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Supplementary Information: Reconstructing the ecology of a Jurassic psedoplanktonic 

megaraft colony 

 

Introduction to Crinoid Ecology 

The crinoids that are the focus of this study are a wonder of the Mesozoic with as many as 

100 individuals covering oyster-encrusted logs up to 14m long (SI Appendix, Fig. S1). The 

crinoids that inhabited these communities belong to distinct genera with a characteristic 

morphology. Although a number of unique adaptations have been suggested for these 

animals, uncertainty exists whether or not this mode of life was possible. Our study is 

consistent with the special adaptations that these crinoids have, such as distally tapering 

column, a strengthened attachment structure and the development of an enlarged crown, 

which does not need to close hermetically in Seirocrinus, and a very large crown and high 

densities of cirri allowing for the enlargement of the cup and the food groove in 

Pentacrinites. Never again do crinoids develop such adaptations to an unusual ecosystem. 

Although risky, this adaptation allowed these crinoids to spread across Eurasia inhabiting 

regions as widespread as Alaska and Japan (Hunter and Zonneveld 2008, Hunter et al. 2011). 

 

1. Analysis of the spatial positions of attachment discs along the Holzmaden (G1) 

crinoid log 

 

 

Fig. S1. The specimen with attachment discs marked in black and heads marked in blue. 

 

1. 1 Introduction to SPPA 
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This species of crinoid are immobile once attached to logs or other substrate (Hagdorn 2016).  

Therefore, their spatial distributions of their attachment discs on their settled substrate reflect 

the dispersal processes that brought their larvae to the substrate and the consequent 

interactions between organisms.  As such, analysis of the spatial distributions using spatial 

point process analyses (SPPA) can shed light on these dispersal process and interactions (e.g. 

Seidler and Plotkin 2006).  SPPA has been effectively applied to the study of modern sessile 

ecosystems, most notably in terrestrial forests, but also to a limited extent with marine 

benthic organisms such as barnacles (Lancaster and Downes 2004, Illian et al. 2008).    

 

Comparisons with extant organisms such as barnacles show that when larvae attach to a 

moving object, such as a boat hull, the spatial distributions are highly anisotrophic - that is 

they are not uniform across the entire object.  Areas which face into the current (such as the 

bow of a boat) are subject to high turbulence and thus have limited colonization, while the 

areas sheltered from the current, such as boat sterns, have the highest densities of invertebrate 

colonizers (Ashton et al. 2014).  In contrast when larvae attach to an immobile substrate, their 

spatial distributions exhibit complete spatial randomness (CSR) when not impacted by 

environmental variables such as habitat heterogeneities such as patchy rocks (e.g. Edwards 

and Stachowicz 2011).   Comparisons of observed spatial distributions with spatial models 

can be used to infer the most likely process underlying a spatial distribution.  Randomly 

distributed points, (CSR) can be modelled using homogeneous Poisson processes while 

anisotrophy can be modelled using heterogeneous Poisson processes. For these 

heterogeneous Poisson processes, the density of points changes according to a formula, such 

as with distance along the substrate. 

 

Pair correlation functions (PCFs) are commonly used to describe complex spatial 

distributions over large distances, where they document how the density of specimens 

changes with distance (e.g. Wiegand et al. 2007).  A CSR (random) population will have a 

PCF of 1, whereas aggregation is indicated by PCF >1, and segregation by PCF <1.  The 
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magnitude of the PCF reflects the intensity of biological and physical processes; a population 

with PCF=4, for example, is four times more aggregated than one with CSR.  If a PCF is 

significantly non-random, then the specimens have been subject to a biological or ecological 

process, such as interactions with each other, or their environment.  Segregations between 

specimens occur when organisms cannot overlap with each other, or being within the vicinity 

of another specimen has a negative effect, while aggregations indicate likely positive effects, 

such as beneficial substrate, or dispersal induced clustering. 

 

1.2 Methods 

Data exploration, inhomogeneous Poisson modelling and residual analysis was performed in 

R using the package spatstat (R core team, 2013, Baddeley et al. 2000, Baddeley et al. 2015). 

Pair correlation functions (PCFs) were calculated to describe the spatial distributions of discs 

on the log (SI Appendix, Fig. S1) (Illian et al. 2008). Monte Carlo and Diggle’s goodness-of-

fit test5 (the p-value pd, in which pd =1 indicates a perfect model fit, and pd =0 indicates no 

fit), simulations were used to assess whether the spatial distribution was completely spatially 

random (Diggle 2003).  The PCF value reflects how many times more likely the distribution 

seen is aggregated (or segregated) compared with CSR. The PCF was plotted (SI Appendix, 

Fig. S2), and nine hundred and ninety-nine simulations were run to generate simulation 

envelopes around the CSR. To assess whether the density of the spatial distributions of discs 

was stronger in any particular direction (that is, it exhibited isotropy); density plots were fit to 

of the point positions of the discs.  To assess how disc density changed along the log, disc 

density was modelled as a heterogeneous Poisson process dependent on the x co-ordinate and 

then the y-co-ordinate.  Model fit was assessed using the model residuals (Illian et al. 2008, 

Wiegand et al. 2007). Model residuals assessed the fit of the model to the data by plotting Q–

Q and smoothed residual plots. If the observed line in the Q–Q plot fell outside two standard 

deviations of the model, the model was rejected (Illian et al. 2008, Wiegand et al. 2007). 
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Akaike information criterion values (Baddeley et al. 2011) were used to compare the relative 

quality of the statistical models that fitted the data. 

 

1.3 Results  

The spatial distribution of the discs was found to be significantly segregated (pd <0.001) 

below 4.5cm (SI Appendix, Fig. S2).  This segregation is hard-core under 2.5cm, which 

means that no specimens are found within 2.5cm of each other.  Between 2.5 and 4.5cm there 

is a soft-core segregation, which means that while segregation occurs, the likelihood of 

specimens occurring within this distance is reduced.  This result suggests that the attachment 

discs require a non-overlapping area of 2.5cm, and it is sub-optimal to attach within 2cm of 

another disc. The density map shows a clear anisotrophy: that is a difference in density 

dependent on direction, with the highest density on the left hand side, with decreasing density 

along the log (SI Appendix, Fig. S3).  This anisotrophy can be modelled by heterogeneous 

Poisson model depending on the x co-ordinate (SI Appendix, Table S1). 

 

Fig. S2. Pair correlation function for attachment discs.  The x axis is the inter-point distance 

between organisms in centimetres. On the y axis, PCF=1 indicates CSR, <1 indicates 

segregation and >1 indicates aggregation.  Grey shaded area depicts the bounds of 99 Monte 

Carlo simulations of CSR. Since the PCF curve is not completely within these areas, the CSR 

hypothesis is rejected and one can assume that discs are significantly segregated.  
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Fig. S3. Density map of attachment discs.  Note the higher densities on the left hand side. 

 

Table S1. AIC values for different heterogeneous Poisson models dependent on either the x 

or y co-ordinate.  The lower the AIC value, the better fit the model.  The lowest AIC value 

was for the heterogeneous Poisson model dependent on the x coordinate.  This best-fit model 

was within the two standard deviations for the Q-Q plot. 

Model AIC 

CSR 1592.544 

X 1591.102 

Y 1594.313 

 

2. Diffusion model for the Holzmaden crinoid log (SI Appendix, Fig. S1) 

We construct the model around a cylinder with  longitudinal diffusion. 

Using Fick‘s Law of diffusion = 

 

The C means water concentration; delta t is the duration between each time step (one day in 

our model); Dx is the diffusion coefficient in the longitudinal direction (which is a function 

of the conduit diameter and the moisture content); Delta is the distance increment between 

two slice compartments of the log). The growth of oysters adds to the mass and the 

population growth is modeled using a logistic curve. 
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2.1 Physical properties of wood 

2.1.1 Wood types and variety 

Wood is an anisotropic material composed of dead and living cells through which moisture is 

transported. Due to the hygroscopic nature of this material the physical properties of wood, 

including its moisture transport properties, are strongly influenced by both the surrounding 

moisture as well as the ambient temperature (Skaar 1984). Three directions are considered 

when examining tree wood: the longitudinal, radial and tangential directions. The 

longitudinal direction is the direction of the wood fibers. The radial direction runs from the 

center of the tree to the outside. Finally, the tangential direction follows the curvature of the 

tree (Jacobson and Banerjee 2006). Trees are divided into two classes: conifers (or 

softwoods) and broadleaf trees (or hardwoods). The main distinction between the two classes 

is that hardwoods possess vessel elements in addition to the common wood fibers (or 

tracheids). Both classes display a broad range of densities with, for example, balsa 

(hardwood) showing lower densities (0.2e10
3
 kg/m

3
) than softwoods and yew (softwood) 

being denser (0.7e10
3
 kg/m

3
) than many hardwoods. 

 

2.1.2 Structures 

Cross sections for hardwoods and softwoods reveal dark and light areas that correspond to 

latewood and earlywood respectively. Each area is composed of tubular structures called 

wood fibers or tracheids that are around 30 μm in diameter and 3 mm in length (Jacobson 

2006). The main structural distinction between softwood and hardwood is the existence of 

additional specialized vessels in the latter through which moisture is conducted. These 

vessels present a variety of features (presence or absence of perforations, size of the 

perforations, lignin reinforcements, etc.) and diameters. There is currently no definitive 

model that would consider the chemical and physical processes involved in moisture 
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transport in wood and the phenomenon is likely to be affected by many variables 

simultaneously (Skaar 1984; Wood et al. 2002).  

 

2.1.3 Composition 

Wood consists of three polymers: cellulose, hemicellulose and lignin. These polymers are not 

evenly distributed as cellulose amounts to between 40 and 50% of the material in mass, 

depending on the species (Sjostrom 1993). The remaining mass is roughly evenly divided 

between hemicelluloses and lignin. The three polymers assemble to form microfibrils that are 

typically 5000 nm long and 10-20 nm wide. In turn, these microfibrils are arranged in sheets 

that constitute the cell wall of wood fibers and the relative thickness of these sheets is also 

species-specific. The varying abundance of the polymers coupled with their distinct chemical 

properties explain the complex sorption behaviour of wood materials. 

 

2.1.4 Wood Decay 

It is unknown whether the log structures in this study were gymnosperms or angiosperms as 

the wood is not preserved; additionally, the variety of gymnosperm species themselves are 

critical to the long term survival of the raft. Generally recent gymnosperm confer forests 

produce much more wood debris than angiosperm forests, therefore we can assume there was 

plenty of available material. However, the structure of the wood itself and the agents of decay 

in the environment the wood is found are critical for the longevity of the system and how the 

log structure will break up. Firstly, the flow of the water will break the bark which acts as a 

protective coating around the wood increasing the infiltration rate; this will be exacerbated by 

natural breaks or cracks; alternatively the wood could have been crushed. However, the log 

structures clearly survived high-energy fluviatile environment or entered the system from the 

margins of the epicontinental sea. From this, we can infer that a log from the Jurassic 

gymnosperm forest in a swamp, estuary or delta was dislodged and floated out to sea where 

oysters, other sealing agents and crinoid larval disks attached and formed a complex 
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community structure. Fresh water fluviatile environments have surprisingly lower rates of 

microbial decay in streams compared to the open ocean; conversely these environments are 

home to elevated amounts of fungus and terrestrial invertebrates such as insects. The latter 

could not survive in the open ocean environment finding it intolerable. It is often cited that 

log structures are less common in the open ocean due the presence of marine invertebrates 

that would break down the wood structures; however, our examples were likely protected by 

the oysters and evidence of anoxia prevalent in both the Holzmaden and in the Lias may have 

meant few invertebrates could have infiltrated the log. Additionally, many of the agents 

found in the modern oceans that break down floating wood evolved post mid-Jurassic. In 

terms of properties of the wood itself, the initial density can influence decay rates. Our 

idealized models assume that the density of wood was the same across the log; close to the 

composition of sapwood that contains functioning vascular tissues. Therefore spaces are 

likely to absorb water and decay at a higher rate. Gymnosperm tracheids (pore spaces) are 

much smaller than angiosperms vessels. The density of these spaces in gymnosperm wood 

declines higher up the tree structure which means the low density structures further up the log 

would have been better candidates for longer lasting wood megarafts. This sapwood is 

surrounded by outer bark, inner bark which includes the phloem and core consisting of the 

heartwood. With a much lower rate of absorption the presence of plentiful heartwood would 

have strengthened the viability of the system considerably. Gymnosperm sapwood contains 

much less living tissue 5-11 % as opposed to 11-48 % found in angiosperms. The lack of 

living tissue would have meant a much lower decay rate in this type of wood. 

2.2 Moisture sorption model 

2.2.1 Basis of the model 

A Fickiandiffusion model was used to evaluate the soaking time of wood logs (Jacobson and 

Banerjee 2006, Wood and Gladden 2002). Debate is still open concerning the Fickian nature 

of the moisture transport as water appears in three distinct phases in wood: free, bound and 
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gaseous (Krabbenhøft et al. 2004). However, as there is currently no model suited to the Non-

Fickian behaviour in wood (Wadsö 1994), we decided to use a Fickian model to provide an 

order of magnitude for the soaking durations until sinking. Despite being extremely 

simplified, it has been shown to be equivalent to other models at least in isothermal 

conditions (Krabbenhøft et al. 2004). Previous research has shown that the Fickian model 

systematically underestimates the value of diffusion coefficients mostly during the initial 

phase of absorption (Shi 2007), which means that it predicts soaking speeds that are actually 

slower than the experimental measurements. Therefore, the estimate times to sinking 

considered in this study should be considered as maximum values. 

 

2.2.2 Diffusion model 

This model assumes that the wood is green with a moisture content higher than the fiber 

saturation point so as to avoid any impact of volume change for the vessels. As the free water 

is already in the vessels, most of the soaking is the result of the diffusion of either water 

bound to the cell walls (bound water) or vapor. The present two-phase model examines the 

diffusion of moisture under isothermal conditions using a finite difference technique to solve 

the differential equations that involve diffusion coefficients that are varying according to the 

moisture content. The model is considering an isothermal diffusion because heat diffusivity is 

orders of magnitude higher than moisture diffusivity in wood. 

 

2.2.3 Diffusion coefficients 

The diffusion of gas occurs within the lumen of cells and is dependent on the diffusivity of 

water vapor in air, temperature and the saturated vapor pressure. The diffusion of bound 

water is dependent on the temperature and the moisture content. These two values can be 

combined to reflect the general diffusion coefficient (Baronas et al. 2001). 
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2.2.4 Moisture movement in wood 

The model considers the diffusion of moisture within a cylinder of revolution of radius r and 

length L. Wood vessels are running along the length of the cylinder and are orthogonal to the 

circular cross section.  

The diffusion of moisture can be modeled as a Fickian phenomenon by the equation (1) 

that is set in a one-dimension (longitudinal) system without convection. 

 𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
 (1)  

 

In a cylindrical system, the equation should be adapted to reflect the diffusion that 

happens both longitudinally and radially: 

 𝜕𝑢

𝜕𝑡
= 𝐷𝑟 [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
)] + 𝐷𝑙

𝜕2𝑢

𝜕𝑥2
 (2)  

 

Initial conditions 

u(0,r,t)=u(L,r,t)=100; u(x,b,t)=100;  

2.2.5 Longitudinal component 

 

If we employ a classic separation method, we can express ul(r,x) as a product of two 

functions X and T such as: 

 𝑢𝑙(𝑟, 𝑥) = 𝑋(𝑥)𝑇(𝑡) (3)  

 

The longitudinal component of equation (2) becomes: 

 1

𝐷𝑙

𝑇′

𝑇
=
𝑋"

𝑋
= −𝜇 (4)  

 

If we consider the spatial component of this equivalence first, we can say that μ>0 is the 

only condition leading to non-trivial solutions: 
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 𝑋𝑛(𝑥) = 𝐴𝑛 sin (
𝑛𝜋𝑥

𝐿
) (5)  

 

with μ=(nπ/L)
2
 . By injecting this value into the  temporal component, we obtain: 

 
𝑇𝑛
′ +

𝐷𝑙𝑛
2𝜋2

𝐿2
𝑇𝑛 = 0 (6)  

 

which leads to: 

 
𝑇𝑛(𝑡) = 𝐵𝑛exp(

−𝐷𝑙𝑛
2𝜋2

𝐿2
𝑡) (7)  

 

By combining (5) and (7) and summing all the components, we obtain a general 

expression for the moisture profile along the longitudinal axis: 

 
𝑢𝑙(𝑥, 𝑡) = 100 −∑𝐶𝑛 sin (

𝑛𝜋𝑥

𝐿
)

∞

𝑛=1

exp(
−𝐷𝑙𝑛

2𝜋2

𝐿2
𝑡) (8)  

 

the value of Cn is fixed by the initial condition at t=0 and the boundary conditions at x= L: 

 
𝐶𝑛 =

2

𝐿
∫ 𝜑(𝑥) sin (

𝑛𝜋𝑥

𝐿
)𝑑𝑥

𝐿

0

 (9)  

 

For example, if L=π and ul(x,0)=-x(π-x), 

 
𝐶𝑛 =

2

𝐿
∫ 𝑥(𝜋 − 𝑥)
𝜋

0

sin(𝑛𝑥) 𝑑𝑥 (10)  

and 
𝐶𝑛 = 4

1 − (−1)𝑛

𝑛3𝜋
 (11)  

 

This initial distribution of the moisture is a good approximation of a moisture profile. 

In the end, the longitudinal diffusion of moisture in a cylinder of length π can be 

expressed as: 
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𝑢𝑙(𝑥, 𝑡) = 100 −

8

𝜋
∑

sin((2𝑛 − 1)𝑥)

(2𝑛 − 1)3

∞

𝑛=1

exp(−𝐷𝑙(2𝑛 − 1)2𝑡) (12)  

 

2.2.6 Radial component 

A similar approach can be taken with the radial component of the moisture function. 

 𝜕𝑢𝑟
𝜕𝑡

= 𝐷𝑟 (
𝜕2𝑢

𝜕𝑢2
+
1

𝑟

𝜕𝑢

𝜕𝑟
) (13)  

 

A separation of the variables leads to: 

 𝑢𝑟(𝑟, 𝑡) = 𝑅(𝑟)𝑇(𝑡) (14)  

and thus equation (12) can be re-written as: 

 1

𝐷𝑟

1

𝑇

𝜕𝑇

𝜕𝑡
=
1

𝑅
(
𝜕2𝑅

𝜕𝑟2
+
1

𝑟

𝜕𝑅

𝜕𝑟
) = −(

𝑚

𝑏
)
2

 (15)  

 

The only non-trivial solutions for equation (14) are for a separation constant that is 

negative (-(m/b)
2
) and this leads to: 

 𝑅(𝑟) = 𝐽0 (
𝑚

𝑏
𝑟) (16)  

 

If we focus now on the temporal element of the moisture function, the boundary condition 

R(b)=0 suggests to consider all the possible solutions of the equation J0(mn)=0 

 

The equation (14) becomes then: 

 𝜕𝑇𝑛
𝜕𝑡

+ ((
𝑚𝑛

𝑏
)
2

𝐷𝑟) 𝑇𝑖 = 0 (17)  

and thus 
𝑇𝑛(𝑡) = 𝑀𝑛exp(− (

𝑚𝑛

𝑏
)
2

𝐷𝑟𝑡) (18)  

 

By combining (15) and (17) and summing all the components, we obtain a general 

expression for the moisture profile along the longitudinal axis: 
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𝑢𝑟(𝑟, 𝑡) = ∑𝑀𝑛𝐽0 (

𝑚𝑛

𝑏
𝑟) exp(− (

𝑚𝑛

𝑏
)
2

𝐷𝑟𝑡)

∞

𝑛=1

 (19)  

 

The boundary condition ur(r,0)=Minit leads to: 

 
𝑀𝑛 =

(2𝑀𝑖𝑛𝑖𝑡)

𝑚𝑛𝐽1(𝑚𝑛)
 (20)  

 

and therefore: 

 
𝑢𝑟(𝑟, 𝑡) = 2𝑀𝑖𝑛𝑖𝑡 ∑

1

𝑚𝑛𝐽1(𝑚𝑛)
𝐽0 (

𝑚𝑛

𝑏
𝑟) exp(− (

𝑚𝑛

𝑏
)
2

𝐷𝑟𝑡)

∞

𝑛=1

 (21)  

 

2.2.7 Weight of the Colony 

Part of our calculation is to seek to understand the total weight of the colony.  The 

flowing factors need to be taken into account: Firstly, the maximum carrying capacity of the 

log (see SI Appendix, oyster community growth model below) and secondly the original 

density of the wood material. We take into account the following factors: 

 

1) The population is always preserving optimum intrinsic growth parameters. 

 

2) No environmental factor limits the growth of the community during the duration of the 

simulation. 

 

3) There is no significant water absorption within the oysters or the crinoids during the 

growth of the colony. 

 

We conclude that the mass of the community in the most extreme circumstances could reach 

around 880 kg for a log that is 10 m long and 0.4 m in diameter with a carrying capacity of 

1000 individuals per square meter. If the carrying capacity is less than 600 individuals per 
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square meter, only logs with a density higher than 0.5 (pine is around 0.5) would manage to 

sink within a 20-year window and the community would then weigh around 630 kg. As for 

the mass of the log a Shortleaf pine (softwood) with a kiln dry specific gravity of 0.47 

(average for softwood), the green wood will have a general mass varying between 950 and 

1100 kg for a log that is 10 m long and 40 cm in diameter. This could be regarded as a 

minimum value with modern hardwood logs up to 15,000 kg. That means that the weight of 

the oyster community in that optimum growth scenario (super high carrying capacity) 

matches almost the original mass of a softwood log. However these high carrying capacities 

>200 hundred oysters per square meter are rare and it is likely that the oyster community 

mass did not reach 600 kg for a span of 20-50 years on our large logs. 
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2.3 Results 

 

Fig. S4. Small colonies - Göttingen (S1) and Stuttgart 1 (S2)  – 40 cm long Diameter 5-6 cm 

(Community Removed). 

 

 

Fig. S5. Small colonies - Göttingen (S1) and Stuttgart 1 (S2) – 40 cm long Diameter 5-6 cm 

(Community Included). 
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Fig. S6. Medium colonies - Frankfurt (M1) and Dotternhausen (M2) – 190 cm long, 

Diameter 8-12 cm (Community Removed). 

 

 

Fig. S7. Medium colonies - Frankfurt (M1) and Dotternhausen (M2) – 190 cm long, 

Diameter 8-12 cm (Community Included). 
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Fig. S8. Massive colonies – Holzmaden (G1) and Stuttgart 2 (G2) – 12 m long Diameter 25-

28 cm (Community Removed). 

 

 

Fig. S9. Massive colonies – Holzmaden (G1) and Stuttgart 2 (G2) – 12 m long Diameter 25-

28 cm (Community Included). 
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3 Oyster community growth model 

 

3.1 Introduction  

The population model incorporated both the spatial distribution along the log as well as life-

history estimates (fecundity, mortality, settling rates and maturation time) for a complete life 

cycle of extant analog Ostrea chilensis (Philippi, 1845). A life cycle was defined as the 

duration from the release of eggs, through the planktonic larval stage, settlement and growth 

to reach a mature stage allowing the release of the next generation of eggs. Simulations for 

the growth of oyster communities were conducted using the mathematical package MATLAB 

R2017a. The log surface was sectioned into 10 compartments (or boxes) and the model 

quantitatively estimated the success (settlement and growth) of a population within a given 

box (Kanary et al. 2011). The model was initialized by assuming one mature adult in box 1 

and it estimated the number of mature oysters at each following time increment (one year) 

across the log (10 boxes). 

 

3.1 Oyster Diffusion Model 

The model assumes that once settled, an oyster does not relocated between boxes (Raillard 

and Ménesguen 1994) and that the time to reach maturity is 1 year (Lannan 1971). In a 

population, only a certain percentage is actually spawning (rSpawn) which leads these mature 

adults to release eggs (per capita reproductive rate rRep). Of these released eggs, only a 

fraction of the larvae can settle (sRate). The further the box is away from the spawning 

location, the less likely the larva will settle and a simple transition matrix tP(I,n) was designed 

to illustrate this differential implantation distribution. Each entry in the transition matrix tP(I,n) 

represents the probability of transitioning from one compartment to another through simple 

dispersal by water currents because the average swimming speed of a veliger larva only 

ranges between 0.6 and 2 cm/min (Hidu and Haskin 1978). These assumptions provided a 

simplified framework for the growth model. 
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The population growth process can thus be expressed as: 

 

 
𝑿(𝒊,𝒕) = (𝟏 − 𝒓𝑴𝒐𝒓𝒕)𝑿(𝒊,𝒕−𝟏)

+∑𝒓𝑺𝒑𝒂𝒘𝒏

𝟏𝟎

𝒏=𝟏

𝒓𝑹𝒆𝒑𝒔𝑹𝒂𝒕𝒆(𝒕𝑷(𝒊,𝒏) ∗ 𝑿(𝒏,𝒕−𝟏)) 

(1) 

With  

 𝑿𝒊,𝒕 = 𝒎𝒊𝒏{𝑿𝒊,𝒕, 𝑲} (2) 

 

Where K is the maximum carrying capacity of the log compartment (individuals/ m
2
). 

Carrying capacity is understood as a simple saturation function: at each time step, if the value 

of X computed by equation 1 is larger than K, it is truncated to K because additional larvae 

cannot settle on a log compartment once the carrying capacity has been reached. In addition, 

n is the index associated to the destination compartment. 

Spawning rate, per capita reproductive rate and mortality rate correspond to average values 

taken from the literature about Ostrea chilensis (Brown 2011) or Crassostrea virginica 

(Powell et al. 1996, Wang et al. 2008). The values for the parameters appear in SI Appendix, 

Table S2. 
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Parameter 
Value Reference 

Mortality rate (rMort) 
0.6 (Brown 2011) 

Spawning rate (rSpawn) 
0.15 (Wang et al. 2008) 

Per capita reproductive 

rate (rRep) 

500 (Brown 2011) 

Settlement rate (sRate) 
0.10 (Powell et al. 1996) 

Maximum carrying 

capacity (K) 

50 ~ 1000 individuals / m
2 

(Brown 2011) 

 

Table S2. Values of the parameters retained for the model of population growth. Values are 

extracted from existing literature about oyster communities in New Zealand (Brown 2011) 

and the USA (Powell et al. 1996, Wang et al. 2008). 

 

The model allowed to reconstruct the number of years required to reach sinking density for 

the whole log for various values of K (SI Appendix, Table S3). In some cases, the dimensions 

of the log combined with the density of the wood material would allow the loaded log never 

to reach sinking threshold within the 20-year window. 
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0.

4 x x x x x x x x x x x x x x x 6 6 6 6 6 

0.

5 x x x x x x x x x x x x 6 6 6 6 6 6 6 6 

0.

6 x x x x x x x x x x 5 5 5 5 5 5 5 5 5 5 

0.

7 x x x x x x x 5 5 5 5 5 5 5 5 5 5 5 5 5 

0.

8 x x x x x 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

0.

9 x x 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

1.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

Table S3. Number of years required for a growing population of oysters to sink a sealed 

wood log. In this simulation, the wood log had a constant geometry with a length of 10 m and 

a radius of 0.2 m, corresponding roughly to the dimensions of the Holtzmaden log. 

 

  



22 
 

References 

Ashton G, Davidson I, & Ruiz G (2014) Transient small boats as a long-distance coastal 

vector for dispersal of biofouling organisms. Estuaries and Coasts 37(6):1572–1581. 

Baddeley A, Rubak E, & Turner R (2015) Spatial Point Patterns: Methodology and 

Applications with R (CRC Press). 

Baddeley A & Turner R (2000) Practical Maximum Pseudolikelihood for Spatial Point 

Patterns: (with Discussion). Australian & New Zealand Journal of Statistics 42(3):283–

322. 

Baddeley A, Rubak E, & Møller J (2011) Score, pseudo-score and residual diagnostics for 

spatial point process models. Statistical Science 26(4):613–646. 

Baronas R, Ivanauskas F, Juodeikiene I, & Kajalavicius A (2001) Modelling of moisture 

movement in wood during outdoor storage. Nonlinear Analysis: Modelling and Control 

6(2):3–14. 

Brown SN (2011) Ecology and enhancement of the flat oyster Ostrea chilensis (Philippi, 

1845) in central New Zealand. Doctor of Philosophy (University of Canterbury, New 

Zealand). 

Diggle PJ (2003) Statistical Analysis of Spatial Point Patterns (Academic Press, San Diego) 

2nd Ed. 

Edwards KF & Stachowicz JJ (2011) Spatially stochastic settlement and the coexistence of 

benthic marine animals. Ecology 92(5):1094–1103. 

Hagdorn H (2016) From benthic to pseudoplanktonic life: morphological remodeling of the 

Triassic crinoid Traumatocrinus and the Jurassic Seirocrinus during habitat change. PalZ 

90(2):225–241. 

Hidu H & Haskin HH (1978) Swimming speeds of oyster larvae Crassostrea virginica in 

different salinities and temperatures. Estuaries 1(4):252–255. 



23 
 

Hunter AW, Oji T, & Okazaki Y (2011) The occurrence of the pseudoplanktonic crinoids 

Pentacrinites and Seirocrinus from the Early Jurassic Toyora Group, western Japan. 

Paleontological research 15(1):12–22. 

Hunter AW & Zonneveld J-P (2008) Palaeoecology of Jurassic encrinites: reconstructing 

crinoid communities from the Western Interior Seaway of North America. 

Palaeogeography, Palaeoclimatology, Palaeoecology 263(1):58–70. 

Illian J, Penttinen A, Stoyan H, & Stoyan D (2008) Statistical Analysis and Modelling of 

Spatial Point Patterns (John Wiley & Sons, Chichester) p 560. 

Jacobson A (2006) Diffusion of chemicals into green wood. (Georgia Inst. of Technology). 

Jacobson AJ & Banerjee S (2006) Diffusion of tritiated water into water-saturated wood 

particles. Holzforschung 60(1):59–63. 

Kanary L, et al. (2011) Predicting larval dispersal of the vase tunicate Ciona intestinalis in a 

Prince Edward Island estuary using a matrix population model. Aquatic Invasions 

6(4):491–506. 

Krabbenhøft K, Damkilde L, & Hoffmeyer P (2004) Moisture transport in wood: A study of 

physical-mathematical models and their numerical implementation. Doctor of 

Philosophy (University of Denmark). 

Lancaster J & Downes B (2004) Spatial point pattern analysis of available and exploited 

resources. Ecography 27(1):94–102. 

Lannan JE (1971) Experimental self-fertilization of the Pacific oyster, Crassostrea gigas, 

utilizing cryopreserved sperm. Genetics 68(4):599-601. 

MATLAB R2017a. MATLAB and Statistics Toolbox Release 2017a, The MathWorks, Inc., 

Natick, Massachusetts, United States.  

Philippi RA (1845) Abbildungen und Beschreibungen Neuer oder Wenig Bekannter 

Conchylien (Theodor Fischer, Cassel). 

Powell EN, Klinck JM, & Hofmann EE (1996) Modeling diseased oyster populations. II. 

Triggering mechanisms for Perkinsus marinus epizootics. Journal of Shellfish Research 

15:141–165. 



24 
 

Raillard O & Ménesguen A (1994) An ecosystem box model for estimating the carrying 

capacity of a macrotidal shellfish system. Marine Ecology Progress Series 115:117–130. 

Seidler TG & Plotkin JB (2006) Seed dispersal and spatial pattern in tropical trees. PLoS 

Biology 4(11):e344. 

Shi SQ (2007) Diffusion model based on Fick’s second law for the moisture absorption 

process in wood fiber-based composites: is it suitable or not? Wood Science and 

Technology 41(8):645–658. 

Sjostrom E (1993) Wood Chemistry: Fundamentals and Applications (Academic Press, San 

Diego) 2nd Ed. 

Skaar C (1984) Wood–water relationships in the chemistry of solid wood. In The Chemistry 

of Solid Wood, Vol. 207,  (American Chemical Society), pp 127–172. 

R Core Team (2013) R: A language and environment for statistical computing. R Foundation 

for Statistical Computing. 

Wadsö L (1994) Describing non-Fickian water-vapour sorption in wood. Journal of 

Materials Science 29(9):2367–2372. 

Wang H, et al. (2008) Modeling oyster growth rate by coupling oyster population and 

hydrodynamic models for Apalachicola Bay, Florida, USA. Ecological Modelling 211(1-

2):77–89. 

Wiegand T, Gunatilleke S, & Gunatilleke N (2007) Species associations in a heterogeneous 

Sri Lankan dipterocarp forest. The American Naturalist 170(4):E77–E95. 

Wood J & Gladden LF (2002) Modelling diffusion and reaction accompanied by capillary 

condensation using three-dimensional pore networks. Part 1. Fickian diffusion and 

pseudo-first-order reaction kinetics. Chemical Engineering Science 57:3033–3045. 

Wood J, Gladden LF, & Keil FJ (2002) Modelling diffusion and reaction accompanied by 

capillary condensation using three-dimensional pore networks. Part 2. Dusty gas model 

and general reaction kinetics. Chemical Engineering Science 57(15):3047–3059. 


