
 1 

Title: Efficient consideration of coordinated water molecules improves 
computational protein-protein and protein-ligand docking 
 
Authors: Ryan E. Pavlovicza,b,c, Hahnbeom Parka,b, Frank DiMaioa,b 
 
Author Affiliation: aDepartment of Biochemistry, bInstitute for Protein Design, 
University of Washington, Seattle, Washington 98195, United States, ccurrent 
address: Cyrus Biotechnology, 500 Union St. Suite 320, Seattle, Washington 
98101. 
 
Corresponding Author: Frank DiMaio 
J575, Health Sciences Building, Box 357370, Seattle, WA 98195-7370 
(206) 221-8535 
dimaio@u.washington.edu 
 
Classification: Biological Sciences, Biophysics and Computational Biology 
 
Short Title: Modeling coordinated waters in biomolecular docking 
 
Keywords: energy function, force field, implicit water model, explicit water, 
binding free energy 
  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2019. ; https://doi.org/10.1101/618603doi: bioRxiv preprint 

https://doi.org/10.1101/618603
http://creativecommons.org/licenses/by-nd/4.0/


 2 

 
 
Abstract: 
 
Highly-coordinated water molecules are frequently an integral part of protein-
protein and protein-ligand interfaces. We introduce an updated energy model that 
efficiently captures the energetic effects of these highly-coordinated water 
molecules on the surfaces of proteins. A two-stage protocol is developed in which 
polar groups arranged in geometries suitable for water placement are first 
identified, then a modified Monte Carlo simulation allows highly coordinated waters 
to emerge. This “semi-explicit” water model is implemented in Rosetta and allows 
for simultaneous prediction of side chain conformation and coordinated water 
geometry; the approach is suitable for structure prediction and protein design. We 
show that our new approach and energy model yield significant improvements in 
native structure recovery of protein-protein and protein-ligand docking. 
 
Significance Statement: 
 
Coordinated water molecules, those forming multiple hydrogen bonds with protein 
polar groups, play an important role in the structure of and interaction between 
biomolecules, yet the effect of these waters is often not considered in biomolecular 
computations. In this paper, we describe a method to efficiently consider these 
water molecules both implicitly and explicitly at the interfaces formed by two polar 
molecules. In computations related to determining how a protein interacts with 
binding partners, we show that the use of this new method significantly improves 
results. Future application of this approach may improve the design of new protein 
and small molecule drugs.  
 
Introduction: 
 
Water plays a significant role in biomolecular structure. The hydrophobic effect 
drives the collapse of proteins into their general shape while well-coordinated 
water molecules (water molecules making multiple water-protein hydrogen bonds) 
on the surface of a protein may confer specific conformations to nearby polar 
groups. Furthermore, water plays a key role in biomolecular recognition: when a 
ligand binds its host in an aqueous environment, it must displace water molecules 
on the surface and energetically compensate for the lost interactions. Coordinated 
water molecules may also drive host-ligand recognition by bridging interactions 
between polar groups on each side of the complex.  
 
Simulations of proteins in explicit solvent have been successful in predicting folded 
conformations1 as well as computing binding free energies2 with high accuracy. 
This comes at significant computational cost, while the use of implicit solvent3 
greatly expedites such calculations, but at the loss of accuracy achieved through 
the inclusion of highly-coordinated water molecules4. Thus, an approach 
combining the efficiency of implicit solvation with the ability to recapitulate well-
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coordinated water molecules is desired. Several such methods have been 
developed but tend to be target-specific5-8 or relatively expensive computationally9-

10. 
 
In this paper, we describe the development of general methods for capturing the 
energetic effects of explicit solvent, but with the computational efficiency of an 
implicit solvent model, making the approach suitable protein-protein and protein-
ligand docking. The methods include: a) a new energy function capturing the 
energetics of protein and coordinated-water interactions and b) a conformational 
sampling approach that efficiently samples protein and water conformations 
simultaneously. We show this approach yields superior results in predicting 
coordinated water positions as well as improving the ability to predict native 
protein-protein and protein-ligand interfaces. 
 
Results: 
 
Our approach for modeling coordinated water molecules using Rosetta, fully 
described in Methods, is briefly presented here. We have developed two 
complimentary approaches for capturing coordinated-water energetics. First, 
Rosetta-ICO (Implicit Consideration of cOordinated water), implicitly captures pairs 
of polar groups arranged such that a theoretical “bridging” water molecule may 
form favorable hydrogen bonds to stabilize the interaction. This calculation is 
efficient but ignores multi-body interactions, favoring, for example, waters 
coordinated by >2 hydrogen bond donors or acceptors. Therefore, we have also 
developed Rosetta-ECO (Explicit Consideration of cOordinated water), in which 
Rosetta’s Monte Carlo (MC) simulation is augmented with moves to add or remove 
explicit solvent molecules from bulk. By sampling water orientations at sites where 
predicted bridging waters overlap (Figure 1), we properly coordinate water 
molecules to optimize hydrogen bonding. 
 

 
 
Figure 1. Explicit Protein Solvation with Rosetta. A. Initial possible solvation sites (blue) are 
built based on statistics of water positions about backbone polar atoms in addition to sites about 
side chain polar atoms based on all available rotameric positions. This example is using the 
interface of PDB ID: 1P57, between the N-terminal (pink) and catalytic (teal) domains of hepsin, 
with crystallographic waters in transparent grey. B. After an initial stage of Monte Carlo (MC) 

A B 
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packing with both the possible water sites and surrounding protein side chains, a cutoff is applied 
based on the dwell time of water sites (color from blue (dwell time = 0%) to green (dwell time = 
25%) to red (dwell time = 50%). C. Remaining water sites are clustered and a second cumulative 
dwell time cutoff is applied. D. The remaining predicted water sites are converted into full-atom 
water molecules and re-packed with the surrounding side chains using the full Rosetta score 
function. Two of the final predicted water molecules in this figure are within 0.50 and 0.18 Å of 
crystallographic water positions, while another water molecule is well-coordinated by the protein, 
but does not observed in the crystal structure. 
 
 
For both approaches, the energy function has been reoptimized using the 
dualOptE framework described by Park et al.11. In this optimization, several meta-
parameters describing the shape of the Rosetta-ICO potential; several terms 
controlling the strength and shape of protein-water interactions; and ~50 other per-
atom polar parameters were optimized to allow for compensating changes to the 
new energy terms. Energy function parameters for polar groups, including partial 
atomic charges, were refit using the same training tasks originally used in the 
parameterization of the opt-nov15 energy function11, now called REF201512. The 
results in this section are shown with these updated energy functions compared to 
baseline tests run using the REF2015 energy function11. 
 
Rotamer and Water Recovery at Protein-Protein Interfaces 
 
A set of 153 native protein-protein interfaces from high-resolution X-ray crystal 
structures was used to test how well the new energy models perform at 
simultaneously predicting amino acid side chain conformations and coordinated 
water sites. These tests involved the re-sampling of side chain conformations of 
interface residues on a fixed backbone in MC simulations, and evaluating resulting 
predicted sidechains against the deposited density maps. In tests involving semi-
explicit water molecules (Rosetta-ECO), protein and water simultaneously sample 
conformational space. A baseline rotamer recovery error of 9.73 ± 0.13% (over 
three runs) was obtained using the REF2015 energy function for the 7040 flexible 
side chains of the test set. A marginal improvement is made with Rosetta-ICO, 
reducing error to 9.52 ± 0.04%. Inclusion of explicit water molecules in this test 
fails to further decrease the overall rotamer recovery error beyond the 
improvements observed with Rosetta-ICO, with a Rosetta-ECO error of 9.59 ± 
0.15%, while predicting ~19 explicit water molecules per protein-protein interface.  
 
In addition to measuring sidechain rotamer recovery at the protein-protein 
interfaces, we also analyzed the recovery of water positions found in the high-
resolution X-ray crystal structures when implementing the Rosetta-ECO solvation 
method. For water recovery tests, modeled water positions are considered 
“correct” if they are placed within 0.5 Å of the native water or if they are coordinated 
by the same polar atoms. Rosetta-ECO is able to recover 17.1% of native water 
molecules with a precision of 17.7%. Details of Rosetta-ECO water recovery are 
shown in Table 1. These tables show that our approach is most effective at 
predicting “buried” waters (28.3% recovery) and highly-coordinated waters (31.2% 
of triply-coordinated waters). Unsurprisingly, Rosetta-ECO is also much more 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2019. ; https://doi.org/10.1101/618603doi: bioRxiv preprint 

https://doi.org/10.1101/618603
http://creativecommons.org/licenses/by-nd/4.0/


 5 

effective at predicted backbone-coordinated waters, correctly predicting 49.4% of 
backbone-only coordinated waters.  An example of correctly predicted water sites 
is illustrated in Figure 1D. 
 
Table 1. Classification of Predicted Native Waters 

Type1 Subset Size % recovered2 # precision3 
All 3226 17.1% 17.7% 

Exposed 941 6.0% 5.0% 
Partially Buried 1786 19.2% 22.0% 

Buried 408 28.3% 28.3% 
1 protein coord 892 6.1% 6.6% 
2 protein coord 1219 26.5% 26.8% 
3 protein coord 458 31.2% 20.0% 

BB only 356 49.4% 10.0% 
SC only 384 7.0% 11.3% 
BB+SC 1070 27.7% 26.1% 

1Three groups of categorization of type of predicted water molecules. First, waters are classified 
‘buriedness’ based on number of amino acid neighbors (nCb) with Cb within 10 Å. Exposed: nCb 
<=15; partially buried: 15 < nCb <= 25; buried: nCb > 25. Second, classification by 1, 2, or 3 protein 
coordination partners within 3.2 Å. Finally, by type of coordinating protein atoms with 3.2 Å of the 
water O atom: at least two backbone only (BB only), side chain only (SC only) or a mix of backbone 
and side chain coordination (BB+SC).  
2-3Percent and number of specific types of waters recovered using recovery criteria described in 
Methods, averaged over three runs. 
 
 
Native Interface Recapitulation 
 
We next tested the ability the new energy model to recapitulate near-native 
conformations of protein-protein interfaces (PPIs) and protein-ligand interfaces. In 
these tests, the binding free energies for a number of near-native and incorrect 
(decoy) docking conformations of each complex are computed with the aim of 
discriminating the correct binding poses from the decoys. PPI decoys were 
sampled using a combination of Zdock13 and RosettaDock14, while protein-ligand 
decoys were generated using RosettaLigand15. Both datasets were enriched for 
water-rich interfaces, leading to 53 protein-protein interfaces and 46 protein-ligand 
interfaces. Then predicted binding free energies, ΔGbind are calculated for all 
decoys (see Methods). We assess the ability to predict the near-native 
conformations using a “discrimination score,”11, which computes the Boltzmann 
weight of near-native structures. The values range from 0 to 1, with higher values 
showing better discrimination. An overview of the results is shown in Table 2. 
 
Table 2. Performance of Different Solvation Schemes on Protein-Protein and Protein-Small 
Molecule Docking Discrimination 

 REF2105 Rosetta-ICO1 Rosetta-ECO2 
Protein-small molecule 
discrimination 
score3 

0.7412 ± 0.0027 0.7977 ± 0.0021 0.8585 ± 0.0027 
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percent 
correct4 

75.4 ± 2.1 76.1 ± 1.8 92.0 ± 1.0 

run time5 1.00 1.09 1.52 
Protein-protein 
discrimination 
score 

0.6277 ± 0.0138 0.7386 ± 0.0061 0.7860 ± 0.0088 

percent 
correct 

63.6 ± 0.9 74.9 ± 0.9 78.6 ± 1.7 

normalized  
run time 

1.00 1.25 2.59 

1Implicit consideration of coordinated water molecules 
2Inclusion of well-ordered explicit water molecules   
3Reported are the average Boltzmann-weighted discrimination scores ± 1σ averaged over three 
independent runs for 46 protein-ligand and 53 protein-protein docking cases. 
4The percentage of cases in which the lowest scoring model is within 1.0 Å of the native 
conformation for protein-ligand docking and 2.0 Å for protein-protein docking, averaged over 3 
independent runs 
5Run time, normalized to baseline, is the sum of individual run times to calculate ΔGbind for each 
near-native and decoy conformation 
 
 
Protein-Protein Docking 
 
In protein-protein docking tests, significant improvements are observed when 
comparing Rosetta-ICO to the baseline results, with the discrimination score 
increasing from 0.63 to 0.74. Rosetta-ECO further improves this discrimination 
score to 0.79.  We also consider the “success rate,” the time the lowest-energy 
conformation is within 2.0 Å of native: the ECO model enables successful 
prediction of a near-native conformation in 8 additional cases out of the set of 53, 
a ~15% improvement.  This comes at a modest increase in computational cost, 
with an average 1.25- and 2.59-fold increase in runtime for ICO and ECO, 
respectively.  
 
As illustrated in Figure 2A, Rosetta-ECO improves the discrimination score for 38 
of 53 cases, adding 13.4 water molecules to the average bound state and 15.0 
water molecules to the average unbound state.  These average improvements 
remain statistically significant. Looking at one such case (adrenodoxin 
reductase/adrenodoxin, PDB ID 1E6E), we see that while all three energy models 
correctly predict a near-native conformation, the “energy gap” between native and 
non-native conformations is improved under Rosetta-ECO (Fig. 2B). Closer 
investigation of the near-native models shows 21 explicit water molecules added 
to the binding interface. The combined electrostatic and hydrogen bond energy 
contributions compose a large proportion of the improved binding energy, 5.2 
kcal/mol more favorable than Rosetta-ICO for this particular binding configuration. 
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Figure 2. Protein-Protein Docking Results. A. Scatter plot comparing results of 53 cases 
between REF2015 and Rosetta-ECO. Values are the Boltzmann-weighted score ± 1σ from an 
average of three independent runs. B. Energy funnels for PDB ID: 1E6E, adrenodoxin reductase 
bound to adrenodoxin (red data point in 2A), plotting computed ΔGbind vs. rmsd from the native 
binding conformation for three different scoring methods. Boltzmann-weighted scores for each 
distribution are noted in bottom right of each plot. C. Explicitly-solvated near-native docking pose 
(rmsd=0.14 Å; pink data point in 2B) with the reductase in grey and adrenodoxin in rainbow (N- to 
C-terminus colored blue to red) overlaying the native structure (transparent blue). D. The predicted 
unbound state in which a number of interface waters return to bulk after recalculation. 
 
 
Protein-Ligand Docking 
 
For protein-ligand docking tests, Rosetta-ICO also provides improvement over 
REF2015, with average discrimination score increasing from 0.74 to 0.80. Rosetta-
ECO further increases the discrimination score to 0.86. I n terms of “success rate”, 
we see the same trend as with PPIs: Rosetta-ECO enables the correct prediction 
(within 1.0Å of native) in 7 additional cases out of the 46. These results indicate 
that both Rosetta-ICO and ECO help discriminate distant decoys from native 
conformations when compared to the REF2015 energy model, with the inclusion 

C 
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of explicit water modeling in ECO conferring the largest benefit. This also comes 
at only a modest increase in run time: about 10% increased time for ICO, and about 
52% increased computation time for ECO. 
 
The improvements in discrimination score on a case-by-case basis are illustrated 
in Figure 3A. Here, we see that Rosetta-ECO provides a near across-the-board 
improvement in native discrimination compared to the baseline calculations. The 
individual energy distributions for PDB ID 1X8X (tyrosyl t-RNA synthase / tyrosine) 
in Figure 3B show how both REF2015 and Rosetta-ICO incorrectly favor a decoy 
6.6 Å from native. Rosetta-ECO’s explicit waters dramatically alter the binding 
energy landscape, improving the discrimination score from 0.27 to 0.89, and 
energetically favoring a structure only 0.43 Å from native.  The ECO model predicts 
two water molecules that bridge the carboxyl group of the tyrosine ligand to 
interactions with and arginine side chain and a backbone nitrogen group (Fig. 3C): 
these provide favorable interactions to the native state, with electrostatic and 
hydrogen bonding interactions a combined 7.5 kcal/mol more favorable when 
including the explicit interface waters in the ECO calculations. 
 

 
 

C D 
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Figure 3. Protein-Ligand Docking Results. A. Scatter plot comparing results of 46 cases 
between baseline (REF2015) and Rosetta-ECO. Values are the Boltzmann-weighted score ± 1σ 
from an average of three independent runs. B. Energy funnels, similar to Figure 2, for PDB ID: 
1X8X, tyrosyl t-RNA synthase bound to tyrosine (red data point in 3A) C. Explicitly-solvated, near-
native docking pose in pink (RMSD=0.43 Å; pink data point in 3B) with native ligand in transparent 
blue. D. Explicitly-solvated decoy binding pose (RMSD=6.57 Å; yellow data point in 3B). 
 
 
Ligand Docking Comparison 
 
Finally, the new energy functions were compared against the results of a state-of-
the art docking approach on a standardized dataset. A recent survey16 of widely-
used small molecules docking programs tested for performance against the Astex 
Diverse Set17 which includes 85 targets with ligands of pharmaceutical interest. 
We generated decoys for a 67-target subset, excluding cases in which the ligand 
is coordinated by an ion, using the top-performing docking software, GOLD18. The 
GOLD-sampled structures were then rescored using the REF2015, ICO, and ECO 
energy functions of Rosetta. The results, fully presented in Figure S1 and Table 
S1, show that while the Rosetta-rescored structures are more accurate than GOLD 
(78.2% versus 67.7% accuracy within a 1 Å RMSD cutoff; 94.6% versus 80.7% 
accuracy within 2 Å RMSD cutoff), we see little improvement between REF2015 
and ICO/ECO. While this suggests Rosetta may be a powerful tool for this dataset, 
the restricted conformational sampling obtained from GOLD (see Figure S2) does 
not benefit from the water model developments presented here, and prevents a 
thorough evaluation of the energy functions. 
 
 
Discussion: 
 
We have presented two approaches for considering coordinated water molecules 
in the prediction of native protein-protein and protein-ligand interfaces: Rosetta-
ICO, which very efficiently captures the energetics of bridging waters implicitly, 
and Rosetta-ECO, which allows a small set of waters to emerge from bulk.  Both 
show improvements in protein interface recapitulation tasks, and both represent 
different levels of efficiency-accuracy tradeoffs, with Rosetta-ECO more accurate 
but 1.5 to 2 times slower than Rosetta-ICO depending on interface size. 
 
Furthermore, while this manuscript highlights the results on water prediction and 
protein interface recapitulation, we might expect the Rosetta-ICO energy function 
to show modest improvements at tasks related to monomeric structure prediction 
and protein sequence design.  Indeed, that seems to be the case: when tested on 
independent datasets, modest improvements were observed in decoy 
discrimination with ICO. All other metrics were comparable between the two 
energy functions, leading us to conclude that the ICO model is a reasonable 
general-purpose energy function. 
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The improvement in both the protein and ligand docking tests suggests that these 
new energy functions may prove useful in the design of novel proteins intended to 
bind a particular ligand or protein. Successful design of protein-protein interfaces 
is often driven by van der Waals interactions that arise from shape 
complementarity, however better consideration of ordered solvent molecules may 
allow for the design of more natural interfaces which include numerous polar 
residues. Application of these new methods need not be limited to the solvation of 
interfaces or the description of binding partners. For example, the methods may 
be applied to more accurately predict the folded state of monomeric proteins in 
which buried solvent plays an important structural role or for prediction of the 
stabilizing or destabilizing effect of mutated residues on the surface of a protein. 
Additionally, the experiments described herein only consider the solvation of 
proteins and small molecules, however the framework can easily be extended to 
solvate other biomolecules, such as nucleic acids. 
 
 
Methods: 
 
Two new biomolecular solvation methods are introduced here. The first builds 
upon the existing implicit water model used in Rosetta to not only account for 
desolvation penalties, but energetically reward conformations that are suited to 
accommodate theoretic bridging waters which are calculated on the fly. The 
second model places well-coordinated water molecules on the surface or at 
interfaces of biomolecules based largely on statistics from high-resolution 
experimental data.  
 
1.) Implicit Solvation (Rosetta ICO) 
 
An additional energy term is added to the Rosetta’s implicit solvation model that 
models the energetic costs of highly ordered water molecules coordinated by 
multiple protein polar groups. The term builds upon our previously developed 
anisotropic solvation model11, where for each polar group, one or more virtual 
water sites are placed in a configuration ideal for hydrogen bonding with the 
corresponding polar group. An energetic bonus is then given when the water sites 
of multiple polar groups overlap in such a way that a single water could coordinate, 
or “bridge”, these polar groups: 
 

𝐸"#$%&'()*+𝑟', 𝑟./ = 1𝐸"#
(',.)4 ∙ 𝐺 7min

;<,;=
>𝑤' − 𝑤.>A + 1𝐸"#

(',.)4 ∙ 𝐺+>𝑏' − 𝑏.> − 𝐷E/ 

 
With: 

𝐺(𝑥) = G1 − I
𝑥J

𝑆E
L
J

M
J

 

 
Here, wi is the xyz coordinate of a theoretic water corresponding to polar group ri; 
bi is the xyz coordinate of the base heavy atom used to construct the water (e.g., 
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the backbone N or O), and D0 and S0 are parameters that are optimized during 
energy function evaluation. The two terms in the equation characterize the overlap 
and the angle formed between polar groups that potentially coordinate a water. 
 
This energy term was added to the current anisotropic solvation model in Rosetta, 
and optimization of all polar terms was carried out. While this term does not prevent 
disallowed coordination geometries (e.g., 3 donors or 3 acceptors coordinating a 
single water site), in practice, the water sites implicitly identified by this approach 
are quite reasonable. Because this two-body energy term is only dependent upon 
the configuration of pairs of protein polar groups, it can be used in all Monte Carlo 
minimization methods used in Rosetta19, with negligible computational overhead. 
 
Additionally, to properly handle the geometry of water-protein and water-water 
hydrogen bonds, we modified the functional form of sp3-hybridized hydrogen 
bond acceptors. Previously, the interaction between a hydrogen bond donor and 
the lone pair electrons of sp3-hybridized acceptors was described by an angle 
and torsional term about the base atoms; e.g., for serine, the angle CB-OG· · 
·Hdon and the pseudo-torsion HG-CB-OG· · ·Hdon. For water, however, this led 
to an undesirable property in that the potential treated water asymmetrically. 
Therefore, the torsional term water replaced with a “softmax” potential between 
the both atoms bonded to the sp3-hybridized acceptor: 
 

𝐸NOP$QR'+𝑎', ℎ./ = −𝑀 ∙ log	Z [ exp	(𝐸_`a+𝑏#, 𝑎', ℎ./ 𝑀⁄ )
%c	bound	to		h<

i 

  
Above, ai and hj are the acceptor heavy-atom and donor hydrogen, respectively; 
EBAH is the angular potential about the heavy-atom20. The summation is carried 
out over all bound atoms to the acceptor: for water acceptors, this would be over 
both hydrogens. In the serine example above, the angular potential is applied to 
both CB-OG- - - Hdon and HG-OG- - - Hdon and the softmax gives a score equal 
to the worse of the two angular potentials. This ensures the potential is 
symmetric about both water hydrogens. 
 
2.) Explicit Solvation Model (Rosetta ECO) 
 
One key challenge in prior explicit water modelling21 is the large conformational 
space a single water molecule can adopt. This is particularly problematic in 
applications (like those in this manuscript) where it is desirable to simultaneously 
sample sidechain conformations and water positions. Rosetta-ECO makes use of 
a two-stage approach to get around this problem (Figure 1). In the first stage, 
rotationally independent “point waters” are sampled using a statistical potential; 
not considering water rotation lets thousands of putative water positions be 
sampled efficiently. In the second stage, for the most favorable water positions 
(typically only several dozen) we consider rotations of these molecules using a 
physically derived potential. 
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In both steps of the protocol, Monte Carlo sampling is used to simultaneously 
sample sidechain rotamer and water “rotamer.” In both stages, water molecules 
may be set to “bulk,” gaining an entropy bonus by doing so, or may be set to 
explicit, gaining favorable interactions but losing the entropy bonus. Rotational 
sampling of waters using a uniform SO3 gridding strategy22 with 30° angular 
spacing. 
 
2.1) Derivation of the Statistical Point Water Potential 
 
The first step in determining possible water sites involves a low-resolution, 
statistical water potential to quickly evaluate the interaction between possible water 
sites and nearby polar groups of biomolecules. This potential, which we are calling 
the “point water potential”, treats water molecules as simple, uncharged, points 
with attractive and repulsive Lennard-Jones terms. 
 
The point water potential takes the form of:  
 

𝐸Oj'kl$;hl*&(𝑊 = {𝑤'}) = [ [ −log	𝑃+𝑑(𝑤', 𝑥.), 𝜃(𝑤', 𝑥., 𝑥.%hN*)/
stuvw	
vxtyz	.

{vx|wz	'

	 

−𝐾 ∙ [ exp[−(𝑑(𝑤', 𝑤#) − 2.7)J/𝜎J]
{vx|wz	#
'�#

+ 𝐸&*� 

 
Here, P is the statistical point-water distribution, parameterized over distance and 
angle; d gives the distance between a water and polar atom, and q gives the angle 
between water, polar atom, and its “base atom.” The point water energy term also 
considers other nearby point water sites, k, as Gaussian distributions with width σ 
and height K (with min energy at a distance of 2.7 Å), which was determined by 
averaging water-water distances observed in high resolution crystal structures. 
Finally, an overall energetic cost of bringing the water molecule “out of bulk,” Eref, 
is added for each water.  These parameters were fit using crystallographic waters 
in the Top8000 database (see Supplemental for more details). 
 
2.2) Identifying and Packing Point Waters 
 
A key challenging in building possible water sites is we want to simultaneously 
sample sidechain formations along with water positions. Thus, the initial placement 
of water molecules to be optimized by the point water potential come from two 
sources: a) ideal solvation about protein backbones, and b) possible solvation sites 
from sidechain rotamers. For backbone waters, point generation is straightforward: 
10 “ideal” sites are generated from each backbone C=O group (based on clustering 
waters from crystal structures). 
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Generation of sidechain-coordinated waters is not so straightforward. Considering 
all possible polar groups of all sidechain rotamers is computationally intractable.  
We again build off prior work23 and consider instead sidechain/sidechain (and 
sidechain/backbone) “overlaps.” That is, we generate all possible sidechain 
rotamers for every sidechain, and identify all positions where there is overlap 
(within 0.75 Å) between two different sidechains. A 3D hash table makes this 
calculation efficient even when there are millions of putative water positions. 
Finally, to further reduce conformational sampling, during the Monte Carlo 
“packing” algorithm, when both sidechain and point water positions are sampled, 
all putative point waters are clustered into sets into which only one site can be 
occupied. 
 
A modified version of Rosetta’s traditional packing algorithm24 is used when point 
waters are present. Typically, Rosetta uses simulated annealing to find the discrete 
rotamer set minimizing system energy, where the temperature of the trajectory is 
slowly annealed from RT=100 to RT=0.3. With the point water potential, we do not 
expect the forcefield (which does not consider water rotation) to be perfect, and 
we want the packer not to optimize total energy but to simply separate reasonable 
from unreasonable water positions for a more expensive subsequent calculation. 
Thus we instead used long simulations at low temperatures (RT=0.3) with 
intervening high-temperature “spikes” (RT=100). Then, instead of taking the lowest 
energy state sampled, we measured water “occupancy” at each position, taking 
point water positions with a “dwell time” more than 2%.  
 
The water positions passing this criterion, typically only several dozen to a 
hundred, are then allowed to rotate and are packed (along with all sidechains) 
using Rosetta’s standard simulated annealing rotamer optimization routine. 
 
3.) Datasets 
 
Four different data sets were used in the testing of the new energy functions 
described here. The first includes 153 high-resolution crystal structures of protein-
protein interfaces (PPIs) that was used for both native water and rotamer recovery 
at the interfaces. Two docking data sets were used to test the ability of the new 
energy functions to discriminate near-native from decoy docking conformations, a 
subsets of those used by Park et al.11, but selected for water-rich interfaces (and 
to exclude problematic cases such as PPIs with disulfides across the interface or 
ions contributing to binding). For protein-protein interactions, a 53-case subset of 
the ZDock 4 Benchmark set25 was used, while a 46-case subset of the Binding 
MOAD database26 was used for protein-ligand interactions. Finally, another ligand 
docking set, generated with GOLD on a subset of the Astex Diverse Set17 was 
used to compare the new energy functions against an established docking score 
function. Details on the datasets, including lists of PDB IDs used are included in 
the Supplemental Materials.  
 
4.) Binding Energy Calculations 
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The binding free energies, ΔGbind, were calculated for the near-native and incorrect 
(decoy) docking poses by taking the difference between the computed energies of 
the bound and unbound states. This is accomplished in Rosetta by first calculating 
the energy for the bound system, then re-computing the energy when the two 
binding components are separated to obtain unbound state energies. An important 
part of interface energetics involves computing the energy cost of water 
displacement27, and so treatment of explicit waters of the unbound state was an 
important consideration.  Due to size differences of the average interface, we found 
slightly different treatment performed better with PPIs versus protein-ligand 
interfaces.  In both PPIs and protein-ligand interfaces, the bound states are 
solvated, using the two-stage Monte Carlo procedure described above.  Then all 
sidechains are minimized, and – for protein-ligand interfaces only – the rigid-body 
transformation between subunits is also minimized.  Then subunits are separated 
and re-solvated.  The waters from the bound state are saved (and duplicated) 
following separation and are always considered in the rotatable water calculation. 
 
5.) Training Tasks 
 
The training tasks used for energy function parameterization are the same as 
detailed in the development of the REF2015 Rosetta energy function11 and are 
summarized in the Supplemental Materials.  
 
Availability 
 
This code is fully integrated into the Rosette software suite, with example XML 
files available in the Supplemental Materials. 
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