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Figures

Figure 1: Acoustic stimuli and analysis. A) Stimuli consisted of ‘soundscapes’ consisting of 30 four-tone
sequences either in- or decreasing in frequency (example sequences are marked by black dots). The fraction
of sequences moving in the same direction changed randomly across trials and between ‘epochs’ of a specific
duration, which varied between experiments. B) Each trial was characterized by the effective evidence for the
soundscape to in- or de-crease, with the evidence being independent between epochs and trials, and varying
around a participant-specific threshold. The black line presents the evidence for the soundscape shown in
panel A, the gray lines the evidence for other trials, all with increasing frequency. Evidence levels of one
correspond to a fully coherent increasing soundscape, levels of zero to a fully coherent decreasing soundscape.
C) The trial-averaged single participant perceptual weights (average sensory evidence for trials where
participants responded with ‘up’ or ‘down’, combined after correcting the sign of down responses) were
analyzed using regression. These models distinguished trivial temporal structure arising from linear trends or
U/V shaped profiles locked to stimulus duration from rhythmic structure at faster time scales. The graph
displays the perceptual weight of one example participant together with the best-fitting trivial and rhythmic
contributions.
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A) Perceptual weights B) Freq. Spectrum C) Model comparison D) Model parameters E) Rhythmic comp.
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Figure 2: Results. A) Participant-averaged perceptual weights (black solid) with group-level two-sided 5%
bootstrap confidence intervals (gray area) and the best-fitting model (green dashed). Units are in z-scores
relative to a bootstrap baseline. B) Participant-averaged frequency spectrum of the perceptual weights (black
solid), with two-sided 5% bootstrap confidence interval (gray area). The dashed line represents the average
spectrum obtained after time-shuffling the weights. C) Model comparison results. The left curves show the
group-level cv-AlCc (blue) and WAIC (red) values for the best trivial model (open circles) and frequency
dependent models. Individual participant’s best frequencies are denoted by solid black dots. The right bars
show the exceedance probabilities of a comparison between the trivial model and the rhythmic model derived
at the frequency yielding the lowest group-level cv-AlCc. D) Model parameters of the trivial contributions
(offset, linear slope, u/v shaped profile) and the rhythmic component (R, root-mean-squared amplitude of sine
and cosine components). Bars and error-bars indicate the group-level mean and s.e.m. E) Rhythmic
component of the best-fitting model for each participant.
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