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ABSTRACT 
For half a century population genetics studies have put type II restriction endonucleases 
to work. Now, coupled with massively-parallel, short-read sequencing, the family of RAD 
protocols that wields these enzymes has generated vast genetic knowledge from the 
natural world. Here we describe the first software capable of using paired-end 
sequencing to derive short contigs from de novo RAD data natively. Stacks version 2 
employs a de Bruijn graph assembler to build contigs from paired-end reads and 
overlap those contigs with the corresponding single-end loci. The new architecture 
allows all the individuals in a meta population to be considered at the same time as 
each RAD locus is processed. This enables a Bayesian genotype caller to provide 
precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes – 
generating RAD loci that are 400-800bp in length. To prove its recall and precision, we 
test the software with simulated data and compare reference-aligned and de novo 
analyses of three empirical datasets. We show that the latest version of Stacks is highly 
accurate and outperforms other software in assembling and genotyping paired-end de 
novo datasets. 
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INTRODUCTION 
Type II restriction enzymes [Smith1970; Kelly1970] remain one of the primary drivers 

in population genetics experiments. Starting with their first application in the mid-1970s 
[Grodzicker1974; Botstein1980], restriction enzymes have been paired with advancing 
technologies, including the polymerase chain reaction coupled with polyacrylamide gel 
analysis [Blears1998], microarrays [Miller2007], and most recently, massively parallel, 
short-read sequencing to yield great insights into model and natural populations. While 
sequencing costs have decreased by orders of magnitude since the completion of the 
human genome project, the cost is still too high in the majority of ecologically-based, 
non-model studies for whole genome re-sequencing, leaving a wide niche for the set of 
Restriction-site Associated DNA sequencing (RADseq) protocols. 

RADseq has grown into a family of protocols whose kin have been optimized to 
different criteria. The protocols vary on a few major axes; first, a protocol may employ 
one (GBS, single-digest RAD) or two restriction enzymes (CRoPS, double-digest RAD, 
ddRAD). Second, it may rely on the distance between cut sites to determine the length 
of DNA that is sampled (CRoPS, GBS, ddRAD), or it may employ sonication to create 
relatively uniform lengths of DNA (sdRAD, BestRAD). Third, protocols may use a size 
selection step to explicitly select the length range of DNA molecules to enrich, or they 
may rely on PCR to enrich shorter sequences for the final sequencing library. Additional 
protocols are further specialized, focused on adapting more of the steps to off-the-shelf 
kits (EasyRAD). Others were designed to minimize primer-dimers (3RAD 
[Graham2015]), or to use type IIb restriction enzymes (2bRAD [Wang2012]), or to use 
biotinylated adapters to extract restriction site-associated DNA from other genomic DNA 
(BestRAD [Ali2016]), as well as hybrids of the above approaches (see [Davey2011] and 
[Andrews2016] for reviews).  

While RADseq can produce orders of magnitude more genetic markers than earlier 
marker technologies, WGS produces an order of magnitude greater still. The primary 
obstacle, however, remains cost. It is popular – but misguided – to relate changes in 
sequencing technologies to Moore’s Law; Moore’s Law requires a halving of cost every 
18 months and has held for sixty years, while sequencing technology has instead 
reduced cost by orders of magnitude twice (first with 454 pyrosequencing, and later with 
Illumina sequencing-by-synthesis) [http://genome.gov/sequencingcosts], and while 
Illumina has continued to reduce costs incrementally, there is no clear path to any 
order-of-magnitude-changes on the horizon. In fact, long molecule sequencing is 
significantly more expensive than technology that came prior. For every 560Mb 
threespine stickleback fish genome that is WGS sequenced, 120 genomes can be 
examined with RAD for the same sequencing cost and with a single library preparation 
(WGS requires a library per genome). Nothing in the near future is yet predicted to 
change this resource advantage for large studies. 

The union of genome sampling protocols with massively parallel, short-read 
sequencing has produced an immensely successful research program in population 
[Bassham2018], conservation [Dierickx2015] and landscape genomics [Bay2018], 
phylogenetics [Spriggs2019], and epigenetics [Trucchi2016], creating new experimental 
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space for non-model organisms, and allowing, for example, ambitious sampling regimes 
in large geographical surveys [Dudaniec2017], as well as wide-ranging taxon breadth in 
phylogenetic studies [Near2018]. Regardless of the analytical approach, and in addition 
to any challenges of the experimental design, all RADseq strategies present two 
fundamental issues. First, the precision of the analytical results depends significantly on 
the quality and amount of DNA available. RADseq has expanded the scope of 
organisms that can be examined, but sampling many of these organisms from nature is 
a challenge and, in these cases, DNA may be degraded or available only in small 
quantities. Second, restriction sites may not be conserved across all individuals in the 
experiment, depending on evolutionary distance between them, and the length of the 
restriction site(s) of interest. In both cases, the molecular library may not contain 
enough template molecules to have sufficiently sampled all of the alleles in the genome 
in each individual. Two additional processes will sample these template molecules in 
the library – PCR amplification will sample molecules to create additional copies, and 
the sequencer will select from the amplified molecules for inclusion on the sequencing 
flow cell. Having too few templates for amplification or selecting too few molecules to 
sequence (a low depth of coverage) can exacerbate the effects of allelic dropout. 

 Through our participation in a large number of studies conducted over the last 
decade, both our own, collaborations in the field, and by interacting with scores of 
scientists in the support of Stacks version 1 (v1), we have learned a lot. The quality of 
DNA, the success of library preparation, and the sequencing strategy – all contributing 
to differential allelic sampling – can separate the path-breaking RADseq studies from 
the rest. Often, the differences between these studies generated substantial discussion 
in the community [Lowry2017; McKinney2017; Catchen2017] and a lot of speculation as 
to the inherent limitations of reduced representation sequencing. 

Our experience is that with the development of proper analytical protocols [Paris2017; 
Rochette2017], and with supportive software, we can close the performance gap 
between the path-breaking RAD studies and the rest and secure a successful 
experimental strategy for the next decade. We sought to design a software that could 
help identify poorly performing libraries and provide support in the design of new 
studies. We sought to maximize the amount of information we could extract from RAD 
protocols by focusing on Illumina paired-end, short-read sequencing and improving the 
analysis tools to provide the most polymorphic loci possible and the richest set of 
haplotypes to increase information yield significantly. 

The collection of software to implement this strategy has resulted in the second major 
version of Stacks. Version 2 (v2) incorporates paired-end reads natively into the locus 
assembly algorithm providing for locus sizes greater than 500bp, increasing the number 
of polymorphic loci, significantly improving genotyping accuracy, and providing phased 
haplotype markers for those loci, in a massively scalable form. As we show, v2 
outperforms every other RAD software. Finally, to vet and optimize the software, we 
designed and implemented an accurate RAD simulation system which shed light on 
basic processes, like the effects of PCR duplicates and sequencing coverage while 
providing us with a road map to fully optimize our algorithms.  
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METHODS 
Changes to the Stacks pipeline 

Stacks v1 was designed to process individual samples independently, identifying 
polymorphic sites within each individual (ustacks or pstacks), then connecting loci 
across samples, through the creation of a catalog, to provide a single view of the meta-
population (cstacks). Individuals could then be matched to the metapopulation data 
contained in the catalog with sstacks [Catchen2011]. Availability of computational 
resources undergirded this design decision as the pipeline needed to process 
potentially thousands of individual samples, each with millions of raw reads. This 
architecture prevented population-level information, such as presence of a polymorphic 
site, from being incorporated into individual genotype calls. To incorporate this 
population-level information, version 1.10 of Stacks (2013) incorporated the rxstacks 
program to make population-level corrections retrospectively, after the core pipeline had 
executed. The major architectural change to the Stacks v1 pipeline is the reorganization 
of individual-level data so that it is stored per locus instead of per-individual. This 
cosmetically simple change, implemented in the tsv2bam program, enables large 
analytical gains downstream in the pipeline (Fig. 1). 

The v2 pipeline for de novo analyses starts by clustering loci as in Stacks v1 using 
ustacks, cstacks and sstacks, but then continues with tsv2bam and additionally 
with the gstacks program, which now forms the analytical core of the v2 pipeline. The 
populations program, which applies a population genetic-frame to the data, allowing 
for advanced data filtering and data export, has also been rearchitected to process loci 
in a streaming fashion – locus by locus – where previously all loci from all samples had 
to fit into computer memory at once, leading to a memory-bound program.  

In sum, the new de novo architecture is simpler, more versatile and substantially faster 
than Stacks v1’s rxstacks-cstacks-sstacks-populations sequence. For 
reference-based analyses, the main Stacks pipeline now begins directly with the 
gstacks program (and the v1 clustering pipeline is not employed) followed by a call to 
the populations program. 
Improved locus clustering procedure. 

For de novo analyses, the core of the Stacks clustering algorithm (ustacks-
cstacks-sstacks), which builds loci out of the single-end reads, remains as 
previously described [Catchen2011, Catchen2013], but has received a number of 
improvements and optimizations. Stacks has been capable of gapped assemblies since 
version 1.38 (2016), when Needleman-Wunch comparisons between stacks sharing 
many k-mers were added, and in Stacks v2 this capability has been refined and has 
become the default. In addition, while specific parameter optimization is still necessary 
[Paris2017, Rochette2017], several assembly parameters have had their default values 
changed in an attempt to offer better initial results for a wider range of datasets. 
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Transposing sequence data storage. 
The new tsv2bam program, which concludes the locus clustering stage, sorts the 

reads (or read pairs) of each individual by catalog locus. Paired-end reads can be 
incorporated by matching the set of single-end read IDs in each locus. This is similar in 
principle to the sorting of alignment files by chromosome and coordinate, a strategy 
employed by most reference-based analysis pipelines. Importantly, this sorting step 
allows Stacks to stream the data locus by locus in subsequent analyses in gstacks, 
making it computationally feasible to work, at each locus, with the full sequencing 
information for all samples simultaneously. This enables gstacks to assemble a contig, 
align all reads from the meta-population to that locus, call polymorphisms across the 
population, and call population-informed genotypes in each individual sample. 
RAD-locus contig assembly. 

In de novo mode, gstacks starts by assembling a short contig for each locus (i.e. for 
the set of single-end reads clustered by ustacks-cstacks-sstacks across the 
metapopulation and the associated paired-end reads fetched by tsv2bam). The reads of 
the locus (by default up to 1,000 reads or read pairs sampled uniformly across 
individuals) are broken into k-mers (by default with k=31) and inserted into a de Bruijn 
graph (Fig. 2). K-mers with a coverage lower than a minimum threshold (by default 2) 
are discarded. Stacks v2 then scores each connected subgraph for total coverage from 
forward and reverse reads (if any). The subgraphs with the highest total coverage for 
forward and reverse reads are extracted (they may be confounded); other subgraphs 
are discarded. If the subgraph for reverse reads is not a directed acyclic graph (a graph 
with no loops), reverse reads are discarded and the graph is recomputed using forward 
reads only. If the subgraph for forward reads is not a directed acyclic graph, the entire 
locus is discarded. Some elements of DNA, such as microsatellites, make very small 
and predictable loops in a de Bruijn graph. We screen for such elements and clip the k-
mer(s) linking the microsatellite repeat to remove these simple loops and prevent the 
subgraph from being discarded. 

The path in the ‘forward’ subgraph that has the highest total coverage is identified 
using an exact depth-first algorithm. Using highest coverage as the scoring criterion 
favors the inclusion of major alleles over minor ones and marginally of insertions over 
deletions. This path is converted back into a nucleotide sequence. 

If there are no reverse reads or if the ‘reverse’ subgraph is confounded with the 
‘forward’ one, the ‘forward’ sequence is the reference contig for the locus. Otherwise, if 
there is a distinct ‘reverse’ subgraph, the above procedure is repeated to obtain a 
‘reverse’ sequence and overlapping between the ‘forward’ and ‘reverse’ contig 
sequences is attempted.  

To overlap the single-end (SE) contig with the assembled, paired-end (PE) contig a 
suffix tree is constructed from the PE contig using Ukkonen's algorithm [Gusfield1997, 
chapter 6], which can build the tree in linear time. The consensus sequence from the SE 
locus is then aligned against the suffix tree in linear time and the set of maximal 
matches is recorded. If a perfect match against the suffix tree is recorded, then the SE 
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and PE sequences are merged and the operation is complete. However, if there are two 
or more fragment matches between the SE and PE contig, the set of alignment 
fragments are converted into a directed, acyclic graph (DAG) to find the best set of non-
overlapping alignment fragments. A Needleman-Wunsch gapped alignment matrix is 
then initialized and populated with the set of alignment fragments. Finally, a bounded, 
gapped alignment is performed – looking only at the regions of the alignment matrix that 
were outlined by the suffix tree alignment fragments – to complete the overlap between 
the SE locus and PE contig. If no matches were found against the suffix tree, the 3’ end 
of the SE locus is compared directly against the 5’ end of the PE contig using a 
Needleman-Wunsch gapped alignment to check for any overlap that is below the 
minimum match length of the suffix tree. If there is no overlap between the forward and 
reverse contig segments, the two sequences are merged into a single scaffold with ten 
‘N’ characters, to symbolize a gap of unknown length between the forward and reverse 
regions.  

The algorithms described here also function well for paired-end data generated from 
two-enzyme double-digest protocols such as ddRAD. The forward reads (i.e. those 
starting with the restriction site that was ligated to the forward sequencing adapter) are 
first used to cluster read pairs into RAD loci, then the forward and paired-end reads are 
used to assemble a contig for each locus. However, since both the forward and reverse 
reads are anchored to a restriction site, coverage will be uniform on both sides of the 
locus, and the length of the contig will reflect the properties of the underlying genomic 
sequence. If the two restriction sites are less than two read lengths apart, Stacks will 
overlap the two sides and yield a single continuous contig, otherwise it will produce a 
scaffold comprising two contigs (one for each side). There exist limit cases where the 
distance between restriction sites varies within the population due to structural variation 
or restriction site polymorphism and rescue. For example, if the second enzyme cuts 
frequently there may be multiple restriction sites nearby. If those sites are variable 
within the population, different individuals may return paired-end reads anchored to 
different restriction enzyme cut sites. The algorithm handles these cases naturally and 
will report contigs faithful to the underlying sequences but that will often have atypical 
properties, such as being both continuous and longer than two read lengths. 

Lastly, we note that the present approach is not applicable to the GBS protocol, which 
uses a single-enzyme double-digest strategy, because the restriction fragments and 
subsequently the sequencing library inserts intrinsically lack an orientation, so that it is 
not possible to single out half the reads for locus clustering. 
Read alignments. 

Once the full locus has been assembled, yielding a consensus sequence, individual 
reads must be aligned in a per-sample context. This operation proceeds in a 
methodologically similar way to the contig overlap stage: a suffix tree is built from the 
locus consensus sequence, which was combined from the SE locus and the PE contig. 
Reads are then aligned against the suffix tree, with three possible outcomes. First, no 
alignments may be found, in which case the read is ignored. Second, a perfect 
alignment – encapsulating the full length of the read with no mismatches — may have 
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been found against the suffix tree, from which an alignment CIGAR is calculated and 
recorded, or third, more than one maximal match was found against the suffix tree in 
which case the alignment fragments are ordered into a DAG, the consistent alignments 
from the DAG are used to populate a Needleman-Wunsch gapped alignment matrix, 
and a bounded, gapped alignment is conducted to connect the aligned fragments for the 
final alignment. A CIGAR string representing the alignment is recorded and the process 
is repeated until all reads from all samples have been aligned. 
Reference-based analyses. 

In reference mode, Stacks v2 begins directly with the gstacks program (Fig. 1). 
Alignment of RADseq reads is done by an external alignment program (e.g. BWA 
[Li2009b, Li2013] or Bowtie [Langmead2012]) and gstacks expects to have a set of 
aligned and reference-sorted reads for a series of samples, typically provided as one 
sample per BAM file [Li2009a]. The gstacks program uses a sliding window strategy to 
build RAD loci from sets of alignments. Starting at the first sample, gstacks identifies 
the 5’ alignment position of the first forward read and uses this basepair position to 
anchor the sliding window. Assuming the first read (and the RAD cutsite) is on the 
positive strand, reads that are aligned within the length of the window are added to the 
locus if they share the same 5’ alignment position. If reads within the window are on the 
negative strand, their 5’ starting positions are calculated from the CIGAR string and they 
are also added to the locus. Reading completes for the first sample and locus when the 
boundary of the window is reached (by default, 1Kbp in length). The gstacks program 
them iterates over the remaining samples for the same window position, collecting all 
read alignments. After the data has been acquired from all samples for the current 
locus, the locus is stored and the window is advanced to the next read beyond the 
previous window bound. If an initial read filling the window is a paired-end read, then the 
RAD cut-site is on the negative strand (and the starting basepair is on the 3’ end of the 
RAD locus), and the locus starting position is calculated by adding the length derived 
from the alignment CIGAR string to the 5’ alignment position. Once a locus has been 
built from the aligned reads across the meta-population, the same filtering and 
genotyping methods are applied as in the de novo mode. 
PCR duplicates removal. 

For paired-end data derived from shearing-based protocols, PCR duplicates can be 
removed by identifying inserts that map to the same start and end coordinates and 
randomly discarding all but one of them. This approach relies on the randomness of the 
shearing process, which creates a mixture of inserts of diverse lengths, that are then 
preserved through PCR amplification. Distinct source molecules may have identical 
insert sizes by chance, but this is rare for RADseq data, assuming the sequencing 
depth (e.g. 30X) is less than the width of the insert size window (e.g. a 100bp window, 
with inserts ranging from 300 to 400bp), so discarding inserts of identical sizes 
efficiently and selectively removes PCR duplicates. In the gstacks program, in both de 
novo and reference mode, after the locus has been assembled and reads aligned (or 
the locus has been populated from the pre-aligned reads), for each locus, reads are 
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sorted by sample and then by insert length, and all reads within one individual with the 
same insert length are discarded save one pair.  

If reads are derived from a ddRAD protocol, then PCR duplicates cannot be detected 
by gstacks, because differential insert lengths cannot be used as a means to detect 
them (since all reads will be attached to one of the two restriction enzyme cutsites). If a 
protocol which incorporates a random oligo sequence into the barcode is used for 
construction, then PCR duplicates could still be detected, prior to running the main 
pipeline, using the clone_filter program of Stacks. 
Genotyping model. 

In Stacks v1 we employed a SNP calling method first proposed in [Hohenlohe2010] 
which itself was modified from [Lynch2009] to allow for a per-nucleotide sequencing 
error rate to be estimated. This model worked well, however, it required relatively high 
coverage for robust results and it could not incorporate population-level data, since it 
only had access to sequence reads from one individual at a time. For Stacks v2, we 
again incorporated the work of Lynch and colleagues, who have continued to improve 
their SNP calling method by adding a Bayesian genotype caller (BGC) [Maruki2017]. In 
this framework, the gstacks program will identify the presence of a SNP within a locus 
by examining the read data from the entire metapopulation. This support for the 
presence of a SNP is then fed into the genotyping model as a Bayesian prior, which 
incorporates the metapopulation information to genotype each individual separately at 
that SNP position. The BGC model does not require any multiple testing corrections, 
however, it is designed for diploid genomes and expects two alleles per site. Stacks v2 
implements several alternative models to call SNPs and genotypes: BGC (Bayesian 
genotype caller), the default model just described, along with the HGC (high-coverage 
genotype caller) [Maruki2017], and we still provide the method of [Hohenlohe2010] 
(which was the default in Stacks v1). For the BGC model, the following numerical 
stabilizations were used: (i) when computing the sequencing error rate under the 
assumption of polymorphism (equation 6 in [Maruki2015]) we always assume at least 
0.1 error nucleotides have been observed across the population; (ii) the genotype 
frequencies used in genotype likelihood computations are rescaled so as to always be 
greater or equal to 1 over the number of samples. 
Converting SNPs into phased haplotypes. 

SNP alleles that are observed on the same read or within the same read pair are part 
of the same haplotype, because a read or read pair (or library insert) is a sequence 
sample from a specific chromosome. We can take advantage of this natural phasing to 
provide sets of haplotypes from each RAD locus. While Stacks v1 provided short 
haplotypes encompassing the single-end locus, Stacks v2 extends this functionality by 
phasing heterozygotes using a graph-based algorithm that relies on sequence data, 
specifically on co-observations of alleles within a read (or read pair). 

After genotyping, the gstacks program attempts to build locus-wide haplotypes for 
each individual. In other words, if a locus includes several SNPs and an individual is 
heterozygous at two or more of them, Stacks v2 reconstructs the combination of alleles 
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that corresponds to the individual’s two chromosomes (Fig. 3). To this end, Stacks v2 
implements a read-based phasing approach (as opposed to statistical phasing 
[Browning2011]). Essentially, this approach relies on the co-observation, in a given read 
(or read pair), of the alleles at several SNPs. A graph is built in which the nodes are the 
alternate alleles at heterozygous SNPs, and the edges are the co-observations of these 
alleles in reads. Given that one read can only have a single nucleotide at a given 
position, edges always link alleles of distinct SNPs. To limit the influence of sequencing 
errors, edges with a weight (i.e. number of co-observations, or coverage) less than a 
given threshold (by default 2, alleles seen together only once) are ignored. If there are 
no conflicts between reads, the haplotype graph will be composed of two or more 
distinct connected subgraphs and the corresponding haplotypes can be extracted from 
each subgraph. Otherwise (i.e. if there is substantial conflict between reads) the 
phasing operation was likely confounded by sequencing errors, contamination, or over-
merging. In this case, the individual’s SNP alleles are marked as unreliable, as they are 
likely affected by the same issues, and no phasing is provided. 
Gstacks output files. 

The gstacks program proceeds through the data set one locus at a time and can be 
parallelized to run one locus per thread at a time. The program will produce a new 
catalog contained in two files: the consensus sequences for the catalog loci in a FASTA 
formatted file, and a custom, compressed file containing all of the SNP/haplotype calls 
for each locus and all individuals. These files are designed to be read by the 
populations program, which can filter the loci and export them. In addition, gstacks 
provides a number of useful data distributions, such as coverage and phasing rates, in 
its output.  
Improvements to the populations program. 

The populations program is designed to take the assembled data from gstacks 
and apply a population genetics frame to the data. The program can apply a population 
map to the underlying data to segment the individuals in to populations based on useful 
criteria, like geography, phenotype, sex, or another category. The program can filter 
data in a number of useful ways: keeping polymorphic sites that are found within a 
specified number of individuals or populations. A new option allows samples to be 
filtered according to haplotype presence. A user can ask to keep all haplotypes that are 
found (and complete) in, for example, more than 80% of individuals. Remarkably, for a 
particular locus, the set of haplotypes will be constructed from a number of SNPs, but 
even if all SNPs are present in 80% of individuals, it is possible that different SNPs will 
be missing in different individuals, resulting in less than 80% of complete haplotypes. In 
order to provide the longest possible haplotype at the required threshold, the 
populations program will filter individual SNPs by their availability in the population 
until the criterion is met.  

After filtering, the populations program will calculate a number of population 
genetic statistics, for both SNPs and haplotypes. These include p, heterozygosity, FIS 
computed per-population and per-SNP, as well as FST computed for each pair of 
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populations using an Analysis of Molecular Variance (AMOVA) approach [Weir1996; 
Weir1984; Excoffier1992]. For haplotypes, several versions of FST are calculated, 
including φST [Holsinger2009; Bird2011] and FST’ [Meirmans2006]. The populations 
program also provides a measure of Hardy-Weinberg equilibrium for each SNP 
[Engels2009; Louis1987] and each locus [Guo1992]. The SNP-level (and therefore two-
allele) approach uses an exact test that is analogous to Fisher’s exact test. For 
haplotypes, where multiple alleles can make an exact test computationally challenging, 
we employ a Markov chain approximation as described by Guo and Thompson (1992). 

The populations program is able to export data, after filtering, in a number of useful 
formats from VCF to FASTA, and for specialized programs such as STRUCTURE, 
PLINK, or GenePop.  
Real datasets. 

We examined three empirical datasets to assess the capabilities of Stacks v2 and to 
compare it with software systems in the same class. First, we looked at 241 North 
American yellow warbler individuals (Setophaga petechia) contained in 18 populations 
from [Bay2018]. The 2x100bp RADseq data were generated with the BestRAD protocol 
[Ali2016] using the SbfI 8bp restriction enzyme. For reference-based analyses, we used 
the scaffold-level yellow warbler reference genome [Bay2018] which is assembled to 
18,144 scaffolds with a length of 1.26Gbp and an N50 of 491,655bp. Second, we looked 
at 10 threespine stickleback (Gasterosteus aculeatus) individuals from two populations 
near Cook Inlet, Alaska [Nelson2018]. The RAD library derived from these fish was 
generated using the single-digest, sheared RAD protocol [Baird2008] with a 6bp PstI 
restriction enzyme and sequenced to 2x250bp. For reference analysis, the data were 
mapped to the threespine stickleback reference genome (BROADS1, Ensembl version 
84). Finally, we examined 71 Antarctic bald notothen individuals (Pagothenia 
borchgrevinki) in two populations from McMurdo Sound and Prydz Bay, Antarctica 
(unpublished). The RAD library generated used the single-digest, sheared RAD 
[Baird2008] with the 8bp SbfI restriction enzyme. For reference-based analyses, we 
used a draft assembly of P. borchgrevinki (unpublished), which has a length of 0.76Gbp 
derived from 9399 scaffolds, with an 726,105bp N50. 
Simulations. 

We simulated paired-end RAD reads using the RADinitio software pipeline, version 
1.0 [Rivera-Colón et al., in prep.]. The RADinitio software uses msprime [Kelleher2016] 
to generate coalescent trees for various samples given a user-defined neutral 
demographic model that can then be converted into individual haplotypes. We used the 
threespine stickleback (Gasterosteus aculeatus) reference genome (Ensembl version 
84) as a base for our simulations, evolving four populations each with an effective 
population size of 10,000 haploid individuals, of which we sampled 25 diploid individuals 
per-population. The simulations had a mutation rate of 5 x 10-8 per base and per 
generation, a symmetric migration rate of 0.05 chromosomes per-generation, a flat 
recombination rate of 100cM per chromosome and an indel-over-substitution ratio of 0.1 
(9% of mutation events will be short indels). RADinitio finds natural RAD loci via an in 
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silico digestion of the evolved population of genomes. We simulated a single-digest 
library preparation [Baird2008; Etter2011] using the SbfI restriction enzyme and 
extracted the RAD loci. Sequencing is then simulated over the extracted RAD loci with a 
specified target sequencing coverage (10 or 20x), a read length of 144bp, an insert size 
sampled from a normal distribution (mean 350bp, standard deviation 70bp), and a 
sequencing error rate increasing linearly along the 5’ to 3’ length of the read from 0.1% 
to 0.5% over 144 base pairs.  

For reference-based approaches, simulated reads were mapped to the stickleback 
reference genome using the mem routine of BWA [Li2013]. For de novo approaches, 
the consensus sequences of the reconstructed loci were mapped back to the reference 
genome using the same process.  

We computed recall (fraction of the simulated SNPs/genotypes that were discovered) 
and precision (fraction of calls that were correct) by comparing the genotypes obtain via 
Stacks v2 against the reference genotypes obtained directly from the RADinitio 
simulations using custom Python scripts. We smoothed the results by analyzing 10 
replicates of each simulated dataset. 
Result filtering for comparison and evaluation. 

To evaluate Stacks v2 and to make reasonable comparisons to other software we 
have to select a rational subset of the simulated and empirical RAD data for 
comparison. There is significant variation in the reconstruction of loci that is unrelated to 
the performance of the analytical software. For example, since we are testing sheared, 
single-digest protocols, the length of the locus ‘sequenced’ in silico will vary, and so the 
3’ region of the locus will not be precisely defined, and this region will include 
polymorphic sites. An exact comparison to the simulated data is not therefore possible. 
Likewise, in a de novo assembly of empirical data, the number RAD loci reconstructed 
will be highly biased towards a very large number of loci assembled in just one 
individual (see [Rochette2017], Fig. 3 for details), thus heavily biasing any assessment 
of results.  

For that reason, when discussing the number of loci reconstructed, we report loci 
found in 80% of individual samples in each data set (NS80 loci). We do so for both 
simulated and empirical data sets. When discussing SNPs, we report SNPs that have a 
minor allele count of at least 3 (MAC3). Given our diploid data sets, this ensures that a 
SNP has been found in at least two individuals. We report genotypes as those that 
could be called in 80% of individuals (GT80). Finally, when discussing assignment of 
haplotypes at a locus, we report the number of SNPs phased into haplotype that are 
found in 80% of individuals (the raw number of haplotypes is equal to the number of 
polymorphic loci). To find haplotypes (see ‘populations’ section above) that are fully 
phased in all individuals (no unknown sites), some SNPs will be filtered, and a lower 
value is reported here than when looking at the number or independent GT80 sites. 
Finally, for simulations, we report the number of true SNPs that were found that are both 
MAC3 and NS80 (TNS80). All of the above values are listed in Table 1. 
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RESULTS 
Calling SNPs, genotypes and haplotypes from paired-end RADseq data. 

We first surveyed the general properties of paired-end data derived from single-digest, 
shearing-based RADseq protocols. Using a reference genome approach, we 
reanalyzed three published datasets, including the Alaskan threespine stickleback 
[Nelson2018] (sdRAD, PstI enzyme, 2x250bp reads), the North American yellow 
warbler [Bay2018] (BestRAD, SbfI enzyme, 2x100bp reads), plus one newly generated 
dataset for a teleost fish, the Antarctic bald notothen (Pagothenia borchgrevinki) 
(sdRAD, SbfI enzyme, 2x150bp reads). 

We aligned the paired reads of all individuals to their respective reference genomes 
using BWA [Li2009b, Li2013], then used Stacks to identify RAD loci, remove PCR 
duplicates and compute the distribution of insert lengths (Fig. 4, A-C, solid lines) as well 
as the per-basepair coverage across the locus (Fig. 4, A-C, grey shaded area). We 
found the median insert sizes for warbler to be 300bp, for stickleback to be 380bp, and 
for P. borchgrevinki to be 300bp, respectively. These distributions reflect the DNA 
shearing and size-selection steps of the library preparation. We examined the in vitro 
insert length of P. borchgrevinki using the Applied Biosystems 3730XL fragment 
analyzer and found that, after accounting for the additional length of the sequencing 
adaptors, Stacks v2 was accurately reconstructing the observed set of insert lengths 
(Fig. S1). 

In the case of sheared-RADseq data, in which inserts are anchored on one side by the 
restriction site, the distribution of insert sizes has direct implications for the distribution 
of sequencing coverage within each locus. Indeed, the principle of paired-end 
sequencing is to sequence both ends of each insert; for sheared-RADseq this leads to 
the coverage patterns shown in Figure 4 (A-C), where coverage on the restriction site 
end is constant over one read length, whereas coverage on the sheared end has a 
trapezium-like distribution (which appears triangle-like, or bell-like, if the width of the 
insert size distribution is larger than the read length). Figure 4 makes clear that three 
different size selection strategies were taken with the construction of the different 
libraries. While the stickleback library focused on a narrow size range while employing 
long Illumina reads – presumably to achieve uniform coverage – the P. borchgrevinki 
library focused on a wider insert length – presumably to assemble larger contigs – with 
the warbler dataset in between. 

In turn, coverage affects polymorphism discovery and genotype calling over the length 
of each locus. SNP discovery remains efficient even at low coverage (Fig. 5A-C) 
because in Stacks v2 the existence of a polymorphism is a test on the population: 
evidence for alleles can be aggregated across individuals, so alternate alleles are 
visible as long as their total coverage in the population is substantial, independently of 
each individual’s coverage [Maruki2015]. Genotype calls, in contrast, fundamentally 
relate to single individuals, and are therefore much more affected by coverage 
variations (Fig. 5E-G; Fig. S2). Ultimately, whether genotypes can be called depends on 
the total coverage of the locus and on the dispersion of paired-end read positions. For 
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the stickleback, 1.04 million SNPs were found that could be genotyped in ≥80% of 
individuals, with 37% found in the paired-end region (Table 1). In warbler, 1.59 million 
SNPs in the same class were found (63% in the paired-end region), and in P. 
borchgrevinki, 0.12 million SNPs were likewise found, with 69% in the paired-end 
region. The distribution of SNPs across the single- and paired-end regions in the three 
datasets reflects the insert length of the underlying RAD libraries and the natural 
polymorphism rate. In the case of the bald notothen, there are relatively few RAD loci, 
but two-thirds of the SNPs were found with the addition of the paired-end contig greatly 
increasing the value of the loci sampled by the RAD protocol (by returning more 
polymorphic loci). These results demonstrate that coverage from paired-end reads can 
effectively be turned into SNPs and genotypes. 
Stacks v2 accurately calls and phases genotypes in a reference-based context. 

The number of SNP and genotype calls may be inflated by erroneous calls, and thus 
cannot in itself be regarded as an indicator of the quality of these inferences. In order to 
assess the quality of the Stacks v2 SNP and genotype calls and their spatial distribution 
within loci, we created simulation datasets with the RADinitio package [Rivera-Colón et 
al., in prep.], using the threespine stickleback reference genome as template (see 
Methods). We simulated two datasets, one high coverage (20X) and one low coverage 
(10X), each comprising 100 individuals split among four populations. Both datasets 
were based on the same population genetics parameters (see Methods) and had a 
nucleotide diversity (p) of 0.8%. For simulated datasets, the true loci, read alignments, 
positions of SNPs and genotypes are known, thus we could calculate the recall and 
precision of each step, and compare them between a range of methods and 
approaches (Fig. 5D and 5H, Fig. 6). 

We filtered results for a minor allele count (MAC) of ≥3, because SNP recall and 
precision correlate with the prevalence of the minor allele of the SNP (expressed as 
minor allele frequency, MAF, or MAC; Fig. S3). Indeed, SNPs where the minor allele is 
rare are more likely to be errors or to be missed, but the relationship is non-linear and 
itself depends on coverage: precision and recall are markedly lower for SNPs with 
MAC=3, even for well-behaving simulated datasets (Fig. S3). Since our RADinitio 
software includes a model of the sequencing process (which involves sampling the 
underlying true molecules), even though we know the location of all simulated SNPs, 
many of them will be ‘sequenced’ at a coverage too low for Stacks v2 to detect them. In 
this case, a MAC of 3 ensures that an allele is seen in at least two of our diploid 
samples. 

The precision and recall of SNP and genotype calls vary across the length of RAD 
loci, in tight correlation with coverage, as is shown by our simulations at 20x coverage 
(Fig. 6A-D) versus 10x (Fig. 6E-H). As noted above, the relationship is more apparent 
with genotypes than with SNPs, because SNP calls use reads from the entire meta-
population and thus depend on the total (rather than per individual) coverage, which is 
consistently high. SNP precision in the 10x dataset (Fig. 6F, black) was as high as in 
the 20x one (Fig. 6B, black), and SNP recall was consistent across the locus. 
Unsurprisingly, genotype recall and precision were lower in the 10x dataset (Fig. 6H 
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versus 6D, black), and deteriorated quickly in regions that are more rarely covered by 
paired-end reads as a result of the insert size distribution. 

We assessed the influence of the read aligner (i.e. BWA alignments) on precision and 
recall, by comparing results derived from BWA reconstructed alignments with results 
based on the true, simulated alignments (Fig. S4). SNP and genotype precision rates 
were nearly identical for both alignment sets, except for a drop at the last few positions 
of the forward region with reconstructed alignments. This drop is expected and is due to 
the intrinsic inability of short-read aligners to place indels reliably unless several 
conserved bases on both sides of the indel are available (no drop occurs on the 5’ end 
because read alignments are anchored by the conserved restriction site). The near-
equal precision at all other positions indicates that read alignments can be 
reconstructed quite accurately, and contribute little to the error rate or error patterns 
across the locus. 

Next, we compared the inferences of Stacks v2, which implements the [Maruki2017] 
low-coverage model, with those of ANGSD [Korneliussen2014], using the same BWA 
read alignments for both methods. ANGSD is a package for SNP and genotype calling 
that is commonly used for whole genome data, that emphasizes the use of genotype 
likelihoods and probabilities rather than of explicit genotype calls, but that is 
nevertheless regarded as more accurate than GATK for the latter [Korneliussen2014, 
Maruki2017]. For SNP discovery, we found that Stacks had a higher recall (Fig. 6A,E, 
black versus green), but a fractionally lower precision (Fig. 6B,F, black versus green). 
We can contrast SNP discovery with calling genotypes. The former occurs in the meta-
population, the latter is performed on individuals. When considering the rates of 
genotype recall and precision it is important to note that only SNPs that were identified 
correctly can be genotyped, so genotypes can be determined only for sites where a 
SNP was correctly identified. For calling genotypes the two methods use different 
statistical approaches: ANGSD uses a posterior probability cutoff, whereas Stacks uses 
a p-value cutoff. As there is no natural equivalence between the values for these 
thresholds, we chose the ANGSD cutoff value P≥95% so that the recall was 
approximately equal to that of Stacks. As a result, the recall was similar for both 
methods. For genotype precision, the comparison between the two methods depended 
on coverage. Stacks performed better than ANGSD at higher coverages, and worse at 
lower coverages (Fig. 6D,H, black versus green). 
Stacks v2 can efficiently cluster RADseq loci, assemble small locus contigs from 
paired-end reads and map these reads back to loci. 

To evaluate the ability of Stacks v2 to process sheared, paired-end RADseq datasets 
when a genome is not available, we performed re-analyses of the datasets introduced 
above (threespine stickleback, yellow warbler, and bald notothen) using a de novo 
approach (see Methods). We reconstructed respectively 360,292, 89,016, and 34,460 
loci present in ≥80% of individuals (NS80 loci, Table 1). Loci present in more than one 
or two individuals were generally present in most individuals (Fig. S5). 
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Our de Bruijn graph method was able to assemble a consensus contig or a two-contig 
scaffold for 97.9%, 91.1% and 84.2% of these loci. Although gstacks can resolve 
microsatellite repeats in RAD loci, failure to assemble a consensus contig was 
essentially due to more complex repeated elements. The contig lengths 
(mean±standard deviation) were 433±14, 597±59 and 715±47 basepairs (Fig. 7, Table 
1).  

The ability to provide a single, overlapped contig for the entire locus, rather than one 
contig for the restriction site end and another for the sheared end, depends primarily on 
the read length and distribution of insert sizes. Indeed, for the threespine stickleback, P. 
borchgrevinki, and yellow warbler datasets, which used 250bp-, 150bp, and 100bp-long 
reads and insert sizes of 380bp, 309bp, and 392bp (see above), virtually all NS80 loci 
(>99%) were overlapped. 

Once a consensus sequence has been determined for each locus, reads can be 
mapped back to these loci by our suffix tree-based alignment algorithm. Our method 
was able to map back 96.1%, 99.3%, and 98.5% of the reads respectively for the 
threespine stickleback, yellow warbler, and bald notothen datasets (for reads in NS80 
loci). We validated our internal read alignment method by comparing the SNPs and 
genotypes they yielded to those obtained by extracting the consensus locus sequences, 
aligning reads to them using BWA, and applying the rest of the Stacks v2 pipeline. We 
found that the results derived from the internal alignments and those derived from the 
BWA alignments were extremely close in their general statistics, such as the depth of 
coverage patterns or the number of SNPs and genotypes eventually called (Fig. S4). 

Once read alignments have been computed, the de novo pipeline continues with the 
same steps as in the reference-based pipeline, as if the locus contigs derived above 
formed an ad hoc reference genome. 
The de novo approach performs comparably to the reference-based one. 

A de novo approach involves more steps, each of which may introduce error and 
decrease the final precision or recall of genotypes. In contrast, the reference-based 
approach involves fewer steps, so there is less room for error accumulation, although in 
some cases the reference genome that the analysis relies on may be of unknown 
quality or distantly related to the system. 

We evaluated the global efficiency of the de novo approach for analyzing paired-end 
RADseq data by comparing its results with those of the reference-based approach. We 
analyzed the three datasets introduced above (threespine stickleback, yellow warbler, 
and bald notothen) to gain a perspective under real conditions, and we analyzed the 
high- and low-coverage simulated datasets for a performance comparison in absolute 
terms, since we know the true underlying states. 

For the three real and the two simulated datasets, the de novo analysis recovered on 
average 83% of the same NS80 loci found under the reference-based analysis 
(respectively 83%, 75%, and 87% for stickleback, warbler, and P. borchgrevinki, Table 
1). These NS80 loci had comparable coverage, as loci from the de novo analysis 
comprised on average 110% as many aligned reads per individual as the reference-
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based one (respectively 8.3x, 18.4x, and 22.8x read coverage per locus per individual 
for stickleback, warbler, and P. borchgrevinki, Table 1). For all datasets, the observed 
insert size distributions were identical for the two approaches (Table 1). 

Both approaches found similar densities of SNPs. Indeed, the de novo approach 
identified on average 83% of the same MAC≥3 SNPs per locus (Table 1) that were 
found using the reference-based approach. Furthermore, the SNP discovery rate varied 
in the same way within each locus (Fig. 5). The de novo approach finds fewer SNPs, 
particularly in the forward read region, likely because of low-coverage alleles discarded 
during the assembly of primary and secondary stacks (see [Catchen2011] for details). 
Furthermore, the de novo approach called slightly fewer genotypes than the reference-
based one (on average 91% as many at 20x coverage, 89% at 10x; Table 1). The 
reduction was due to a lower call rate in the distal region, despite coverage being equal 
with both approaches (Fig. 5). Such a reduction in measured precision at the 3’ end of 
the locus could be due to some whole RAD loci being discarded by the de novo 
algorithm. 

In terms of absolute error rates, which we could compute for the simulated datasets, 
we found that the de novo approach was slightly less precise than the reference-based 
one, but that the error rates of the two approaches were nevertheless comparable in 
magnitude, and low in both approaches. In both simulated reference data sets, more 
than 99% of inferred MAC3 SNPs were true positives. In the de novo simulated data, 
more than 98% of inferred MAC3 SNPs were true positives (Table 1). Importantly, 
precision was consistent across the length of loci, apart for the expected strong 
correlation between genotype precision and coverage (Fig. 6). Because error rates were 
low, SNP and genotype recall rates closely reflected the number of inferred SNPs and 
genotypes (discussed above). The reduction in precision between reference and de 
novo data is likely due to additional error generated in de novo assembly from very low 
coverage alleles being discarded and a small amount of allele over-merging both 
occurring in ustacks.  
Stacks v2’s methods for paired-end RADseq data perform better than those 
provided by alternative packages. 

Next, we compared the results of Stacks on sheared, paired-end RADseq data with 
those obtained with alternate analysis packages, namely RADassembler [Li2018] and 
dDocent [Puritz2014] (see Methods). Both packages differ from Stacks in their 
approach. RADassembler first clusters single-end loci using Stacks v1, then builds 
paired-end contigs with the CAP3 overlap-layout method [Huang1999]. RADassembler 
focuses only on locus construction and does not identify SNPs or call genotypes. 
dDocent relies on CD-HIT [Li2006], Rainbow [Chong2012], and PEAR [Zhang2014] for 
locus and contig assembly and it applies the FreeBayes [Garrison2012] software for 
SNP identification and genotyping. 

In the simulated data sets, the number of NS80 loci RADassembler constructed was 
approximately 70% of the number of loci constructed in the same de novo Stacks 
analysis. For those loci constructed, the size and number that could be overlapped with 
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the forward locus was very similar to Stacks v2. However, RADassembler reconstructed 
markedly shorter contigs for a small subset of loci. The dDocent software constructed 
~105% of the loci that de novo Stacks v2 did, however, those loci were 70% as long 
while only 40-45% could be overlapped indicating assembly errors (Figure 7 and Table 
1). In the empirical P. borchgrevinki data set, RADassembler performed as well as 
Stacks v2, dDocent, however, was not able to complete processing the data set.  
Stacks v2 is able to provide consistent and rich haplotypes. 

Producing useable haplotype markers involves two main processes. First, a consistent 
phasing of SNPs at each locus must be found in each individual. When considering a 
locus at the population level, however, the haplotype graphs between individuals may 
be different due to the presence or absence of particular SNPs in particular individuals 
(see methods). Stacks v2 is able to produce consistent, population-wide haplotypes that 
incorporate 95% of independently genotyped SNPs in the 20x simulated dataset, and 
86% given 10x sequencing. For the empirical datasets, the value ranged from 71-97%. 
The haplotypes built were nearly 10bp in mean length in the yellow warbler, versus 
approximately 3bp in stickleback and the bald notothen, suggesting the warbler genome 
is highly polymorphic.  

DISCUSSION 
Long RADseq contigs 

The appeal of using paired-end sequencing to derive short contigs from de novo 
sdRAD data has been promoted repeatedly [Etter2011; Amores2011; Hohenlohe2013; 
Andrews2016; Nelson2018; Li2018]. However, the approach has remained elusive due 
to the technical difficulty, unreliability and inefficiency of generating these contigs in the 
absence of any software capable of performing this task natively. Thus, [Etter2011] 
developed an approach combining Stacks and Velvet [Zerbino2008], while 
[Hohenlohe2013] experimented with both Stacks and Velvet or Stacks and CAP3 
[Huang1999], opting for the latter, and [Nelson2018] used Stacks and Fastq-Join 
[Aronesty2011] together with a longer-read, high-overlap sequencing strategy. Finally, 
the recently published RADassembler method wraps around Stacks v1 and CAP3 
[Li2018] in a similar manner to [Hohenlohe2013]. 

The series of methodological developments that we introduce in Stacks v2 makes the 
analysis of paired-end sdRAD data efficient, reliable, and accessible to the majority of 
RADseq users. It yields more robust results and is considerably faster and easier to 
apply in comparison with previous approaches. Importantly, the length of the assembled 
paired-end contigs and the merging rate of the ‘forward’ and ‘reverse’ regions of the 
locus primarily depend on the distributions of insert sizes in the sequenced DNA library 
(see below). However, the average contig length can be expected to be in the 400-
800bp range, and we find that virtually all loci have a single contiguous contig provided 
that at least a small fraction of reads overlap. 

In the de novo context, the availability of RAD locus contigs offers several clear 
advantages over the shorter loci obtained from single-end data, which are typically only 
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as long as the individual reads. These loci can be more easily mapped to existing 
genomic resources for the purposes of providing functional annotation, conducting 
linkage-based genomic scans [Amores2011; Feulner2019], or designing capture baits 
[Ali2016]. They allow one to make use of the paired-end reads derived from the sdRAD 
[Baird2008] and BestRAD [Ali2016] protocols, even when a de novo strategy is 
employed. As these protocols involve a random shearing step, this implies that PCR 
duplicates can be filtered natively based on the start position of the reverse read in the 
same way as can be done when paired alignments have been made to a reference 
genome [DePristo2011].  

Finally, in addition to the qualitative advantages presented above, using paired-end 
reads of course increases the amount of genotype data that is produced. Although 
paired-end data do not change the number of RAD loci, they can more than double the 
average number of SNPs per locus for suitable library preparation and sequencing 
parameters (Table 1 and see below). On average, this results in more polymorphic loci, 
that are each more informative. In a de novo context, these results will benefit any study 
focused on species with low diversity, and in particular phylogenetics studies, where 
sparse genotype matrices are being constructed across many species [Near2018]. 
When RAD loci are ordered onto chromosomes (i.e. for analyses that use a reference-
based approach, or if de novo-assembled loci have been mapped to an external 
reference genome), this amounts to a higher information density along the genome, 
which should help resolve linkage patterns at a finer scale and identify evolutionary 
events that may have been missed with a sparser sampling of the genome 
[McKinney2017]. 
Haplotypes 

Expecting multiple SNPs at each locus opens the possibility of treating RAD loci as a 
set of haplotypes rather than as individual SNPs. Depending on the nucleotide diversity 
of the species, it not rare to see up to ten SNPs per locus in real datasets (Table 1). 
Since a polymorphic site can have no more than two allelic states, it can only label two 
alleles in the population. Within a small genomic region, choosing one SNP over 
another may result in a different evolutionary signal. By phasing these SNPs, Stacks v2 
can instead provide multiallelic haplotypes which can encode a much larger amount of 
information regarding the provenance of the genomic region. These rich, physically 
phased haplotypes produced by Stacks v2 can be used to study changes in 
coalescence in different regions of the genome [Nelson2018]. 

The haplotyping algorithm implemented in Stacks v2 relies strictly on the co-
observation of alleles with a read (or read pair). This is in contrast with statistical 
phasing methods in which an individual’s haplotypes are estimated in relation to a panel 
of haplotypes observed at the population level [Browning2011]. Furthermore, phasing 
algorithms that rely on the co-observation of alleles in reads are designed to find the 
haplotypes that are most consistent with the data, and subsequently accept the optimal 
haplotypes as the real ones [Patterson2015]. Our approach instead expects the data to 
appear consistent at a specified tolerance level (see Methods). While this tolerance 
threshold makes our approach more sensitive to insufficient coverage, it allows one to 
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identify and remove cases where the allelic observations for an individual at a particular 
locus are at odds with diploidy. Such cases point to miscalled genotypes that can then 
be pruned out, or occasionally to contamination in the sequencing library (that makes an 
‘individual’ effectively non-diploid) as evidenced by the dramatically reduced phasing 
rates that may be observed for specific individuals (Fig. S6). Over-merged loci, that 
collapse several paralogous genomic loci into a single polyploid one, also exhibit high 
phasing failure rates and can be filtered on this basis. 
Stacks v2 has lots of improvements 

Stacks v2 supports nearly all major protocols for reduced representation, marker-
based experiments, including single- and double-digest RAD [Peterson2012] and DaRT 
[Kilian2012], using single- or paired-end sequencing, as well as 2bRAD [Wang2012] 
and GBS using single-end sequencing. We note that it is not suitable for paired-end 
data derived from GBS [Elshire2011], as forward and reverse reads contain essentially 
the same information. Applying our approach to paired-end GBS data would lead to 
assembling two half-coverage copies of each locus (one for each possible orientation). 

One of the major advantages to the design of Stacks v2 is the vertically integrated 
nature of the software system. This design ensures that each stage of the analysis has 
access to all of the information collected so far, from the results of single-end clustering, 
to the resulting de Bruijn graph fragments assembled, or the matrix of genotypes. Most 
importantly, Stacks can take advantage of certain types of information that RADseq 
data provide, for example, the de Bruijn graph assembler knows that all reads in a 
RADseq analysis are sequenced in the same direction (and hence the de Bruijn graph 
only has to account for one strand). This is in contrast to the majority of alternative 
software pipelines available (two of which we compared to Stacks v2), where they 
incorporate existing software in a black box way (that is, how the software operates is 
opaque to the executing pipeline), and where such software was not designed 
specifically for RAD data. In many cases, we could not run competing software 
(dDocent and RADassembler) because the softwares were unable to accommodate the 
large (but quite common in size) data sets we tested above. 
Efficiently applying paired-end RADseq. 

The particular nature of RADseq libraries has important implications with regard to the 
distribution of coverage across the locus. To achieve an optimal insert size distribution, 
we recommend that the width of the size selection window during library construction 
range between two and three (or less than three) read lengths (plus the length of the 
adapters). So, for 150bp reads, an optimal insert length distribution could be obtained 
by size selecting for 300-400bp inserts (that is, for 430-530bp molecules if using 130bp 
adapters). In addition, overlapping of the forward and reverse regions into a single 
contig is only possible when there is overlapping within at least some read pairs. In 
practice, if at least 5% of reads overlap (that is, have inserts shorter than two read 
lengths plus adapters), high overlapping rates will be observed. 
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RADseq PCR duplicate rates must be monitored. 
Nearly all RAD protocols use PCR amplification as a method to enrich DNA adjacent 

to restriction enzyme cut sites. Some protocols, in fact, use PCR as a method to enrich 
shorter molecules adjacent to cut sites over longer molecules in lieu of an explicit size-
selection of molecules using beads or a gel. However, PCR amplification can create an 
illusion as to how much genetic information is available in a RAD library, particularly if 
the starting amount of template DNA was very small, and can result in bias when some 
alleles or loci are not sampled. In addition, the amplification process introduces 
sequence errors (on the order of 10-7 per nucleotide per cycle for the commonly used 
Phusion enzyme [NEBiolabs; https://www.neb.com/faqs/2012/09/06/what-is-the-error-
rate-of-phusion-reg-high-fidelity-dna-polymerase]) and the accumulated error from many 
rounds of PCR can introduce sites that will falsely appear polymorphic in small numbers 
of individuals. 

In our analysis, substantial PCR duplicate rates were observed in all datasets, ranging 
from 33% (yellow warbler) to 76% (bald notothen, Table 1). We do not doubt these 
figures, as insert sizes were reconstructed robustly (see Results), and as we could 
confirm them with alternative software in the case of reference-based analyses. The 
rates differed somewhat between individuals within datasets, but most of the differences 
occurred between datasets or possibly between libraries (Fig. S7). The BestRAD 
[Ali2016] protocol (for which we only had two datasets from the same group) seemed to 
yield fewer PCR duplicates (33%) than the original [Baird2008] protocol (41-76%). This 
makes sense, as the BestRAD protocol is the only RAD protocol that uses biotinylated 
adapters so that the restriction site-adjacent DNA can be extracted from the remaining 
genomic DNA using beads early on in the library preparation. 

For ddRAD protocols, it is not usually possible to identify PCR duplicates, but methods 
based on degenerate adapters have been developed. [Schweyen2014] have reported 
PCR duplicate rates of 20-45%, and [Tin2015] have reported rates of 30-80%. While 
these figures represent varying systems, preservation states and protocols, they 
suggest that PCR duplicates are as prevalent in ddRAD as in shearing-based RAD 
protocols. 

PCR duplicates are believed to interfere with genotype calls—in particular, to reduce 
the power to call heterozygotes by displacing the allelic ratio—and thus to bias 
downstream analyses. We note, however, that little effort has been made to accurately 
measure the impact of PCR duplicates. Such work would be useful both to confirm the 
theoretical argument that PCR duplicates alter genotype calls, and to estimate the 
extent of the bias that approaches that do not allow PCR duplicate removal putatively 
suffer from. Nevertheless, we encourage RADseq users to use protocols that readily 
allow the removal of PCR duplicates. 
Choosing the right protocol to maximize analytical results 

With hindsight, we have chosen to focus our software development on the most 
effective molecular protocols. In general, sdRAD ([Baird2008; Ali2016]) experiences 
less allelic dropout or bias than ddRAD ([Peterson2012]), and specifically, BestRAD 
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([Ali2016]) improves analytic possibilities among sdRAD protocols through its method of 
separating RAD DNA from genomic DNA early in the molecular protocol. Our data 
implies that the rate of PCR duplicates coupled with sequencing coverage is the best 
measure of library quality and the best predictor of analytical results. Experimenters 
should measure PCR duplicates (which requires the use of sdRAD or the 3RAD 
[Graham2015] protocol) and ensure robust PCR amplification did not mask low amounts 
of template DNA and they should ensure, that after filtering PCR duplicates from their 
data, that they still have reasonable sequencing coverage for analytical purposes. 

CONCLUSION 
The family of RAD protocols developed over the past decade, coupled with 

commodity-priced, massively parallel, short-read sequencing, has found a valuable 
niche for conducting large population genomic and phylogenomic studies. We can 
optimize the accuracy and volume of data available to researchers employing reduced-
representation strategies by providing a set of accurate, fast and accessible software. 
Stacks v2 provides the analytical tools to enhance RADseq when it is coupled with 
paired-end sequencing, assembling tens of thousands of loci that are 400-800bp in 
length and can contain up to a dozen physically-phased SNPs on each locus. The 
software can scale to datasets with thousands of individual samples and we have 
shown here the effectiveness of the algorithms to assemble loci and genotype those 
individuals. By focusing software changes to provide robust genetic information in the 
current sequencing landscape we can fortify the utility of RAD sequencing for another 
decade. 
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FIGURES & TABLES 
Figure 1 

Stacks v2 pipeline overview. 

Figure 2 

Locus assembly and read alignments. 

Figure 3 

Algorithm for haplotyping heterozygotes. (A) Sample 1 is successfully phased at this 
locus as all alleles are found to co-occur on two or more read pairs producing two 
distinct subgraphs. (B) Sample 2 cannot be phased as at the fourth variable position the 
‘A’ allele is observed on two different allelic background, confounding the haplotype 
graph. 

Figure 4 

DNA library insert size distributions in the benchmark paired-end sdRAD datasets (A-
D) as reconstructed by the reference-based (black lines) and de novo (gray lines) 
approaches. The shared areas represent the expected variation of the sequencing 
coverage along the length of RAD loci, based on read length of each dataset 
(respectively 100, 250, 150 and 150; see Table 1) and the insert size distribution. 
Expected coverage is directly derived from the insert size distribution, after all inserts 
are stacked by placing the first base of the restriction site at position 1. (A) Yellow 
warbler, (B) threespine stickleback, (C) bald notothen, (D) simulations, 20x. The 
periodic pattern of insert sizes apparent for the warbler dataset, and to some extent for 
the bald notothen one, seems to be real (Fig. S8). 

Figure 5 

Variation of the average SNP (A-D) and genotype (E-H) call rates along the length 
RAD loci for each of the benchmark paired-end datasets (A, E: yellow warbler; B, F: 
threespine stickleback; C, G: bald notothen; D, H: simulations, 20x). The shared areas 
represent the sequencing coverage underlying the calls (see Fig. 4). Consistent 
patterns are observed for the reference-based (black lines) and de novo (gray lines) 
approaches across the entire length of RAD loci, demonstrating that Stacks v2 
appropriately handles the reverse reads for paired-end data from sdRAD libraries. 
Coverage is the main driver of the variation of call rates, with genotype calls being more 
sensitive to reduced coverage than SNP calls. 

Figure 6 

SNP and genotype (GT) precision and recall observed across RAD loci for the 20X 
(left) and 10X (right) for Stacks v2 using a reference-based approach (black), Stacks v2 
using a de novo approach (grey), ANGSD (green), and dDocent (red).  
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Figure 7 

Observed lengths of the RAD loci reconstructed using de novo approaches. by Stacks 
v2 (gray), RADassembler (blue) and dDocent (red) for the (A) yellow warbler, (B) 
threespine stickleback, (C) bald notothen, and (D) simulations datasets. Reconstructed 
locus sizes primarily depend on the shape of the distal tail of the insert size distribution 
(Fig. 4). The total number of loci represented by each curve corresponds to column XX 
in Table 1, i.e. the plots do not include loci for which the forward and reverse regions 
could not be combined in a single contig. No data is shown for dDocent in panels A and 
B because the program did not allow for the analysis of these large datasets (see 
Methods). 

Table 1 

General statistics for all datasets & approaches. 

SUPPLEMENTARY FIGURES 
Figure S1 

(A) Comparison between the insert length distribution in the P. borchgrevinki RADseq 
library reconstructed from read alignments by gstacks (solid line) and the digitalized 
version (dotted line) of the (B) raw output of the fragment analysis for this DNA library. 

Figure S2 

SNP and genotype (GT) precision and recall plotted as a function of the average per-
sample coverage at the locus position, for the reference-based (black) and de novo 
(red) Stacks analyses of the the 20X (diamonds) and 10X (crosses) simulated datasets. 
The data corresponds to that of Fig. 6 of the main text. 

Figure S3 

Properties of the MAC<3 SNPs. (A) Precision across the locus for MAC=1 SNPs for 
the reference-based Stacks analysis of the 10X simulated dataset; compare with Fig. 6F 
of the main text, that uses MAC≥3 SNPs. (B) Average precision at positions 25-124 as a 
function of the (inferred) minor allele count. (C) Recall at positions 25-124 as a function 
of the minimum inferred MAC threshold (e.g. recall is ~0.7 when considering MAC≥3 
SNPs). 

Figure S4 

Comparison between the SNPs obtained with the native Stacks v2 de novo read 
aligner and those obtained by substituting BWA into the de novo Stacks v2 pipeline for 
the warbler (top), notothen (center) and 20X simulated (bottom) datasets. 

Figure S5 

Histograms of the number of individuals per locus, for each dataset (columns) and 
according to the Stacks reference-based (top) or de novo (center) approaches or to 
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dDocent (bottom). No plots are shown for dDocent for the warbler and stickleback 
datasets as the program did not complete.  

Figure S6 

Phasing failure rate for each of the 241 individuals of the warbler datasets. Elevated 
phasing failure rates in some individuals (top) suggest quality issues for these samples, 
such as contamination. 

Figure S7 

Boxplot of the per-individual PCR duplicates rates observed within each library (the 
241-individual warbler dataset is composed of three libraries). 

Figure S8 

Insert length periodicity is 10.5bp for warbler, the largest dataset. This length seems to 
match the 10.5-basepair period of the DNA helix, which suggests that this observation 
may be caused by a physical process, possibly by the shearing step. 
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Precision
All

Stacks 117,323 - - 309 ± 84 34% 16.1X 2,852,729 1,589,453 582,428 37% 1,007,025 63% 114,716 1,123,081 71% 9.8
ANGSD - - - - 35% [5] - - 1,770,794 - - - - -

Stacks 89,016 99.8% 597 ± 59 309 ± 81 33% 18.4X 2,058,649 1,243,449 421,160 34% 822,289 66% 87,565 875,155 10.0
dDocent - - - - - - - - - - - - - - -
RADassembler ? ? ? - - - - - - - - - -

Stacks 417,427 - - 378 ± 31 41% 7.8X 1,193,055 1,044,019 659,259 63% 384,760 37% 310,305 1,009,300 97% 3.3
ANGSD - - - - 41% [5] - - 1,240,121 - - - - -

Stacks 360,292 99.9% 433 ± 14 380 ± 30 40% 8.3X 992,691 874,740 540,936 62% 333,804 38% 269,385 852,607 3.2
dDocent - - - - - - - - - - - - - - -
RADassembler ? ? ? - - - - - - - - - -

Stacks 39,620 - - 387 ± 105 76% 21.1X 177,294 118,166 36,374 31% 81,792 69% 32,877 106,836 90% 3.3
ANGSD - - - - 76% [5] - - 148,536 - - - - - - -

Stacks 34,460 99.9% 715 ± 47 392 ± 106 75% 22.8X 168,456 99,942 28,115 28% 71,827 72% 28,090 87,562 3.1
dDocent [6] 46,982 21.6% 328 ± 103 - Not offered 110X 134,919 112,576 50,434 45% 62,142 55% - - -
RADassembler 34,350 [7] 98.6% 676 ± 140 - - - - - - - - - -

Stacks 26,576 - - 350 ± 69 - 19.4X 359,977 360,080 357,858 2,222 0.994 317,874 110,150 35% 207,724 65% 26,566 303,256 95% 11.4
ANGSD - - - - - - - 352,165 350,904 1,261 0.996 296,111 - - - - -

Stacks 24,540 99.9% 550 ± 17 350 ± 70 - 19.9X 328,478 331,305 327,265 4,040 0.988 287,921 98,978 34% 188,943 66% 24,332 273,890 11.3
dDocent (v2.20) 25,114 46.0% 344 ± 85 - - 20.5X 219,124 216,817 208,223 8,594 0.960 210,309 84,315 40% 125,994 60% - - -
RADassembler 17220 [7] 99.9% 562 ± 26 - - - - - - - - - - - - - -

Stacks 26,551 - - 350 ± 69 - 9.7X 327,285 327,526 326,049 1,477 0.996 257,074 108,813 42% 148,261 58% 26,493 221,151 86% 8.3
ANGSD - - - - - - - 216,817 208,223 8,594 0.960 210,689 - - - - -

Stacks 24,262 99.7% 550 ± 18 350 ± 69 - 10.1X 296,499 301,652 297,420 4,232 0.986 229,213 96,758 42% 132,455 58% 24,043 196,314 8.2
dDocent (v2.20) 25,005 42.1% 337 ± 82 - - 10.3X 212,733 210,074 201,361 8,713 0.959 193,718 90,368 47% 103,350 53% - - -
RADassembler 17856 [7] 99.9% 561 ± 26 - - - - - - - - - - - - - -

[1] mean ± stdev
[2] SNPs with minor allele count ≥3 and genotypes in ≥80% individuals
[3] SNPs closer than one read length from the restriction site (e.g. at position 1-90, for the warbler dataset)
[4] SNPs with minor allele count ≥3 and filtered so that ≥80% individuals have a haplotype for the locus (this implies that these SNPs have genotypes in ≥80% individuals)
[5] For ANGSD runs, PCR duplicates were filtered from BWA alignments using Samtools
[6] dDocent version 2.2.20
[7] Based on BWA realignments to RADassembler loci

[8] No data is shown for dDocent for the warbler and stickleback datasets because the pipeline did not complete

The NS50 stats are approximate as they come from separate runs, the deviation is less than a couple hundred loci
RADassembler for sims: the original runs have a NS100 filter
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n TGTAGATGATGGTAATGGTGATCAGGCAGATCAGGAGACTGATGGTTGTGGCGAAGATGACAGGGTGCAG------AGGTTATATTATAATGGTTAAAAAGACAACTACAAACTGTCCAATGCTGTTACACGGACAAAGATTGCTG-------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTCATACACGGACAAAGATTGCTGTCATTG-------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCAT---------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AG-TTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTCATACACGGACAAAGATTGCTGTCATTGTCATA--------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTCATACACGGACAAAGATTGCTGTCATTGTCATACAAC----------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTCATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGAC----------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGT-GTGGCGTAGATGACAGGGTGCAG-GGCCGAGGTTATATTATAATGCTTAA--------------------------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG-----GAGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGAT--------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGG--------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AG-TTAT-TTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACA---------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAG------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAG-TGACAGGGTGCAGGGGCCGAGGTTATATTATAATGCTTAAAAAGACAACT----------------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGGGGCCGAGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATG-------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG-----AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGAT------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG-----AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCAT---------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG-----ATGTTATATAATCATGCTTACAAAGATAACTACAAACTGTCCAAAGCGGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG--------------------GCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTT------------------------------------------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGAC-G---G-A---GCC-AGGTTATATTATAATGCTTAAAAAGACAACT----------------------------------------------------------------------
TGTAGCTGATGGTACTGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACGGTCCAATGCTGATACACGGACAAAGATTGCTGTCATT--------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG-------GGTT-TATT-TAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAG------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCAC--
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG--GCCGAGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCT-----------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAG------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG-----AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGT------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG-----AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAAC----------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG-GGCCGAGGTTATATTAT-----------------------------------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCAT---------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCC----
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------------------------------GACAACTACAAGCTGTCCAATGCTGATACGCGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGCAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTC-----------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATT--------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGG-GCA-GGGC-TAGGTTATATTATAATGCTTAAAAAGACAACTACAAACT---------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG-----AG-TTAT-TTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACA---------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAA----------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTG----------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCT--------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGGGGCCGAGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATG-------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG--CC-AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTG----------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG-----AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTG-------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG-----AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAG------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG-----AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGG--------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGAC------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATT-----------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTG-------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------A--TTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATAGTATAATGCATACAAAGACAACGACAAGCTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTAGATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGGCCGACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------------------A-TGCTTAAAAAGACAACTACAAACTGTCCAATGCGGATACACGGACAAAGATTGCTGTCATTGTCATACAACCAAGTCCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------------------------T-AAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTG----------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCT--------------------------------
TGTAGCTGCTGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGCCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAG-TGACAGGGTGCAG-GGCCGAGGTTATATTATAATGCTTAAAAAGACAACT----------------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGC-G---C-GAGGTTATATTATAATGCTTAAAAAGACAACTACAAACT---------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACA-----------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGG-TATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATAC-------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG-----GAGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGAT--------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGG-TATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATAC-------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------ACGTTATATTATAATGCTTAATAAGACAGCTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG-GGCCGAGGTTATATTATA----------------------------------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAG-TGACAGGGTGCAG-GGCCGAGGTTATATTATAATGCTTAAAAAGACAACT----------------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTC-----------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTG-------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG-GGCCGAGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATG-------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG---CCGAGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTG----------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATAC-------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATAC-------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTCATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGG-GCAG-GTCCTAGGTTATATTATAATG-------------------------------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGCGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACC---------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG-----AGG-TATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATAC-------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAGG-----AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAGACCAACCCACCA
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAG--------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACA-GGTGCAG-GGCCGAGGTTATATTATAATGCTTAAAAAGACAACTACAAAC----------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGAC------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTG----------------------------------
TGTAGCTGATGGTGATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTC-----------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATAC-------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACA---------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTCATTGTCATACAACAAAG------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG-GGCCGAGGTTATATTATAATGCTTAAA-------------------------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTAGTGGAGTAGATGAC-GGGT-CAG-CGC-GAGGTTATATTATAATGCTTAAAAAGACAAC-----------------------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG-GGCC-AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAAT--------------------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG-----GAGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGAT--------------------------------------------------
TGTAGCTTATGGCAATGGTGAGCAGGCAGATCTGGAGTATGATGGTAGTGGCGTCGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAACAGACAACTACAAACTGTCCAATGCTGATTCACAGAC------------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAG--------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGATGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACATAGAT------------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTG-------------------------------
TGTAGCTGATGGTAATGGTGAGCAGGCAGATCAGGAGTATGATGGTTGTGGCGTAGATGACAGGGTGCAG------AGGTTATATTATAATGCTTAAAAAGACAACTACAAACTGTCCAATGCTGATACACGGACAAAGATTGCTGTC-----------------------------
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