣(2𝑙−1),𝑐

 

𝜕𝒙
−
𝜕𝑣2𝑙,𝑐

 

𝜕𝒙
 

∀𝑙 ∈ 𝐿 
∀𝑐 ∈ 𝐶 

(89) 

𝜕𝑉𝑗,𝑐

𝜕𝒙
=∑(𝑁𝑗𝑙

𝜕𝑣𝑙,𝑐
(𝑛𝑒𝑡)

𝜕𝒙
)

𝑛𝐿

𝑙=1

 
∀𝑗 ∈ 𝐽 
∀𝑐 ∈ 𝐶 

(90) 

 

The sequence of steps to be followed to compute the approximate gradients of the objective 

function and update the variables 𝒙 in every iteration is described by the algorithmic procedure for 

K-UPDATE. 

Algorithmic procedure K-UPDATE 

begin 

 Specify and fix 𝒌, 𝑒, 𝒔, and 𝑽 computed by K-SOLVE and SSF-Evaluator 

Specify measured fluxes 𝑽(𝑚𝑒𝑎𝑠) and the weighting matrix 𝑾 

 Specify list of 𝑚𝑢𝑡𝑎𝑛𝑡𝑠 
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Compute 
𝜕𝒌

𝜕𝒙
 by solving the [𝑛𝑃 × 𝑛𝑃] system of linear Equation (88) using 𝒆1 ≔ 𝒆1

(𝑆𝑆)
 and 𝒌 ≔ 𝒌 

 for all mutants: 

Calculate sensitivities 
𝜕𝒔𝑐
(𝑆𝑆)

𝜕𝒌
 and 

𝜕𝒆𝑐
(𝑆𝑆)

𝜕𝒌
 by solving the [(𝑛𝐿 + 𝑛𝑀) × (𝑛𝐿 + 𝑛𝑀)] system of 

linear Equations (85), (86), and (87) using 𝒆𝑐 ≔ 𝒆𝑐
(𝑆𝑆)

 and 𝒔𝑐 ≔ 𝒔𝑐
(𝑆𝑆)

 

Calculate 
𝜕𝒗𝑐

(𝑆𝑆)

𝜕𝒌
 by substituting 

𝜕𝒔𝑐
(𝑆𝑆)

𝜕𝒌
 and 

𝜕𝒆𝑐
(𝑆𝑆)

𝜕𝒌
 in Equation (84). 

Calculate 
𝜕𝒗𝑐

(𝑆𝑆)

𝜕𝒙
 by substituting 

𝜕𝒗𝑐
(𝑆𝑆)

𝜕𝒌
 and 

𝜕𝒌

𝜕𝒙
 into Equation (83). 

Calculate 
𝜕𝒗𝑐

(𝑛𝑒𝑡)

𝜕𝒙
 by substituting 

𝜕𝒗𝑐
(𝑆𝑆)

𝜕𝒙
 into Equation (89). 

Calculate 
𝜕𝑽𝑐

𝜕𝒙
 by substituting 

𝜕𝒗𝑐
(𝑛𝑒𝑡)

𝜕𝒙
 into Equation (90). 

 Assemble the residual vector 𝒓(𝒙) from 𝑽 and 𝑽(𝑚𝑒𝑎𝑠) 

Assemble the sensitivity matrix 
𝜕𝒓

𝜕𝒙
 from  

𝜕𝑽

𝜕𝒙
  

Compute the objective function 𝜙 by substituting 𝒓(𝒙) and 𝑾 into Equation (75). 

Compute the approximate gradient 𝑮 and the approximate Hessian 𝐻 by substituting 𝒓(𝒙), 
𝜕𝒓

𝜕𝒙
, 

and 𝑾 into Equation (79) 

return 𝜙, 𝑮, and 𝑯 

end 

 

Algorithmic description of K-FIT 

Procedures K-SOLVE, SSF-Evaluator, and K-UPDATE are integrated into the algorithm K-FIT 

as described below. Briefly, WT enzyme fractions 𝒆1 and reverse elementary fluxes 𝒗𝑟 satisfying 

(in)equalities in Equations (40), (44), (52), and (53) are randomly initialized. For the sake of 

brevity, we combine the action of K-SOLVE and SSF-Evaluator into a single procedure FLUX-

SOLVE within K-FIT which calculates steady-state fluxes for the mutant networks given 𝒆1 and 

𝒗𝑟. In the first step of FLUX-SOLVE, kinetic parameters 𝒌 anchored to WT steady-state fluxes 

𝑽1 are computed from 𝒆1 and 𝒗𝑟 using procedure K-SOLVE. The kinetic parameters are then used 

to evaluate the steady-state fluxes in the mutant networks using procedure SSF-Evaluator. Having 

computed steady-state fluxes in mutants 𝑽, relative metabolite concentrations 𝒔, and enzyme 

fractions 𝒆, the objective function 𝜙 and its approximate gradient 𝑮 and Hessian 𝑯 are computed 

using procedure K-UPDATE. 𝑮 and 𝑯 are used to check for convergence and update 𝒆1 and 𝒗𝑟 if 
optimality is not achieved. 

The algorithmic description of FLUX-SOLVE is provided below: 
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Algorithmic description of FLUX-SOLVE 

begin 

 Specify and fix WT enzyme fractions 𝒆1 and reverse elementary fluxes 𝒗𝑟. 

 Specify and fix the WT steady-state flux distribution 𝑽1. 

 Specify the list of 𝑚𝑢𝑡𝑎𝑛𝑡𝑠 

Compute anchored kinetic parameters 𝒌 using Procedure K-SOLVE with the specified 𝒆1, 𝒗𝑟, and 
𝑽1. 

for all mutants 

Compute steady-state fluxes 𝑽𝑐
(𝑆𝑆), relative metabolite concentrations 𝒔𝑐

(𝑆𝑆), and enzyme 

fractions 𝒆𝑐
(𝑆𝑆)

 in 𝑚𝑢𝑡𝑎𝑛𝑡 𝑐 ∈ 𝐶 using SSF-Evaluator with kinetic parameters 𝒌 

Set 𝑽𝑐 ≔ 𝑽𝑐
(𝑆𝑆), 𝒔𝑐 ≔ 𝒔𝑐

(𝑆𝑆), and 𝒆𝑐 ≔ 𝒆𝑐
(𝑆𝑆) 

 return 𝑽, 𝒔, and 𝒆 

end 

 

The overall workflow for the K-FIT algorithm combining procedures FLUX-SOLVE and K-

UPDATE is described below and is also pictorially shown in Supplementary Figure S1: 

 

Overall algorithmic procedure K-FIT 

begin 

Specify and fix WT flux distribution 𝑽1, measured fluxes 𝑽(𝑚𝑒𝑎𝑠), variance 𝑾, set of 

mutants, 𝑥𝑡𝑜𝑙 and 𝑔𝑡𝑜𝑙 

Randomly initialize 𝒙 satisfying constraints in Equations (40), (44), (52), and (53). 

 Set 𝑠𝑡𝑜𝑙 ≔ 10−6  

Using FLUXSOLVE and inputs 𝒙 evaluate initial steady-state fluxes 𝑽, relative 

metabolite concentrations 𝒔, and enzyme fractions 𝒆. 

Evaluate the initial value of the objective function 𝜙(𝒙) and gradients 𝑮 and 𝑯 using  

K-UPDATE. 

 Set 𝑑𝑜𝑛𝑒 ≔ 𝑓𝑎𝑙𝑠𝑒 

Set 𝒙𝒃𝒆𝒔𝒕 ≔ 𝒙, 𝜙𝑏𝑒𝑠𝑡 ≔ 𝜙(𝒙) 

 while (not 𝑑𝑜𝑛𝑒) 

  Compute ∆𝒙 using Equation (82) 
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  if (‖∆𝒙‖∞ ≤ 𝑥𝑡𝑜𝑙) or (‖𝑮‖∞ ≤ 𝑔𝑡𝑜𝑙) 

   Set 𝑑𝑜𝑛𝑒 ≔ 𝑡𝑟𝑢𝑒 

  else 

   Update 𝒙 ≔ 𝒙𝒃𝒆𝒔𝒕 + ∆𝒙 

Using FLUX-SOLVE and inputs 𝒙 evaluate steady-state fluxes 𝑽, relative 

metabolite concentrations 𝒔, and enzyme fractions 𝒆. 

Evaluate the initial value of the objective function 𝜙(𝒙) and gradients 𝑮 

and 𝑯 using K-UPDATE. 

   if 𝜙(𝒙) < 𝜙𝑏𝑒𝑠𝑡 

  Update 𝒙𝒃𝒆𝒔𝒕 ≔ 𝒙, 𝜙𝑏𝑒𝑠𝑡 ≔ 𝜙(𝒙) 

 return 𝒙𝑏𝑒𝑠𝑡, 𝜙𝑏𝑒𝑠𝑡   

end 

 

 

Supplementary Figure S1: Overview of the K-FIT algorithm showing the flow of information 

between various components. 
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