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Abstract 10 

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a wide range of clinical 11 

manifestations.  Of these, kidney involvement is the most common cause of morbidity and mortality.  12 

Genome-wide association studies (GWAS) have identified more than 80 loci that are associated with 13 

SLE.  We calculated the genetic risk score (GRS) using SNPs that are associated with SLE.  We studied 14 

three GWAS sets and found that the best GRS in the prediction of SLE generated an area under the 15 

ROC curve of 0.745 (95%CI 0.735-0.754).  However, it is not known whether genetic factors affect the 16 

clinical features.  We further showed a significant correlation between a GRS and renal involvement in 17 

two independent European GWAS: cohort 1 (NRenal+ = 1,152, NRenal- = 1,949) and cohort 2 (NRenal+ = 146, 18 

NRenal- = 378)  – the higher the GRS, the higher risk of renal disease (Pcohort1 = 2.44e-08; Pcohort2 = 19 

0.00205) and the younger age of SLE onset (Pcohort1 = 1.76e-12; Pcohort2 = 0.00384).  When partitioning 20 

the patients according to the age of SLE onset, we found that the GRS performed better in the prediction 21 

of renal disease in the ‘late onset’ group comparing to the ‘early onset’ group.  In conclusion, age of 22 

onset incorporating a GRS may assist prediction of lupus nephritis in a clinical setting.   23 
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Introduction 28 

Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by 29 

a wide spectrum of signs and symptoms varying among affected individuals and can involve many 30 

organs and systems, including the skin, joints, kidneys, lungs, central nervous system, and 31 

haematopoietic system [1].  A recent report underscores that SLE is among the leading causes of death 32 

in young females, particular females among ages 15-24 years, in which SLE ranked tenth in the leading 33 

causes of death in all populations and fifth for African American and Hispanic females [2].  Lupus 34 

nephritis is the most common cause of morbidity and mortality.  Patients with kidney disease are likely 35 

to have more severe clinical outcomes and a shorter lifespan.  30-60% of adults and up to 70% of 36 

children with SLE have renal disease, characterized by the glomerular deposition of immune complexes 37 

and an ensuring inflammatory response [3].  Genetic ancestry influences the incidence and prevalence 38 

of SLE and kidney involvement, being more frequent in Hispanics, Africans and Asians than in 39 

European [4-7].   Currently, kidney disease in SLE is diagnosed by use of light microscopy, which drives 40 

therapeutic decision-making.  However, not all patients will respond to therapy, indicating that additional 41 

information focusing on the mechanism of tissue injury is required.   Moreover, early detection of kidney 42 

involvement in SLE is important because early treatment can be applied to reduce the accumulation of 43 

renal disability. 44 

Although the exact aetiology of lupus is not fully understood, a strong genetic link has been identified 45 

through the application of family [8, 9] and twins studies [10].  SLE does not follow a Mendelian pattern 46 

of inheritance, and so it is termed a non-Mendelian disease or complex trait.  Complex traits are multi-47 

factorial with both genetic and environmental contributions.  Genome-wide association studies (GWAS) 48 

have been successfully used to investigate the genetic basis of a disease and this has dramatically 49 

advanced knowledge of the genetic aetiology of SLE.   Our recent review summarized a total of 84 50 

genetic loci that are implicated as SLE risk [11].  Despite the advances in the genetics of SLE, it is not 51 

clear how to utilise genetic information for the prediction of SLE risk or severity.   52 

A genetic risk score (GRS) summarizes risk-associated variations by aggregating information from 53 

multiple risk single nucleotide polymorphisms (SNPs).  The approach to calculate the GRS is to simply 54 

count disease-associated alleles or weighting the summed alleles by log Odds Ratios.  Recent studies 55 

[12, 13] have proposed methods which select SNPs from GWAS by LD (linkage disequilibrium) pruning 56 

and clumping and thresholding for GRS calculation.  As the number of SNPs included in a GRS 57 
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increases, the distribution approaches normality, even when individual risk alleles are relatively 58 

uncommon. Therefore, a GRS can be an effective means of constructing a genome-wide risk 59 

measurement that summarises an individual’s genetic predisposition to SLE.  Moreover, as GRSs pool 60 

information from multiple SNPs, each individual SNP does not strongly influence the summary 61 

measurement. Thus, the GRS is more robust to imperfect linkage for any tag SNP and causal SNP, 62 

and less sensitive to minor allele frequencies for individual SNPs [14-17]. 63 

In this study, we firstly tested whether a quantitative model - a GRS derived from SLE GWAS applying 64 

a range of methods, was an effective way to distinguish SLE patients and controls in three independent 65 

cohorts.  Next, we classified SLE patients into two groups: SLE renal+ (patients with renal disease) and 66 

SLE renal- (patients without renal disease), and performed a case-case genome-wide association study 67 

(GWAS) in two independent SLE cohorts with available renal data for the identification of SLE renal 68 

susceptibility loci.  However, no genome-wide significant genetic risk loci were identified in the SLE 69 

renal GWASs.  We then tested whether a GRS derived from SLE GWAS was an effective way to 70 

distinguish SLE patients with or without renal disease in two independent cohorts.  71 

 72 

 73 

Methods 74 

Samples source 75 

Samples were from three previously published SLE genome-wide association studies (GWASs) in the 76 

European population – the SLE main cohort [18], the SLEGEN cohort [19], and the Genentech cohort 77 

[20].  The SLE main cohort [18] was the biggest SLE GWAS, which consisted of 4,036 SLE patients 78 

and 6,959 healthy controls.  A total number of 603,208 SNPs were available post quality control.  The 79 

SLEGEN cohort [19] was carried out by The International Consortium for Systemic Lupus 80 

Erythematosus Genetics (SLEGEN) on women of European ancestry, which comprised 283,211 SNPs 81 

genotyped for 2,542 controls and 533 SLE patients.  The Genentech cohort [20] was performed by 82 

Genentech on North American individuals of European descent, which comprised 487,208 SNPs 83 

genotyped for 1,165 cases and 2,107 controls. 84 

Clinical sub-phenotypes were available for the SLE main cohort and SLEGEN cohort, which were 85 

documented according to the standard American College of Rheumatology (ACR) classification criteria.  86 
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Subgroups of patients with renal disease or without renal disease were identified according to the sub-87 

phenotype data using ACR classification.   Following quality control, the sample size of patients with 88 

renal disease, lupus nephritis (LN+) were 1,152 and 146 and patients without renal disease (LN-) were 89 

1,949 and 378 in the SLE main cohort and SLEGEN cohort, respectively.  More details are presented 90 

in Supplementary Table 1.  91 

 92 

Genome-wide association study (GWAS)  93 

SLE GWAS 94 

SLE GWASs were performed in genotyped SNPs including principal components consistent with the 95 

original publications in all three independent cohorts.  96 

 97 

SLE Renal GWAS within SLE cases  98 

The SLE Renal GWASs were performed within SLE cases, i.e., genome-wide associations of patients 99 

with renal disease (SLE Renal+, cases) and patients without renal disease (SLE Renal-, controls) in 100 

two independent cohorts, i.e., the SLE main cohort and the SLEGEN cohort.  For Renal GWASs, we 101 

pre-phased the genotyped data using the SHAPEIT algorithm [21] and then used IMPUTE2 [22] to 102 

impute to the density of the 1000 Genome reference data (phase 3 integrated set, release 20130502) 103 

[23] (data unpublished).  All case-control analysis was carried out using the SNPTEST algorithm [24].  104 

SNPs with imputation INFO scores of < 0.7 and MAF (minor allele frequency) < 0.001 were removed.  105 

After quality control (QC), there were 21,431,070 SNPs left for further analysis.  Moreover, a genome-106 

wide association meta-analysis of the SLE main cohort and SLEGEN cohort was performed using the 107 

summary statistics derived from the two Renal GWASs.  A standard threshold of P ≤ 5e-08 was used 108 

to report genome-wide significance and a P ≤ 1e-05 was used to report suggestive associated signals.    109 

 110 

Polygenic analysis 111 

We tested for non-zero standardised effect sizes (Z scores) for SLE association in the Genentech data 112 

for groups of SNPs stratified by their P values in the SLE main cohort. The Z scores in the Genentech 113 

data were polarized with respect to the SLE main cohort in that the effect allele was set to be the same 114 

risk allele as in the SLE main cohort. Under the null hypothesis the Z scores will have zero mean, while 115 

under the alternative the mean will be positive. SNPs were stratified by P value intervals of 1-0.9, 0.9-116 
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0.8, 0.8-0.7, 0.7-0.6, 0.6-0.5, 0.5-0.4, 0.4-0.3, 0.3-0.2, 0.2-0.1, 0.1-0.00. We would expect a positive 117 

mean for SNPs with very small P values in the main SLE data as these will be enriched for true positives, 118 

while the same is not necessarily true over other P values ranges unless there are more widespread 119 

true associations with very weak effects.  We also ran this analysis on renal association standardised 120 

effect sizes (Z scores) again polarised with respect to SLE association and stratified by SLE P values.  121 

In all analyses, we used an LD clumped set of SNPs with an R2 threshold of 0.1.  When comparing the 122 

SLE main cohort to the Genentech cohort or the SLEGEN cohort, we limited the clumping to SNPs that 123 

overlap the GWASs. 124 

 125 

Genetic risk score derivation 126 

A Genetic risk score (GRS) is a quantitative trait of an individual’s inherited risk based on the cumulative 127 

impact of many genetic variants, which is calculated according to the method described by Hughes et 128 

al [25], taking the number of risk alleles (i.e., 0, 1 or 2) for a given SNP and multiplying this by its 129 

corresponding estimated effect - β coefficient, i.e. the natural log of its odds ratio (OR).  The cumulative 130 

risk score in each subject was calculated by summing the risk scores from the target risk loci: 131 

Genetic	risk	score = 	.𝐺0𝛽0

2

0

 132 

where n represents the number of SLE risk loci, Gi is the number of risk alleles at a given SNP, and 𝛽0 133 

is the effect size of the risk SNP i. 134 

We used two approaches to select SNPs for GRS calculation.  The first approach – a weighted GRS 135 

was derived from all published independent SLE risk SNPs (Supplementary Table 2) – including 78 136 

SLE susceptibility loci (without the X chromosome), consisting of 93 SNPs outside of the MHC region 137 

and 2 independent tag SNPs in the MHC region for two SLE associated HLA haplotypes.  The risk allele 138 

and its effect size for each SNP is derived from its original publication, which is summarized in a recent 139 

review [11].   Each GRS for three SLE cohorts [18, 19, 26] was generated using R version 3.4.3.  140 

The second approach – LD clumping and thresholding – was used to build 32 GRSs.  Clumping and 141 

thresholding scores were built using a P value and linkage disequilibrium (LD)-driven clumping 142 

threshold in PLINK version 1.90b (www.cog-genomics.org/plink/1.9/) [27].  In brief, the algorithm forms 143 

clumps around SNPs with association P values less than a provided threshold (Index SNPs).  Each 144 

clump contains all SNPs within a specified window of the index SNP that are also in LD with the index 145 
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SNP as determined by a provided pairwise correlation threshold (r2) in the LD reference.  The algorithm 146 

loops through all index SNPs, beginning with the smallest P value and only allowing each SNP to appear 147 

in one clump.  The final output should contain the most significant disease-associated SNP for each 148 

LD-based clump across the genome. Note that when performing LD clumping, we firstly removed the 149 

X-chromosome and the MHC extended region (24-36MB) and kept all other autosomal SNPs.  Then 150 

we included the MHC region by using two tag SNPs for two well-known HLA haplotypes in SLE, i.e. 151 

rs2187668 for HLA-DRB1*03:01 and rs9267992 for HLA-DRB1*15:01.  A GRS was built using the 152 

genotypes for the index SNPs weighted by the estimated effect sizes (β).  Specifically, when training 153 

the GRS in the SLE main cohort and testing in the SLEGEN cohort, we performed a GWAS on the 154 

genotyped SNPs in the SLE main cohort and generated 32 lists of clumped SNPs over a set of P values 155 

(--clump-p1: 0.1, 0.01, 1e-03, 1e-04, 1e-05, 1e-06, 1e-07,and 5e-08),  r2 (--clump-r2: 0.2 and 0,5) and 156 

clumping radius (--clump-kb: 250 and 1000).  The 32 list of SNPs were then used to generate 32 GRSs 157 

by summing across all variants weighted by their respective effect size for samples in the SLEGEN 158 

cohort.  We performed this cross-validation in all three cohorts, generating six training-and-testing pairs. 159 

 160 

Receiver Operating Characteristic (ROC) curves for model evaluation 161 

The GRS with the best discriminative capacity was determined based on the maximal Area under the 162 

ROC curve (AUC) with SLE or RENAL as the outcome and the candidate GRS as the predictor.  AUC 163 

confidence intervals were calculated using the ‘pROC’ package within R and the difference between 164 

the ROC curves was determined with the ‘roc.test’ function, which used a non-parametric approach, as 165 

described by De Long et al  [28].  To assess the degree to which the age of SLE onset contributes to 166 

the prediction of renal involvement within SLE cases, we generated ROCs as above with the GRS and 167 

compared to ROC curves with SLE age onset as a single predictor and the ROC with both GRS and 168 

age onset as predictor(s).   169 

 170 

Partitioning the genetic risk of renal disease 171 

Since a continuous score is difficult to interpret on an individual level when a physician needs to explain 172 

the results of the GRS to a patient, we partitioned SLE patients into quintile according to genetic dosage 173 

(SLE GRS).  We used a chi-square test to study the association of the partitioned GRS and renal risk.  174 
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The odds ratios of renal risk were then calculated compared to the reference group - the first quintile 175 

GRS group.   176 

To test whether the GRS correlated with renal disease independently of age-of-onset, we partitioned 177 

SLE patients into two groups according to their age of onset, with a cut-off at age of 30 - patients with 178 

age above 30 were defined as ‘Late age onset’ and others as ‘Early age onset’.  A two-way ANOVA 179 

test was then performed with the function ‘aov’ in R, with aov(GRS ~ age group * renal group).  All 180 

statistical analyses were conducted using R version 3.4.3 software (https://www.r-project.org/). 181 

 182 

 183 

Results 184 

The best GRS in SLE prediction 185 

A GRS is a simple weighted sum of SLE risk alleles, however the choice of SNPs to use for the 186 

calculation greatly effects its performance.  We used three independent cohorts for cross-validation, 187 

generating six training-and-testing pairs.  For each training-and-testing pair of cohorts, we derived 32 188 

predictors based on a clumping and thresholding method, and one additional predictor using the set of 189 

SNPs that were previously reported to be associated with SLE (Supplementary Table 2).  We then 190 

evaluated the performance of the GRS as a predictor by its AUC.  We found that the best GRS in the 191 

prediction of SLE (with highest AUC) was the one derived from the published SLE SNPs (Figure 1 & 192 

Supplementary Table 3), with an AUC (95% CI) of 0.729 (0.706 - 0.753), 0.692 (0.673 - 0.71), and 193 

0.745 (0.735 - 0.754) in SLE main cohort, SLEGEN cohort, and Genentech cohort, respectively.  Among 194 

the GRSs generated from LD clumping and thresholding, the predictor with the best discriminative 195 

capacity was the one derived from SNPs clumping at P threshold (Pth) of 1e-05  in the SLE main cohort 196 

and tested in both the SLEGEN and Genentech cohorts (Figure 1 & Supplementary Table 3), 197 

suggesting there may be more true positive signals than the genome-wide significant ones involved in 198 

the risk of SLE. In fact, the predictive performance of the GRS using all pairs of training and test data 199 

was maximised using SNPs below the standard genome-wide threshold (Supplementary Table 3). 200 

This evidence for polygenicity was also seen in an analysis of the association statistics (Z scores) in 201 

the Genentech GWAS polarised to the risk allele in the main GWAS, partitioned by their association P 202 

value in the main GWAS (see methods). Here, we found evidence (Figure 2 & Supplementary Table 203 
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4) against a zero mean (P = 3.91e-04) for the Z scores in Genentech data for SNPs with P values 204 

between 0.3 and 0.2 in the main GWAS. 205 

 206 

Lupus Nephritis GWAS within SLE cases  207 

Lupus Nephritis (LN) occurs in approximately half of all SLE patients, and its frequency ranges from 208 

25% to 75% depending on the population studied [29].  About one third of European SLE patients 209 

experience renal disease [30]. Until recently, one of the most common causes of death in SLE patients 210 

was kidney failure.  According to the lupus severity index (LSI) using the ACR criteria developed by 211 

Bello et al [31], renal involvement has the highest impact and particular strongly associated with disease 212 

severity, hence we chose LN as a proxy of SLE severity in this study. 213 

The within case LN GWAS in the SLE main cohort, which comprised 1152 SLE patients with renal 214 

disease (LN+) and 1949 patients without renal disease (LN-), did not identify any genome-wide 215 

significant associated loci (P ≤ 5e-08) (Figure 3a). Consistently, no inflation (genomic inflation factor: 216 

λ = 1.014) was observed in the QQ plot (Figure 3d).  Similarly, none of the SNPs reached genome-217 

wide significance in the SLEGEN cohort [19] (λ = 1.023) (Figure 3b & 3e).  In addition, no variant 218 

passed genome-wide significance in the meta-analysis of the SLE main cohort and SLEGEN cohort for 219 

Renal GWAS (λ = 0.9565) (Figure 3c & 3f).  Summary association statistics for SNPs with P ≤ 1e-05 220 

are provided in Supplementary tables 5 and 6.  221 

We did, however, see evidence that SNPs with very strong evidence for association with SLE (P ≤ 1e-222 

05) were associated with LN.  This was evident from an analysis of the renal association statistics (Z 223 

scores) polarised to the risk allele for SLE.  There was strong evidence (Figure 2 & Supplementary 224 

Table 4, P = 8.72e-08) against a zero mean for the Renal Z scores for SNPs with P ≤ 1e-05 for SLE 225 

in the main cohort. This result was replicated in the SLEGEN study with P = 2.42e-03 (Figure 2 & 226 

Supplementary Table 4). We only found evidence of renal association with SNPs showing very strong 227 

evidence for association with SLE. This finding could be exploited for prediction of disease progression 228 

and we explore this below.  229 

 230 
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Genetic risk loading of SLE is significantly higher in LN+ patients 231 

While we observed that no individual SNPs were significantly associated with renal involvement in the 232 

SLE cases, we did show that there was a deviation from zero mean for renal Z scores taken from SNPs 233 

with very strong evidence for association with SLE.  In view of this finding, we investigated the 234 

correlation between the SLE GRS and renal disease in all SLE cases.  To accomplish this, we used the 235 

best GRS derived from a list of published SLE associated SNPs [11] for the comparison of the SLE 236 

genetic risk burden in patients with and without renal disease.  As expected, the GRS was higher in the 237 

SLE patients compared to healthy controls in both independent cohorts (Figure 4).    238 

A significantly higher GRS was observed in the group of patients with renal disease (LN+) compared to 239 

patients without renal disease (LN-) (Figure 4).  In the SLE main cohort, the mean (SD) of the GRS 240 

was 18.1 (1.64) for LN+ patients and 17.8 (1.65) for LN- patients (P = 1.60e-07); the mean for the 241 

SLEGEN cohort was 18.2 (1.66) for LN+ patients and 17.6 (1.69) for LN- patients (P = 0.0010).  242 

Moreover, we saw a significant increasing trend of GRS over levels of diseases:  Healthy control, LN- 243 

patients, and LN+ patients, with a trend P < 1.0e-400 in the SLE main cohort and a P = 3.81e-73 in the 244 

SLEGEN cohort (Figure 4). 245 

 246 

Genetic risk of nephritis and age of onset in SLE 247 

We partitioned the SLE cases into five groups according to quintiles for GRS to show the risk of renal 248 

involvement.  We observed over 1.5 folds higher risk of renal disease (OR = 1.58; 95% CI: 1.25 to 1.99; 249 

P = 0.00015) between the top and bottom quintiles of GRS in the SLE main cohort (Figure 5a).  This is 250 

replicated in the SLEGEN cohort (Figure 5b), with odds ratios of 3.16 (95% CI: 1.62 to 6.13; P = 251 

0.00091).  A significantly earlier age of SLE onset was observed in those with renal disease compared 252 

to those without renal disease.  In the main cohort (Figure 6a), the mean (SD) for age of disease onset 253 

was 29yrs (12) for LN+ patients and 35yrs (13) for LN- patients (P = 2.8e-27); the means for the 254 

SLEGEN cohort (Figure 6b) were 28yrs (11) and 35yrs (13) for LN+ and LN-, respectively (P = 6.05e-255 

09).  When testing the association of GRS with age of onset in the SLE main cohort, a significant 256 

correlation was present – the higher the GRS, the earlier age of SLE onset (P = 2.4e-07).  This 257 

correlation was also detected in the SLEGEN cohort (P = 0.021). 258 

To test whether the GRS correlated with renal disease independently of age-of-onset, we partitioned 259 

SLE patients into two groups according to their age of onset, i.e. ‘Late age onset’ and ‘Early age onset’ 260 
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and performed a two-way ANOVA test (See Methods).  The GRS was shown to positively correlate with 261 

both renal disease and early age-of-onset (PRenal = 7.64  × 10-5 and Page-of-onset = 1.06  × 10-9 in the SLE 262 

main cohort; PRenal = 0.0288 and Page-of-onset = 0.0513 in SLEGEN cohort), while we found that there was 263 

no statistically significant interaction between renal and early age-of-onset  in either the SLE main cohort 264 

(PInteraction = 0.795) or the SLEGEN cohort (PInteraction = 0.0511) (Supplementary Figure 1).  Notably, we 265 

found that GRS was a better predictor of renal disease in the ‘Late age onset’ group (AUC = 0.621) 266 

compared with the ‘Early age onset’ group (Figure 7). 267 

Finally, we assessed the predictive ability of the partitioned SLE GRS (quintile GRS, see methods) over 268 

the two age-of-onset groups.  In the main SLE cohort there is a clear and significant risk effect for renal 269 

involvement with increasing GRS in the ‘Late age of onset’ group, but no significant effect in the early 270 

onset group.  We observed over two fold higher risk of renal disease (OR = 2.33; 95% CI: 1.567 to 271 

3.471; P = 3.762-05) between the upper fourth quintile and the bottom quintile in the ‘Late age onset’ 272 

group in the SLE main cohort (Figure 5a).  The results were similar in the SLEGEN cohort, with the risk 273 

of renal disease between the top and bottom quintile of GRS being over five times (OR = 5.484; 95% 274 

CI: 1.647 to 18.26; P = 0.006635) (Figure 5b & Supplementary Table 7) in patients of ‘Late age onset’ 275 

but no significant differences in those with ‘Early age onset’.   276 

 277 

 278 

Discussion 279 

GRS has been showed to be predictive for several diseases including cardiovascular disease 280 

(AUC=0.81, 95%CI: 0.81-0.81) [12],  inflammatory bowel disease (AUC=0.63, 95%CI: 0.62–0.64) [12] 281 

and breast cancer (AUC=0.63, 95%CI: 0.63-0.65) [32]. However, in many of these applications the AUC 282 

values are dependent on inclusion of age and sex for prediction and so the AUC due to genetics alone 283 

would have been substantially lower [33].  We have shown that a SLE GRS using only SNPs has good 284 

predictive power with AUC approaching 0.7. Our results, using three independent GWASs, shows that 285 

a GRS using SNPs with association P values well below genome-wide levels of significance has the 286 

best predictive performance. This is further evidence that SLE is a polygenic disease with many risk 287 

variants as yet undiscovered, and that more powerful studies could lead to useful predictive models. 288 

Genetic risk scores may also have utility in prediction of disease severity and we find evidence for this 289 
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to be so for SLE. Our data show that renal involvement is not related to specific genetic factors or 290 

particular genes but simply to genetic load of risk alleles.    291 

Until recently, the most common cause of death in SLE patients was kidney failure.  Though the 292 

frequency of death from kidney disease has decreased sharply due to better therapies (e.g. dialysis 293 

and kidney transplantation), kidney failure is still potentially fatal in some people with SLE and causes 294 

significant morbidity.  According to the lupus severity index (LSI) using the ACR criteria developed by 295 

Bello et al [31], renal involvement had the highest impact and particularly more strongly associated with 296 

disease severity, hence we used renal involvement as a proxy of SLE severity in this study.  297 

In the SLE within-case renal GWASs, we observed no genome-wide significant signals in either the 298 

SLE main cohort or the SLEGEN cohort, or meta-analysis of these two.  Both datasets had genetic 299 

variants with less stringent P values (P ≤ 1e-05) for renal association, but none of them were replicated 300 

in the other cohort.  Considering the sample size of both cohorts are relatively small, we applied an 301 

online genetic power calculator (http://zzz.bwh.harvard.edu/gpc/) to calculate the power of our current 302 

sample size for the GWAS study (Supplementary Table 8).  We assumed the effect sizes of SLE renal 303 

risk alleles is similar to that seen in SLE GWAS, so the odds ratio (OR) of the risk allele would be 304 

between 1.0 and 2.0.  Therefore, we calculated power under a variety of parameters, including OR, risk 305 

allele frequency (RAF) and alpha.   As showed in Supplementary Table 8, we have a power of ≥ 0.8 306 

to detect a genetic risk variant with an OR = 1.4 and RAF = 0.3 or an OR = 1.5 and RAF = 0.2 when 307 

alpha = 5e-08.  However, if we assume the renal associated variants are as weak as most of the SLE 308 

associated variants (OR < 1.2), then we are under powered (< 0.8) to detect the true renal associations 309 

at the GWAS significant threshold of P = 5e-08 in the current study. 310 

We did however find evidence that SNPs most associated with SLE (P < 1e-05) were enriched for 311 

associations with SLE renal and so we then tested the hypothesis that the genetic risk loading of SLE 312 

may correlate with kidney involvement.  Therefore, a genetic risk score (GRS) with the best performance 313 

in SLE prediction was derived for the prediction of SLE renal disease.  In both European cohorts, the 314 

SLE main cohort and the SLEGEN cohort, the GRS was significantly higher in patients with renal 315 

disease than patients without.  In addition, patients with a higher GRS were more likely to have renal 316 

involvement at a younger age, indicating the strong genetic background of SLE development.  These 317 

findings provide more evidence to support the opinion that younger-age onset lupus is generally more 318 

severe than older-onset lupus as reported previously [34-36]. 319 
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One may argue that if the severity of SLE is driven by multiple genes’ contribution in a quantitative way, 320 

the more risk alleles that are added to the model, the better the model would fit.  In this study, we show 321 

that a GRS is a useful tool for the classification of SLE renal+ and SLE renal- groups.  The renal 322 

association P values of the 95 SNPs (of 77 SLE risk loci) in the SLE main cohort and the SLEGEN 323 

cohort are strongly inflated as shown in the QQ plots (Supplementary Figure 2), suggesting the 324 

cumulative genetic burden from multiple SLE risk genes with modest effect.  325 

Our analysis of Renal disease in SLE patients has shown that, while we find no SNPs significantly 326 

associated with renal disease, the fact that SLE associated variants correlated with renal using a GRS 327 

suggests that many SLE associated variants are also risk for renal involvement albeit with likely weaker 328 

effects (Odds ratios). We find that the GRS and age-of-onset are correlated but the GRS is associated 329 

with renal involvement independently of age-of-onset with no interaction observed. The GRS performs 330 

better for predicting renal disease in patients with late age-of-onset (> 30 years).  We also find that a 331 

stratified GRS may be a more viable option for predicting renal disease, where we estimate significantly 332 

high relative risks for those in the tails of the GRS distribution in both of our studies that had renal data. 333 

This is the first study to investigate accumulated genetic risk and its relationship with the susceptibility 334 

and severity of SLE.  We found that the higher the GRS, the younger onset of SLE.  In patients of late 335 

onset, a higher GRS means patients are more likely to suffer from more severe disease.  In brief, age 336 

of onset incorporating a GRS may assist early prediction of lupus nephritis in a clinical setting.  337 

Nevertheless, more clinical studies are needed to validate the usefulness of this application.  338 

 339 
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a.  b. 

  
Figure 1. ROCs and AUCs of models in SLE prediction in European cohorts 438 
GRSs for the prediction of SLE in the SLEGEN cohort (a) and Genentech cohort (b) were generated 439 

from SNPs of LD clumping and threshold derived from the SLE main cohort, and a list of published SLE 440 

risk SNPs (Supplementary Table 2).  ‘GRS at Pth’ represented the GRS in the SLE prediction model 441 
was derived from the LD clumping at the according GWAS P value threshold. 442 

  443 
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a. b. 

  
   c.  d. 

  
   e. f. 

  
Figure 2. Polygenic test of SLE and Renal disease. 444 
Polygenic test of SLE in Genentech cohort (a and b) and polygenic test of Renal disease in the SLE 445 

main cohort (c and d) and SLEGEN cohort (e and f).  The SLE main cohort is used to generate P 446 

value for each SNP to stratify the SNPs into groups for the Z score calculation of SLE association or 447 
Renal association.   448 
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Figure 3. Genome-wide scans of LN associated variants.  450 
 (Upper) Manhattan plots showing the -log10-transformed p values (y axis) against physical genomic 451 

position (x axis) for each SNP in the SLE main cohort (a), the SLEGEN cohort (b), and the meta-452 

analysis of these two cohorts (c).  The red horizontal line represents the threshold for genome-wide 453 

significance (P ≤ 5e-08) and the blue horizontal line represents the threshold for suggestive 454 

significance (P ≤ 1e-05). 455 

(Lower) Quantile-quantile plots showing the observed distribution of -log10-transformed p values (y 456 

axis) by the expected distribution (x axis) under the null hypothesis of no association (diagonal line) 457 

for the SLE main cohort (genomic inflation factor, λ = 1.014) (d), the SLEGEN cohort (λ = 1.023) (e), 458 
and the meta-analysis of these two cohorts (λ = 0.9565) (f). 459 

  460 

a SLE main cohort b SLEGEN cohort c Meta-analysis of two cohorts

λ = 1.014 λ = 1.023 λ = 0.9565

d SLE main cohort e SLEGEN cohort f Meta-analysis of two cohorts

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 23, 2019. ; https://doi.org/10.1101/614867doi: bioRxiv preprint 

https://doi.org/10.1101/614867
http://creativecommons.org/licenses/by/4.0/


   a.                      SLE main cohort b.                         SLEGEN cohort 

  
Figure 4. GRS over levels of disease: Controls / SLE Renal (-) / SLE Renal (+). 461 
The violin-and-box plots show the summary GRS for each level of the disease in the SLE main cohort 462 

(a) and the SLEGEN cohort (b).  The violins show the distribution of the GRS across each group. The 463 

bottom line of the box inside the violin is the 1st quantile, the top line is the 3rd quantile, and the box 464 

is divided at the median.  Sample size (N) of each group is showed within brackets below the group 465 

name.  Note that GRS for SLE main cohort and SLEGEN cohort are generated by 93 non-MHC SNPs 466 

and 2 MHC tag SNPs - a total of 95 SNPs.   467 
  468 
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   a.                      SLE main cohort b.                         SLEGEN cohort 

 
Figure 5. Relationship of quintiles of the GRS and risk of renal disease within SLE patients. 469 
Plots show the odds ratios of Renal disease for the SLE main cohort (a) and the SLEGEN cohort (b), 470 

comparing each of the upper four GRS quintiles with the lowest quintile; dotted lines represent the 471 

95% confidence intervals; horizontal black dotted lines represent OR = 1.  472 
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   a.                      SLE main cohort b.                         SLEGEN cohort 

  
Figure 6. Age of SLE onset in patients of Renal(-) / Renal(+). 474 
The violin-and-box plots show the age of SLE onset for each level of the disease in the SLE main 475 

cohort (a) and the SLEGEN cohort (b).  The violins show the distribution of the Age of SLE onset 476 

across each group.  The bottom line of the box inside the violin is the 1st quantile, the top line is the 477 

3rd quantile, and the box is divided at the median.  Sample size (N) of each group is showed within 478 
brackets below the group name.   479 
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Figure 7. ROC Curves for models predicting a diagnosis of Renal disease in SLE patients using GRS, split 481 
by age-of-onset. 482 
The models were trained in the SLE main cohort and tested in the SLEGEN cohort.  The plots 483 

showed the ROC curves in the prediction of renal disease in SLE patients with GRS as a predictor, 484 

The ROC curve in black was trained and tested with all SLE samples, the purple curve was trained 485 

and tested in the ‘Early age onset’ patients, and the red curve was trained and tested in the ‘Late age 486 

onset’ group.  AUC, area under the ROC curve is showed with 95% CI in brackets. 487 
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Supplementary Figure 1. Relationship of GRS and age onset in Renal disease. 489 
The age of SLE onset <= 30 years was defined as “Early onset” and > 30 years was defined as “Late 490 

onset”.  For each age onset and renal group, the GRS was plotted with mean and 95% CI for the SLE 491 

main cohort. 492 
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   a.                      SLE main cohort b.                         SLEGEN cohort 

  
Supplementary Figure 2 . Quantile-quantile plots of Renal association results 494 
QQ plots showed the observed distribution of -log10-transformed p values (y axis) by the expected 495 

distribution (x axis) under the null hypothesis of no association (diagonal line) for the SLE main cohort 496 

(a) and  the SLEGEN cohort (b).   The P values for the QQ plots were derived from Renal association 497 

test of the 95 SNPs (of 77 SLE risk loci) which used for the GRS calculation. 498 
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