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Organisation of this document8

Supplementary Information S1 (“Mathematical supplements”) contains five subsec-9

tions:10

• S1.1. “Formal proof that the proportion of co-infected hosts is larger than the11

product of the prevalences”.12

– A demonstration that J1,2 from Eq. (3) in the Main Text is larger than P = 1213

as can be derived from Eq. (1) in the Main Text for all parameters (for14

sufficiently large t).15

• S1.2. “Covariance matrix at the endemic equilibrium”.16

– A derivation of the covariance matrix for stochastic fluctuations around the17

endemic equilibrium in the two-pathogen model (leads to Eq. (27) in the18

main text).19

• S1.3. “Comments on the model of May and Nowak (1995)”.20

– Details how the often-cited co-infection model of May and Nowak (1995) is21

not correct.22

• S1.4. “Extending the models to accommodate specific clearance”.23

– Shows how the methods developed in the main text can be extended to24

accommodate an additional epidemiological parameter: specific clearance25
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(i.e. each pathogen being cleared independently of any other, possibly at26

a pathogen-specific rate).27

• S1.5. “The prevalence of co-infections can be equal to the product of the preva-28

lences of interacting pathogens”.29

– Shows how, in the model described in Supplementary Information, Section30

S1.4, if there is no host renewal (removal or unspecific clearance) but only31

specific clearance, then the prevalence of co-infections can be equal to the32

product of the prevalences even when pathogens interact. This comple-33

ments our main point (non-interaction does not imply independence) by34

showing that it holds the other way around as well (independence does not35

imply non-interaction).36

Supplementary Information S2 (“Sources of data and side results of model fit-37

ting”) contains three subsections:38

• S2.1. “Additional fitting of the NiSP model”.39

– Results of fitting the NiSP model to three additional data sets not consid-40

ered in the main text. These studies do not concern a single pathogen41

species, and so the pragmatic assumption of epidemiological interchange-42

ability between pathogens is less justifiable.43

• S2.2. “Fitting the NiDP model”.44

– Re-tabulates the data sets used by Howard et al. (2001), and describes in45

full how our criteria to allow a study to be considered led to us fixing on 4146

particular studies to analyse.47

• S2.3. “Fitting the models with specific clearance”.48

– Shows that fitting the NiSP model with specific clearance confirms results49

found from a model that does not include specific clearance as an addi-50

tional parameter.51
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S1 Mathematical supplements52

S1.1 Formal proof that the proportion of co-infected hosts is larger53

than the product of the prevalences54

Let P = 12 and introduce the new variable Z, the extent to which the product of55

prevalences over-estimates the proportion of co-infected hosts,56

Z = P − J1,2 = 12 − J1,2. (S1)

Differentiating Z and simplifying using Eqs. (2) and (3) in the main text leads to57

Ż = 1 ̇2 + 2 ̇1 − J̇1,2,

Ż = −(β11 + β22 + μ)Z − μP. (S2)

Of interest is the sign of Z(t) as a function of its initial conditions. We assume58

R0, > 1 and 0 < (0) ≤ ̄ for  = 1, 2. The differential equation for  is logistic and59

therefore, (t) converges monotonically to ̄,  = 1, 2. There exists ε > 0 such that60

P(t) > P̃ = ̄1 ̄2 − ε > 0 for t ≥ 0. Suppose Z(0) > 0. The term −μP(t) < −μP̃ < 061

ensures that Z(t) decreases to zero in finite time. Let t1 be the first time that Z(t1) =62

0. Then Ż(t1) < 0, so Z(t) eventually becomes negative. To show that Z(t) remains63

negative, let Z(t) < 0 for t1 < t < t2 and let t2 be the first time that Z(t2) = 0, then64

Ż(t2) ≥ 0, a contradiction to the fact that Ż(t2) ≤ −μP̃. Hence Z(t) remains negative65

for t > t1. In a similar manner it can be shown that if Z(0) = 0 or Z(0) < 0, then66

Z(t) < 0 for t > 0. In particular, due to the convergence of (t) to ̄ for  = 1, 2, Z(t)67

converges to the negative limit: −μ̄1 ̄2/(β1 ̄1 + β2 ̄2 + μ).68

In summary, the fate of Z is to become negative in finite time and to remain69

negative. This is due to μ > 0. Otherwise for μ = 0, Z would not change sign and70

would asymptotically converge to zero.71

S1.2 Covariance matrix at the endemic equilibrium72

In the stochastic version of the model, the fluctuations (Δ1, Δ2) = (1 − ̄1, 2 − ̄2)73

about the endemic equilibrium (̄1, ̄2) = N(1−1/R0,1, 1−1/R0,2) can be approximated74
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by the solution of the linear multivariate Fokker-Planck equation,75

∂p(, t)

∂t
= −

2
∑

,j=1

Aj
∂(jp)

∂
+
1

2

2
∑

,j=1

Bj
∂2p

∂∂j
, (S3)

where the vector  = (1,2) corresponds to (Δ1,Δ2). The steady-state solution of76

this equation is a Gaussian distribution with mean zero and covariance matrix C̄.77

We will use this multivariate normal distribution to approximate the joint probability78

density function of the random variables (1, 2) near the endemic equilibrium. Matrix79

A = [Aj] is the rate of change toward zero and matrix B = [Bj] is the covariance80

of this process (O’Dea et al., 2018; Van Kampen, 1992). In particular, matrix A is81

the linearization of the differential equations for (1, 2) (total population size, not82

proportions) about the endemic equilibrium,83

A =







β1 − 2
β1

N
̄1 − μ 0

0 β2 − 2
β2

N
̄1 − μ






=





−β1 + μ 0

0 −β2 + μ



 . (S4)

We use the fact that 1 = J1 + J1,2 and 2 = J2 + J1,2 and sum the appropriate elements84

in the covariance matrix  (Eq. (24) in the main text) to compute the covariance85

matrix B,86

B =





F̄1(J̄∅ + J̄2) + μ̄1 μJ̄12

μJ̄12 F̄2(J̄∅ + J̄1) + μ̄2



 =









2Nμ
�

1 −
1

R0,1

�

μJ̄12

μJ̄12 2Nμ
�

1 −
1

R0,2

�









.(S5)

The expressions in matrices A and B are evaluated at the endemic equilibrium. In87

particular, F̄ = β ̄/N = β(1 − 1/R0,),  = 1, 2, and the equilibrium J̄12 is found by88

multiplying Eq. (9) in the main text by N:89

J̄12 =
�

N(β1 + β2)

β1 + β2 − μ

��

1 −
1

R0,1

��

1 −
1

R0,2

�

. (S6)

Van Kampen (1992) showed that the covariance matrix C of the Fokker-Planck90

equation is the solution of the differential equation: Ċ = AC + CAT + B. The steady-91

state covariance matrix is the solution of92

AC + CAT = −B . (S7)
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To compute the steady-state covariance matrix for the proportion of the population93

that is infected, divide the solution of Eq. (S7) by N2. That is, C̄ equals94

C̄ =
1

N2













Nμ
�

1 − 1
R0,1

�

β1 − μ

μJ̄1,2

(β1 − μ) + (β2 − μ)
μJ̄1,2

(β1 − μ) + (β2 − μ)

Nμ
�

1 − 1
R0,2

�

β2 − μ













=











1

NR0,1

μJ̄1,2

N2[(β1 − μ) + (β2 − μ)]
μJ̄1,2

N2[(β1 − μ) + (β2 − μ)]

1

NR0,2











,

(S8)

where J̄12 is defined in Eq. (S6). The steady-state covariance matrix in Eq. (S8) is95

used to construct confidence ellipses about the endemic equilibrium (̄1/N, ̄2/N) =96

(1 − 1/R0,1, 1 − 1/R0,2) (as shown in Fig. 2C in the main text).97

Note that the covariance between the prevalences of pathogen 1 and pathogen98

2 (the off-diagonal elements in Eq. (S8)) is99

C̄j = cov
�

1

N
,
2

N

�

=
μJ̄1,2

N2[(β1 − μ) + (β2 − μ)]
=

(β1 + β2)(β1 − μ)(β2 − μ)μ

Nβ1β2(β1 + β2 − μ)(β1 − μ + β2 − μ)
≥ 0 ,

(S9)

(for  6= j) with equality if and only if μ = 0 (assuming β > μ,  = 1, 2).100

S1.3 Comments on the model of May and Nowak (1995)101

May and Nowak (1995) introduced a co-infection model very similar to that pre-102

sented in the main text, taking103

̇ = [β(1 − ) − ν − ᾱ] , with  = 1, . . . ,n , (S10)

for n pathogens. The natural mortality rate of the host is ν. The only difference from104

our model is pathogen-specific mortality. In a single infection, pathogen  induces105

an additional removal rate to the host α: this is the virulence of pathogen . The106

induced removal rate of co-infected hosts is assumed to be equal to the maximum107

virulence of the co-infecting pathogens. The pathogens are ranked such that for all108

, α < α+1. Pathogen 1 is the least virulent pathogen and n is the most virulent109

pathogen. The term ᾱ denotes the average induced removal rate of hosts infected110

by pathogen .111

The authors state that the probability that a host is not infected with a pathogen112
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more virulent than  is defined as:113

p =
n
∏

j=+1

(1 − j) . (S11)

It is important to notice that an underlying assumption of this definition is that the dy-114

namics of the pathogens are independent. But, as we show below, they are not, since115

the most virulent pathogens influence the dynamics of least virulent pathogens. The116

coupling term ᾱ is defined as:117

ᾱ = αp +
n
∑

j=+1

αjjpj . (S12)

The term jpj represents the probability to be infected by j and uninfected by more118

virulent pathogens than j. Again, this definition implicitly assumes that the dynam-119

ics of the pathogens are independent. This seems to contradict the fact that the120

dynamics are coupled through virulence.121

In this section, we check the model given in Eq. (S10) for n = 2 pathogens122

and show that the above definitions do not hold up to mathematical analysis. We123

consider the same 2-pathogen model as Eq. (3) of the main text, except that we124

include virulence parameters α2 > α1. Model (S10) is to be compared with:125

J̇1 = F1J∅ − (F2 + ν + α1)J1 ,

J̇2 = F2J∅ − (F1 + ν + α2)J2 , (S13)

J̇1,2 = F2J1 + F1J2 − (ν +mx(α1,α2))J1,2 ,

= F2J1 + F1J2 − (ν + α2)J1,2 ,

where J∅ = 1 − J1 − J2 − J1,2.126

Since model (S10) and model (S13) share the same biological assumptions and127

the same mathematical formalism, they should be equivalent (for n = 2 pathogens).128

Let 1 = J1 + J1,2 and 2 = J2 + J1,2. Model (S13) is equivalent to129

̇1 = β11(1 − 1) − (ν + α?1)1 ,

̇2 = β22(1 − 2) − (ν + α2)2 , (S14)

J̇1,2 = β11(2 − J1,2) + β22(1 − J1,2) − (ν + α2)J1,2 ,
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where130

α?1 = α1

�

1 −
J1,2

1

�

+ α2
J1,2

1
.

Eq. (S11) yields p1 = 1 − 2 and p2 = 1. Eq. (S12) yields131

ᾱ1 = α1(1 − 2) + α22 .

For model (S10) and model (S13) to coincide, one must have α?1 = ᾱ1, i.e. J1,2 =132

12. Proceeding as in Supplementary Information, Section S1.1, let P = 12 and133

Z = P − J1,2. We have134

Ż = −(β11 + β22 + ν + α2)Z − (ν + α?1)P .

Assuming P(t) > P̃ > 0 for t > 0, it can be shown that Z(t) becomes negative and135

stays negative, implying for some time t0 and t > t0, J1,2(t) > P(t) = 1(t)2(t).136

Therefore, α?1 6= ᾱ1. Hence, model (S10) and model (S13) are not equivalent, as they137

should be, if model (S10) is correct.138

S1.4 Extending the models to accommodate specific clearance139

S1.4.1 Two-pathogen model140

Introducing a pathogen-specific clearance rate γ, Eq. (1) of the main text is replaced141

by142

̇ = β(1 − ) − (γ + μ) (S15)

and Eq. (3) by143

J̇1 = F1J∅ − (F2 + γ1 + μ)J1 + γ2J1,2 ,

J̇2 = F2J∅ − (F1 + γ2 + μ)J2 + γ1J1,2 , (S16)

J̇1,2 = F2J1 + F1J2 − (γ1 + γ2 + μ)J1,2 ,

where the definition of F is the same as in Eq. (2). The parameter μ (host renewal)144

is unchanged: this is the sum of the death rate and the unspecific clearance rate for145

infected hosts.146
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After inclusion of pathogen-specific clearance rates, Eq. (7) is replaced by147

J̇∅ = μ(J1+J2+J1,2)−(F1 + F2) J∅+γ1J1+γ2J2 = μ(1−J∅)−(F1 + F2) J∅+γ1J1+γ2J2 . (S17)

and the basic reproduction number is148

R0, =
β

γ + μ
. (S18)

Also, Eq. (8) is replaced by149

J̇1,2 = β22(1 − J1,2) + β11(2 − J1,2) − (γ1 + γ2 + μ)J1,2 . (S19)

Eq. (9) is unchanged as the relative deviation from statistical independence is unaf-150

fected by the specific clearance rates γ.151

Finally, Eq. (S2) is replaced by152

Ż = −(β11 + β22 + γ1 + γ2 + μ)Z − μP. (S20)

where Z(t) converges to the negative limit: −μ̄1 ̄2/(β1 ̄1 + β2 ̄2 + γ1 + γ2 + μ). Again,153

the fate of Z is to become negative in finite time and to remain negative provided154

μ > 0.155

S1.4.2 Analysis of the n-pathogen model156

Introducing the notation for the set of hosts infected by one additional pathogen157

Λ =  ∪ {} (for  /∈ ), Eq. (5) in the main text becomes158

J̇ =
∑

∈
FJΩ −

�

∑

 /∈
F +

∑

∈
γ + μ

�

J +
∑

 /∈
γJΛ . (S21)

with F the same as in Eq. (6). The final term in Eq. (S21) tracks the inflow due159

to hosts with one additional infection that clear a single infection. This final term is160

omitted in the single case in which  corresponds to infection by all pathogens. Also,161

the updated version of Eq. (10) for J̇∅ with pathogen-specific clearance rates is162

J̇∅ = μ(1 − J∅) −
� n
∑

=1

F

�

J∅ +
n
∑

=1

γJ . (S22)
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Equilibrium analysis. The equilibrium equations with pathogen-specific clearance163

rates are164

0 =
∑

∈
F̄ J̄Ω −

�

∑

 /∈
F̄ +

∑

∈
γ + μ

�

J̄ +
∑

 /∈
γ J̄Λ , (S23)

and165

0 =
∑

∈
(β − (γ + μ)) J̄Ω −

�

∑

 /∈
(β − (γ + μ)) +

∑

∈
γ + μ

�

J̄ +
∑

 /∈
γ J̄Λ . (S24)

with166

F̄ = β ̄ = β

�

1 −
γ + μ

β

�

= β − (γ + μ). (S25)

(replacing Eqs. (11-12-13)).167

To fit the models to data, it would be necessary to scale by the rate of host168

renewal μ in Eq. (S24), leading to169

0 =
∑

∈

�

β̂ − (γ̂ + 1)
�

J̄Ω −
�

∑

 /∈

�

β̂ − (γ̂ + 1)
�

+
∑

∈
γ̂ + 1

�

J̄ +
∑

 /∈
γ̂ J̄Λ , (S26)

and so consider infection (β̂ = β/μ) and specific clearance (γ̂ = γ/μ) rates mea-170

sured relative to the rate of host renewal. With the scaled force of infection at171

equilibrium172

F̂ = β̂ − (γ̂ + 1), (S27)

then Eq. (S26) can be written as173

0 =
∑

∈
F̂ J̄Ω −

�

∑

 /∈
F̂ +

∑

∈
γ̂ + 1

�

J̄ +
∑

 /∈
γ̂ J̄Λ . (S28)

Given the values of β̂ and γ̂, the 2n−1 linear equations corresponding to Eq. (S28)174

can be solved simultaneously with the corresponding equation for the equilibrium175

density of uninfected hosts (i.e. the scaled version of Eq. (S22)):176

−1 = −
� n
∑

=1

F̂ + 1

�

J̄∅ +
n
∑

=1

γ̂ J̄ . (S29)

to find all 2n equilibrium prevalences predicted by the n-pathogen model. How-177

ever, since the recursive solution presented in the main text (Eq. (16)) is no longer178

available, the system must be solved using (standard) numerical methods for linear179
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systems of equations.180

Worked example. When n = 3 there is a total of 23 = 8 classes of hosts, un-181

infected (J∅), singly-infected (J1, J2 and J3), doubly-infected (J1,2, J1,3 and J2,3) and182

triply-infected (J1,2,3). The equilibrium prevalences can be concatenated into a sin-183

gle vector, given here in lexicographical order184

v =
�

J̄∅, J̄1, J̄2, J̄3, J̄1,2, J̄1,3, J̄2,3, J̄1,2,3
�T
. (S30)

If we define b as185

b = [−1, 0, 0, 0, 0, 0, 0, 0]T , (S31)

then Eq. (S28) and (S29) are equivalent to the system of 8 linear equations186

Hv = b, (S32)

in which matrix H equals











































−(F̂1 + F̂2 + F̂3 + 1) γ̂1 γ̂2 γ̂3 0 0 0 0

F̂1 −(F̂2 + F̂3 + γ̂1 + 1) 0 0 γ̂2 γ̂3 0 0

F̂2 0 −(F̂1 + F̂3 + γ̂2 + 1) 0 γ̂1 0 γ̂3 0

F̂3 0 0 −(F̂1 + F̂2 + γ̂3 + 1) 0 γ̂1 γ̂2 0

0 F̂2 F̂1 0 −(F̂3 + γ̂1 + γ̂2 + 1) 0 0 γ̂3

0 F̂3 0 F̂1 0 −(F̂2 + γ̂1 + γ̂3 + 1) 0 γ̂2

0 0 F̂3 F̂2 0 0 −(F̂1 + γ̂2 + γ̂3 + 1) γ̂1

0 0 0 0 F̂3 F̂2 F̂1 −(γ̂1 + γ̂2 + γ̂3 + 1)











































.

The equilibrium prevalence of hosts infected by any combination of pathogens can187

then be obtained by solving Eq. (S32) for v.188

Proof that there is always a unique equilibrium. For the case n = 3 pathogens,189

the matrix −H has off-diagonal entries that are non-positive and diagonal entries that190

are strictly positive. In addition, the absolute value of each diagonal entry is strictly191

greater than the absolute value of the sum of all of the other entries in that column.192

These properties of −H make it a non-singular M-matrix. (Properties of an M-matrix193

are given in (Plemmons, 1977).) As a consequence of these properties, −H−1 exists194

and is a non-negative matrix from which it follows that the solution v in Eq. (S32) is195
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non-negative and can be expressed as196

v = H−1b. (S33)

Generalizing to the case of n pathogens, it can be verified that matrix −H in Eq. (S32)197

will still have the same properties, making it a non-singular M-matrix and therefore,198

the equilibrium v is the unique non-negative solution given by Eq. (S33).199

S1.4.3 Relationship between the NiDP and multinomial models200

In this subsection, we show that the equilibrium prevalences in the NiDP model with201

μ = 0 are equal to the expectations under statistical independence, i.e.,202

J̄ =
∏

∈
̄
∏

j /∈
(1 − ̄j) , (S34)

where ̄ = 1 − γ/β for all  ∈ {1, 2, . . . ,n}. In other words, when there is no infected203

host renewal (removal or unspecific clearance), the probability to be infected by a204

set of pathogens  follows a multinomial distribution with parameters n (the number205

of distinct pathogens) and p = ̄ for all  ∈ {1, 2, . . . ,n}.206

In the specific case μ = 0, Eq. (S23) becomes207

0 =
∑

∈
F̄ J̄Ω −

�

∑

 /∈
F̄ +

∑

∈
γ

�

J̄ +
∑

 /∈
γ J̄Λ , (S35)

with F̄ = β − γ. Eq. (S34) implies208

J̄Ω = J̄
1 − ̄
̄

, and J̄Λ = J̄
̄

1 − ̄
. (S36)

Substituting the values in Eq. (S36) into the right side of Eq. (S35),

∑

∈

�

F̄
1 − ̄
̄

�

−
�

∑

 /∈
F̄ +

∑

∈
γ

�

+
∑

 /∈
γ

̄

1 − ̄

and simplifying leads to

∑

∈

�

(β − γ)
γ

β − γ

�

−
∑

 /∈
(β − γ) +

∑

∈
γ +

∑

 /∈
γ
β − γ
γ

= 0.
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Therefore, the values in Eq. (S34) are equilibrium values.209

Similarly, in the specific case μ = 0, the equilibrium value for J∅ > 0 in Eq. (S22)210

satisfies211

0 =

� n
∑

=1

F̄

�

J̄∅ +
n
∑

=1

γ J̄ . (S37)

Applying Eq. (S36) and dividing by J̄∅ in the right side of the preceding equation212

yields213

� n
∑

=1

F̄

�

+
n
∑

=1

γ
̄

1 − ̄
=

� n
∑

=1

(β − γ)
�

+
n
∑

=1

γ
β − γ
γ

,

= 0 .

Hence, Eq. (S34) is the equilibrium solution of the NiDP model in the specific case214

μ = 0.215

S1.4.4 Relationship between the NiDP and NiSP models216

Assuming all pathogens are interchangeable, Eq. (17) of the main text can be re-217

placed by218

0 = ||F̂J̄Ω −
�

(n − ||)F̂ + ||γ̂ + 1
�

J̄ + (n − ||)γ̂J̄Λ , (S38)

in which219

F̂ = β̂ − (γ̂ + 1) . (S39)

For 1 ≤ k < n, substituting Eq. (19) into Eq. (S38) leads to220

0 = kF̂
M̄k−1

Cnk−1
−
�

(n − k)F̂ + kγ̂ + 1
� M̄k

Cnk
+ (n − k)γ̂

M̄k+1

Cnk+1
. (S40)

Noting that
Cnk+1
Cnk−1

=
(n − k + 1)(n − k)

(k + 1)k
and

Cnk+1
Cnk

=
n − k

k + 1
,

it follows that221

0 = (n − k + 1)F̂M̄k−1 −
�

(n − k)F̂ + kγ̂ + 1
�

M̄k + (k + 1)γ̂M̄k+1, (S41)

which holds for 1 ≤ k < n (i.e. there is a total of n − 1 such equations).222
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When k = n the analogue of Eq. (S40) is

0 = nF̂
M̄n−1

Cnn−1
− (nγ̂ + 1)

M̄n

Cnn
,

and so, since Cnn−1 = n and Cnn = 1, it follows that223

0 = F̂M̄n−1 − (nγ̂ + 1) M̄n. (S42)

When k = 0 the analogue of Eqn. (S40) obtained by substituting Eq. (20) into224

Eq. (S29), is225

−
�

nF̂ + 1
� M̄0

Cn0
+ nγ̂

M̄1

Cn1
= −1, (S43)

and so, since Cn1 = n and Cn0 = 1, it follows that226

−
�

nF̂ + 1
�

M̄0 + γ̂M̄1 = −1 . (S44)

Taken together, Eqs. (S41-S42-S44) constitute a system of n + 1 linear equa-227

tions that fix the equilibrium prevalences of hosts infected by any number of distinct228

pathogens in the NiSP model.229

Worked example. When n = 3 there is a total of n + 1 = 4 classes of host: unin-230

fected (M0), singly-infected (M1), doubly-infected (M2) and triply-infected (M3). The231

equilibrium prevalences can be concatenated into a single vector232

v =
�

M̄0, M̄1, M̄2, M̄3
�T
. (S45)

If we define b as233

b = [−1, 0, 0, 0]T , (S46)

then Eq. (S41-S42-S44) are equivalent to the system of 4 linear equations234

Hv = b, (S47)
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in which matrix H equals235

















−(3F + 1) γ̂ 0 0

3F̂ −(2F̂ + γ̂ + 1) 2γ̂ 0

0 2F̂ −(F̂ + 2γ̂ + 1) 3γ̂

0 0 F̂ −(3γ̂ + 1)

















. (S48)

The equilibrium prevalences of hosts infected by any number of distinct pathogens236

can then be obtained by solving Eq. (S47).237

S1.4.5 Relationship between the NiSP and binomial models238

In this subsection, we show that the equilibrium prevalences in the NiSP model with239

μ = 0 are equal to the expectations under statistical independence, i.e.,240

M̄k = Cnk ̄
k(1 − ̄)n−k , (S49)

in which ̄ = 1−γ/β. In other words, the probability to be infected by k epidemiologically-241

interchangeable pathogens follows a binomial distribution with parameters n (the242

number of pathogens considered) and p = ̄.243

In the specific case μ = 0, Eq. (S38) becomes244

0 = ||F̄J̄Ω −
�

(n − ||)F̄ + ||γ
�

J̄ + (n − ||)γJ̄Λ , (S50)

in which F̄ = β − γ. Eq. (S41) becomes245

0 = (n − k + 1)F̄M̄k−1 −
�

(n − k)F̄ + kγ
�

M̄k + (k + 1)γM̄k+1. (S51)

Eq. (S49) implies246

M̄k−1 =
Cnk−1
Cnk

1 − ̄

̄
M̄k =

k

n − k + 1

1 − ̄

̄
, and M̄k+1 =

Cnk+1
Cnk

̄

1 − ̄
M̄k =

n − k

k + 1

̄

1 − ̄
M̄k .

(S52)

Substituting the values in Eq. (S52) into the right side of Eq. (S51)247

(n − k + 1)F̄
k

n − k + 1

1 − ̄

̄
−
�

(n − k)F̄ + kγ
�

+ (k + 1)γ
n − k

k + 1

̄

1 − ̄

14



and simplifying leads to:248

F̄k
1 − ̄

̄
− (n − k)F̄ − kγ + γ(n − k)

̄

1 − ̄
= kγ − (n − k)F̄ − kγ + (n − k)F̄ = 0 .

Therefore, the values in Eq. (S49) are equilibrium values.249

Similarly, in the specific case μ = 0, Eq. (S42) becomes

0 = F̄M̄n−1 − (nγ) M̄n ,

and substituting the values in Eq. (S52) leads to250

F̄n
1 − ̄

̄
− nγ = nγ − nγ = 0 .

Lastly, in the specific case μ = 0, Eq. (S44) becomes

0 = −
�

nF̄
�

M̄0 + γM̄1 ,

and substituting the values in Eq. (S52) leads to251

−nF̄ + γn
̄

1 − ̄
= −n(β − γ) + n(β − γ) = 0 .

Hence, Eq. (S49) is the equilibrium solution of the NiSP model in the specific case252

μ = 0.253

S1.4.6 Stochastic models254

Continuous-time Markov chain. The continuous-time Markov chain model with255

pathogen-specific clearance rates has four additional events defined in Table S1.256

Event Event Rate Change(s) to state
number variable(s) (ΔX)

8 Specific clearance of pathogen 1 from host singly-infected by pathogen 2 γ1J1Δt + o(Δt) J1 → J1 − 1
J∅→ J∅ + 1

9 Specific clearance of pathogen 2 from host singly-infected by pathogen 1 γ2J2Δt + o(Δt) J2 → J2 − 1
J∅→ J∅ + 1

10 Specific clearance of pathogen 1 from co-infected host γ1J1,2Δt + o(Δt) J1,2 → J1,2 − 1
J2 → J2 + 1

11 Specific clearance of pathogen 2 from co-infected host γ2J1,2Δt + o(Δt) J1,2 → J1,2 − 1
J1 → J1 + 1

Table S1: Additional transitions in the two-pathogen stochastic models.
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Stochastic differential equations. Let dJ = ƒ̃dt be the unscaled version of the257

deterministic model as specified in Eq. (S16-S17). The extension of matrix  in258

Eq. (24) of the main text, to include pathogen specific clearance is259

















μ(N − J∅) + (F1 + F2)J∅ + γ1J1 + γ2J2 −F1J∅ − (μ + γ1)J1 −F2J∅ − (μ + γ2)J2 −μJ1,2

−F1J∅ − (μ + γ1)J1 F1J∅ + (F2 + γ1 + μ)J1 + γ2J1,2 0 −F2J1 − γ2J1,2

−F2J∅ − (μ + γ2)J2 0 F2J∅ + (F1 + γ2 + μ)J2 + γ1J1,2 −F1J2 − γ1J1,2

−μJ1,2 −F2J1 − γ2J1,2 −F1J2 − γ1J1,2 F2J1 + F1J2 + (μ + γ1 + γ2)J1,2

















,

(S53)

where N − J∅ = J1 + J2 + J1,2 and N is constant.260

The new matrix G has dimension 4 × 11 due to the four additional events in261

Table S1, (see Eq. (26)),262

dJ∅ = ƒ̃0dt −
Æ

F1J∅ dW1 −
Æ

F2J∅ dW2 +
Æ

μJ1 dW5 +
Æ

μJ2 dW6 +
Æ

μJ1,2 dW7

+
Æ

γ1J1 dW8 +
Æ

γ2J2 dW9 ,

dJ1 = ƒ̃1dt +
Æ

F1J∅ dW1 −
Æ

F2J1 dW4 −
Æ

μJ1 dW5 −
Æ

γ1J1 dW8 +
Æ

γ2J1,2 dW11 ,(S54)

dJ2 = ƒ̃2dt +
Æ

F2J∅ dW2 −
Æ

F1J2 dW3 −
Æ

μJ2 dW6 −
Æ

γ2J2 dW9 +
Æ

γ1J1,2 dW10 ,

dJ1,2 = ƒ̃1,2dt +
Æ

F1J2 dW3 +
Æ

F2J1 dW4 −
Æ

μJ1,2 dW7 −
Æ

γ1J1,2 dW10 −
Æ

γ2J1,2 dW11 .

Covariance matrix at the endemic equilibrium. The new matrices A and B263

(Eq. (S4)) are264

A =





−β1 + γ1 + μ 0

0 −β2 + γ2 + μ





and265

B =









2N(γ1 + μ)
�

1 −
1

R0,1

�

μJ̄12

μJ̄12 2N(γ2 + μ)
�

1 −
1

R0,2

�









. (S55)

The new steady-state covariance matrix C̄ (Eq. (S8)) is266

C̄ =











1

NR0,1

μJ̄1,2

N2[β1 − (γ1 + μ) + β2 − (γ2 + μ)]
μJ̄1,2

N2[β1 − (γ1 + μ) + β2 − (γ2 + μ)]

1

NR0,2











(S56)

where J̄12 is defined in Eq. (9) of the main text.267

The covariance between pathogen 1 and pathogen 2 prevalences (the off-diagonal268
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elements in Eq. (S56)) is269

C̄j = cov
�

1

N
,
2

N

�

=
μJ̄1,2

N2[β1 − (γ1 + μ) + β2 − (γ2 + μ)]

=
(β1 + β2)(β1 − γ1 − μ)(β2 − γ2 − μ)μ

Nβ1β2(β1 + β2 − μ)(β1 − γ1 − μ + β2 − γ2 − μ)
≥ 0 ,

(for  6= j) with equality if and only if μ = 0 again (assuming β > γ + μ,  = 1, 2); in270

the latter case, the deviation from statistical independence is zero (Eq. (9)).271

In the special case that β1 = β2 = β and γ1 = γ2 = γ,272

∂C̄

∂γ
= −

μ

βN(2β − μ)
≤ 0 ,

meaning that the positive covariance decreases as γ increases (unless μ = 0), as273

expected.274

S1.5 The prevalence of co-infections can be equal to the product of275

the prevalences of interacting pathogens276

We consider the same two-pathogen model as Eq. (S16), except we let μ = 0. How-277

ever, we include two interaction parameters σ1,σ2 > −1, such that the forces of278

infection of both pathogens are279

F1 = β1(J1 + (1 + σ1)J1,2) , F2 = β2(J2 + (1 + σ2)J1,2) . (S57)

If σ < 0 (resp. > 0), then transmission of pathogen  from a co-infected host is lower280

(resp. greater) than from singly infected hosts ( = 1, 2). With these assumptions,281

the model is282

J̇1 = F1J∅ − (F2 + γ1)J1 + γ2J1,2 ,

J̇2 = F2J∅ − (F1 + γ2)J2 + γ1J1,2 , (S58)

J̇1,2 = F2J1 + F1J2 − (γ1 + γ2)J1,2 ,
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where J∅ = 1 − J1 − J2 − J1,2. If we let 1 = J1 + J1,2 and 2 = J2 + J1,2, then model (S58)283

is equivalent to284

̇1 = β1(1 + σ1J1,2)(1 − 1) − γ11 ,

̇2 = β2(2 + σ2J1,2)(1 − 2) − γ22 , (S59)

J̇1,2 = β1(1 + σ1J1,2)(2 − J1,2) + β2(2 + σ2J1,2)(1 − J1,2) − (γ1 + γ2)J1,2 .

Proceeding as in Supplementary Information, Section S1.1, let P = 12 and Z = P −285

J1,2. Thus,286

Ż = −[β1(1 + σ1J1,2) + β2(2 + σ2J1,2) + γ1 + γ2]Z . (S60)

Since the expression inside the brackets is positive, Z(t) → 0 as t → ∞. The preva-287

lence of co-infection by interacting pathogens is asymptotically equal to the product288

of their prevalences. Therefore, Z = 0 does not imply pathogens do not interact.289

S2 Sources of data and side results of model fitting290

S2.1 Additional fitting of the NiSP model291

Results of fitting the NiSP model to data from four publications for strains of a sin-292

gle pathogen, that may plausibly be assumed epidemiologically-interchangeable293

(López-Villavicencio et al., 2007; Seabloom et al., 2009b; Chaturvedi et al., 2011;294

Koepfli et al., 2011) are presented in Fig. 3 of the main text. Results for three further295

data sets concerning different pathogens of a single host (Andersson et al., 2013;296

Moutailler et al., 2016; Nickbakhsh et al., 2016) are in Fig. S1.297

For convenience the raw data as used in model fitting for these additional data-298

sets are re-tabulated in Table S2. Results of model fitting are summarized in Table S3.299

Ambiguities needed to be resolved in collating these data from what is reported in300

the original publications. The data presented in Moutailler et al. (2016) are inconsis-301

tent, in as much as it is reported that a total of 267 ticks were tested, but the per-302

centage data in the section “Co-infections and associations between pathogens” of303

the paper instead indicate 262 is the correct total. We have used the value 262 here.304

Misreporting of the number of uninfected hosts in reference Seabloom et al. (2009b)305

has been corrected by reference to the original data (Seabloom et al., 2009a) after306
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personal communication with the authors.307

Pathogens with n distinct Observed counts, Ok Total
types, strains or clones n 0 1 2 3 4 5 6 7 8 9 N

Pathogens of Ixodes ricinus ticks 37 147 66 24 18 5 2 - - - - 262
Barley and cereal yellow dwarf viruses 5 1570 224 69 17 6 4 - - - - 1890
Respiratory viruses 11 17630 8568 964 105 15 2 - - - - 27284

Table S2: Sources of data for fitting the NiSP model in which pathogen species, clones or strains are
assumed to be epidemiologically-interchangeable. The data sets include pathogens of I. ricinus ticks
(Moutailler et al., 2016), barley yellow dwarf viruses (Seabloom et al., 2009b), respiratory viruses
(Nickbakhsh et al., 2016).

NiSP Binomial GoF
R0 L p L ΔAIC=2ΔL p

Pathogens of Ixodes ricinus ticks 1.021 -314.1 0.020 -329.3 30.5 0.476

Barley and cereal yellow dwarf viruses 1.051 -1180.8 0.048 -1261.9 162.2 0.000
Respiratory viruses 1.037 -22619.0 0.036 -21731.9 -1774.2 0.000

Table S3: Fitting the NiSP model. The NiSP model was highly supported over the binomial model
(ΔAIC � 10) in all cases tested but one (respiratory viruses), where the binomial model is highly
supported over the NiSP model. The final column of the table – GoF – corresponds to the goodness-of-
fit test of the NiSP model; values p > 0.05 correspond to lack of evidence for failure to fit the data, and
so the NiSP model is adequate for the data concerning pathogens of Ixodes ricinus ticks (Moutailler
et al., 2016).

Figure S1: Comparing the best-fitting NiSP model with a binomial model (i.e. statistical independence)
for: (A) Pathogens of Ixodes ricinus ticks (Moutailler et al., 2016); (B) Barley and cereal yellow dwarf
viruses (Seabloom et al., 2009b); (C) Human respiratory viruses (Nickbakhsh et al., 2016). Insets to
each panel show a “zoomed-in” section of the graph corresponding to high multiplicities of pathogen
co-infection. Asterisks indicate predicted counts smaller than 0.1. For the data shown in (A), there is
no evidence that the NiSP model does not fit the data, and so our test indicates the pathogens do not
interact. For the data shown in (B), although the NiSP model is a better fit to the data than the binomial
model, there is evidence of lack of goodness-of-fit, and so our test indicates these pathogens interact
(or are epidemiologically different). For the data shown in (C), although the binomial model is a better
fit to the data than the NiSP model, there is evidence of lack of goodness-of-fit, and again it can be
concluded that these pathogens interact (or are epidemiologically different).
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S2.2 Fitting the NiDP model308

S2.2.1 Sources of data309

Howard et al. (2001) report results of analyzing 73 data sets concerning multiple310

Plasmodium spp. causing malaria (rows 68–140 of Table 1 in that paper). We re-311

analyzed the subset of these studies satisfying the additional constraints that they312

considered:313

• interactions between three Plasmodium species (omits 16 rows corresponding314

to only two pathogens, viz. 73, 81, 86, 89-92, 104, 105, 107, 110, 120, 126,315

134 and 139-140, as well as 2 rows corresponding to four pathogens, viz. 125316

and 128);317

• disease status of at least 100 individuals (omits 8 rows, viz. 72, 85, 87, 115,318

129, 135, 136 and 138).319

These constraints were imposed simply to reduce the number of studies, rather than320

because our methodology could not handle such data. We also omitted six of the321

remaining data sets – rows 83, 93, 94, 121, 122 and 131 – since we found it impos-322

sible to unambiguously reconcile the data as reported in the publication to counts323

of different types of infection. Most often this was because the data were reported324

as percentages rounded to a small number of significant figures, which did not un-325

ambiguously specify the raw number of individuals infected by each combination of326

pathogens. This left a final total of 41 data sets taken from 35 distinct papers: 24327

data sets considering the three-way interaction between P. falciparum, P. malariae328

and P. vivax (denoted FMV in Howard et al. (2001)) and 17 data sets considering the329

three-way interaction between P. falciparum, P. malariae and P. ovale (denoted FMO330

in Howard et al. (2001)). The data sets are re-tabulated for convenience in Table S4.331

S2.2.2 Recreating the analyses of Howard et al. (2001)332

We did not explicitly recreate the analysis based on log-linear models as presented333

by Howard et al. (2001), since no information was given in the paper on how to334

handle sampling zeros (i.e. cases in which within an individual data set the count335

of individual infected by a particular combinations of pathogens is zero). Given the336
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Observed counts, O
N ∅ F M V FM FX MX FMX

74 Léger et al. (1923) 250 83 111 49 1 6 0 0 0
75 Bédier et al. (1924) 135 45 58 27 3 2 0 0 0
76 Knowles and White (1930) 809 642 149 12 1 2 2 0 1

82 (!) Dorolle (1927) 652 232 258 64 54 32 12 0 0
84 Phillips (1923)∗ 645 409 112 10 109 0 4 1 0
88 Lalor (1913)∗ 207 94 47 21 40 0 3 2 0

106 Wilson (1936) 3393 1784 1103 87 19 244 63 2 91
108 (!) Borel and Levanan (1927) 1249 885 227 23 92 3 16 3 0
109 (!) Borel and Levanan (1927) 1022 947 19 12 39 0 4 1 0

111 Banerjea (1930)∗ 1519 578 225 7 668 0 41 0 0
112 Khambata (1913)∗ 112 72 26 8 4 0 1 1 0
113 Ramsay (1928)∗ 1514 1073 268 9 160 0 3 1 0
114 Bailey (1928)∗ 1068 547 396 67 35 18 5 0 0
116 Masterman (1913) 700 238 317 75 55 4 9 2 0
117 Angus (1919)∗ 40168 28936 2614 9 8483 0 126 0 0
118 Gordon et al. (1991) 268 208 14 6 30 1 6 3 0
119 Lalor (1912)∗ 151 52 38 13 33 4 6 4 1
123 Carter (1927)∗ 11260 9510 170 568 986 2 4 19 1
124 Schnuffer (1938) 3266 2148 593 234 196 42 30 15 8
127 Banchongaksorn et al. (1996) 913 487 221 5 179 0 21 0 0
130 Treadgold (1918) 540 396 3 1 136 0 4 0 0
132 Collins et al. (1988) 614 407 151 11 19 3 21 2 0
133 Mizushima et al. (1994) 506 231 144 0 81 1 39 4 6
137 United Fruit Co. (1925)∗ 2742 1973 435 14 299 0 21 0 0
68 Campbell et al. (1987) 147 77 56 0 1 11 1 0 1
69 Campbell et al. (1987) 142 26 68 3 0 40 4 0 1
70 Campbell et al. (1987) 196 41 112 2 0 25 10 0 6
71 May et al. (1997) 230 40 123 1 0 32 7 0 27
77 Alifrangis et al. (1999) 126 5 72 2 0 31 13 0 3
78 Hellgren et al. (1994) 163 32 105 5 0 20 1 0 0
79 Thomson et al. (1994) 1465 770 641 17 2 30 5 0 0
80 Gbary et al. (1988) 735 444 234 22 7 20 7 1 0
95 Deloron et al. (1989) 1465 770 641 17 2 30 5 0 0
96 Deloron et al. (1989) 245 130 95 0 0 16 4 0 0
97 Deloron et al. (1989) 253 126 109 4 0 13 0 0 1
98 Deloron et al. (1989) 225 136 82 0 0 3 4 0 0
99 May et al. (1997) 159 97 56 0 1 3 2 0 0

100 Trape et al. (1992) 2465 2372 85 6 0 1 1 0 0
101 Trape et al. (1994) 8539 2208 4254 133 50 1435 227 3 229
102 Molineaux et al. (1980) 7026 2658 3295 143 36 742 108 6 38
103 Molineaux et al. (1980) 6526 3474 2015 183 15 757 42 2 38

Table S4: Data sets as extracted from the source references for studies focusing on interactions be-
tween P. falciparum, P. malariae and either P. vivax (i.e. FMV) or P. ovale (i.e. FMO). The asterisks
indicate that the corresponding data sets were extracted from (Knowles and White, 1930). The num-
ber in the left-most column shows the number of the relevant row in Table 1 of Howard et al. (2001).
The rows with (!) correspond to studies for which the total number of individuals sampled as reported
by Howard et al. (2001) do not match what we found on interrogating the original paper; in all cases,
we used the corrected values as shown in the table. Note that many of the references are to Knowles
and White (1930); this corresponds to cases for which the data from the originally-listed source were
extracted from the large compendium collated in 1930 by Knowles & White. The notation X (in FX, MX,
or FMX) corresponds either to V (i.e. P. vivax, upper part of the table, data sets 74–137) or to O (i.e. P.
ovale, lower part of the table, data sets 68–103).
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small size of many of the studies, this was quite common, affecting 34 of these337

41 data sets. The statistical difficulty is that at least one of the models involved in338

the model selection procedure cannot then reliably be estimated, since an estimated339

coefficient in a Poisson regression model tends to negative infinity. In turn this means340

that model selection based on log-likelihood ratio tests breaks down (Fienberg and341

Rinaldo, 2012). How such sampling zeros affect log-linear models with sparse data342

sets is an active area of current research in the methodological statistical literature,343

e.g. (Fienberg and Rinaldo, 2012). It is unclear from what is presented in Howard344

et al. (2001) precisely how such cases were handled; correspondence with those345

authors we could contact also did not reveal what precisely had been done in the346

original analysis (personal communication Prof. Christl Donnelly). We note that,347

since our methods are based on multinomial sampling rather than Poisson counts,348

statistical difficulties surrounding sampling zeros simply do not affect our analyses.349

S2.3 Fitting the models with specific clearance350

S2.3.1 Fitting the models351

All models were fitted after transformation to allow only biologically-meaningful val-352

ues of parameters, by estimating log (γ̂) to ensure only positive values of γ̂ are353

permissible, and using these to estimate the infection rates after transformation,354

with log
�

β̂/(γ̂ + 1) − 1
�

(which ensures R0, > 1).355

However, we noticed that this estimation method may return extremely high val-356

ues of γ̂ and β̂ in the NiSP model. This is because we scaled β and γ relative to μ,357

while the optimal value of μ may be zero. The specific case μ = 0 corresponds to358

statistical independence (see Sections S1.4.3 and S1.4.5). When the data look sta-359

tistically independent, the estimation algorithm may diverge. For this reason, we did360

not explore parameter estimation in the NiDP model with γ > 0 for the malaria data,361

as its treatment would have required specific considerations that felt beyond the362

scope of this paper, since our purpose is not to draw conclusions about interaction363

among malaria species.364
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S2.3.2 Results of fitting the two-parameter NiSP model365

Results of model fitting are summarized in Table S5.366

NiSP (β only) NiSP (β & γ) Model selection Binomial GoF
β L β γ L χ2 p p L ΔAIC p

Human papillomavirus 1.032 -6580.9 1.178 0.142 -6573.1 7.794 0.005 0.031 -6868.8 589.3 0.986
Pathogens of I. ricinus ticks 1.021 -314.1 1.161 0.137 -313.7 0.360 0.549 0.020 -329.3 30.5 0.476
Anther smut (M. violaceum) 1.009 -611.4 1.009 0.000 -611.4 0.000 1.000 0.009 -690.8 158.8 0.000
Barley yellow dwarf viruses 1.051 -1180.8 1.051 0.000 -1180.8 0.000 1.000 0.048 -1261.9 162.2 0.000
Borrelia afzelii on bank voles 1.044 -652.1 1.044 0.000 -652.1 0.000 1.000 0.040 -799.0 293.8 0.000
Malaria (Plasmodium vivax) 1.021 -3169.2 1.162 0.138 -3164.6 4.588 0.032 0.021 -3467.3 603.5 0.000
Respiratory viruses 1.037 -22619.0 4.7 × 109 4.6 × 109 -21731.9 887.057 0.000 0.036 -21731.9 -2.0 0.000

Table S5: Fitting the NiSP model to data sets corresponding to human papillomavirus (Chaturvedi
et al., 2011), pathogens of I. ricinus ticks (Moutailler et al., 2016), anther smut (M. violaceum) (López-
Villavicencio et al., 2007), barley yellow dwarf viruses (Seabloom et al., 2009b), Borrelia afzelii on bank
voles (Andersson et al., 2013), malaria (Plasmodium vivax) (Koepfli et al., 2011), respiratory viruses
(Nickbakhsh et al., 2016). Parameters for the best-fitting variant of the NiSP model for each pathogen
species, strain or clone are highlighted in bold; the two-parameter model is supported in cases for
which p < 0.05 in the Model Selection part of the table (including human papillomavirus and malaria
(Plasmodium vivax)). The NiSP model was highly supported over the binomial model (ΔAIC � 10) in
all cases tested but one (Respiratory viruses). The final column of the table – GoF – corresponds to
the goodness-of-fit test of the best-fitting model; values p > 0.05 correspond to lack of evidence for
failure to fit the data, and so the NiSP model is adequate for the data concerning human papillomavirus
and pathogens of Ixodes ricinus ticks. These results are qualitatively identical to those for the model
without specific-clearance as presented in the main text. Note that in the NiSP model, β and γ are
scaled relative to μ. This is why β and γ of NiDP reach extremely high values for respiratory viruses.
Parameter estimation tends to μ = 0, which actually corresponds to the binomial model, which has one
fewer parameter (see Section S1.4.5 and Fig. S2). Hence ΔAIC = −2 for Respiratory viruses, since the
NiSP model requires one additional parameter compared to the binomial model.

Figure S2: Comparing the best-fitting two-parameter NiSP model with a binomial model (i.e. statistical
independence) for human respiratory viruses (Nickbakhsh et al., 2016). Insets to each panel show a
“zoomed-in” section of the graph corresponding to high multiplicities of pathogen co-infection. This
figure shows that the best-fitting NiSP model converges to the binomial model in this case (which is a
special case of NiSP for μ = 0, see section S1.4.5).
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Models were fitted by maximum likelihood, with model selection done via χ2 tests367

on the likelihood-ratio (Bolker, 2008) or the Akaike Information Criterion (Sakamoto368

et al., 1986), depending on whether or not models were nested.369

S2.3.3 Fitting the NiDP model with specific clearance370

Estimated parameters occasionally diverge in the more complex version of the NiSP371

model with specific clearance, and very large numeric values of best-fitting epidemi-372

ological parameters can be obtained (but a reasonable value of R0). Exploratory373

investigations suggested that fitting the NiDP model with specific clearance to the374

malaria data was affected by this type of identifiability issue, and so would therefore375

have required a specific treatment. Since our purpose here was not to draw conclu-376

sions about interactions among malaria species, but instead to show the utility of377

our overall approach, we did not pursue this analysis further.378
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