
HAMAP rules as SPARQL
A portable annotation pipeline for genomes and

proteomes

Jerven Bolleman 1,∗, Eduoard de Castro 1, Delphine Baratin 1, Sebastien Gehant 1,
Beatrice A. Cuche 1, Andrea H. Auchincloss 1, Elisabeth Coudert 1, Chantal Hulo 1,

Patrick Masson 1, Ivo Pedruzzi 1, Catherine Rivoire 1,
Ioannis Xenarios 1,2, Nicole Redaschi 1, and Alan Bridge 1

1Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 rue
Michel-Servet, CH-1211 Geneva 4, Switzerland, 2CHUV/LICR, Agora Centre,
CH-1005 Lausanne, Switzerland

Abstract

Motivation: Genome and proteome annotation pipelines are generally
custom built and therefore not easily reusable by other groups, which leads to
duplication of effort, increased costs, and suboptimal results. One cost-effective
way to increase the data quality in public databases is to encourage the adoption
of annotation standards and technological solutions that enable the sharing of
biological knowledge and tools for genome and proteome annotation.

Results: We have translated the rules of our HAMAP proteome annotation
pipeline to queries in the W3C standard SPARQL 1.1 syntax and applied them
with two off-the-shelf SPARQL engines to UniProtKB/Swiss-Prot protein
sequences described in RDF format. This approach is applicable to any genome
or proteome annotation pipeline and greatly simplifies their reuse.

Availability: HAMAP SPARQL rules and documentation are freely available
for download from the HAMAP FTP site
ftp://ftp.expasy.org/databases/hamap/hamap sparql.tar.gz under a CC-BY-ND 4.0
license. The annotations generated by the rules are under the CC-BY 4.0 license.

Contact: hamap@sib.swiss
Supplementary information: Supplementary data are included at the end of

this document.

1 Introduction
Continuing technological advances have reduced the costs of DNA sequencing
enormously in recent years, leading to an explosion in the number of available
whole genome and metagenome sequences from all branches of the tree of life
[Lewin et al., 2018, Mukherjee et al., 2017, Paez-Espino et al., 2016,
Thompson et al., 2017, Tighe et al., 2017]. This wealth of sequence data presents

1

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

ftp://ftp.expasy.org/databases/hamap/hamap_sparql.tar.gz
hamap@sib.swiss
https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

exciting opportunities for experimental and computational research into the
evolution and functional capacities of individual organisms and the communities
they form, but fully exploiting this data will require complete and accurate
functional annotation of genome sequences. Resources for genome annotation
such as RAST/MG-RAST [Meyer et al., 2017, Overbeek et al., 2014], IMG/M
[Chen et al., 2017], the NCBI genome annotation pipeline [Haft et al., 2018],
InterPro [Mitchell et al., 2019], TIGRFAMS [Haft et al., 2016], and HAMAP
[Pedruzzi et al., 2015] exploit information from experimentally characterized
sequences to infer functions for uncharacterized homologs. While the underlying
principles of these resources are undoubtedly very similar, a lack of shared
annotation standards and a suitable shared technical framework for annotation
hamper efforts to use and combine them.

In this work, we use the HAMAP system (https://hamap.expasy.org) to
demonstrate technical solutions that could facilitate the combination and reuse of
functional genome annotation systems from any provider. HAMAP classifies and
annotates protein sequences using a collection of expert-curated protein family
signatures and annotation rules. These rules annotate family members to the same
level of detail and quality as expert curated UniProtKB/Swiss-Prot records,
combining family membership and residue dependencies to ensure a high degree
of specificity. The current implementation of HAMAP uses a custom rule format
and annotation engine that are not easy to integrate into external pipelines. The
HAMAP-Scan web service (https://hamap.expasy.org/hamap scan.html) is a good
alternative for small research projects, but large genome sequencing projects
cannot depend on external web services to process large amounts of data. Our
goal here was to develop a generic HAMAP rule format and annotation engine
that is easily portable by external HAMAP users, using standard technologies that
developers of other genome annotation pipelines could also adopt. To do this we
have developed a representation of HAMAP annotation rules using the World
Wide Web Consortium (W3C) standard SPARQL 1.1 syntax. SPARQL (a
recursive acronym for the SPARQL Protocol and RDF Query Language) is a
query language for RDF (Resource Description Framework), a core Semantic
Web technology from the W3C (see https://www.w3.org/RDF/ for more details).
Our implementation allows users to apply HAMAP rules in SPARQL syntax to
annotate protein sequences expressed as RDF using off-the-shelf SPARQL
engines - without any need for a custom pipeline. If other annotation system
providers adopt the same approach, it will be possible to share and combine the
annotation rules from different data providers, execute them with any SPARQL
engine, and compare the results.

2 Methods
To use a generic SPARQL engine to execute rule-based protein sequence
annotation, we need the following input data: a) annotation rules in SPARQL
syntax, b) protein sequence records in RDF syntax, and c) protein
sequence/signature matches in RDF syntax, including alignment information for
positional annotations.

To keep the examples given in the Figures short, we provide all RDF
namespace prefixes declarations in Figure 1 and omit these from subsequent
Figures. We use the UniProt core ontology and other ontologies used by UniProt,

2

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://hamap.expasy.org
https://hamap.expasy.org/hamap_scan.html
https://www.w3.org/RDF/
https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix rdfs:
<http://www.w3.org/2000/01/rdf-schema#>

prefix up:
<http://purl.uniprot.org/core/>

prefix taxon:
<http://purl.uniprot.org/taxonomy/>

prefix ec:
<http://purl.uniprot.org/enzyme/>

prefix GO:
<http://purl.obolibrary.org/obo/GO_>

prefix ECO:
<http://purl.obolibrary.org/obo/ECO_>

prefix faldo:
<http://biohackathon.org/resource/faldo#>

prefix rule:
<http://purl.uniprot.org/hamap-rule/>

prefix signature:
<http://purl.uniprot.org/hamap/>

prefix edam:
<http://edamontology.org/>

prefix example:
<URL space of your protein sequences>

Figure 1: RDF namespace declarations for prefixes used in other Figures.

such as FALDO [Bolleman et al., 2016], which is also used in the RDF of
Ensembl [Zerbino et al., 2018] and Ensembl Genomes [Kersey et al., 2018], to
describe sequence positions, and the EDAM ontology [Ison et al., 2013] to
describe sequence/signature matches.

2.1 HAMAP annotation rules in SPARQL syntax
A HAMAP annotation rule consists of two parts: 1) the annotations, and 2) a set
of conditions that must be satisfied in order to apply the annotations. The rule
annotations can be expressed either by a CONSTRUCT block that returns the
annotations as RDF triples or an INSERT block that inserts these triples directly
into an RDF store, while the rule conditions can be expressed by the WHERE
clause of a SPARQL query. Figure 2 shows part of the HAMAP rule for the
signature MF 00005 as a SPARQL query. The CONSTRUCT block generates
two RDF triples for two Gene Ontology (GO) terms, providing that all conditions
defined in the WHERE clause are satisfied: that the target is a complete protein
sequence of bacterial or archaeal origin and is a member of the HAMAP family
MF 00005 (i.e. matches the corresponding family signature).

Figure 3 shows how the CONSTRUCT block of Figure 2 can be extended to

3

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

CONSTRUCT {
?target up:classifiedWith GO:0004055 , GO:0005524 .

}
WHERE {
?target a up:Protein ;

rdfs:seeAlso signature:MF_00005 ;
up:sequence ?targetSequence ;
up:organism ?organism .

VALUES ?bacteriaORarchaea {taxon:2 taxon:2157}
?organism rdfs:subClassOf+ ?bacteriaORarchaea .

MINUS { ?targetSequence up:fragment [] }
}

Figure 2: Part of the HAMAP rule for signature MF 00005 as a SPARQL CON-
STRUCT query.

generate metadata for provenance and evidence for each annotation that the rule
generates. We attribute the annotations to the HAMAP rule (MF 00005) and
describe the type of the evidence with a value from the Evidence Code Ontology
(ECO) [Chibucos et al., 2016]. We link the attribution to the annotations via RDF
reification quads, which is verbose but is understood by all RDF syntaxes and
data stores.

The original HAMAP rule implementation has two features that we have not
yet implemented in this work. The first is the ability to call sequence analysis
methods such as SignalP [Petersen et al., 2011] and TMHMM
[Sonnhammer et al., 1998] for the annotation of signal and transmembrane
regions, which is not implemented here as these methods may not be available to
external users. The second is precedence relationships between HAMAP rules,
which are complex and apply to relatively few rules.

2.2 Protein sequence records in RDF syntax
HAMAP SPARQL rules require protein sequence records in a simple RDF
format. Figure 4 shows an example protein record with the identifier ‘P1’
(example:P1). The rules require an identifier for the sequence (example:P1-seq)
and the organism as an NCBI taxonomy identifier (taxon:83333). The actual
protein sequence is provided as an IUPAC amino acid encoded string (in the
rdf:value predicate of example:P1-seq) for positional annotations.

2.3 Protein sequence/signature matches in RDF syntax
HAMAP SPARQL rules require also sequence/signature match data in an RDF
format. Figure 5 shows an RDF representation of the sequence/signature match of
the example protein ‘P1’ (Figure 4) and the HAMAP signature MF 00005. The
core information is a triple that states that the protein (example:P1) matches the

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

CONSTRUCT {
annotation statements
?target up:classifiedWith GO:0004055 , GO:0005524 .
metadata statements
_:1 a rdf:Statement ;

rdf:subject ?target ;
rdf:predicate up:classifiedWith ;
rdf:object GO:0004055 ;
up:attribution _:3 .

_:2 a rdf:Statement ;
rdf:subject ?target ;
rdf:predicate up:classifiedWith ;
rdf:object GO:0005524 ;
up:attribution _:3 .

_:3 up:source rule:MF_00005 ;
up:evidence ECO:256 .

}

Figure 3: SPARQL CONSTRUCT block of Fig. 2 extended with metadata expressed
as RDF reification quads.

example:P1
a up:Protein ;
up:sequence example:P1-seq ;
up:organism taxon:83333 .

example:P1-seq
a up:Simple_Sequence ;
rdf:value """MTKQKLILAYSGGLDTSVAIKWLSKDYDVVAL

CMDVGEGKDLSVIKEKALLVGAIESIVLDVKDEFANDFVLPALQYGA
HYEGAYPLISALSRPLIAEKLVEVAHAQGATAVAHGCTGKGNDQVRF
EVSVAALDPSLEVIAPVREWKWSREEEIAYAKENNVPIPINLNSPYS
IDMNLWGRSNECGVLENPWTEPPQDAYALTVAPEDAPDQAEEVIIGF
EAGVPVSINGTAYPLAKLITELNIIAGAHGVGRIDHVENRLVGIKSR
EVYECPGATVLLKAHAALETITLTKDVAHFKPILSKQYAETIYNGLF
HAPLTKGLKAFLTATQQDVTGEVRVKLYKGNATVTGRQSAVSLYDEK
LATYTKEDAFDHEAAKGFIKLHGLAISTHASVHRQEGVKK""" .

Figure 4: Example protein record in an RDF format suitable for HAMAP SPARQL
rules.

5

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

signature (signature:MF 00005). For positional annotations, the rule also needs
the start and end positions of the match region on the sequence, as well as the
alignment between sequence and signature. We describe this information with the
EDAM and FALDO ontologies and use the alignment format returned by the
pfsearchV3 [Schuepbach et al., 2013] and InterProScan [Mitchell et al., 2019]
software.

HAMAP rules provide a wide range of annotation types, including
annotations that apply to specific amino acid positions or ranges on a protein
sequence, such as the active site of an enzyme and other functionally important
sites and regions. A HAMAP rule specifies the sequence positions of such
annotations with respect to one or more experimentally characterized “template”
sequences of the HAMAP protein family in UniProtKB/Swiss-Prot. The rule
engine therefore needs the alignments of the rule’s signature to its template
sequence(s), as well as the alignment of the rule’s signature to the target
sequence, to determine corresponding positions on the template(s) and target
sequence. A HAMAP rule may additionally require that the position/range on the
target sequence matches a specified residue or sequence motif, e.g. to check that
an active site has the expected amino acid. This functionality can be implemented
either in standard SPARQL 1.1 using the REPLACE, STRLEN and CONCAT
functions (see Supplementary Figure 1 for an example), or via a custom SPARQL
function (an example Java function for RDF stores that extends the Apache Jena
ARQ SPARQL engine is given in Supplementary Figure 2). We distribute the
template sequence/signature alignments that are required for rule application
together with the rules on our FTP site (at
ftp://ftp.expasy.org/databases/hamap/hamap sparql.tar.gz).

2.4 Simple rules for standardized annotations
HAMAP rules provide functional annotation in the form of free text and using
controlled vocabularies and ontologies developed by UniProt and others. These
include the Gene Ontology (GO) [The Gene Ontology Consortium., 2019], the
Enzyme Classification of the IUBMB (“EC numbers”) [McDonald et al., 2009]
represented by the ENZYME database [Bairoch et al., 2000], and the Rhea
database of biochemical reactions [Lombardot et al., 2018] based on the ChEBI
ontology [Hastings et al., 2016]. For users requiring only a subset of these
annotations — such as protein-Rhea links, or protein-GO links — it is possible to
translate only the desired annotation types into SPARQL queries. We can also
modify the CONSTRUCT/INSERT block of the queries to return the results as
simple protein-annotation associations (see Table 1). This tabular result format
can easily be loaded into a relational database or JSON-based document store and
requires no further investment in a Semantic Web technology stack.

3 Results
3.1 Validation
We have tested the approach of executing rule-based annotation with a generic
SPARQL engine with the data from the HAMAP and UniProtKB/Swiss-Prot
releases 2019 02. We translated the 2,304 HAMAP rules into SPARQL

6

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

ftp://ftp.expasy.org/databases/hamap/hamap_sparql.tar.gz
https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

example:P1
rdfs:seeAlso signature:MF_00005 ;
up:sequence example:P1-seq .

example:AN_ALIGNMENT_OPERATION
a edam:operation_0300 ;
edam:has_input signature:MF_00005 .

example:AN_ALIGNMENT
a edam:data_0869 ;
edam:is_output_of example:AN_ALIGNMENT_OPERATION ;
faldo:location example:AN_ALIGNMENT_REGION ;
rdf:value "KQKLILAYSGGLDTSVAIKWL--SKDYDVV" .

example:AN_ALIGNMENT_REGION
a faldo:Region ;
faldo:begin example:AN_ALIGNMENT_REGION_BEGIN ;
faldo:end example:AN_ALIGNMENT_REGION_END .

example:AN_ALIGNMENT_REGION_BEGIN
a faldo:ExactPosition ;
faldo:reference example:P1-seq ;
faldo:position 1 .

example:AN_ALIGNMENT_REGION_END
a faldo:ExactPosition ;
faldo:reference example:P1-seq ;
faldo:position 28 .

Figure 5: Example protein sequence/signature match in RDF syntax.

7

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

Protein Annotation
uniprot:B1YJ35 “GO:0004055”
uniprot:B1YJ35 “GO:0005524”
uniprot:B1YJ35 “GO:0006526”
uniprot:B1YJ35 “GO:0005737”
uniprot:B1YJ35 “ec:6.3.4.5”
uniprot:B1YJ35 “rhea:10932”

Table 1: Simple protein-annotation associations of HAMAP rule MF 00005 for
UniProtKB entry B1YJ35.

CONSTRUCT queries and the 559,228 protein sequences into the RDF format
described in Figure 4. We generated the RDF representation of the
sequence/signature matches, as illustrated in Figure 5, directly from a relational
database containing the results of pfsearchV3 scans of UniProtKB/Swiss-Prot
versus HAMAP for our internal HAMAP release pipeline. Other groups could
achieve the same result by scanning their protein sequences with InterProScan
and converting the XML result files into the described RDF format for
sequence/signature matches. We provide an XSLT stylesheet for this conversion
in Supplementary Figure 3.

We tested two different open-source SPARQL engines (Virtuoso RDF 7.2 and
Apache Jena TDB 3.9.0) to execute our rules and validated the generated
annotations by comparing them to those obtained from our custom platform. This
platform, implemented in Scala/Java, uses as input files protein entries in FASTA
format and HAMAP rules in their custom text format to generate annotations in
UniProtKB format (text, XML or RDF). The RDF data generated by the different
systems was loaded into separate named graphs of an RDF database for
comparisons using SPARQL queries to search for annotations unique to any of
the three runs (see example query in Figure 6). The existing custom HAMAP
annotation pipeline and each of the two SPARQL engines generated identical
annotations, except for those that depend on external sequence analysis methods
and the evaluation of HAMAP rule precedence, which we did not implement here
as described in section 2.1.

3.2 Performance
We executed the SPARQL queries on a 4-year-old desktop with four cores
(i5-3470), 16 GB RAM and a single HDD. The annotation of 559,228
UniProtKB/Swiss-Prot sequences, of which 58% match at least one HAMAP
signature, took just under six hours. The custom HAMAP platform was
significantly faster under these conditions; the setup of an in-memory SPARQL
endpoint for each entry in turn dominated the execution time of the SPARQL
solution. When running the same queries over all of UniProtKB/Swiss-Prot on a
more powerful machine, using a Virtuoso database with all data, we see run times
in the seconds for our most complicated rules. In practice, we found no need to
optimize the rule application using SPARQL by parallelizing rule execution with
more compute nodes, but our approach will benefit from further SPARQL engine
optimizations by vendors that develop RDF stores. For now, the application of the

8

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

SELECT
?protein ?go

WHERE {
?protein a up:Protein .
GRAPH example:existing_system_results {
?protein up:classifiedWith ?go

}
MINUS {
GRAPH example:sparql_system_results {
?protein up:classifiedWith ?go

}
}

}

Figure 6: Example query for comparison of GO annotations generated by different
systems.

rules is faster than the scanning of the sequences with the signatures, which
remains the bottleneck in this process.

4 Discussion
4.1 Protein function annotation pipelines based on
SPARQL
Here we have developed a SPARQL representation of HAMAP annotation rules
that allows other groups with basic knowledge of this widespread standard
technology to apply HAMAP rules in their genome and proteome annotation
pipelines. SPARQL can express all features of complex HAMAP rules, including
the logic required for positional annotations, while freely available SPARQL
engines provide a means to execute HAMAP rules without recourse to specialized
software. This work demonstrates the feasibility of adopting SPARQL as a means
to integrate existing functional annotation pipelines for genome sequencing
projects. This applies not only to expert curated rules from HAMAP and other
systems, but also annotation rules generated by automated approaches such as
deep learning [Fa et al., 2018, Kulmanov et al., 2018], which require a feature
vector to be expressed as an RDF triple as shown by LOD4ML
(http://lod4ml.org). SPARQL can also be adopted by those without access to
specialized RDF triple stores by using a SPARQL to SQL mapping (such as that
provided by any of the R2RML tools, see https://www.w3.org/TR/r2rml/) to
execute SPARQL rules directly against data stored in a relational database. The
main weakness of SPARQL is that, like many generic query engines, it tends to
be computationally more expensive than a custom solution, but we have seen
significant progress in the optimization of SPARQL engines over the past years
[Schmidt et al., 2010].

9

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

http://lod4ml.org/
https://www.w3.org/TR/r2rml/
https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

A)

base <http://example.org/rnacentral/>
prefix SO: <http://purl.obolibrary.org/obo/SO_>
prefix rfam: <http://rfam.xfam.org/family/>
<URS0000638944>
a SO:0000356 ;
rdf:value """CUAGACCGAAGCUGCCAAGGUGCGUGAUCC

CUCGGUGAUGCCUUGAGUGUUGCUUCGCCAAAAAACAACCACACG
GCCUAGCCGAAUUUCUCAUU""" ;
rdfs:seeAlso rfam:RF00003 .

B)

base <http://example.org/rnacentral/>
prefix SO: <http://purl.obolibrary.org/obo/SO_>
prefix GO: <http://purl.obolibrary.org/obo/GO_>
prefix rfam:<http://rfam.xfam.org/family/>
CONSTRUCT {
?rna SO:associated_with GO:0005685

}
WHERE {
?rna a SO:0000356 ;
rdfs:seeAlso rfam:RF00003 .

}

Figure 7: (A) Hypothetical triples to describe a sequence entry from RNAcentral.org
that is a member of the Rfam RNA family RF00003 (U1 spliceosomal RNA family).
(B) Hypothetical rule associating RF00003 to the GO term GO:0005685 (definition:
“A ribonucleoprotein complex that contains small nuclear RNA U1.”).

4.2 An approach that is extensible to any domain of
biology
While we have limited our demonstration to the use of SPARQL queries to
formalize and execute protein annotation rules from HAMAP, there is nothing
that ties the SPARQL approach to a particular domain of biology. Complete
genome annotation requires identification and functional annotation of RNAs as
well as proteins, and Figure 7 provides a demonstration of how that annotation
could be provided by SPARQL. Here a hypothetical SPARQL rule specifies
functional (GO) annotation for an RNA sequence of RNAcentral
[The RNAcentral Consortium., 2017] that is a member of the U1 spliceosomal
RNA family as defined by Rfam [Kalvari et al., 2018].

The development of annotation rules for a given domain across different
groups will require community standards for the representation of the relevant
domain-specific annotation types. In this work we have used the RDF
vocabularies of UniProt, which allowed us to easily compare the results of the
SPARQL approach to those of our existing HAMAP rule annotation pipeline. As

10

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

other appropriate community ontologies become available, our queries and
SPARQL rules can be easily adapted.

4.3 Further work
We plan to further extend our implementation of HAMAP rules using SPARQL to
include external method calls and deal with rule precedence (see Section 2.1), and
also develop a SPARQL representation for PROSITE, which provides protein
domain annotation via a custom pipeline, ScanProsite (at
https://prosite.expasy.org/scanprosite/) [Sigrist et al., 2013]. HAMAP and
PROSITE are two of the main components of the UniRule system of UniProt,
which provides automatic annotation for unreviewed entries of
UniProtKB/TrEMBL [The UniProt Consortium., 2019], and the approach
described here could feasibly be extended to the entire UniRule system if needed.
The UniProt data model was recently extended to allow enzyme annotation using
biochemical reaction data from the Rhea database, which will further extend the
scope of HAMAP SPARQL rules to more specialized applications that focus on
the creation and annotation of draft metabolic models based on reaction networks
[Faria et al., 2018, Moretti et al., 2016].

5 Conclusion

Acknowledgements
We thank Dr. Marco Pagni of the SIB Swiss Institute of Bioinformatics for
interesting discussions and critical reading of the manuscript.

Funding
HAMAP activities at the SIB are supported by the Swiss Federal Government
through the State Secretariat for Education, Research and Innovation SERI, and
the Swiss National Science Foundation (SNSF). The development of the HAMAP
SPARQL rules was also supported by the ELIXIR Implementation study on ”A
microbial metabolism resource for Systems Biology”. Funding for open access
charge: SERI.

Conflict of Interest: none declared.

References
[Bairoch et al., 2000] Bairoch, A. The ENZYME database in 2000. Nucleic

Acids Res 2000;28(1):304-305.

[Bolleman et al., 2016] Bolleman, J.T., et al. FALDO: a semantic standard for
describing the location of nucleotide and protein feature annotation. J Biomed
Semantics 2016;7:39.

[Chen et al., 2017] Chen, I.A., et al. IMG/M: integrated genome and
metagenome comparative data analysis system. Nucleic Acids Res
2017;45(D1):D507-D516.

11

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://prosite.expasy.org/scanprosite/
https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

[Chibucos et al., 2016] Chibucos, M.C., et al. Standardized description of
scientific evidence using the Evidence Ontology (ECO). Database (Oxford)
2014;2014.

[Haft et al., 2018] Haft, D.H., et al. RefSeq: an update on prokaryotic genome
annotation and curation. Nucleic Acids Res, Volume 46, Issue D1, 4 January
2018, Pages D851–D860,

[Fa et al., 2018] Fa, R., et al. Predicting human protein function with multi-task
deep neural networks. PLoS One 2018;13(6):e0198216.

[Faria et al., 2018] Faria, J.P., et al. Methods for automated genome-scale
metabolic model reconstruction. Biochem Soc Trans 2018;46(4):931-936.

[Haft et al., 2016] Haft, D.H., et al. TIGRFAMs and Genome Properties in 2013.
Nucleic Acids Res 2013;41(Database issue):D387-395.

[Hastings et al., 2016] Hastings, J., et al. ChEBI in 2016: Improved services and
an expanding collection of metabolites. Nucleic Acids Res
2016;44(D1):D1214-1219.

[Ison et al., 2013] Ison, J., et al. EDAM: an ontology of bioinformatics
operations, types of data and identifiers, topics and formats. Bioinformatics
2013;29(10):1325-1332.

[Kalvari et al., 2018] Kalvari, I., et al. Rfam 13.0: shifting to a genome-centric
resource for non-coding RNA families. Nucleic Acids Res
2018;46(D1):D335-D342.

[Kersey et al., 2018] Kersey, P.J., et al. Ensembl Genomes 2018: an integrated
omics infrastructure for non-vertebrate species. Nucleic Acids Res
2018;46(D1):D802-D808.

[Kulmanov et al., 2018] Kulmanov, M., et al. DeepGO: predicting protein
functions from sequence and interactions using a deep ontology-aware
classifier. Bioinformatics 2018;34(4):660-668.

[Lewin et al., 2018] Lewin, H.A., et al. Earth BioGenome Project: Sequencing
life for the future of life. Proc Natl Acad Sci U S A 2018;115(17):4325-4333.

[Lombardot et al., 2018] Lombardot, T., et al. Updates in Rhea: SPARQLing
biochemical reaction data. Nucleic Acids Res 2018;47(D1):D596-D600.

[McDonald et al., 2009] McDonald, A.G., Boyce, S. and Tipton, K.F.
ExplorEnz: the primary source of the IUBMB enzyme list. Nucleic Acids Res
2009;37(Database issue):D593-597.

[Meyer et al., 2017] Meyer, F., et al. MG-RAST version 4-lessons learned from a
decade of low-budget ultra-high-throughput metagenome analysis. Brief
Bioinform 2017.

[Mitchell et al., 2019] Mitchell, A.L., et al. InterPro in 2019: improving
coverage, classification and access to protein sequence annotations. Nucleic
Acids Res 2019;47(D1):D351-D360.

[Moretti et al., 2016] Moretti, S., et al. MetaNetX/MNXref–reconciliation of
metabolites and biochemical reactions to bring together genome-scale
metabolic networks. Nucleic Acids Res 2016;44(D1):D523-526.

[Mukherjee et al., 2017] Mukherjee, S., et al. 1,003 reference genomes of
bacterial and archaeal isolates expand coverage of the tree of life. Nat
Biotechnol 2017;35(7):676-683.

12

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

[Overbeek et al., 2014] Overbeek, R., et al. The SEED and the Rapid Annotation
of microbial genomes using Subsystems Technology (RAST). Nucleic Acids
Res 2014;42(Database issue):D206-214.

[Paez-Espino et al., 2016] Paez-Espino, D., et al. Uncovering Earth’s virome.
Nature 2016;536(7617):425-430.

[Pedruzzi et al., 2015] Pedruzzi, I., et al. HAMAP in 2015: updates to the protein
family classification and annotation system. Nucleic Acids Res
2015;43(Database issue):D1064-D1070.

[Petersen et al., 2011] Petersen, T.N., et al. SignalP 4.0: discriminating signal
peptides from transmembrane regions. Nat Methods 2011;8(10):785-786.

[Schmidt et al., 2010] Schmidt, M., Meier, M. and Lausen, G. Foundations of
SPARQL query optimization. Proceedings of the 13th International
Conference on Database Theory 2010:4-33.

[Schuepbach et al., 2013] Schuepbach, T., et al. pfsearchV3: a code acceleration
and heuristic to search PROSITE profiles. Bioinformatics
2013;29(9):1215-1217.

[Sigrist et al., 2013] Sigrist, C.J., et al. New and continuing developments at
PROSITE. Nucleic Acids Res 2013;41(Database issue):D344-347.

[Sonnhammer et al., 1998] Sonnhammer, E.L., von Heijne, G. and Krogh, A. A
hidden Markov model for predicting transmembrane helices in protein
sequences. Proc Int Conf Intell Syst Mol Biol 1998;6:175-182.

[The Gene Ontology Consortium., 2019] The Gene Ontology Consortium. The
Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res
2019;47(D1):D330-D338.

[The RNAcentral Consortium., 2017] The RNAcentral Consortium. RNAcentral:
a comprehensive database of non-coding RNA sequences. Nucleic Acids Res
2017;45(D1):D128-D134.

[The UniProt Consortium., 2019] The UniProt Consortium. UniProt: a
worldwide hub of protein knowledge. Nucleic Acids Res
2019;47(D1):D506-D515.

[Thompson et al., 2017] Thompson, L.R., et al. A communal catalogue reveals
Earth’s multiscale microbial diversity. Nature 2017;551(7681):457-463.

[Tighe et al., 2017] Tighe, S., et al. Genomic Methods and Microbiological
Technologies for Profiling Novel and Extreme Environments for the Extreme
Microbiome Project (XMP). J Biomol Tech 2017;28(1):31-39.

[Zerbino et al., 2018] Zerbino, D.R., et al. Ensembl 2018. Nucleic Acids Res
2018;46(D1):D754-D761.

13

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

6 Supplementary information
6.1 Supplement 1: Map position on template to target
sequence using SPARQL 1.1 standard functions
The InterProScan software represents a sequence/signature alignment in the form
of a string where an upper-case letter represents a matched position, a lower-case
letter an inserted position and a dash (’-’) a deleted position in the sequence with
respect to the signature. This example illustrates how two alignment strings, one
for a template/signature and the other for a target/signature alignment, can be
used to map a sequence position from a template to a target sequence. This code
is not expected to be typed by hand, but generated by tools as needed.

#---
Step 1: Map a given template sequence position to the signature.
#---

BIND(87 AS ?templatePosition)

Make a regular expression to find the position in the alignment string that
corresponds to the template position (adjusted by the template sequence’s
begin position in the alignment) that we need to map: The expression is bound
to the start of the string and consists of repeats of a pattern of 0-n
deletions (dashes) followed by 1 matched position or insertion (non-dash
char).
BIND(

CONCAT(’ˆ(?:-*[ˆ-]){’,
STR((?templatePosition - ?templateAlignBeginPosition + 1)),
’}’)

AS
?regexForSubstringToTemplatePosition)

Count the number of chars present after the template position.
BIND(

STRLEN(REPLACE(?templateAlign, ?regexForSubstringToTemplatePosition, ’’))
AS
?lengthOfTemplateAlignAfterTemplatePosition)

Extract the alignment substring up to the template position.
BIND(

SUBSTR(?templateAlign,
1,
(STRLEN(?templateAlign)
- ?lengthOfTemplateAlignAfterTemplatePosition
))

AS
?substringToTemplatePosition)

The position on the signature is the length of the above substring without the
insertions (lower-case letters).

14

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

BIND(
STRLEN(REPLACE(?substringToTemplatePosition, ’[a-z]’, ’’))
AS
?signaturePosition)

#---
Step 2: Map the signature position to the target sequence.
#---

Make a regular expression to find the position in the alignment string that
corresponds to the signature position that we need to map: The expression is
bound to the start of the string and consists of repeats of a pattern of 0-n
insertions (lower-case letters) followed by 1 matched position or deletion
(upper-case letter or dash).
BIND(

CONCAT(’ˆ(?:[a-z]*(?:[A-Z]|-)){’,
STR(?signaturePosition),
’}’)

AS
?regexForSubstringToSignaturePosition)

Count the number of chars present after the signature position.
BIND(

STRLEN(REPLACE(?targetAlign, ?regexForSubstringToSignaturePosition, ’’))
AS
?lengthOfTargetAlignAfterSignaturePosition)

Extract the alignment substring up to the signature position.
BIND(

SUBSTR(?targetAlign,
1,
(STRLEN(?targetAlign)
- ?lengthOfTargetAlignAfterSignaturePosition
))

AS
?substringToSignaturePosition)

The position on the target is the length of the above substring without the
deletions (dashes), adjusted by the target sequence’s begin position in the
alignment.
BIND(

(STRLEN(REPLACE(?substringToSignaturePosition, ’[-]’, ’’)) + ?targetAlignBeginPosition - 1)
AS
?signaturePosition)

15

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

6.2 Supplement 2: Java Apache Jena ARQ custom
function
package org.expasy.hamap.tools.sparql.jena.functions;

import java.util.List;

import org.apache.jena.query.QueryBuildException;
import org.apache.jena.sparql.expr.ExprEvalException;
import org.apache.jena.sparql.expr.ExprList;
import org.apache.jena.sparql.expr.NodeValue;
import org.apache.jena.sparql.function.FunctionBase;
import org.apache.jena.sparql.util.FmtUtils;

/**
* @see https://jena.apache.org/documentation/query/writing_functions.html

*
*/

public class PositionalFeatureShifter
extends FunctionBase

{

private static final int NUMBER_EXPECTED_ARGUMENTS = 5;

public PositionalFeatureShifter()
{
super();

}

@Override
public NodeValue exec(List<NodeValue> args)
{
if (args.size() != 5)

throw new ExprEvalException("Incorrect number of arguments");
return exec(args.get(0), args.get(1), args.get(2), args.get(3), args.get(4));

}

public NodeValue exec(NodeValue alignStringSignatureTemplate, NodeValue signatureTemplateStart,
NodeValue positionToMap,
NodeValue alignStringSignatureTarget, NodeValue signatureTargetStart)

{
if (!alignStringSignatureTemplate.isString())

throw new ExprEvalException("Not a String: "
+ FmtUtils.stringForNode(alignStringSignatureTemplate.asNode()));

else if (!alignStringSignatureTarget.isString())
throw new ExprEvalException("Not a String: "

+ FmtUtils.stringForNode(alignStringSignatureTarget.asNode()));
else if (!positionToMap.isNumber())

throw new ExprEvalException("Not a number: "

16

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

+ FmtUtils.stringForNode(positionToMap.asNode()));
else if (!signatureTemplateStart.isNumber())

throw new ExprEvalException("Not a number: "
+ FmtUtils.stringForNode(signatureTemplateStart.asNode()));

final String templateAlign = alignStringSignatureTemplate.asUnquotedString();
final String targetAlign = alignStringSignatureTarget.asUnquotedString();

// Step 1: Count the non-insertion chars in the ’template to signature’ mapping.
int templatePositionInt = positionToMap.getInteger().intValue()

- (signatureTemplateStart.getInteger().intValue()) + 1;
final int step1 = fromTemplateToSignature(templatePositionInt, templateAlign) ;

// Step 2: Count the non-deletion chars in the ’signature to target’ mapping,
// using the signature position calculated in step1.
final int step2 = fromSignatureToTarget(step1, targetAlign);
final int mappedPosition = step2 + signatureTargetStart.getInteger().intValue() - 1;

return NodeValue.makeInteger(mappedPosition);
}

static final int fromTemplateToSignature(final int pos, final String align)
{
int nonDeletionCounter = 0;
int nonInsertionCounter = 0;
for (int i = 0; i < align.length(); i++)
{

if (align.charAt(i) == ’-’ || Character.isUpperCase(align.charAt(i)))
{

nonInsertionCounter++;
}
if (align.charAt(i) != ’-’)

nonDeletionCounter++;
if (nonDeletionCounter == pos)

return nonInsertionCounter;
}
throw new ExprEvalException("");

}

static final int fromSignatureToTarget(final int pos, final String align)
{
int nonDeletionCounter = 0;
int nonInsertionCounter = 0;
for (int i = 0; i < align.length(); i++)
{

if (align.charAt(i) == ’-’ || Character.isUpperCase(align.charAt(i)))
{

nonInsertionCounter++;
}
if (align.charAt(i) != ’-’)

nonDeletionCounter++;

17

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

if (nonInsertionCounter == pos)
return nonDeletionCounter;

}
throw new ExprEvalException("");

}

@Override
public void checkBuild(String uri, ExprList args)
{
if (args.size() != NUMBER_EXPECTED_ARGUMENTS)

throw new QueryBuildException(
"Function ’" + this.getClass() + "’ takes " + NUMBER_EXPECTED_ARGUMENTS + " arguments");

}
}

18

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

6.3 Supplement 3: XSLT to convert InterProScan XML
output to minimal RDF for HAMAP
This XSLT stylesheet transforms the XML result file of a local InterProScan run
(with the -dp option) into the minimal set of RDF triples required by HAMAP
SPARQL rules.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:in="http://www.ebi.ac.uk/interpro/resources/schemas/interproscan5"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:faldo="http://biohackathon.org/resource/faldo#"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:up="http://purl.uniprot.org/core/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<xsl:output method="text"/>

<xsl:template match="/">
PREFIX up:<http://purl.uniprot.org/core/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX faldo:<http://biohackathon.org/resource/faldo#>
PREFIX signature:<http://purl.uniprot.org/hamap/>
PREFIX edam: <http://edamontology.org/>

<xsl:apply-templates />
</xsl:template>

<xsl:template match="in:protein-matches">
<xsl:for-each select="in:protein">

<xsl:variable name="sequenceid" select="translate(in:xref/@id, ’|’, ’%7C’)"/>
<xsl:variable name="sequencemd5" select="translate(in:sequence/@md5,’acbdef’,’ABCDEF’)"/>

<xsl:for-each select="in:matches/in:profilescan-match">
<xsl:variable name="signatureid" select="in:signature/@ac"/>
<xsl:variable name="start" select="in:locations/in:profilescan-location/@start"/>
<xsl:variable name="end" select="in:locations/in:profilescan-location/@end"/>

<<xsl:value-of select="$sequenceid"/>>
up:sequence <<xsl:value-of select="$sequenceid"/>-sequence> ;
rdfs:seeAlso signature:<xsl:value-of select="$signatureid"/> .
</xsl:for-each>

<<xsl:value-of select="$sequenceid"/>-sequence>
rdf:hasValue "<xsl:value-of select="in:sequence"/>" .

<xsl:for-each select="in:matches/in:profilescan-match">
<xsl:variable name="signatureid" select="in:signature/@ac"/>
<xsl:variable name="start" select="in:locations/in:profilescan-location/@start"/>
<xsl:variable name="alignment" select="in:locations/in:profilescan-location/in:alignment/text()"/>
<xsl:variable name="end" select="in:locations/in:profilescan-location/@end"/>

19

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

[] a edam:data_0869 ;
<xsl:if test="$alignment != ’Not available’">
rdf:value "<xsl:value-of select="$alignment" />" ;
</xsl:if>
edam:is_output_of [
a edam:operation_0300 ;
edam:has_input signature:<xsl:value-of select="$signatureid"/>

] ;
faldo:begin [faldo:position <xsl:value-of select="$start" />] ;
faldo:end [faldo:position <xsl:value-of select="$end" />] .

</xsl:for-each>
</xsl:for-each>

</xsl:template>
</xsl:stylesheet>

20

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 24, 2019. ; https://doi.org/10.1101/615294doi: bioRxiv preprint

https://doi.org/10.1101/615294
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Methods
	HAMAP annotation rules in SPARQL syntax
	Protein sequence records in RDF syntax
	Protein sequence/signature matches in RDF syntax
	Simple rules for standardized annotations

	Results
	Validation
	Performance

	Discussion
	Protein function annotation pipelines based on SPARQL
	An approach that is extensible to any domain of biology
	Further work

	Conclusion
	Supplementary information
	Supplement 1: Map position on template to target sequence using SPARQL 1.1 standard functions
	Supplement 2: Java Apache Jena ARQ custom function
	Supplement 3: XSLT to convert InterProScan XML output to minimal RDF for HAMAP

