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Abstract 

 

 Light detection and ranging (LiDAR) has become a commonly-used tool for generating 

remotely-sensed forest inventories. However, LiDAR-derived forest inventories have remained 

uncommon at a regional scale due to varying parameters between LiDAR datasets, such as pulse 

density. Here we develop a regional model using a three-dimensional convolutional neural 

network (CNN), a form of deep learning capable of scanning a LiDAR point cloud as well as 

coincident satellite data, identifying features useful for predicting forest attributes, and then 

making a series of predictions. We compare this to the standard modeling approach for making 

forest predictions from LiDAR data, and find that the CNN outperformed the standard approach 

by a large margin in many cases. We then apply our model to publicly available data over New 

England, generating maps of fourteen forest attributes at a 10 m resolution over 85 % of the 

region. Our estimates of attributes that quantified tree size were most successful. In assessing 

aboveground biomass for example, we achieved a root mean square error of 36 Mg/ha (44 %). 

Our county-level mapped estimates of biomass were in good agreement with federal estimates. 

Estimates of attributes quantifying stem density and percent conifer were moderately successful, 

with a tendency to underestimate of extreme values and banding in low density LiDAR 

acquisitions. Estimate of attributes quantifying detailed species groupings were less successful. 

Ultimately we believe these maps will be useful to forest managers, wildlife ecologists, and 

climate modelers in the region.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2019. ; https://doi.org/10.1101/580514doi: bioRxiv preprint 

https://doi.org/10.1101/580514
http://creativecommons.org/licenses/by/4.0/


1. Introduction  

1.1 Overview 

 Over the past two decades light detection and ranging (LiDAR) has become a common tool 

for developing spatially-explicit forest inventories (Naesset 1997). Measurements of point cloud 

datasets derived from LiDAR can be used to predict useful forest inventory attributes such as 

biomass, stem volume, tree count, and species (Means et al. 2000, Jensen et al. 2006, Lim and 

Treitz 2004). These inventories are useful for a wide range of applications, including assessing 

carbon stocks (Patenaude et al. 2004), assisting in precision forestry (Woods et al. 2011), and 

predicting wildlife habitat (Wulder et al. 2008, García-Feced et al. 2011). 

 Forest inventories are typically developed using the area-based approach (White et al. 

2013), where the forest is segmented into a series of grid cell-areas, ranging from 10 m to 1 ha in 

size. First, the LiDAR point cloud and the desired forest attribute (e.g. stem density) within each 

grid cell are each measured. Next, predictive models are then developed relating the field 

measurements to the LiDAR measurements. Finally, these models can then be applied to every 

grid cell across a landscape. The resulting maps are referred to as enhanced forest inventories 

(EFIs). 

 While LiDAR data are becoming increasingly available to the public, few studies have 

emphasized mapping whole regions, focusing instead on specific municipalities or individual 

parcels. One example of regional LiDAR modeling occured in Sweden, which recently completed 

a project to develop nation-wide forest inventory maps at a 12.5 m resolution (Nilsson et al. 2017). 

Similar maps have also been generated in Finland (Kangas et al. 2018). In Canada, large portions 

of Alberta’s forests have had their vegetative functional groups mapped (Guo et al. 2017), and in 
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New Brunswick, a province-wide effort has resulted in near wall-to-wall LiDAR inventories (Dick 

2019). We note that each of these examples make use of largely homogenous LiDAR datasets. 

1.2 The current approach 

 One common difficulty in generating regional LiDAR inventories is that many regions are 

comprised of a patchwork of LiDAR datasets acquired with various specifications, and with forest 

analytics as a secondary objective. This is particularly problematic because the standard approach 

for measuring a LiDAR point cloud for the development of an EFI model is to take a series of 

summary statistics describing point heights and vertical distributions. These include measures of 

the mean, variance, and vertical quantiles, as well as proportions of points that fall above certain 

height thresholds (McGaughey 2009, Silva et al. 2017). Unfortunately these traditional features 

suffer from several drawbacks, such as (1) a high degree of autocorrelation, (2) a propensity to 

change based on LiDAR sampling design (e.g. pulse density), and (3) a propensity to change based 

on phenology. 

Several software suites exist for extracting height features from LiDAR, each producing 

upwards of fifty features including the heights of every 10th percentile (Silvia et al. 2015). While 

powerful predictors, many of these measurements are also highly correlated, and so there is a risk 

of model overfitting without careful model selection (Junttila et al. 2015, Næsset et al. 2005). 

Unfortunately, many studies make use of every predictor and report on those most important, 

despite most modelling techniques being unreliable for ranking autocorrelated features (,).   

A standard measure for assessing LiDAR quality is pulse density, which refers to the 

number of laser pulses landing within a given area (pls/m2). Pulse density can vary both between 

and within LiDAR acquisitions, and frequently regional LiDAR collections consist of many 

acquisitions in which pulse density varies by up to an order of magnitude. Many studies have found 
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that varying pulse density can adversely affect EFI predictions across different LiDAR data sets. 

For example, in Gobakken and Næsset (2008) noted that the area-based approach was strongly 

effected by pulse density. Hansen et al. (2015) determined that EFI estimates could be subject to 

biases if predictions were made on point clouds of different densities than those used to train the 

model. Other differences in acquisition parameters related to LiDAR sampling design – such as 

sensor type, pulse frequency, and flight altitude – can also result in different height features being 

generated over the same area of forest (Næsset 2009, Goodwin et al. 2006).  Seasonality also has 

a major impact on LiDAR height features (Næsset 2005, White et al. 2015, Villikka et al. 2012). 

In deciduous forests, the presence of leaves can result in LiDAR beams being intercepted higher 

in the canopy (Ørka et al. 2010). Generally, models developed using one LiDAR point cloud are 

often not applicable to another, prohibiting regional LiDAR modelling without unusually 

consistent LiDAR datasets (White et al. 2013). 

1.3 Deep learning 

 Here we use deep learning to overcome these obstacles by developing a single model for 

predicting forest attributes that is applicable across many disparate LiDAR and satellite datasets. 

Deep learning is a form of machine learning, and primarily refers to artificial neural networks of a 

sufficient complexity so as to interpret raw data, without a need for human-derived explanatory 

variables. These differ from simpler neural networks (such as perceptrons) which make estimates 

using a set of features derived from the data (e.g. height percentiles). Recently, deep learning has 

proven itself successful at classifying imagery despite varying contextual information, such as 

light levels and background subject matter (Krizhevski et al. 2012, LeCun et al. 2015). We posit 

that deep learning will improve EFI modeling by identifying useful spatial features in the LiDAR 

point cloud without the need for human-derived explanatory variables such as height metrics. 
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These features can be complex shapes and gradients in 3-D space that are less subject to change 

relative to one another with different acquisition parameters, such as the edges of tree crowns 

(Ayrey and Hayes 2018).  

 We implemented a type of spatial deep learning model called a convolutional neural 

network (CNN). A CNN works by passing a series of moving kernels over spatial data. As the 

model trains, the weights of those kernels are tuned to identify features useful for predicting the 

dependent variables (such as the edges of objects). Deep CNNs stack many of these moving 

windows atop one another, allowing the algorithm to quantify complex features. The three-

dimensional CNN developed here uses a volumetric window to quantify a LiDAR point cloud that 

has been binned into voxel-space. The 3D CNN is thus able to quantify vertical as well as 

horizontal features, and shapes such as tree crowns, providing a level of complexity not captured 

by height metrics. 

 Early CNNs were first developed in the late 1990s and were used to classify hand written 

digits (Lecun and Bengio 2005). The technique was largely underrepresented in data science until 

advances in computing power, technique, open-source tools popularized them in 2012 (Krizhevsky 

et al. 2012). Since then, CNNs of increasing complexity have consistently outperformed models 

based on feature extraction for computer vision tasks (Szegedy et al. 2015, Tiagman et al. 2014, 

He et al. 2016). More recently, CNNs have been becoming a popular option for remote sensing 

problems. There has been much success in using 2D CNNs to classify aerial imagery, 

hyperspectral, and LiDAR data (Rizaldy et al. 2018, Ghamisi et al. 2017, Castelluccio et al. 2015).  

In relation to forestry, some have used segmentation algorithms to isolate individual trees 

from LiDAR, then used 2D CNNs to classify tree species (Guan et al. 2015, Ko et al. 2018). Work 

is also being done using 2D CNNs to identify individual tree crowns from high resolution imagery 
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(Weinstein et al. 2019, Li et al. 2016). Progress has also been made in adapting CNNs to scan 

LiDAR point clouds and three dimensional space. Similar CNNs that make use of voxels to 

quantify point clouds have been used to identify household objects and malignancies in medical 

scans (Qi et al. 2016, Maturana and Scherer 2015). In 2017 Qi et al. introduced PointNet, designed 

to interpret LiDAR data without voxels, although this technique does not make full use of the 

spatial relationship between neighboring points. In a remote sensing context, Maturana and 

Scherer (2015) used a 3D CNN to identify helicopter landing zones in LiDAR. Most similar to this 

study, Ayrey and Hayes (2018) tested a variety of CNN architectures to interpret LiDAR for the 

estimation of forest attributes.  

1.4 Objectives 

The primary objective of this study is to develop a regional EFI over the Acadian/New 

England Forest region, with a total of 85 % coverage of the New England states using publically-

available LiDAR. We overcome several challenges faced by having disparate LiDAR datasets 

through the use of deep learning, and we incorporate other remote sensing products such as spectral 

data, phenology, and disturbance history to improve model accuracy.  A secondary objective is to 

assess the value of deep learning, and compare it to standard approaches for LiDAR modelling. A 

final objective is to compare our mapped estimates of biomass, percent conifer, and tree count to 

estimates derived via the design-based U.S. national forest inventory program. We will compare 

estimates made at the plot-level and at the county-level using both inventory techniques, and 

identify any obvious shortcomings. The end result will be a series of near wall-to-wall mapped 

forest inventory estimates of the region, with an accurate assessment of error across space and 

forest type. This will provide forest managers, ecologists, and climate modelers in the region with 

an unprecedented amount of detailed information about the forest. 
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2. Materials and Methods 

2.1 Forest attributes 

Our goal was to estimate many forest attributes which may be useful to ecologists, forest 

managers, and modelers.  The complete list is found in Table 1. For brevity, at points throughout 

this manuscript we will highlight only the results of the aboveground biomass (BIOAG), percent 

conifer (PC), and tree count (TC) estimations. All other attributes can also be considered 

measurements of tree size, density, or species; and are often represented by these three. 

Table 1. A complete list of forest attributes estimated in this study. Note that all estimates were 

made exclusively on trees greater than 10 cm in diameter. 

Forest Attribute Units Description 

Aboveground Biomass 

(BIOAG) 

kg Aboveground biomass as calculated by the USFS’s FIA component ratio 

method. 

Total Biomass  kg Total woody biomass as calculated by the USFS’s FIA component ratio 

method. 

Basal Area m2 Basal area at breast height. 

Mean Tree Height m Mean height of the trees’ apices. Not a measure of mean overall canopy 

height.  

Quadratic Mean Diameter cm Quadratic mean of diameter at breast height. 

Volume m3 Total inner bark volume of each tree’s bole. 

Volume, Merchantable m3 Total merchantable inner bark volume of each tree’s bole; starting at 10 cm 

above ground and ending at a height of 10 cm in diameter. 

Tree Count  

(TC) 

# Total number of trees.  

Percent conifer stems 

(PC) 

% Percentage of conifer stems.  

Percent spruce/fir % Percentage of spruce or fir species stems.  

Percent pinus strobus % Percentage of white pine (Pinus strobus) stems.  

Volume of deciduous m3 Total inner bark volume of deciduous tree boles. 

Volume of spruce/fir m3 Total inner bark volume of spruce or fir tree boles. 

Volume of pinus strobus m3 Total inner bark volume of white pine (Pinus strobus) tree boles. 

 

2.2 Training data 
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 For most applications deep learning requires very large datasets (Russakovsky et al. 2015). 

To meet this requirement we combined thirteen different forest inventories collected over thirty 

two sites (Appendix Table A1). Within each inventory all trees greater than 10 cm in diameter 

were measured spatially with species and diameter recorded. In several inventories, tree heights 

were only measured on only a subset of trees, so species-specific non-linear height-diameter 

models were generated using a Chapman-Richards model form to impute tree height using the 

existing height measurements at each site. Some inventories were also measured up to ten years 

prior to LiDAR acquisition. In instances in which the temporal discrepancy between LiDAR and 

field data exceeded two years, trees were projected forward in time using the Forest Vegetation 

Simulator’s Acadian Variant (Weiskittel et al. 2012).  

Volume was estimated using regional taper equations (Li et al. 2012). A 10 cm cutoff was 

used for merchantable volume. Biomass was estimated using the component ratio method 

developed for the US Forest Inventory and Analysis (FIA) program (Woodall et al. 2011). 

Each of the stem-mapped inventories were aligned visually with the LiDAR to correct for GPS 

error in plot location, and then segmented into 10x10 m grid cell plots. We selected this resolution 

in order to amplify the amount of unique plots available, while retaining plots large enough to 

contain several whole tree crowns. While they provide highly spatially-explicit models, this plot 

size is small compared to those used in other studies, and so can be prone to edge effects. 

We accounted for edge effects by using regional diameter-to-crown width equations to 

project each tree’s crown in space (Russell and Weiskittel 2011). Tree level basal area, biomass, 

and volume allometry were then multiplied by the proportion that each tree’s crown overlapped 

the plot. Trees were therefore treated as areas containing biomass, rather than points which could 

lie one or another side of a plot boundary (,). This mimics the method by which the remote sensing 
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instrument measures the trees, as LiDAR or imagery has no means of measuring the precise 

location of a tree’s stem. Figure 1 demonstrates this correction. Preliminary testing using a subset 

of the data indicated that this correction greatly improved model performance. 

 

Figure 1. The percent of crown overlap of each tree in and around the plot was used as a modifier 

on that tree’s basal area, biomass, and volume. This allowed for the development of models which 

more closely reflected what was visible to the remote sensing systems, while remaining unbiased 

across multiple cells. 

 We also augmented the sample size of our training data by allowing plots to overlap one 

another by a maximum of 25 %, and by including multiple LiDAR acquisitions of the same plot 

in the training dataset. The precise configuration of LiDAR returns will always vary between 

acquisitions. Similar augmentation techniques, such as transforming or rotating input images 

multiple times, and using adjacent still frames of videos have been successfully used in deep 

learning for many years (). Lastly, we included 500 plots with no trees on them to allow for better 

predictions in low-vegetation environments, which were sampled randomly across Northern New 

England using the 2011 National Land Cover Database (). The associated LiDAR point clouds 

were then manually checked for trees and discarded if trees were found. 

Ultimately we assembled 24,606 plots for model training and preliminary evaluation. Of 

these, we randomly withheld 4,000 plots, including 1,000 for model validation (to determine the 

optimal stopping point during deep learning training), and 3,000 for model testing (used for model 
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comparison and selection). Augmented plots related to withheld plots were removed from the 

training dataset, thus the final training set was comprised of 17,432 plots. 

2.3 Remote Sensing Data 

  2.3.1. LiDAR 

 We aggregated 49 public LiDAR datasets from across the region, combining acquisitions 

of varying pulse density and seasonality. Although much of the pubic LiDAR in the US Northeast 

is flown leaf-off, we chose to develop models capable of functioning in either state to allow for 

potential future integration with leaf-on Canadian Maritime data. The training data ultimately 

consisted of a 53 to 47 % split between leaf-off and leaf-on respectively. 

The majority of the LiDAR used for this study was funded and hosted by the US Geological 

Survey’s national 3D Elevation Program (3DEP). These data were captured in leaf-off conditions 

between 2006 and 2018 at resolutions ranging from 0.5 to 10 pls/m2. We also incorporated LiDAR 

data acquired by NASA Goddard’s LiDAR Hyperspectral and Thermal Imager (G-LIHT) as well 

as the National Ecological Observatory Network (NEON). These data were acquired in leaf-on 

conditions over several of our training sites with pulse densities ranging from 5 to 16 pls/m2. 

Finally, we incorporated several private LiDAR datasets for training, including one each over the 

Penobscot Experimental Forest, Baxter State Park in Maine, and Noonan Research Forest in New 

Brunswick. Each of these had an average pulse density of 5-6 pls/m2, where the first two were 

leaf-off and the second leaf-on. Both pulse density and seasonality were included as model 

predictors. 

2.3.2 Satellite variables 

We also chose to include satellite derived spectral indices, disturbance metrics, and 

phenology data in our models. Each of these are spatially contiguous across our study area, and 
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have proven useful for predicting forest attributes (Zheng et al. 2004, Pflugmacher et al. 2012, 

Clerici et al. 2012). All satellite data processing was done in Google Earth Engine (Gorelick et al. 

2017). 

Using Sentinel-2b data, we generated maps of six spectral vegetation indices: Normalized 

Burn Ratio (NBR, Key and Benson 2999), Normalized Difference Vegetation Index (NDVI, Rouse 

et al. 1973), Normalized Difference Moisture Index (NDMI, Cibula et al. 1992), Red-Edge 

Chlorophyll Index (RECI, Gitelson at al. 2006), Greenness Index (GI, Hunt et al. 2011) and 

Triangular Chlorophyll Index (TCI, Hunt et al. 2011). Landsat-8 imagery was used generate three 

tassel-cap indices (brightness, greenness, and wetness, Crist 1985). This imagery was acquired 

between 2015 and 2017, imagery from between the 150th and 244th Julian days were used. All 

images were cloud-masked, then a single median composite was developed for the study area. 

Resolutions greater than 10 m were resampled to match our plot size. 

We also incorporated disturbance history using Landsat 5-8 and the LandTrendr 

disturbance detection algorithm (Kennedy et al. 2010). LandTrendr works by fitting a maximum 

of seven linear segments to the yearly medians of a spectral band within each Landsat pixel. 

Vertices identify dramatic changes in the spectral characteristics of that pixel in time, and often 

correspond to disturbances. We ran LandTrendr over the greenness and wetness tassel cap indices, 

and NBR. Instances in which LandTrendr identified a vertex in two or more of the three bands, 

within two years of one another were retained as disturbances. We then condensed these data into 

the year of last disturbance and the magnitude of that disturbance (as a percent of vegetation index 

change). 

Finally, we estimated growing season length across our study area using Moderate 

Resolution Imaging Spectroradiometer (MODIS) data with a resolution of 500 m. This was derived 
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by subtracting the mean dates of greenness onset and senescence, and has been demonstrated to 

correlate well with site quality, and so may aid models which primarily use height to infer tree size 

(Xhang et al 2006). 

2.4 Deep learning modelling: 

  2.4.1 Data preparation 

 We first prepared the LiDAR data to be scanned by the 3D-CNN by converting it from a 

point cloud with each data point representing an X,Y, and Z value, to volumetric pixels (voxels). 

A height-normalized point cloud was voxelized by segmenting each 10 x 10 x 35 m space 

(representing a grid cell) into 40 x 40 x 105 bins, and then tallying the number of LiDAR points 

within each bin. Thus, each voxel represented a space of 25 x 25 x 35 cm on our plot. We used 

vertically rectangular voxels to reduce dimensionality and prevent horizontal features from being 

lost. Voxel size was determined through qualitative testing of several size configurations using a 

reduced model form. Ultimately the voxel data took the form of a three-dimensional tensor, over 

which the kernels of a CNN could be passed. Although it has been noted that CNNs frequently 

perform better and train faster when applied to standardized data (Krizhevsky et al. 2012), we tried 

several standardization techniques (z-score, prescience/absence, ect…), and found no such 

improvement. 

  2.4.2 Model architecture 

 Our deep learning model architecture was based loosely on Google’s Inception-V3 

(Szegedy et al. 2016), which was determined by Ayrey and Hayes (2018) to be better suited than 

several other commonly-used CNN architectures. The underlying model-form was converted to 

interpret 3D data, and care was taken to maintain similar proportional dimensionality to the 
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original model (designed to interpret images with a resolution of 224 x 224). The full model 

architecture is visualized in Figure 2. 

 

Figure 2. The full architecture of the Inception-VS convolutional neural network used to predict 

forest attributes from LiDAR and satellite data. 
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Inception-V3 consists of a series of preliminary convolution and pooling layers, followed 

by inception layers. Inception layers consist of a number of convolutions of varying sizes which 

are passed over the incoming data, each designed to pick up on different features, which are then 

concatenated. Inception-V3 consists of nine inception layers back to back, with intermittent 

pooling to reduce dimensionality. The final inception layer is fed into a fully connected layer for 

a classification or regression prediction. Each convolution was followed by a ReLU activation 

layer and batch normalization. 

The model was first trained to estimate only BIOAG using LiDAR. We used a process 

called transfer learning to initialize the weights of a more complex model using the weights from 

the simpler one, which was designed to simultaneously predict all 14 of our forest attributes. Each 

forest attribute was standardized using z-scores so that their values fell upon the same range. A 

single loss function was then used to optimize the model to predict all forest variables (Equation 

1). In which, the mean of the squared error of the k standardized forest attributes is summarized to 

a batch level mean of n training samples. 

𝑙𝑜𝑠𝑠 =  
1

𝑛
∑  

1

𝑘
∑(

𝐾

 𝑗=1

𝑁 

𝑖=1

ℎ𝜃(𝑥𝑖𝑗) −  𝑥𝑖𝑗)2 

We included the satellite data as side-channel information by first developing a multi-layer 

perceptron to estimate BIOAG directly from the satellite variables. We took the weights from this 

model and used them to initialize a subcomponent of the larger model, which produced a 40 x 40 

tensor that was then concatenated onto the LiDAR voxels (Zhou et al. 2017).  

2.4.3 Training 

Deep learning models were developed in Python using Google’s Tensorflow version 1.4 

(Abadi et al. 2016). The model training process took place in three stages using transfer learning 
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to build upon each stage (1) A BIOAG model using only LiDAR, (2) A model predicting all 

fourteen attributes using only LiDAR, and (3) a model predicting all fourteen forest attributes 

using LiDAR and satellite metrics. Training time for the first stage was approximately five days 

using an NVIDIA Tesla k80, the following stages were trained more rapidly. This lengthy multi-

step training process made cross-fold validation highly impractical. 

2.5 Traditional modelling 

 Deep learning models were compared to models trained using the standard suite of LiDAR 

height metrics, derived using the Rlidar package (Silva et al. 2015). This produces a series of 

summary statistics of the LiDAR return’s heights and proportions above certain height thresholds. 

We discarded metrics which made use of LiDAR intensity and return counts, as these could not be 

normalized between the different LiDAR acquisitions. We filtered out points lower than 0.5 m 

above ground, and used a 2 m threshold for many of the proportional metrics. Other studies in the 

region have used similar cutoffs (Hayashi et al. 2014). We also included the aforementioned 

satellite-derived metrics, as well as pulse density, and seasonality. In total 41 covariates were 

derived from the LiDAR and satellite data. 

 Random forest imputation in regression mode was used to model each of the forest 

attributes (Breiman 2001). Other studies conducted on subsets of our dataset have demonstrated 

that this modelling technique outperforms linear mixed-effects modelling (Ayrey and Hayes 2018, 

Hayashi et al. 2015).  We used a process called Variable Selection Using Random Forest to 

eliminate unimportant predictors (Genuer et al. 2015). New models were then developed using 

2000 decision trees and one-third variable selection at each node-split. These hyper-parameters 

were fine-tuned using a subset of the data. 
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  The random forest models were trained and validated using the withheld test plots. 

Although accuracy can be assessed using out-of-bag sampling, we used the same validation 

scheme as the deep learning models due to data augmentation and consistency. 

2.6 Validation 

 The training, validation, and testing data derived from the thirteen individual forest 

inventories are likely not fully representative of the landscape, leading to problems with spatial-

autocorrelation at the regional scale. We therefore performed two phases of validation. The first 

phase of validation made use of the 4,000 withheld plots. This was used for model comparisons 

between deep learning and traditional modelling, and to settle on the final model form.  

 The second phase of validation made use of an independent dataset, and was used to assess 

true model performance across the landscape. For this we used the United States Forest Service’s 

FIA national inventory plots. These consisted of approximately 7,500 stratified-random plots with 

a nested sampling design within the states of Connecticut, Maine, Massachusetts, New Hampshire, 

Rhode Island, and Vermont. We used these to determine the maps’ error and bias, assess spatial-

autocorrelation across the landscape, and compare our inventory estimates to FIA county-level 

estimates. We assessed error in Connecticut and Rhode Island separately as their forests 

increasingly represent a Mid-Atlantic forest type not fully represented by the training data. We 

removed buildings from our maps using a building mask of the United States developed by 

Microsoft’s Bing Maps Team using high resolution imagery (Bing Maps Team 2018). 

The FIA plots consist of a nested plot design that includes four 7.3 m radius subplots placed 

36.6 m away from one another. The subplots have an area of 168 m2, while the entire FIA plot 

taken as an aggregate has an area of 672 m2. The individual subplot measurements were more 

affected by errors in plot location, as these were more subject to intra-canopy variability. A 
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preliminary finding that the center plots (on which the GPS point is taken) produced a lower error 

than the subplots reinforced this conclusion. The aggregate plot-level measurements were less 

prone to location errors, but did not necessarily represent the entire range of variability that one 

would expect in a 10 m grid cell. It is important for validation plots to have roughly the same area 

as the grid cells being validated so that each have a similar range in values. We therefore assessed 

accuracy at a subplot- and plot-level, but used the plot-level errors to perform additional analyses. 

This is roughly equivalent to assessing error were the map resampled to a 20 m resolution.  

We decided not to use FIA plots for model training for several reasons: (1) The FIA nested 

plot design was not compatible with our edge correction technique. (2) FIA plot locations are 

imprecise and recorded with a consumer-grade GPS, and frequently have an error greater than the 

size of our cells. (3) FIA plot location data is not publically available and is subject to considerable 

restrictions, less so if only used for extracting error.  
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3. Results 

3.1 Phase one validation and model comparison 

The first validation phase made use of 

withheld plots to compare fourteen random 

forest models using height and satellite metrics 

to two Inception-V3 CNNs. The first CNN made 

use of only the LiDAR point cloud, while the 

second made use of the LiDAR point cloud and 

satellite metrics. Results in terms of RMSE and 

bias are displayed in Table 1. In terms of RMSE, 

both CNNs outperformed random forest in 

predicting 12/14 forest attributes (the two 

exceptions being for predictions of percent 

conifer and percent spruce fir). In terms of 

absolute bias, random forest outperformed both 

CNNs in 7/14 metrics. It should be noted that in 

many comparisons of bias, the absolute 

difference between models was negligible.  

The comparison between CNNs with and 

without satellite metrics illustrated that the 

satellite metrics are contributing to an 

improvement in the final model’s performance. 

In terms of RMSE, the CNN with satellite 

Table 1. Results in terms of RMSE, RMSE as a percent 

of mean (%), and bias of three models. Random forest 

models trained using LiDAR height and satellite 

metrics, an Inception-V3 model trained using only the 

LiDAR point cloud, and an Inception-V3 model trained 

using the LiDAR point cloud and satellite metrics. 

Highlighted in green are the best values achieved. 

 

 

Random 

Forest with 

Satellite 

Metrics 

Inception-V3  

without 

Satellite 

Metrics 

Inception-V3  

with 

 Satellite 

Metrics 

 RMSE  

(%) 
Bias 

RMSE  

(%) 
Bias 

RMSE  

(%) 
Bias 

BIOAG 

(Mg/ha) 

48.5 

(29.4) 
-1.2 

34.5 

(20.9) 
1.3 

33.2 

(20.1) 
-1.5 

PC 

(%) 

13.3 

-- 
-0.1 

15.7 

-- 
-2.3 

14.2 

-- 
-1.7 

TC 

(#) 

2.51 
(37.2) 

-0.01 
2.10 

(31.1) 
-0.6 

1.75 

(26.1) 
-0.03 

BIOTOT 

(Mg/ha) 

58.2 
(29.1) 

-1.4 
41.5 

(20.8) 
1.2 

40.0 

(18.6) 
-2.58 

BA 

(m2) 

0.083 

(24.5) 
-0.001 

0.065 

(19.3) 
-0.004 

0.063 

(20.0) 
-0.009 

HT 

(m) 

2.6 

(15.2) 
0.14 

2.1 

(12.0) 
0.6 

1.5 

(9.1) 
-0.07 

QMD 

(cm) 

5.9 

(23.9) 
0.2 

4.3 

(17.2) 
0.2 

3.8 

(15.3) 
0.1 

PSF 

(%) 

8.3 

-- 
0.1 

10.8 

-- 
-3.6 

9.5 

-- 
-0.2 

PWP 

(%) 

8.6 
-- 

-0.1 
6.7 
-- 

0.1 
6.6 

-- 
-0.3 

VOL 

(m3) 

0.81 
(27.5) 

-0.019 
0.580 
(19.7) 

-0.013 
0.558 

(18.9) 
-0.022 

VOLM 

(m3) 

0.751 

(27.8) 
-0.016 

0.545 

(20.1) 
-0.012 

0.524 

(19.3) 
-0.033 

VOLD 

(m3) 

0.756 

(60.6) 
-0.002 

0.460 

(36.9) 
-0.023 

0.446 

(35.8) 
0.001 

VOLSF 

(m3) 

0.31 

(91.4) 
0.007 

0.227 

(67.1) 
0.016 

0.238 

(70.2) 
-0.017 

VOLWP 

(m3) 

0.483 

(94.2) 
-0.016 

0.388 

(75.6) 
-0.075 

0.383 

(74.6) 
-0.039 

* Forest attribute abbreviations are as follows: BIOAG = 

Aboveground biomass, PC = Percent conifer, TC = Tree Count, 

BIOTOT = Total biomass, BA = Basal area, HT = Mean tree height, 

QMD = Quadratic Mean Diameter, PSF = Percent spruce or fir, 

PWP = Percent Pinus strobus, VOL = Inner bark volume, VOLM 

= Merchantable volume, VOLD = Deciduous volume, VOLSF = 

Spruce or fir volume, VOLWP = Pinus strobus volume 

 

* Forest 
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metrics outperformed the one without 100 % of the time. The CNN without satellite metrics had 

less absolute bias in predicting 3/14 metrics. Despite this, the proportional improvement in terms 

of both RMSE and bias after the addition of satellite metrics was relatively small. Additional 

testing of the random forest model with and without satellite metrics indicated a greater relative 

improvement in predictive power. 

  

3.2 Phase two validation 

 In the second phase of validation each of the mapped forest attributes were validated across 

Northern New England using FIA plots. Table 2 displays the results of this validation in terms of 

RMSE, RMSE as a percent of mean (nRMSE), and bias at both the subplot- and plot-level. We 

did not assess random forest performance in this phase because we did not apply these models at 

a regional level; such an effort would have been computationally costly in the extreme and was 

unnecessary given our model selection process in the first phase. Model error at the subplot-level 

was considerably higher than error at a plot level with each forest attribute. This is to be expected 

given that smaller areas are more likely to contain extreme values, and the subplot values are more 

likely to be affected by GPS inaccuracy. The opposite trend could be seen in bias, with 10/14 

attributes exhibiting greater bias at the plot-level.  
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Results of the second phase of validation 

indicated that two phases were in fact 

necessary to obtain a more representative 

assessment of regional model performance. 

Plot level RMSE was worse than the RMSE 

obtained from the first phase of validation in 

13/14 forest attributes, indicating that the 

withheld plots likely did not represent 

landscape heterogeneity.  In some forest 

attributes this difference was relatively 

minor. Performance of the tree count, mean 

height, and species estimates were notably 

worse in the second phase of validation. The 

error of each of these values increased 

between 41-90 % from that observed in the 

first phase of validation. 

Overall, the error and biases of 

attributes representing tree size were 

considerably lower than those representing 

species or stem density. Aboveground 

biomass, total biomass, basal area, mean tree 

height, QMD, and volume all had a plot-level 

nRMSE of less than 50 % in Northern New 
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England. In contrast, tree count had a nRMSE of 56 %. Model performance was worst in volume 

estimates of species groups. Estimates of the deciduous volume had a relatively high nRMSE, 61 

%. Estimates of spruce/fir, and pinus strobus volume both had nRMSEs above 150 %, and could 

generally be considered not useful. We did not assess nRMSE of the percent species group 

estimates. The RMSE and biases of percent spruce/fir and percent pinus strobus were lower than 

that of percent conifer, but this is likely because their average values are smaller. Qualitatively, 

the maps of percent conifer appeared better, with the others suffering from more banding and local 

biases.  

 We also assessed model performance of BIOAG, PC, and TC in Northern New England 

spatially and by plotting their predicted verses observed values. Figure 2 illustrates the plot-level 

residuals of each of the three forest attributes. We note that the BIOAG residuals appear to be 

fairly evenly distributed across the landscape, with consistent model biases not immediately 

apparent. Positive PC residuals appear to be clustered mostly in Eastern Maine, where greater 

number of conifers are likely to be found, indicating that the model is underestimating in areas of 

proportionally higher conifers. Likewise, negative residuals in Vermont are an indication that the 

model is underestimating in areas with proportionally fewer conifers. Tree count followed a similar 

trend, greater residuals were encountered in more northern areas, which correspond to both greater 
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stem density and more industrial forests. 

 

 These trends can also be observed in the predicted versus observed plots (Figure 3). 

Biomass residuals fall relatively tightly along the 1:1 line. Little to no attenuation is observed at 

higher biomass values. Percent conifer residuals seemed to indicate a tendency to overestimate in 

low conifer environments, and underestimate in high conifer environments. Finally, tree count 

residuals appeared to follow the 1:1 line in low-medium density conditions, but often severely 

 

Figure 2. FIA plot-level residuals are plotted for three of mapped forest attributes. Red areas denote model 

underestimation, blue areas denote model overestimation.  
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underestimated tree count in high-density conditions. 

 

We assessed model performance across different LiDAR datasets by plotting the Northern 

New England plot-level bias as a function of pulse density (Figure 4). We used lowess regression 

to fit a moving trendline to the data using 75 % of observations to smooth the line at each value. 

No biases stemming from pulse density were apparent in this visualization, with the trend lines for 

biomass and tree count consistently near-zero, and the trend line for percent conifer showing a 

slight positive bias, but had no apparent trend with pulse density. Nevertheless, banding was visible 

on the maps of percent conifer and tree count in regions of very low pulse density. The bands 

appeared to follow trends in average scan angle along each flight line, and so may have been a 

function of pulse density and scan angle combined. Unfortunately, we did not map mean scan 

 

Figure 3. Predicted versus observed plots using FIA plot-level validation. 
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angle across the landscape a-priori as we did pulse density. 

 

3.3 County-level comparisons 

 With the region mapped, we compared country level estimates derived by summing the 

values of our map with FIA county-level design-based estimates. This data is summarized in Table 

3. We chose the 38 counties in Northern New England with complete LiDAR coverage. Initially 

we used all FIA plots within a county measured within two years of the LiDAR acquisition. We 

discovered however, that a large number of FIA plots without measured trees on them were located 

in suburban environments with trees. This resulted in underestimates by the FIA data of each forest 

attribute, so plots that were denoted as having no trees that fell within semi-forested suburbs were 

removed after manual aerial photo interpretation.  

 Examining aboveground biomass, our predictions fell within the 95 % confidence interval 

of the FIA’s in 31/38 counties, and within 97.5 % confidence interval in 33/38 counties. Across 

the landscape of these counties the FIA estimated 4 % more biomass then our maps. This is to be 

expected given that our maps frequently had gaps between LiDAR acquisitions and occasionally 

had missing LiDAR tiles. The FIA’s lack of urban tree sampling likely also played a large role. 

 

Figure 4. Bias by pulse density in Northern New England using FIA plot-level validation. The dashed blue 

line is a lowess regression fit of the data. 
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Eight of the counties were classified by the US Census Bureau as having an urban population 

greater than 50 %. In these urbanized counties FIA estimates were an average of 13 % lower than 

our own when including empty plots in suburban forested areas, and 11 % greater than our own 

after they were removed. 

 In estimating percent conifer, 25/38 of our estimates fell within the 95 % confidence 

interval of the FIA’s estimate. In agreement with the map of residuals, the percentage of conifers 

was significantly underestimated in 6/11 counties in Maine, and significantly overestimated in 4/8 

counties in Vermont. In 16/19 counties in Massachusetts and New Hampshire, our estimate of 

percent conifer was within the 95 % confidence interval of the FIA’s. Across the entire landscape 

the two estimates were within 0.2 % of one another. 

 County level tree count estimates fell within the FIA’s 95 % confidence interval 30/38 

times. Once again, counties in Maine with greater numbers of small trees were more likely to be 

underestimated. In 5/12 Maine counties, mapped estimates of tree count were significantly lower 

than the FIA’s estimates. Outside of Maine 24/27 counties had mapped estimates in agreement 

with FIA estimates. This is likely owing to an overall greater stem density in Maine due to more 

intensive industrial forestry, and a general proclivity of boreal forests to be denser. 
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Table 3. County-level estimates of total aboveground biomass (BIOAG), percent conifer (PC), and tree 

count (TC) are compared using the FIA’s design-based sampling and summations of our forest inventory 

maps. Blue denotes mapped estimates that fell within the 95 % confidence interval of the FIA’s estimate, 

yellow denotes estimates that fell within 97.5 %, red denotes values that estimates that differed from the 

FIA. 

State County 
FIA BIOAG 

(Petagrams) 
EFI BIOAG 

(Petagrams) 
FIA PC 

(%) 
EFI PC 

(%) 
FIA TC 

(Millions) 

EFI TC 

(Millions) 

Maine Cumberland 21.47 ± 3.48 18.75 34.45 ± 5.70 26.71 106.57 ± 17.47 89.79 

Maine Hancock 29.25 ± 3.54 29.57 55.63 ± 5.09 43.25 277.55 ± 32.08 244.19 

Maine Kennebec 17.29 ± 2.95 16.72 30.04 ± 5.40 28.86 112.41 ± 19.54 92.92 

Maine Knox 7.52 ± 2.08 5.48 42.67 ± 9.24 30.68 52.47 ± 13.05 35.11 

Maine Lincoln 9.06 ± 2.07 8.31 35.02 ± 8.28 32.43 55.02 ± 14.33 48.59 

Maine Penobscot 56.87 ± 4.64 56.21 51.11 ± 3.58 43.26 585.06 ± 41.93 452.14 

Maine Piscataquis 64.96 ± 5.18 61.13 50.86 ± 3.49 46.27 654.97 ± 49.96 527.91 

Maine Sagadahoc 6.70 ± 1.51 5.18 39.53 ± 12.68 33.46 39.98 ± 9.97 29.71 

Maine Waldo 15.97 ± 2.32 11.29 38.70 ± 5.44 33.92 124.14 ± 18.50 71.14 

Maine Washington 42.80 ± 3.86 43.11 50.94 ± 3.74 46.53 422.44 ± 32.49 404.26 

Maine York 25.92 ± 3.32 22.34 30.78 ± 5.26 27.52 139.91 ± 16.95 105.06 

Massachusetts Barnstable 4.49 ± 1.54 4.43 36.53 ± 13.00 23.96 36.25 ± 12.78 41.28 

Massachusetts Berkshire 34.42 ± 4.43 32.59 18.73 ± 5.05 28.67 114.48 ± 15.41 126.32 

Massachusetts Bristol 11.92 ± 2.98 11.89 15.52 ± 5.34 23.90 52.97 ± 15.64 56.44 

Massachusetts Dukes 0.89 ± 0.54 0.85 20.49 ± 20.15 18.87 6.29 ± 3.02 8.73 

Massachusetts Essex 13.98 ± 2.10 11.15 23.61 ± 5.15 18.41 57.68 ± 12.13 39.25 

Massachusetts Franklin 23.98 ± 3.75 27.30 31.35 ± 5.86 29.99 86.87 ± 14.18 93.13 

Massachusetts Middlesex 20.76 ± 4.31 17.68 23.50 ± 8.09 21.57 60.96 ± 15.27 65.82 

Massachusetts Nantucket 0.34 ± 1.19 0.06 0.00  6.99 2.49 ± 8.75 0.75 

Massachusetts Norfolk 9.66 ± 3.07 7.91 14.92 ± 8.76 21.77 36.71 ± 11.71 33.72 

Massachusetts Plymouth 13.73 ± 3.66 14.43 33.96 ± 8.64 27.24 58.78 ± 14.02 67.32 

Massachusetts Suffolk NO PLOTS 0.33 NO PLOTS 10.73 NO PLOTS 2.07 

Massachusetts Worcester 44.63 ± 5.77 41.17 22.91 ± 4.75 24.02 144.91 ± 18.86 154.38 

New Hampshire Belknap 10.47 ± 2.42 11.06 29.18 ± 8.56 25.45 50.78 ± 11.55 45.40 

New Hampshire Cheshire 26.48 ± 3.24 25.58 29.09 ± 5.57 31.83 105.08 ± 14.76 98.29 

New Hampshire Hillsborough 25.83 ± 4.00 23.54 28.78 ± 5.45 27.27 102.79 ± 15.68 92.32 

New Hampshire Merrimack 32.48 ± 4.44 24.62 31.80 ± 4.83 27.67 134.76 ± 17.09 99.81 

New Hampshire Rockingham 19.07 ± 3.92 17.89 32.19 ± 6.27 22.27 72.74 ± 14.78 72.68 

New Hampshire Strafford 9.39 ± 2.43 9.76 25.51 ± 8.13 27.51 38.43 ± 10.20 42.43 

New Hampshire Sullivan 16.11 ± 2.58 17.01 30.85 ± 7.20 33.55 74.51 ± 12.52 72.30 

Vermont Caledonia 15.18 ± 3.12 14.79 35.60 ± 8.20 33.14 85.38 ± 16.62 75.95 

Vermont Essex 10.58 ± 1.59 13.95 23.61 ± 5.15 39.51 76.14 ± 9.19 92.98 

Vermont Lamoille 13.73 ± 2.14 12.37 23.19 ± 8.16 35.57 60.14 ± 9.54 62.42 

Vermont Orange 18.18 ± 3.16 19.18 32.09 ± 8.22 30.81 78.32 ± 14.20 79.24 

Vermont Rutland 30.77 ± 3.00 25.65 19.01 ± 4.26 26.68 116.47 ± 11.76 110.83 

Vermont Washington 18.11 ± 2.92 19.55 29.39 ± 6.60 33.57 85.94 ± 13.20 90.94 

Vermont Windham 28.02 ± 3.38 27.60 26.10 ± 6.23 33.09 102.42 ± 12.16 103.68 

Vermont Windsor 30.81 ± 4.33 30.86 19.23 ± 5.52 29.96 112.53 ± 16.81 116.98 

 

3. Discussion 

Our results indicate that 3D convolutional neural networks can be used to estimate forest 

attributes from disparate LiDAR and satellite data. These models outperformed random forest 

models which use the standard approach for generating forest inventories from LiDAR. They could 
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also be effectively scaled to make regional high resolution maps/estimates which were often 

statistically equivalent to traditional forest inventories.  

4.1 Model comparison 

Our first objective was to compare LiDAR derived inventory estimates made using CNNs 

to estimates made using height metrics and random forest. We assessed this in our first phase of 

validation, in which several models were developed from training data and assessed using withheld 

plots. Random forest models trained using traditional height metrics and satellite data nearly 

always had considerably greater error than the two CNNs we trained. This mirrors the results found 

by Ayrey and Hayes (2018), in which 3D CNNs of varying architectures often outperformed 

generalized linear models and random forest. These results indicate that deep learning can be a 

more effective way of modelling LiDAR than the standard approach of height metrics. 

In the estimation of species (percent conifer and percent spruce/fir), random forest did 

outperform the CNNs. These species breakdowns were more likely to rely on satellite spectral data 

than LiDAR structural data, and so we speculate that random forest did a better job of making use 

of the satellite covariates than our CNN. The CNN was initially trained to scan LiDAR voxels, the 

addition of satellite covariates was made after this training, and in such a ways as to concatenate 

satellite data onto voxel space. This may have been less than ideal. Zhou and Hauser (2017) 

outlined several methods for including side-channel data into a CNN, and we tried each of them 

with mixed results before settling on our concatenation method.  

The CNNs also did not outperform the random forest models in terms of bias. Half of the 

random forest models had a lower absolute bias than the CNNs, indicating that both types of 

models did approximately as well as one another. We did not observe any notable trends in biases 
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by forest attribute. Overall, we believe that the differences in absolute bias between models was 

often low enough to have been owing to the random variations of the testing data.  

 The comparison between the CNNs with and without satellite metrics highlighted that the 

CNN did benefit from spectral and disturbance information. Error decreased when estimating 

every forest attribute, and bias nearly always decreased as well.  In terms of magnitude this 

improvement was often small, and our results indicate that even without the satellite metrics, a 

CNN could be trained which outperforms random forest with height and satellite metrics.  We 

chose not to explore which satellite metrics were most useful, as deep learning models of this size 

run no risk of overfitting with extraneous inputs. However, such an analysis would be possible 

through a process similar to random forest’s derived importance, and might be useful in narrowing 

down necessary remote sensing datasets.  

 We noted that there were numerous advantages to working with a single deep learning 

model aside from better performance. Our Inception-V3 model took a considerable amount of data 

and time to train, however, once trained the model could be quickly be applied to large regional 

LiDAR datasets. A single model predicting all 14 forest attributes presented less of a data-

management challenge than 14 separate models. We also hypothesize that our CNN would be less 

likely to produce estimates in conflict with one another than 14 separate unconstrained models 

(e.g. more merchantable volume than total volume). Finally, there is a considerable amount of 

precedence in the field of deep learning for making use of pre-trained model weights to solve novel 

problems (Pan and Yang 2010, Shin et al. 2016,). The rapid retraining of our CNNs indicates that 

this model can easily be fine-tuned with local data, retuned with non-local data, or applied to 

different problems to save modelers the effort of training a large CNN to interpret voxel space 
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with randomized weights. The weights from our CNN could be used to initialize CNNs with other 

LiDAR-related objectives, such as individual tree crown segmentation or LiDAR classification.  

4.2 Assessing performance 

 With the model form decided upon, we mapped all fourteen forest attributes across the 

study area (Figure 4). We assessed the maps’ performance with our second phase of validation, 

which made use of independent FIA plots. We assessed accuracy at a supplot-, plot-, and county-

level. Our subplot-level error estimates were consistently quite high. The FIA plot locations in this 

region are subject to considerable error, and the FIA notes that plot location error can be up to 100 

m (although in practice most plots are located within 12 m of their measured location, Hoppus and 

Lister 2007). Examining pixel-level accuracy using these subplots was problematic given the high 

degree of intra-canopy variation present in 10 m pixels. Our observation that the center subplot 

(on which the GPS location was taken) resulted in lower map error is a further indication that the 

locational accuracy of the surrounding subplots is suspect.  

 Our assessment of plot-level error (the aggregate of the subplots) produced more favorable 

error results. We achieved nRMSE values of between 40-50 % for those attributes quantifying tree 

size, which we consider to be a success given the small size of the grid cells used. Estimates of 

tree count, percent conifer, and deciduous volume we consider to have been made with moderate 

success with nRMSE values of between 56-61 %. Estimates of pinus strobus and spruce/fir species 

breakdowns we consider to be a failure, with nRMSEs exceeding 100 %. Despite this, these maps 

may still be of some use to some practitioners when aggregated to a more coarse resolution and 

binned into categories.  
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We assessed model performance at the county-level and in space using aboveground 

biomass, percent conifer, and tree count. Our map of biomass residuals across Northern New 

England appeared to be relatively uniform. We noted no major trends in residuals in space, 

indicating that we are representing biomass across the landscape well. Notably, we did not 

experience any saturation of high biomass areas as is often the case with regional remote sensing 

studies (Zhao et al. 2016). Our biomass estimates fell within the 97.5 % confidence of FIA biomass 

estimates in all but four counties. Those four counties appeared to have little in common in terms 

of forest characteristics, nearness in space, or population density.  

We also noted that in urban and urbanized counties, FIA estimates of biomass could be 

made to underestimate or overestimate our own, depending on sampling design. Retaining 

supposedly empty FIA plots placed in suburban areas in which trees were present in aerial imagery 

resulted in the FIA underestimating biomass relative to our maps. This suggests that our maps are 

doing a better job of quantifying urban and suburban biomass. By our estimate, this adds up to an 

additional 13 % biomass in urbanized counties. However, we should stress that none of our training 

data made use of urban plots, and few of our training plots had trees grown in the open. This 

improvement may only be the case of some estimate being better than none at all. 

 The map of percent conifer residuals showed a systematic underestimation of percent 

conifer in Eastern Maine, and overestimation in Vermont. These areas are inhabited by very high 

and low proportions of conifers respectively. This trend can also be seen in the county-level 

comparisons of percent conifer. Examining the predicted versus observed plot confirms that this 

model underfit the extremes. The map of tree count residuals was similar to the percent conifer in 

that there was a consistent underestimation of trees in Northern Maine, where stem densities are 

naturally higher due to the species assemblages and greater industrial disturbance results in 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2019. ; https://doi.org/10.1101/580514doi: bioRxiv preprint 

https://doi.org/10.1101/580514
http://creativecommons.org/licenses/by/4.0/


younger forests. The predicted versus observed plot highlights a model saturation in very high 

density forests. Unlike percent conifer, no consistent underestimation of tree count was observed 

in lower density areas. The county-level estimates parallel this finding, with the majority of the 

disagreement between the FIA tree count estimates being in Maine in counties with the highest 

stem densities. Intuitively, one might expect this result given that the structure of very dense forest 

stands resemble one another despite dramatically different stem densities (e.g. a point cloud 

representing a stand with 2000 trees per hectare looks very similar to a point cloud representing 

2500 trees per hectare). Satellite indices are also sometimes prone to the same type of saturation 

at very high stem densities (Mohammadi et al. 2010). 

 Our model’s performance can be summarized as having done a good job at predicting 

attributes closely related to tree size, having done a moderate job of predicting attributes related to 

tree density and percent conifer, and having done a poor job of predicting attributes related to 

species groupings. Other studies modeling forest attribute using LiDAR have likewise had more 

difficulty in estimating stem density and species (Treitz et al. 2012, Hayashi et al. 2014, Shang et 

al. 2017, Hudak et al. 2008).  We can think of several reasons for why our models have also 

underperformed here. (1) Although we incorporated satellite spectral indices useful for species 

estimation, we believe that the model may have not made full use of them. (2) Stem density was 

often underestimated in high density stands, but qualitatively the maps seemed to suffer from 

banding in areas with low pulse density LiDAR (<3 pls/m2). It is possible that the model was 

making use of horizontal structural features in the canopy which could not be resolved in low 

density LIDAR. Ayrey and Hayes (2018) determined that 3D CNNs do make use of horizontal 

canopy structure (such as the edges of tree crowns). (3) Finally, in re-examining our loss function, 

we find that 7/14 of our forest attributes were in some way related to tree size, while only one 
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attribute estimated stem density. It is possible that our unweighted loss function inadvertently 

favored attributes estimating tree size, resulting in a model that identified features in the LiDAR 

that were more predictive of size.  

4.4 Mapping errors 

 Unfortunately, the regional maps of forest attributes suffered from several types of errors. 

One source of these errors were the LiDAR acquisitions themselves, which often didn’t entirely 

overlap, or were collected improperly. Missing areas can often be observed between the gaps of 

the nearly 40 different LiDAR acquisitions over the region. In central Connecticut and Eastern 

Maine portions of the LiDAR were acquired with improper settings, resulting in vegetation being 

severely under-represented. 

 Banding errors occurred with forest attributes that had moderate/worse performance (tree 

count, percent conifer, and species/volume estimates). These bands were more likely to occur in 

areas in which pulse density fell below 3 pls/m2, and followed scan angle trends. In environments 

of low pulse density and high scan angle, these attributes were often underestimated, possibly 

owing to less horizontal structure being captured by the LiDAR. Maps estimating tree size, such 

as BIOAG, VOL, and BA, had few banding errors. 

4.5 Our results in context 

Several other studies have mapped aboveground biomass in this region and can be used to 

place our model’s performance in context. In one early example, Kellndorfer et al. used Landsat 

and radar to map biomass across the Continental United States (CONUS), and achieved RMSE 

values ranging from 42 - 48 Mg/ha over New England with 30 m pixels (Cartus et al. 2012). In 

2008 Blackard et al. used MODIS to predict biomass across the CONUS at a 250 m resolution and 

achieved an average absolute error in New England ranging between 49.7 – 60.4 Mg/ha. In a more 
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regional study, Cartus et al. (2012) mapped aboveground biomass in the Northeastern United 

States using radar, and achieved RMSE estimates of between 46 – 47.3 Mg/ha with 150 m pixels, 

but noted that increasing pixel size dramatically reduced error. A more recent study mapped 

biomass in New England and Atlantic Canada using Landsat time-series data, this achieved a 

RMSE of 44.7 Mg/ha using 30 m pixels (Kilbride 2018). In the context of these studies, our 

aboveground biomass error of 36 Mg/ha at a roughly 20 m resolution (FIA plot-level error), 

represents a considerable improvement over existing remotely-sensed regional estimates.  

Localized studies in experimental forests throughout the region can also be used for 

comparison. In a 2016 study Hayashi et al. mapped stem volume using LiDAR and achieved 

RMSEs of 46 m3/ha and 82 m3/ha in two experimental forests in Maine and New Brunswick (we 

achieved an error of 62.5 m3/ha). In a similar study, Hayashi et al. obtained RMSEs of 4993 

trees/ha, 3.68 cm, and 13 m2/ha for tree count, QMD, and basal area respectively using 20 m cells 

at an experimental forest in Maine (Hayashi et al. 2014). Our regional models achieved errors of 

293 trees/ha, 4.5 cm, and 7.9 m2/ha for these attributes; outperforming the local models in 

estimating tree count and basal area. Another study at an experimental forest in Massachusetts 

used large footprint LiDAR and radar to estimate biomass, achieving a RMSE of 66.6 Mg/ha with 

25 m cells (Ahmed et al. 2010). Taken collectively, our regional models seem to perform on par 

or better than local modeling efforts. 

4.6 Conclusions 

 In this study we mapped the forests of New England at a 10 m resolution, making estimates 

of fourteen different forest inventory attributes. We did so through the use of disparate LiDAR 

datasets as well as satellite spectral, phenological, and disturbance data. Our method of modeling 

these attributes was somewhat novel, and made use of three dimensional convolutional neural 
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networks which are a form of deep learning.  These CNNs outperformed standard modeling 

techniques, and proved themselves useful for large-scale mapping, making use of disparate data, 

and increasing data management and computational efficiency.  

 We validated our maps using an external dataset derived from the USFS’s forest inventory 

and analysis program. We concluded that the most successful estimates were those attributes that 

quantified tree size, moderately successful estimates were those that quantified tree density or 

percent coniferous, and less successful estimates were those that quantified more specific species 

groupings. In particular, we found our biomass estimates to be in good agreement with the FIA’s 

across the region.  

 We believe that both the models and the maps generated by this study will be of use to 

many other scientists. The weights from the CNN trained here could be used as a starting point to 

train models making estimates over different forests, or to other LiDAR-related remote sensing 

problems. Likewise, the maps developed here can assist with wildlife mapping, precision forestry, 

and carbon stock estimation in the region.  
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Appendix Table A1. A list of field inventories used for model training and the first phase of validation. 

Also included, the area those inventories represented, the number of LiDAR field plots, and the number 

of LiDAR acquisitions. When inventories covered multiple sites, those sites are listed. 

Inventory Sites Location(s) 
Area 
(km2) 

Number 
of Plots 

LiDAR 
Acquisitions 

Acadia National Park 
Mount Desert 
Isle au Haut 

Schoodic Point 

-68.294, 44.339 
-68.627, 44.032  

-68.065, 44.351 

671 128 2 

Baxter State Park 
Scientific Forest Management 

Area 
-69.000, 46.176 87 882 1 

Bartlett 

Experimental Forest 

Echidna 

 -71.286, 44.064 0.1 46 1 

Cooperative Forestry 

Research Unit 

Austin Pond 
Alder Stream 

Dow Road 

Golden Road 
Harlow Road 

Katahdin Ironworks 

Lazy Tom 
Lake Macwahoc 

Penobscot Experimental 

Forest 
Ronco Cove 

Rump Road 

Sarah Road 
Schoolbus Road 

St. Aurelie 

Summit 

Week's Brook 

Weymouth Point 

-69.705, 45.193 

-69.798, 45.369 
-69.609, 45.996 

-68.675, 45.719 

-67.842, 45.646 
-69.367, 45.489 

-69.456, 45.726 

-68.286, 45.798 
-68.608, 44.844 

-69.634, 45.680 

-71.018, 45.193 
-70.911, 44.817 

-70.778, 44.841 

-70.161, 46.259 
-68.480, 45.096 

-68.522, 46.217 

-69.308, 45.947 

30000 935 3 

Carbon Monitoring 

System 

 

 
-69.764, 45.589 4645 414 3 

University of Maine 

Forests 

Demeritt Forest 

Penobscot Experimental 
Forest 

-68.678, 44.933 

-68.608, 44.844 
55 912 3 

Fox Forest  -71.911, 43.138 9 581 1 

Harvard Forest Megaplot  -72.176, 42.538 0.4 6646 2 

Harvard Forest Echidna  -72.182, 42.531 0.1 90 2 

Holt Experimental Forest  -69.772, 43.871 0.1 1001 3 

Howland Experimental 

Forest 
 -68.742, 45.206 2 556 2 

Howland Echidna  -68.742, 45.206 0.1 80 2 

Noonan Research Forest  -66.439, 45.977 0.1 25 1 

Penobscot Experimental 

Forest 
 -68.608, 44.844 4 409 3 

Null Plots  Regional  500 1 
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