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Abstract 

Power spectral density (PSD) and network analysis performed on functional correlation (FC) 

patterns represent two common approaches used to characterize Electroencephalographic (EEG) 

data. Despite the two approaches are widely used, their possible association may need more 

attention. To investigate this question, we performed a comparison between PSD and some widely 

used nodal network metrics (namely strength, clustering coefficient and betweenness centrality), 

using two different publicly available resting-state EEG datasets, both at scalp and source levels, 

employing four different FC methods (PLV, PLI, AEC and AECC). Here we show that the two 

approaches may provide similar information and that their correlation depends on the method used 

to estimate FC. In particular, our results show a strong correlation between PSD and nodal network 

metrics derived from FC methods (PLV and AEC) that do not limit the effects of volume 

conduction/signal leakage. The correlations are less relevant for more conservative FC methods 

(AECC). These findings suggest that the results derived from the two different approaches may be 

not independent, both at scalp and source level. We conclude that it may represent good practice to 

report the findings from the two approaches in conjunction to have a more comprehensive view of 

the results. 
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1. Introduction 

Power spectral density (PSD) and network analysis performed on functional correlation (FC) 

patterns represent two common approaches used to characterize Electroencephalographic (EEG) 

and Magnetoencephalographic (MEG) time-series data [1]. Despite these two approaches are 

widely used, the possible association between the results derived from their application is probably 

overlooked and may deserve more attention. Although few attempts to characterize this association 

have been performed, investigating, for instance, the dependency between patterns of global 

synchrony (phase) and local synchrony (amplitude) [2] on synthetic data, usually the two 

approaches are not analyzed in conjunction. In this study we aim to understand to what extent the 

two approaches differ in experimental data and if the corresponding analyses may be interpreted as 

completely separated and independent. In order to investigate in more details their possible 

relationship, we performed a comparison between PSD analysis and some widely used nodal 

network metrics (namely strength, clustering coefficient and betweenness centrality), using two 

different publicly available resting-state EEG datasets. To assess potential limitations due to scalp-

level analysis [3,4], the analysis was further replicated using a source level approach. In order to 

control the possible effects derived from the use of different FC methods, which may result from 

distinct neural mechanisms [5], we performed the analysis using four different techniques to 

estimate patterns of phase- and amplitude- based correlation: the Phase locking value (PLV) [6], the 

Phase lag index (PLI) [7], the Amplitude Envelope Correlation (AEC) [8] and a corrected version 

performing a time-domain orthogonalization procedure (AECC) [8].  
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2. Material and methods 

2.1 EEG datasets. 

Two different EEG datasets were used for the analysis. The first dataset (EEG_DS1) is the EEG 

motor movement/imaginary dataset [9,10] (https://www.physionet.org/pn4/eegmmidb/), a freely 

available set of 64 channels EEG recordings, consisting of several tasks including one-minute eyes-

closed resting-state from 109 subjects. The second dataset (EEG_DS2) is another freely available 

set of 64 channels EEG recordings [11,12], consisting of eyes-closed resting-state from 12 subjects.  

All the analysis was performed using five epochs of 12 seconds [13] for each subject extracted from 

one-minute of eyes-closed resting state condition. All the reported results refer to the investigation 

of the alpha frequency band (8 – 13 Hz). In order to evaluate the consistency of our results between 

scalp and source analysis [3], we replicated the analysis at source-level using source-reconstructed 

time-series obtained by using Brainstorm software (version 3.4) [14], using the protocol described 

by Lai and colleagues [3].  

 

2.2 Features extraction. 

For each subject and each epoch, we have extracted a set of features from the EEG time-series. In 

particular, the relative alpha band power was computed for each channel (at scalp level) and for 

each ROI (at source level) as the ratio between the sum of the original PSD (computed using the 

Welch method in Matlab R2017b) over the frequency range in 8 – 13 Hz and the sum of the original 

PSD over the frequency range in 1 – 40 Hz (total power). Later, four different and common 

methods to estimate (alpha band) FC patterns were used: PLV [6], AEC [8], PLI [7] and AECC [8] 

(an orthogonalized version of AEC). Finally, using the BCT [15], a set nodal network metrics were 

computed from the FC patterns: strength (the sum of weights of links connected to the node), 

clustering coefficient (the fraction of triangles around a node) and betweenness centrality (the 

fraction of all shortest paths in the network that contain a given node). All the extracted nodal 

features were represented as feature vectors of 64 (at scalp level) or 68 (at source level) entries. All 
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the code used to perform the analysis is available at the following link: 

https://github.com/matteogithub/PSD_NET_comparison.  

 

2.3 Statistical analysis. 

In order to estimate the relevance of the correlations between the extracted PSD-based and network-

based features the Spearman's rank correlation coefficient (rho) was computed for each comparison 

at channel level, without performing average across subjects, epochs or channels. 
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3. Results and discussion 

The results show a clear association between the spectral analysis, namely the alpha relative power, 

and the network analysis, performed using the four different FC methods and computing the three 

different nodal metrics. The level of association varies depending on the specific FC method and on 

the computed nodal metrics, but it is persistent over the three tested scenarios: EEG_DS1, 

EEG_DS2 at scalp level and EEG_DS1 at source level. In particular, the association is more evident 

for the strength and the clustering coefficient, whereas it results lower for the betweenness 

centrality. As shown in Figure 1, for the EEG_DS1, the association results in the range 0.698 – 

0.224 for the strength, with a pick rho value for the PLV (rho = 0.698). The PLV based network 

metrics confirm a higher association with alpha relative power also for the clustering coefficient 

(rho = 0.736) and for the betweenness centrality (rho = - 0.344).  

 

Figure 1. Scatter plots and correlations between alpha relative power and nodal network metrics for all the FC methods 
using the EEG_DS1 at scalp level. S, CC and BC respectively represent strength, clustering coefficient and 
betweenness centrality.  
 

Considering the relative high association between the two approaches, we have replicated the whole 

analysis using a different EEG dataset (EEG_DS2) consistent with the previous one (EEG_DS1) for 

both the number of channels and the experimental condition. Even the replication, although with 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 23, 2019. ; https://doi.org/10.1101/614271doi: bioRxiv preprint 

https://doi.org/10.1101/614271


different correlation values, show a clear association between the two approaches. As shown in 

Figure 2, not only the results still show relative high correlation values, with highest magnitude of 

rho equals to 0.493 for the strength and 0.572 for the clustering coefficient, but even more 

importantly, the reported findings are consistent with the previous analysis in term of the effects 

due to the different FC methods. The lower level of association was obtained when using the AECC 

methods to extract the FC patterns.  

 

 

Figure 2. Scatter plots and correlations between alpha relative power and nodal network metrics for all the FC methods 
using the EEG_DS2 at scalp level. S, CC and BC respectively represent strength, clustering coefficient and 
betweenness centrality.  
 

Finally, considering the problems related with the not straightforward interpretation of results 

derived from an EEG scalp level analysis, we have further replicated the analysis with source-

reconstructed time-series (derived from EEG_DS1) using the procedure as described in [3]. Even in 

this case, as shown in Figure 3, the results are still in line with the previous analysis performed at 

scalp level. In this latter case, where the source-based FC patterns should be clearly less affected by 

volume conduction and signal leakage, the differences among the FC methods are even less evident. 

For both the strength and the clustering coefficient, the associations remain moderately high, 
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respectively in the range 0.618 – 0.328 and 0.601 – 0.316. In summary, these findings show that the 

results obtained using the two different approaches, namely power analysis and network analysis 

derived from the use of FC methods, may be correlated and therefore should not be treated as 

completely independent. In particular, assessing and reporting the relationship between the two 

analyses may add important information and provide a more comprehensive view of the results.  

 

 

Figure 3. Scatter plots and correlations between alpha relative power and nodal network metrics for all the FC methods 
using the EEG_DS1 at source level. S, CC and BC respectively represent strength, clustering coefficient and 
betweenness centrality.  
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4. Conclusions 

In conclusion, this study suggests that the results derived from the two different approaches, PSD 

and network analysis, may be strongly associated. The level of association may depend on the 

specific FC method used to estimate the patterns of interactions and it is evident at both scalp and 

source level. As a consequence, we think that it would represent a good and necessary practice to 

report the results from the spectral analysis in conjunction with those obtained from network 

analysis.  
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