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Abstract 

 

1. Ecologists use a wide range of study designs to estimate the impact of 

interventions or threats but there are no quantitative comparisons of 

their accuracy. For example, while it is accepted that simpler designs, 

such as After (sampling sites post-impact without a control), Before-

After (BA) and Control-Impact (CI), are less robust than Randomised 

Controlled Trials (RCT) and Before-After Control-Impact (BACI) 

designs, it is not known how much less accurate they are. 

 

2. We simulate a step-change response of a population to an 

environmental impact using empirically-derived estimates of the major 

parameters. We use five ecological study designs to estimate the effect 

of this impact and evaluate each one by determining the percentage of 

simulations in which they accurately estimate the direction and 

magnitude of the environmental impact. We also simulate different 

numbers of replicates and assess several accuracy thresholds. 

 

3. We demonstrate that BACI designs could be 1.1-1.5 times more 

accurate than RCTs, 2.9-4.1 times more accurate than BA, 3.8-5.6 

times more accurate than CI, and 6.8-10.8 times more accurate than 

After designs, when estimating to within ±30% of the true effect 

(depending on the sample size). We also found that increasing sample 

size substantially increases the accuracy of BACI designs but only 

increases the precision of simpler designs around a biased estimate; 

only by using more robust designs can accuracy increase. Modestly 

increasing replication of both control and impact sites also increased the 

accuracy of BACI designs more than substantially increasing replicates 

in just one of these groups. 

 

4. We argue that investment into using more robust designs in ecology, 

where possible, is extremely worthwhile given the inaccuracy of simpler 

designs, even when using large sample sizes. Based on our results we 

propose a weighting system that quantitatively ranks the accuracy of 

studies based on their study design and the number of replicates used. 

We hope these ‘accuracy weights’ enable researchers to better account 

for study design in evidence synthesis when assessing the reliability of 

a range of studies using a variety of designs. 
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Introduction 
 

Monitoring the impact of human activities on populations, communities 

and ecosystems is fundamental to understanding how to effectively protect and 

manage the natural world. This includes both monitoring the impacts of 

anthropogenic threats on biodiversity, as well as the effectiveness of 

management interventions to mitigate such threats. The main challenge with 

such monitoring is disentangling natural environmental change from 

anthropogenic change (Hewitt et al. 2001), whilst considering the focal impact’s 

statistical (Osenberg and Schmitt 1996, Stewart-Oaten 1996) and ecological 

significance (Wolfe et al. 1987). The complexity of natural ecosystems, 

including various sources of spatiotemporal variation and possible confounding 

variables, has led to considerable research effort to understand the best ways 

to study such impacts (Hewitt et al. 2001; Stewart-Oaten, Murdoch & Parker 

1986; Osenberg et al. 2006; Block et al. 2001; McGarigal and Cushman 2002; 

Underwood & Chapman 2003). Improvements in study design have helped 

ecologists become better at accurately quantifying human impacts on 

biodiversity, yet a plethora of study designs with varying levels of complexity 

and associated biases persist (De Palma et al., 2018; Table 1). 

           

Study design is composed of three major aspects: (i) pre-impact 

sampling, (ii) use of controls, and (iii) randomised allocation of sample units 

(here we term these “sites”). Pre-impact sampling can be added to an After 

design - where a system is simply monitored after an impact of a threat or 

intervention occurs - to create a Before-After (BA) design (Table 1). This 

compares the system’s state before and after an impact, attempting to minimise 

bias from temporal variability and pre-impact conditions. 

 

The addition of control sites to Before-After designs results in Before-

After Control-Impact (BACI) designs, where the average difference between 

control and impact sites is compared before and after an intervention (Table 1; 

Stewart-Oaten, Murdoch & Parker 1986; Osenberg et al. 2006). BACI designs 

help to minimise bias from a lack of a control in simpler designs, using the 

difference in the before period between control and impact sites as a null 

hypothesis for the differences that would exist in the absence of the threat or 

intervention (Thiault et al. 2017). Problems associated with site-specific 

temporal variation in BACI studies can be addressed by sampling control and 

impact sites simultaneously, several times before and after the intervention 

(Before-After Control-Impact Paired-Series (BACIPS) design; Stewart-Oaten 

and Bence 2001). 

 

Addition of randomly-allocated sites represents the final aspect of study 

design. Control-Impact (CI) designs, analogous with Space-For-Time 

Substitutions (França et al. 2016; De Palma et al. 2018) or Intervention Versus 
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Reference Site designs (Stewart-Oaten and Bence 2001), compare control and 

impact sites after an impact has occurred. However, non-random site allocation 

can result in a violation of the assumption that the only differences between 

control and impact sites are as a result of the anthropogenic impact, leading to 

inaccurate results (De Palma et al. 2018; Damgaard 2019; Larsen et al. 2019; 

Table 1). Randomised Controlled Trials (RCTs) minimise this bias through 

randomised allocation of sites (Table 1) and, in theory, if sufficient sites and 

time steps are sampled to account for spatiotemporal variation, this reduces the 

need to sample before and after the intervention (i.e. using a BACI design) to 

account for any initial differences (Larsen et al. 2019; De Palma et al., 2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 - Comparison of the key features and characteristics of different study designs.  

Graphs show how designs sample impact (green points) and control (blue points) sites 

over time, before (white area) and after (grey area) an impact of a threat or intervention. 

Solid horizontal lines show the average density of the sites that is measured and used 

to calculate the effect size of each design. For CI and RCT designs, dashed horizontal 

lines show the average of control and impact sites before the impact - for RCTs these 

can be very similar (with high sample size), but for CI these can be very different. Note 

that many variants of the designs exist and the C for ‘Control’ can be replaced with R 

for ‘Reference (e.g. BARI or RI) depending on the circumstances (e.g. reference sites 

for restoration; Webb et al. 2012). The letter ‘M’ can also be used to indicate ‘Multiple’ 

sites for BACI/BARI designs (Downes et al. 2004). 
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However, despite the generation of more robust approaches to 

quantifying impacts, greater usage of simpler, less robust designs persists. 

Three systematic maps on the biodiversity impacts of different threats and 

management interventions found that a low proportion of studies used BACI (6-

29%) and BA designs (3-37%), but many more used CI designs (48-89%) 

(Bernes et al. 2015, Bernes et al. 2017, Papathanasopoulou et al. 2016). 

 

The persistence of certain simpler designs probably reflects real-world 

constraints that prevent ecologists from using more robust study designs in the 

field. For example, RCTs are widely used in fields (e.g. medicine) where 

random allocation of small-scale experimental units to treatment groups is 

possible (Tugwell and Haynes 2006; Downs & Black 1998). However, RCTs 

often cannot be used in ecological studies (Stewart-Oaten & Bence 2001; 

Johnson 2002; Webb et al. 2012) because true randomisation of experimental 

units is much more difficult when using larger sites (e.g. protected areas) than 

when using smaller, more readily-available plots (Larsen et al. 2019). 

Therefore, ecologists tend to use pseudo-experimental designs that lack 

randomisation, such as BA, CI and BACI designs (Table 1; De Palma et al. 

2018). However, cost and logistical constraints often prevent complex BACI and 

even simpler BA designs from being regularly used because of the need to 

revisit sites over several years (França et al. 2016, Osenberg et al. 2011; Table 

1). Therefore, the greater prevalence of CI designs in the ecological literature 

probably reflects that they can be cheaper and easier to implement. 

 

The disparities between the robustness of study designs and their 

usage is problematic because this may mean we are making misleading 

inferences about anthropogenic impacts. Although some empirical 

comparisons of the consequences of using BACI, BA and CI designs have been 

undertaken (Osenberg et al. 2011; França et al. 2016; Mahlum 2018), we still 

do not understand how much less accurate simpler designs are than more 

complex ones, or the influence on accuracy of increasing sample size of 

different study designs. A quantitative comparison of the accuracy of different 

study designs and their sample size would help us better understand these 

issues. 

 

To address this knowledge gap, we simulate a hypothetical population’s 

response to an impact and compare how accurately different study designs 

estimate that impact’s effect. This novel simulation uses empirically-derived 

parameters (from 47 ecological datasets) to generate realistic control and 

impact data, before and after an impact. We use BACI, RCT, BA, CI and After 

designs with various levels of spatial replication (control and impact sites) to 

sample this simulated data and calculate an estimated effect size to compare 

against the true effect. We consider the accuracy of designs in terms of their 

ability to first, correctly predict the direction of the true effect and second, 
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estimate the true effect to within a given percentage accuracy. We hope this 

study will enable the development of a quantitative hierarchy of the accuracy of 

different study designs, with major implications for future monitoring of 

anthropogenic impacts, as well as the use of ecological studies to inform policy 

and practice. 

 

 

Materials and methods 
 

We simulated a system where the true density (𝜆) of a hypothetical 

population varied over a certain number of time steps (T) before and after a 

chronic impact occurred (Fig.1). For example, if T=10, then time steps 1 to 10 

were classified as the ‘before period’ (i.e. before the impact occurred for control) 

and time steps 11 to 20 were classified as the ‘after period’ (Fig.1). The true 

density was monitored in sites where the impact occurred (‘impact sites’) and 

sites where the impact was absent (‘control sites’). 

  

 We varied the true density (𝜆=50) over T time steps in the before period 

for control and impact sites by randomly sampling T values from a Poisson 

distribution. These T values defined the true density in each time step before 

the impact occurred (e.g. 𝜇𝐼,𝑡for impact sites in the tth time step). To simulate a 

step-change response at both control and impact sites after the impact occurred 

(Fig.1), we sampled from a different Poisson distribution with 𝜆 adjusted by an 

empirically-derived amount 𝐼 (𝜆+ 𝐼; Fig.1; Table 2) for impact sites and an 

empirically-derived amount 𝐶 for control sites (𝜆+ 𝐶; Fig.1; Table 2). 𝐼 and 𝐶 

were varied using empirical estimates of the proportional change in control and 

impact sites in the before period versus the after period, 𝑝𝐼and 𝑝𝐶, respectively, 

sampled from 47 ecological datasets (𝐼= 𝜆 ∙ (𝑝𝐼 − 1); 𝐶= 𝜆 ∙ (𝑝𝐶 − 1); Table 2; 

Supporting Information Section A). 

 

While we concentrate on a step-change response in our simulation, 

temporal biodiversity dynamics following disturbances or interventions can 

follow different trajectories (Di Fonzo et al. 2013; Thiault et al. 2017). However, 

to simplify the simulation as much as possible, particularly in terms of 

computational demands, the use of a step-change response was most 

appropriate to test the relative accuracy of each design. 

 

Using the simulated data for before and after periods we sampled 

various numbers of impact (nI) and control (nC) replicates (termed “sites” here 

but they could be plots or transects; Fig.1). For RCTs that use random 

allocation of sites to control and impact groups, we randomly sampled sites 

from two normal distributions for each time step: one with a mean, 𝜇𝐼,𝑡, for 

impact sites and one with a mean, 𝜇𝐶,𝑡, for control sites (Fig.1). The number of 

sites sampled was the same for all time steps. The standard deviation of each 
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normal distribution represented the variation amongst sites and was calculated 

by multiplying the mean by the coefficient of variation (e.g. control sites: 𝜎𝐶,𝑡= 

𝜇𝐶,𝑡 ∙CVS ; impact sites: 𝜎𝐼,𝑡= 𝜇𝐼,𝑡 ∙CVS; Table 2). We varied CVS by randomly 

drawing values from a truncated normal distribution: N(𝜇 = 0.1, 𝜎 = 0.05, 𝑚𝑖𝑛 =

0, 𝑚𝑎𝑥 = 0.2). 

 

 

Table 2 - Definitions of all parameters used in the simulation and summary statistics for 

parameters that were empirically-derived (termed ‘emp.’; Supporting Information 

Section A). Equations show how each parameter was calculated. For empirically-

calculated parameters, 𝑥̅ refers to the average of all sites of that type in that period (e.g. 

𝑥𝐴𝐶̅̅ ̅̅̅ refers to the average of all control sites in the after period) taken from datasets 

(Supporting Information Section A). ‘sim.’ refers to parameters that are defined in the 

simulation. 

 

Para-
meter 

Definition Source Equation Mean SD Min Max 

𝑝𝐶  Change in 
control 
between 
before and 
after periods 

Emp. 𝑝𝐶 = 
|𝑥𝐴𝐶̅̅ ̅̅ ̅̅ |

|𝑥𝐵𝐶̅̅ ̅̅ ̅̅ |
 0.918 0.181 0.605 1.31 

𝑝𝐼 Change in 
impact 
between 
before and 
after periods 

Emp. 𝑝𝐼 = 
|𝑥𝐴𝐼̅̅ ̅̅ ̅|

|𝑥𝐵𝐼̅̅ ̅̅ ̅|
 0.967 0.230 0.579 1.46 

𝑝𝐶𝐼𝐵 Average 
value of 
control sites 
as a 
proportion of 
the average 
value of 
impact sites 
in the before 
period 

Emp. 𝑝𝐶𝐼𝐵 = 
|𝑥𝐵𝐶̅̅ ̅̅ ̅̅ |

|𝑥𝐵𝐼̅̅ ̅̅ ̅|
 1.13 0.306 0.654 1.89 

I True change 
in impact 
sites from 
before to 
after impact 

Emp. I = 𝜆 ∙(𝑝𝐼 − 1) -1.65 11.5 -21.1 23.2 
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C True change 
in control 
sites from 
before period 
to after period 

Emp. C = 𝜆 ∙(𝑝𝐶 − 1) -4.10 9.05 -19.8 15.4 

𝑑𝐶𝐼𝐵 Difference 
between true 
densities of 
control and 
impact sites 
in before 
period 

Emp. 𝑑𝐶𝐼𝐵 =  
𝜆 ∙(𝑝𝐶𝐼𝐵 − 1) 

6.60 15.3 -17.3 44.5 

𝜆 True density 
across all 
time steps 

Fixed 𝜆 = 50 - - 50 50 

T Total number 
of time steps 
simulated 

Sim. T = 
{2,4,6,8,10} 

- - 2 10 

nT Number of 
time steps 
sampled in 
each period 

Fixed nT = T - - 2 10 

𝜇𝐼,𝑡 True density 
in impact 
sites in time 
step t 

Sim. Before: 𝜇𝐼,𝑡 ∼

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) 
 

After: 𝜇𝐼,𝑡 ∼

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 + 𝐼) 

- - - - 

𝜎𝐼,𝑡 Standard 
deviation of 
impact sites 
in time step t 

Sim. 𝜎𝐼,𝑡= 𝐶𝑉𝑆 ∙ 𝜇𝐼,𝑡 - - - - 

𝜇𝐶,𝑡 True density 
in control 
sites in time 
step t 

Sim. Before: 𝜇𝐶,𝑡 ∼

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) 
 

After: 𝜇𝐶,𝑡 ∼

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 + 𝐶) 

- - - - 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 25, 2019. ; https://doi.org/10.1101/612101doi: bioRxiv preprint 

https://doi.org/10.1101/612101


9 
 

𝜎𝐶,𝑡 Standard 
deviation of 
control sites 
in time step t 

Sim. 𝜎𝐶,𝑡= 𝐶𝑉𝑆 ∙ 𝜇𝐶,𝑡 - - - - 

CVS Coefficient of 
variation 
(variation 
amongst 
sites) 

Sim. 𝐶𝑉𝑆 ∼N(𝜇, 𝜎, 

𝑚𝑖𝑛, 𝑚𝑎𝑥) 

0.10 0.05 0 0.20 

SIn,t nth impact site 
sampled in 
time step t 

Sim. (SIn,t,...,SI𝑛𝐼 ,t) ~ 

N(𝜇𝐼,𝑡 , 𝜎𝐼,𝑡) 

- - - - 

SCn,t nth control site 
sampled in 
time step t 

Sim. Randomised: 
(SCn,t,...,SC𝑛𝐶 ,t) 

~ N(𝜇𝐶,𝑡, 𝜎𝐶,𝑡) 

 
Non-

randomised: 
(SCn,t,...,SC𝑛𝐶 ,t) 

~ N(𝜇𝐶,𝑡 +

𝑑𝐶𝐼𝐵, 𝜎𝐶,𝑡) 

- - - - 

nI Number of 
impact sites 
sampled 

Sim. nI = 
{1,5,10,25,50} 

- - 1 50 

nC Number of 
control sites 
sampled 

Sim. nC = 
{1,5,10,25,50} 

- - 1 50 

 

 

To account for non-random allocation of sites to control and impact 

groups in the other designs (BACI, BA, CI, After), we repeated the same 

approach but with one important modification. We adjusted the true density of 

control sites in every time step, 𝜇𝐶,𝑡, by an empirically-derived amount, dCIB 

(𝜇𝐶,𝑡+ dCIB; Fig.1; Table 2). To vary dCIB, we used empirical estimates of the 

proportional difference between control and impact sites in the before period, 

pCIB, sampled from 47 ecological datasets (dCIB= 𝜆 ∙(pCIB-1); Table 2; Supporting 

Information Section A). This simulated difference between control and impact 

sites accounted for different levels of site selection bias in non-randomised 

designs, including the situation where little or no bias may be present (e.g. 

dCIB≈0). 
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Fig.1 - An overview of the simulation steps for both randomised and non-

randomised design data. Step 1 shows true densities of control and impact sites 

generated in the before period (white area). Step 2 shows true densities of control 

and impact sites generated in the after period (grey area) to reflect a step-change 

response (using I and C). The true density in each time step (t) is shown (𝜇𝐼,𝑡, 

impact: green; and 𝜇𝐶,𝑡, control: blue). Step 3 shows how control and impact sites 

(SI and SC) are sampled (nI and nC = 10) for both randomised and non-

randomised designs. 
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We calculated effect sizes for each design by first finding the mean 

density of sampled sites across all time steps for control and impact groups in 

the before period (BeforeImpact, BeforeControl) and the after period (AfterImpact, 

AfterControl). We assumed that sampling occurred in all time steps (nT = T) in the 

before and after periods. We did this as the investigator may wish to only 

estimate the effect over a certain timescale (which will be context-specific) and 

we lacked the computational capabilities to simulate all possible sampling 

permutations using fewer than the full number of time steps (e.g. deciding which 

time steps to sample in certain intervals; e.g. Wauchope et al. 2019). 

 

Effect sizes were calculated using these mean densities, as appropriate 

for each study design (Table 3). For example, the effect size for an RCT was 

found by subtracting AfterControl from AfterImpact, whilst the effect size for a BA 

design was found by subtracting BeforeImpact from AfterImpact (Table 3). The 

exception was the After design, for which we found the mean of sampled sites 

in the first time step of the after period and subtracted this from the mean of 

sampled sites in the final time step (Table 3). We defined the true effect as the 

change in the true density of impact sites between the before and after periods 

minus the equivalent change in the true density of control sites (Table 3). As 

discussed previously, we did this because we wanted to compare each design’s 

relative accuracy at estimating the true effect over the number of time steps we 

simulated. 

 

We ran the simulation under 1000 different scenarios, varying: (i) the 

true change in control sites (C); (ii) the true change in impact sites (I); (iii) the 

mean difference between control and impact sites in the before period (𝑑𝐶𝐼𝐵); 

and (iv) the variation between sites (CVS). For each simulation scenario, we 

varied the number of time steps simulated (T = 2, 4, 6, 8 or 10), as well as the 

number of impact sites (nI = 1, 5, 10, 25, 50) and control sites (nC= 1, 5, 10, 25, 

50) sampled independently to use every possible pairwise combination - this 

resulted in a total of 125 combinations. Overall, we simulated 1000 scenarios 

with 125 different sampling combinations in each, repeating each scenario 1000 

times (1000 x (1000 x 125) = 1.25 x 108 runs). 
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Table 3 - Equations for how effect sizes were calculated for different designs using 

mean densities of control or impact sites in each period (e.g. AfterImpact refers to the 

mean of sampled impact sites across all time steps in the after period). For the After 

design, the effect size was calculated by finding the difference between the final time 

step (t=T) and the first time step of the after period (1). 

 

 

 

The effect sizes for each design from the simulation were used to 

investigate the relative accuracy of the different designs. To do this we 

calculated the percentage of simulation repetitions in which each design’s effect 

size: (i) had the same direction as the true effect size; and (ii) was both within 

a given percentage of true effect size and of the same direction. We believe 

these two metrics capture the major aspects of accuracy that are desirable in a 

study design. 

 

We calculated both percentages for all possible pairwise combinations 

of control and impact sites (e.g. one control and one impact site, one control 

and five impact sites etc.) and the second percentage for five accuracy 

thresholds (within ±10, 20, 30, 40 and 50% of true effect size). We used 

Generalised Linear Models with a binomial error family to determine the 

relationship between the accuracy of each design (the response variable; see 

below) and the three explanatory variables (number of control sites, number of 

impact sites and the accuracy threshold). We did not include control sites as an 

explanatory variable for BA and After designs. 

Effect size/Design Equation 

True effect 
(

{𝜇𝐼,𝐴𝑓𝑡𝑒𝑟,𝑡=1 , … , 𝜇𝐼,𝐴𝑓𝑡𝑒𝑟,𝑡=𝑇}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −

 {𝜇𝐼,𝐵𝑒𝑓𝑜𝑟𝑒,𝑡=1 , … , 𝜇𝐼,𝐵𝑒𝑓𝑜𝑟𝑒,𝑡=𝑇}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

− (
{𝜇𝐶,𝐴𝑓𝑡𝑒𝑟,𝑡=1 , … , 𝜇𝐶,𝐴𝑓𝑡𝑒𝑟,𝑡=𝑇}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ −

 {𝜇𝐶,𝐵𝑒𝑓𝑜𝑟𝑒,𝑡=1 , … , 𝜇𝐶,𝐵𝑒𝑓𝑜𝑟𝑒,𝑡=𝑇}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) 

RCT 𝐴𝑓𝑡𝑒𝑟𝐼𝑚𝑝𝑎𝑐𝑡  − 𝐴𝑓𝑡𝑒𝑟𝐶𝑜𝑛𝑡𝑟𝑜𝑙 

BACI (𝐴𝑓𝑡𝑒𝑟𝐼𝑚𝑝𝑎𝑐𝑡  −  𝐴𝑓𝑡𝑒𝑟𝐶𝑜𝑛𝑡𝑟𝑜𝑙)  −  

(𝐵𝑒𝑓𝑜𝑟𝑒𝐼𝑚𝑝𝑎𝑐𝑡  − 𝐵𝑒𝑓𝑜𝑟𝑒𝐶𝑜𝑛𝑡𝑟𝑜𝑙) 

CI 𝐴𝑓𝑡𝑒𝑟𝐼𝑚𝑝𝑎𝑐𝑡  − 𝐴𝑓𝑡𝑒𝑟𝐶𝑜𝑛𝑡𝑟𝑜𝑙 

BA 𝐴𝑓𝑡𝑒𝑟𝐼𝑚𝑝𝑎𝑐𝑡  − 𝐵𝑒𝑓𝑜𝑟𝑒𝐼𝑚𝑝𝑎𝑐𝑡 

After 𝐴𝑓𝑡𝑒𝑟𝐼𝑚𝑝𝑎𝑐𝑡,𝑡=𝑇  −  𝐴𝑓𝑡𝑒𝑟𝐼𝑚𝑝𝑎𝑐𝑡,𝑡=1 
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For the response variable we used the number of simulation runs that 

were successes and the number of simulation runs that were failures; a success 

was defined as when the estimated effect size was within a given percentage 

of the true effect size and of the same direction. Based on graphical 

observations of the relationship between the response and explanatory 

variables (Fig.3), we log transformed each of these explanatory variables 

sequentially, creating several models (Supporting Tables 1-5). We calculated 

McFadden's pseudo-R squared (McFadden 1974) for each model and picked 

the best model using the lowest AIC value (Supporting Tables 1-5). 

 

We used R statistical software version 3.5.1 (R Core Team 2018) with 

the doParallel package (Microsoft Corporation & Weston 2017) to increase 

computational performance. R code to perform the simulations and analyses is 

provided in Supporting Information. 

 

 

Results 

 There was large variation in the performance of study designs in 

correctly estimating the direction of the effect. As overall patterns were similar 

across simulations with different time steps (see Supporting Figures 1 & 2), 

here we present results when six time steps were simulated in both the before 

and after periods. BACI designs were best at correctly identifying the direction 

of the true effect size (in at least 92.9% of simulation repetitions; Fig.2), followed 

by RCTs (at least 91.5% of the time). Both BACI and RCTs far outperformed 

CI, BA, and particularly After designs; CI designs performed slightly better than 

BA designs (approximately 71.7% versus 68.3%) and both performed far better 

than After designs, which were worse than random chance with an accuracy of 

approximately 49.9% (Fig.2). 

 

RCTs, After, BA and CI designs showed negligible improvement in 

correctly identifying the direction of the effect with increasing number of impact 

and/or control sites (increases from one control and one impact site to 50 

control and 50 impact sites: After = +0.0%; BA = +0.6%; CI= +0.1%; RCT= 

+1.3%; Fig.2). However, there were small asymptotic increases in performance 

with increasing sample size for BACI designs (+5.2% from one control and 

impact site to 50 control and impact sites; Fig.2). 

 

We see similar patterns when considering the percentage of repetitions 

for which the effect size was both within a certain percentage of the true effect 

size and had the correct direction (Fig.3). First, RCT and BACI designs are still 

clearly far more accurate at estimating the true effect size than CI, BA or After 

designs (for 30% accuracy threshold: BACI ≥ 60.9%, RCT ≥ 53.1%, BA ≥ 
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20.8%, CI ≥ 15.9%, After ≥ 8.3%; Fig.3). Second, changing the percentage 

threshold is highly influential and as the threshold becomes greater (within a 

greater % of the true effect size) accuracy increases substantially for all designs 

(Fig.3; see also Supporting Figure 2). Third, BACI accuracy increased to a 

much greater extent with increasing spatial replication than for other designs 

which showed limited improvements (Fig.3). For the 30% accuracy threshold, 

increasing replication from one control and impact site to 50 control and impact 

sites resulted in an increase of 28.8% for BACI compared to +5.7% for RCTs, 

+0.8% for BA, +0.2% for CI and -0.7% for After (Fig.3). 

 

 

Fig. 2 – Accuracy of different designs measured by the percentage of simulation 

repetitions in which the design’s effect size had the correct direction for multiple levels 

of spatial replication (control and impact sites separately). Y-axis uses a log10 scale and 

circle size denotes the number of control sites. See Table 1 for the definition of each 

design. 

 

 

Moreover, increasing replication moderately in both control and impact 

sites resulted in greater accuracy than only increasing replication in either 

impact or control sites for BACI designs (Fig.3). For example, using a 30% 

accuracy threshold, the accuracy of BACI designs using five impact and five 

control sites was greater than using 50 impact sites and one control site (78.0% 

versus 70.9%).
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Fig.3 – Accuracy of different designs measured by the percentage of simulation 

repetitions in which the design’s effect size was both within 10, 30 or 50% of the true 

effect size and had the correct direction for multiple levels of spatial replication (control 

and impact sites separately). Circle size denotes the number of control sites. See Table 

1 for the definition of each design. 

 

 

While BA designs were poorer at correctly predicting the direction of the 

effect than CI designs, they appeared to be more accurate when we accounted 

for the proximity of their effect sizes to the truth. Furthermore, as the accuracy 

threshold increases from 10% to 50%, BA designs shifted from being almost as 

accurate as CI designs (~2% more) to being moderately more accurate (~7% 

more; Fig.3). Similarly, both BA and CI designs became relatively more 

accurate compared to After designs with an increasing accuracy threshold 

(Fig.3). 

 

Using Generalised Linear Models to determine factors affecting the 

accuracy of each design, the full model (i.e. the model with all explanatory 

variables considered) showed the smallest AIC in all designs (Table 4; 

Supplementary Tables 1-5). The estimated coefficients for the number of 

control and impact sites were smaller for After, BA, CI and RCT designs 

compared to BACI designs, suggesting its greater importance in BACI designs. 

The level of accuracy (A) was an important predictor of the accuracy of all 

designs (Table 4). For CI, BACI and RCT designs, there was little difference in 

the importance of control versus impact sites in predicting accuracy. Very high 
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Pseudo-R2 values showed that our models explained far greater levels of 

variation in the data than null models (Table 4). 

 

Converting estimated coefficients (β) from log odds (Table 4) to 

probabilities gives an ‘accuracy weight’ for each design (see discussion for how 

these weights could be applied): 

 

Accuracy weight = 
1

1+𝑒
−(𝛽𝐼𝑛𝑡.+𝛽𝐴𝑐𝑐.∙ln (𝐴𝑐𝑐.)+𝛽𝑛𝐼∙ln (𝑛𝐼)+𝛽𝑛𝐶

∙ln (𝑛𝐶) 

(equation 1) 
 

where 𝛽𝐼𝑛𝑡. = Intercept coefficient, 𝛽𝐴𝑐𝑐. = Accuracy threshold coefficient, 𝛽𝑛𝐼
= 

Impact sites coefficient and 𝛽𝑛𝐶
= Control sites coefficient. 

 

The accuracy weight can be calculated for any study using information 

about its study design and the number of control and impact units used. If a 

study design does not use Control sites (nC), then this part of the equation is 

simply omitted. For example, a study by Merz & Chan (2005) which used a BA 

design with seven impact units would receive an accuracy weight of: 

1

1+𝑒−(0.0277+1.13∙𝑙 𝑛(0.3)+0.0104∙𝑙 𝑛(7)) = 0.212  

 

(assuming an accuracy threshold of ±30% (0.3); for estimated coefficients see 

BA, Table 4). 

 

A more robust study by França et al. (2016) used a BACI design, 29 

impact and five control units and thus receives an accuracy ‘weight’ of: 

1

1+𝑒−(1.54+1.07∙𝑙 𝑛(0.3)+0.272∙𝑙 𝑛(29)+0.226∙ln (5)) = 0.822 

 

(see BACI, Table 4).  

 

Similarly, the accuracy weight for a study by Westera et al. (2003) which used 

a CI design with three control and three impact units equals: 

1

1+𝑒−(−0.323+1.10∙𝑙 𝑛(0.3)+0.00184∙𝑙 𝑛(3)+0.00189∙ln(3)) = 0.162 

 

(see CI, Table 4).
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Table 4 - Results of Generalised Linear Models determining factors that affect the 

accuracy of each study design based on simulation results - coefficients are in log odds 

(3.s.f.). McFadden's pseudo-R squared (McFadden 1974) was calculated. nI = number 

of independent impact units, nC = number of independent control units, A = accuracy 

threshold as a proportion (e.g. 0.3 = ±30%). 

 

 Intercept Accuracy 
threshold 

𝑙𝑛(𝐴) 

Number of 
impact sites 

𝑙𝑛(𝑛𝐼) 

Number of 
control sites 

𝑙𝑛(𝑛𝐶) 

 

Design Coef. SE Coef. SE Coef. SE Coef. SE Pseudo- 
R2 

RCT 1.73 6.67 
x10-5 

1.31 3.56 
x10-5 

0.0297 1.41 
x10-5 

0.0287 1.41x
10-5 

0.999 

BACI 1.54 7.15 
x10-5 

1.07 3.74 
x10-5 

0.272 1.59 
x10-5 

0.226 1.59x
10-5 

0.951 

CI -0.323 8.75 
x10-5 

1.10 5.39 
x10-5 

1.84  
x10-3 

1.85 
x10-5 

1.89 
x10-3 

1.85x
10-5 

0.999 

BA 0.0277 7.02 
x10-5 

1.13 4.80 
x10-5 

0.0104 1.68 
x10-5 

- - 1.000 

After -0.868 9.98 
x10-5 

1.19 7.31 
x10-5 

-0.0203 2.36 
x10-5 

- - 0.997 

 

 

 

Discussion 
  

Using this simulation we have demonstrated that BACI and RCT 

designs are far more accurate than BA, CI and After designs. We showed that 

BACI and RCT designs, depending on the level of spatial replication, identified 

the correct direction of the change ~20-30% more often than CI and BA 

designs, and ~40-45% more than After designs. At an accuracy threshold of 

±30%, BACI designs were also 1.1-1.5 times more accurate than RCTs, 2.9-

4.1 times more accurate than BA, 3.8-5.6 times more accurate than CI, and 6.8-

10.8 times more accurate than After designs (depending on the sample size). 

This is because, although it is easy to increase precision in After, BA and CI 

designs by simply increasing sample size, these designs usually yield biased 

estimates. Greater accuracy is best achieved by using more robust designs that 

remove biases, such as BACI and RCTs, with greater numbers of replicates. 

BACI designs appeared to be more accurate than RCTs, probably because 

RCTs can only minimise initial differences between control and impact sites, 

but unlike BACI designs cannot completely account for them. 
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Our results provide strong evidence that simpler study designs (e.g. BA 

and CI) often yield different effect sizes and inferences to BACI designs, as 

observed empirically by previous studies (Osenberg et al. 2011; França et al. 

2016; Mahlum 2018). Therefore, studies using After, BA and CI designs 

seriously risk presenting misleading conclusions on the impact of threats and 

interventions. To our knowledge, this simulation is not only the first quantitative 

comparison to demonstrate this, but also to show how much less accurate BA 

and CI designs may be on average when using ecologically-realistic 

parameters under varying levels of spatial replication.  

 

Our quantitative results provide a general overview of the relative 

accuracy of different study designs in ecology but will exhibit context-

dependency for different fields of ecology. However, as our simulation can be 

parameterised using empirically-derived estimates, if sufficient empirical data 

can be collected from different fields of ecology, future research could use our 

R code to examine the context-dependency of our results. 

 

Another key finding with major implications is that increasing sample 

size generally has no impact on the accuracy of simpler study designs. This is 

because unless the assumptions of these designs hold true (e.g. no change in 

the control for BA designs, or the only differences between control and impact 

sites are as a result of the anthropogenic impact for CI designs), increasing 

sample size will only increase precision around a biased estimate of the true 

effect of the impact. We have confidence in this conclusion given that we used 

empirically-derived parameter values from 47 ecological datasets to effectively 

estimate the likelihood and magnitude of any violation of these assumptions in 

ecological studies. Therefore, our results provide strong evidence that, 

generally in ecology, investing sampling effort into replicating simpler designs 

is inefficient and would be better spent on implementing more robust designs 

whenever possible. 

 

However, we realise that these more complex designs will not always 

be easy to implement. Nevertheless, we argue that there are still situations 

where ecologists can use these designs and yet fail to do so; promoting greater 

awareness of more robust designs and opportunities where they can be used 

is important. For example, where prior knowledge exists of when the impact of 

an intervention or threat may occur (or where suitable data pre-impact data is 

available retrospectively), ecologists should try to use BACI designs (e.g. 

infrastructure projects, Protected Area designation). If this is not feasible, but 

small plot-based experimental units can be truly randomised to treatments and 

control (e.g. field margins, grassland plots), RCTs could be used. We also 

acknowledge that the expensive nature of BACI designs, due to the need for 

multiple visits to study sites before and after the impact, does hamper their 

implementation and requires action from the scientific community (De Palma et 
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al. 2018). However, we must consider the trade-off between using more 

expensive, robust study designs and the costs of using potentially misleading 

studies with simpler, biased designs as evidence to inform important policy and 

practice. Therefore, we argue that since long-term monitoring is often 

incompatible with short-term timescales of existing funding models (Osenberg 

et al. 2011; De Palma et al. 2018), longer-term funding to facilitate the use of 

more robust designs is needed. 

 

Unfortunately, it seems the use of simpler designs is likely to persist for 

the foreseeable future, so we argue that our results also have major 

implications for evidence synthesis. We argue that our quantitative comparison 

of the accuracy of study designs could help to develop novel methods and 

weighting schemes for synthesising studies that vary markedly in their design 

and quality (Spake and Doncaster 2017). Conventional meta-analysis typically 

tries to account for the quality of primary studies, using inverse variance as 

weights (Marín-Martínez and Sánchez-Meca 2010, Koricheva and Gurevitch 

2014). However, this could greatly reduce the number of primary studies that 

can be included, as not all studies report variance (Koricheva and Gurevitch 

2014, Stewart 2010). Alternative approaches of evidence synthesis to tackle 

poor data reporting, such as non-parametric weighting by sample size, have 

been encouraged (Gurevitch and Hedges 1999) and proposed (Mayerhofer et 

al. 2013, Adams et al. 1997) but these weights fail to consider wider aspects of 

study quality, including pseudoreplication and study design (Spake and 

Doncaster 2017). Whilst recent efforts for assessing evidence quantitatively by 

study design (Norris et al. 2012, Webb et al. 2012, Mupepele et al. 2016, 

Mupepele & Dormann 2017) are welcomed, their weights are relatively 

simplistic and discrete (e.g. simple integer scores or categories) and do not 

seem to have been informed using quantitative evidence. 

 

The relationships we have presented between accuracy, study design 

and sample size can be used to generate a continuous weighting scale, 

accounting for many more aspects of study quality than are considered by 

solely weighting studies by sample size or variance. Using our results (Table 4) 

we can produce ‘accuracy weights’ (eqn 1), which could be used to modulate 

study weights in meta-analysis - i.e. giving greater influence to studies with 

more accurate designs (see examples in Results). 

 

Although study design and spatial replication only assess part of study 

quality (Spake and Doncaster 2017), our weights are also versatile and could 

be modulated using subject-specific quality checklists to help incorporate more 

context-specific factors of study quality into evidence assessment such as size 

of sampling unit, temporal replication and internal validity (Spake and 

Doncaster 2017; Mupepele et al. 2016; Bilotta et al. 2014). For example, our 

weights could be multiplied by the percentage of criteria met in quality 
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checklists. However, adding extra components to the evidence assessment 

process also needs to be balanced against the effort expended in doing so. 

 

More generally, our weights could also be used to assign studies into 

different accuracy categories, giving a rapid, easily interpretable way to 

communicate the robustness of evidence to decision-makers - e.g. in evidence 

toolkits such as Conservation Evidence (2019) or Higgins et al. (2014). For 

example, each study could be assigned a weight and then the average weight 

could be found for a set of studies to indicate the relative strength of the 

evidence (e.g. mean weight ≥0.8 = strong evidence). Systematic reviews could 

be weighted using this method, either by totalling the weights of studies they 

review or by finding the median or mean weight of these studies. We welcome 

future research to explore how best to apply and incorporate these weights into 

evidence assessment. 

 

Future research could also seek to explore other aspects of study 

design, such as considering different types and intensities of temporal 

replication (e.g. time intervals between sampling; Wauchope et al. 2019; or 

pseudoreplication in time; Stewart-Oaten, Murdoch and Parker 1986). The 

relative performance of designs under different types of responses to 

anthropogenic impacts (e.g. sigmoidal, linear or asymptotic; Thiault et al. 2017) 

or lag periods (De Palma et al. 2018) could also be investigated further. Our 

simulation code could be easily modified to facilitate the exploration of these 

important issues (Supporting Information). 

 

Overall, we have quantitatively shown for the first time how much less 

accurate simpler study designs are compared to more complex ones, 

generating a far better quantitative understanding of the relative accuracy of 

different study designs. Our accuracy weights could also offer a powerful, yet 

versatile new approach to weighing up evidence from studies with different 

designs, with major implications for the future of evidence synthesis. We hope 

our work encourages greater discussion of study design in ecology and 

demonstrates that we need to tackle the serious consequences of using 

different study designs to make inferences in ecology. 
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