Supporting information for "Co-infections by non-interacting pathogens are not independent \& require new tests of interaction"

Frédéric M. Hamelin, Linda J.S. Allen, Vrushali A. Bokil, Louis J. Gross, Frank M. Hilker, Michael J. Jeger, Carrie A. Manore, Alison G. Power, Megan A. Rúa, Nik J. Cunniffe

Organisation of this document

Supplementary Information S1 ("Mathematical supplements") contains five subsections:

- S1.1. "Formal proof that the proportion of co-infected hosts is larger than the product of the prevalences".
- A demonstration that $J_{1,2}$ from Eq. (3) in the Main Text is larger than $P=I_{1} I_{2}$ as can be derived from Eq. (1) in the Main Text for all parameters (for sufficiently large t).
- S1.2. "Covariance matrix at the endemic equilibrium".
- A derivation of the covariance matrix for stochastic fluctuations around the endemic equilibrium in the two-pathogen model (leads to Eq. (27) in the main text).
- S1.3. "Comments on the model of May and Nowak (1995)".
- Details how the often-cited co-infection model of May and Nowak (1995) is not correct.
- S1.4. "Extending the models to accommodate specific clearance".
- Shows how the methods developed in the main text can be extended to accommodate an additional epidemiological parameter: specific clearance
(i.e. each pathogen being cleared independently of any other, possibly at a pathogen-specific rate).
- S1.5. "The prevalence of co-infections can be equal to the product of the prevalences of interacting pathogens".
- Shows how, in the model described in Supplementary Information, Section S1.4, if there is no host renewal (removal or unspecific clearance) but only specific clearance, then the prevalence of co-infections can be equal to the product of the prevalences even when pathogens interact. This complements our main point (non-interaction does not imply independence) by showing that it holds the other way around as well (independence does not imply non-interaction).

Supplementary Information S2 ("Sources of data and side results of model fitting") contains three subsections:

- S2.1. "Additional fitting of the NiSP model".
- Results of fitting the NiSP model to three additional data sets not considered in the main text. These studies do not concern a single pathogen species, and so the pragmatic assumption of epidemiological interchangeability between pathogens is less justifiable.
- S2.2. "Fitting the NiDP model".
- Re-tabulates the data sets used by Howard et al. (2001), and describes in full how our criteria to allow a study to be considered led to us fixing on 41 particular studies to analyse.
- S2.3. "Fitting the models with specific clearance".
- Shows that fitting the NiSP model with specific clearance confirms results found from a model that does not include specific clearance as an additional parameter.

S1 Mathematical supplements

S1.1 Formal proof that the proportion of co-infected hosts is larger than the product of the prevalences

Let $P=I_{1} I_{2}$ and introduce the new variable Z, the extent to which the product of prevalences over-estimates the proportion of co-infected hosts,

$$
\begin{equation*}
Z=P-J_{1,2}=I_{1} I_{2}-J_{1,2} . \tag{S1}
\end{equation*}
$$

Differentiating Z and simplifying using Eqs. (2) and (3) in the main text leads to

$$
\begin{align*}
\dot{Z} & =I_{1} \dot{I}_{2}+I_{2} \dot{I}_{1}-\dot{j}_{1,2} \\
\dot{Z} & =-\left(\beta_{1} I_{1}+\beta_{2} I_{2}+\mu\right) Z-\mu P \tag{S2}
\end{align*}
$$

Of interest is the sign of $Z(t)$ as a function of its initial conditions. We assume $R_{0, i}>1$ and $0<I_{i}(0) \leq \bar{I}_{i}$ for $i=1$, 2 . The differential equation for I_{i} is logistic and therefore, $I_{i}(t)$ converges monotonically to $\bar{I}_{i}, i=1,2$. There exists $\epsilon>0$ such that $P(t)>\tilde{P}=\bar{I}_{1} \bar{I}_{2}-\epsilon>0$ for $t \geq 0$. Suppose $Z(0)>0$. The term $-\mu P(t)<-\mu \tilde{P}<0$ ensures that $Z(t)$ decreases to zero in finite time. Let t_{1} be the first time that $Z\left(t_{1}\right)=$ 0 . Then $\dot{Z}\left(t_{1}\right)<0$, so $Z(t)$ eventually becomes negative. To show that $Z(t)$ remains negative, let $Z(t)<0$ for $t_{1}<t<t_{2}$ and let t_{2} be the first time that $Z\left(t_{2}\right)=0$, then $\dot{Z}\left(t_{2}\right) \geq 0$, a contradiction to the fact that $\dot{Z}\left(t_{2}\right) \leq-\mu \tilde{P}$. Hence $Z(t)$ remains negative for $t>t_{1}$. In a similar manner it can be shown that if $Z(0)=0$ or $Z(0)<0$, then $Z(t)<0$ for $t>0$. In particular, due to the convergence of $I_{i}(t)$ to \bar{I}_{i} for $i=1,2, Z(t)$ converges to the negative limit: $-\mu \bar{I}_{1} \bar{I}_{2} /\left(\beta_{1} \bar{I}_{1}+\beta_{2} \bar{I}_{2}+\mu\right)$.

In summary, the fate of Z is to become negative in finite time and to remain negative. This is due to $\mu>0$. Otherwise for $\mu=0, Z$ would not change sign and would asymptotically converge to zero.

S1.2 Covariance matrix at the endemic equilibrium

In the stochastic version of the model, the fluctuations $\left(\Delta I_{1}, \Delta I_{2}\right)=\left(I_{1}-\bar{I}_{1}, I_{2}-\bar{I}_{2}\right)$ about the endemic equilibrium $\left(\bar{I}_{1}, \bar{I}_{2}\right)=N\left(1-1 / R_{0,1}, 1-1 / R_{0,2}\right)$ can be approximated
by the solution of the linear multivariate Fokker-Planck equation,

$$
\begin{equation*}
\frac{\partial p(x, t)}{\partial t}=-\sum_{i, j=1}^{2} A_{i j} \frac{\partial\left(x_{j} p\right)}{\partial x_{i}}+\frac{1}{2} \sum_{i, j=1}^{2} B_{i j} \frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}, \tag{S3}
\end{equation*}
$$

where the vector $\chi=\left(x_{1}, \chi_{2}\right)$ corresponds to $\left(\Delta I_{1}, \Delta I_{2}\right)$. The steady-state solution of this equation is a Gaussian distribution with mean zero and covariance matrix \bar{C}. We will use this multivariate normal distribution to approximate the joint probability density function of the random variables $\left(I_{1}, I_{2}\right)$ near the endemic equilibrium. Matrix $A=\left[A_{i j}\right]$ is the rate of change toward zero and matrix $B=\left[B_{i j}\right]$ is the covariance of this process (O'Dea et al., 2018; Van Kampen, 1992). In particular, matrix A is the linearization of the differential equations for (I_{1}, I_{2}) (total population size, not proportions) about the endemic equilibrium,

$$
A=\left[\begin{array}{cc}
\beta_{1}-2 \frac{\beta_{1}}{N} \bar{I}_{1}-\mu & 0 \tag{S4}\\
0 & \beta_{2}-2 \frac{\beta_{2}}{N} \bar{I}_{1}-\mu
\end{array}\right]=\left[\begin{array}{cc}
-\beta_{1}+\mu & 0 \\
0 & -\beta_{2}+\mu
\end{array}\right] .
$$

We use the fact that $I_{1}=J_{1}+J_{1,2}$ and $I_{2}=J_{2}+J_{1,2}$ and sum the appropriate elements in the covariance matrix Σ (Eq. (24) in the main text) to compute the covariance matrix B,
$B=\left[\begin{array}{cc}\bar{F}_{1}\left(\overline{\bar{J}} \varnothing+\bar{J}_{2}\right)+\mu \bar{I}_{1} & \mu \bar{J}_{12} \\ \mu \bar{J}_{12} & \bar{F}_{2}\left(\bar{J} \varnothing+\bar{J}_{1}\right)+\mu \bar{I}_{2}\end{array}\right]=\left[\begin{array}{cc}2 N \mu\left(1-\frac{1}{R_{0,1}}\right) & \mu \bar{J}_{12} \\ \mu \bar{J}_{12} & 2 N \mu\left(1-\frac{1}{R_{0,2}}\right)\end{array}\right]($
The expressions in matrices A and B are evaluated at the endemic equilibrium. In particular, $\bar{F}_{i}=\beta_{i} \bar{I}_{i} / N=\beta_{i}\left(1-1 / R_{0, i}\right), i=1,2$, and the equilibrium \bar{J}_{12} is found by multiplying Eq. (9) in the main text by N :

$$
\begin{equation*}
\bar{J}_{12}=\left(\frac{N\left(\beta_{1}+\beta_{2}\right)}{\beta_{1}+\beta_{2}-\mu}\right)\left(1-\frac{1}{R_{0,1}}\right)\left(1-\frac{1}{R_{0,2}}\right) . \tag{S6}
\end{equation*}
$$

Van Kampen (1992) showed that the covariance matrix C of the Fokker-Planck equation is the solution of the differential equation: $\dot{C}=A C+C A^{T}+B$. The steadystate covariance matrix is the solution of

$$
\begin{equation*}
A C+C A^{T}=-B \tag{S7}
\end{equation*}
$$

To compute the steady-state covariance matrix for the proportion of the population that is infected, divide the solution of Eq. (S7) by N^{2}. That is, \bar{C} equals

$$
\bar{C}=\frac{1}{N^{2}}\left[\begin{array}{cc}
\frac{N \mu\left(1-\frac{1}{R_{0,1}}\right)}{\beta_{1}-\mu} & \frac{\mu \bar{J}_{1,2}}{\left(\beta_{1}-\mu\right)+\left(\beta_{2}-\mu\right)} \\
\frac{\mu \bar{J}_{1,2}}{\left(\beta_{1}-\mu\right)+\left(\beta_{2}-\mu\right)} & \frac{N \mu\left(1-\frac{1}{R_{0,2}}\right)}{\beta_{2}-\mu}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{N R_{0,1}} & \frac{\mu \bar{J}_{1,2}}{N^{2}\left[\left(\beta_{1}-\mu\right)+\left(\beta_{2}-\mu\right)\right]} \tag{S8}\\
\frac{\mu \overline{1}_{1,2}}{N^{2}\left[\left(\beta_{1}-\mu\right)+\left(\beta_{2}-\mu\right)\right]} & \frac{1}{N R_{0,2}}
\end{array}\right],
$$

where \bar{J}_{12} is defined in Eq. (S6). The steady-state covariance matrix in Eq. (S8) is used to construct confidence ellipses about the endemic equilibrium ($\bar{I}_{1} / N, \bar{I}_{2} / N$) = ($1-1 / R_{0,1}, 1-1 / R_{0,2}$) (as shown in Fig. 2C in the main text).

Note that the covariance between the prevalences of pathogen 1 and pathogen 2 (the off-diagonal elements in Eq. (S8)) is
$\bar{C}_{i j}=\operatorname{cov}\left(\frac{I_{1}}{N}, \frac{I_{2}}{N}\right)=\frac{\mu \bar{J}_{1,2}}{N^{2}\left[\left(\beta_{1}-\mu\right)+\left(\beta_{2}-\mu\right)\right]}=\frac{\left(\beta_{1}+\beta_{2}\right)\left(\beta_{1}-\mu\right)\left(\beta_{2}-\mu\right) \mu}{N \beta_{1} \beta_{2}\left(\beta_{1}+\beta_{2}-\mu\right)\left(\beta_{1}-\mu+\beta_{2}-\mu\right)} \geq 0$,
(for $i \neq j$) with equality if and only if $\mu=0$ (assuming $\beta_{i}>\mu, i=1,2$).

S1.3 Comments on the model of May and Nowak (1995)

May and Nowak (1995) introduced a co-infection model very similar to that presented in the main text, taking

$$
\begin{equation*}
\dot{I}_{i}=I_{i}\left[\beta_{i}\left(1-I_{i}\right)-v-\bar{\alpha}_{i}\right], \quad \text { with } i=1, \ldots, n, \tag{S10}
\end{equation*}
$$

for n pathogens. The natural mortality rate of the host is ν. The only difference from our model is pathogen-specific mortality. In a single infection, pathogen i induces an additional removal rate to the host α_{i} : this is the virulence of pathogen i. The induced removal rate of co-infected hosts is assumed to be equal to the maximum virulence of the co-infecting pathogens. The pathogens are ranked such that for all $i, \alpha_{i}<\alpha_{i+1}$. Pathogen 1 is the least virulent pathogen and n is the most virulent pathogen. The term $\bar{\alpha}_{i}$ denotes the average induced removal rate of hosts infected by pathogen i.

The authors state that the probability that a host is not infected with a pathogen
more virulent than i is defined as:

$$
\begin{equation*}
p_{i}=\prod_{j=i+1}^{n}\left(1-I_{j}\right) . \tag{S11}
\end{equation*}
$$

It is important to notice that an underlying assumption of this definition is that the dynamics of the pathogens are independent. But, as we show below, they are not, since the most virulent pathogens influence the dynamics of least virulent pathogens. The coupling term $\bar{\alpha}_{i}$ is defined as:

$$
\begin{equation*}
\bar{\alpha}_{i}=\alpha_{i} p_{i}+\sum_{j=i+1}^{n} \alpha_{j} I_{j} p_{j} . \tag{S12}
\end{equation*}
$$

The term $I_{j} p_{j}$ represents the probability to be infected by j and uninfected by more virulent pathogens than j. Again, this definition implicitly assumes that the dynamics of the pathogens are independent. This seems to contradict the fact that the dynamics are coupled through virulence.

In this section, we check the model given in Eq. (S10) for $n=2$ pathogens and show that the above definitions do not hold up to mathematical analysis. We consider the same 2-pathogen model as Eq. (3) of the main text, except that we include virulence parameters $\alpha_{2}>\alpha_{1}$. Model (S10) is to be compared with:

$$
\begin{align*}
j_{1} & =F_{1} \jmath_{\varnothing}-\left(F_{2}+v+\alpha_{1}\right) \jmath_{1}, \\
j_{2} & =F_{2} \jmath_{\varnothing}-\left(F_{1}+v+\alpha_{2}\right) \jmath_{2}, \tag{S13}\\
j_{1,2} & =F_{2} ل_{1}+F_{1} J_{2}-\left(v+\max \left(\alpha_{1}, \alpha_{2}\right)\right) \jmath_{1,2}, \\
& =F_{2} ل_{1}+F_{1} J_{2}-\left(v+\alpha_{2}\right) \jmath_{1,2},
\end{align*}
$$

where $J_{\varnothing}=1-J_{1}-J_{2}-J_{1,2}$.
Since model (S10) and model (S13) share the same biological assumptions and the same mathematical formalism, they should be equivalent (for $n=2$ pathogens). Let $I_{1}=J_{1}+J_{1,2}$ and $I_{2}=J_{2}+J_{1,2}$. Model (S13) is equivalent to

$$
\begin{align*}
\dot{I}_{1} & =\beta_{1} I_{1}\left(1-I_{1}\right)-\left(\nu+\alpha_{1}^{\star}\right) I_{1}, \\
\dot{I}_{2} & =\beta_{2} I_{2}\left(1-I_{2}\right)-\left(\nu+\alpha_{2}\right) I_{2}, \tag{S14}\\
\dot{j}_{1,2} & =\beta_{1} I_{1}\left(I_{2}-\jmath_{1,2}\right)+\beta_{2} I_{2}\left(I_{1}-J_{1,2}\right)-\left(\nu+\alpha_{2}\right) J_{1,2},
\end{align*}
$$

where

$$
\alpha_{1}^{\star}=\alpha_{1}\left(1-\frac{J_{1,2}}{I_{1}}\right)+\alpha_{2} \frac{J_{1,2}}{I_{1}} .
$$

Eq. (S11) yields $p_{1}=1-I_{2}$ and $p_{2}=1$. Eq. (S12) yields

$$
\bar{\alpha}_{1}=\alpha_{1}\left(1-I_{2}\right)+\alpha_{2} I_{2} .
$$

For model (S10) and model (S13) to coincide, one must have $\alpha_{1}^{\star}=\bar{\alpha}_{1}$, i.e. $J_{1,2}=$ $I_{1} I_{2}$. Proceeding as in Supplementary Information, Section S1.1, let $P=I_{1} I_{2}$ and $Z=P-J_{1,2}$. We have

$$
\dot{Z}=-\left(\beta_{1} I_{1}+\beta_{2} I_{2}+\nu+\alpha_{2}\right) Z-\left(\nu+\alpha_{1}^{\star}\right) P .
$$

Assuming $P(t)>\tilde{P}>0$ for $t>0$, it can be shown that $Z(t)$ becomes negative and stays negative, implying for some time t_{0} and $t>t_{0}, J_{1,2}(t)>P(t)=I_{1}(t) I_{2}(t)$. Therefore, $\alpha_{1}^{\star} \neq \bar{\alpha}_{1}$. Hence, model (S10) and model (S13) are not equivalent, as they should be, if model (S10) is correct.

S1.4 Extending the models to accommodate specific clearance

S1.4.1 Two-pathogen model

Introducing a pathogen-specific clearance rate γ_{i}, Eq. (1) of the main text is replaced by

$$
\begin{equation*}
\dot{I}_{i}=\beta_{i} I_{i}\left(1-I_{i}\right)-\left(\gamma_{i}+\mu\right) I_{i} \tag{S15}
\end{equation*}
$$

and Eq. (3) by

$$
\begin{align*}
j_{1} & =F_{1} \jmath_{\varnothing}-\left(F_{2}+\gamma_{1}+\mu\right) J_{1}+\gamma_{2} \jmath_{1,2}, \\
j_{2} & =F_{2} \jmath_{\varnothing}-\left(F_{1}+\gamma_{2}+\mu\right) J_{2}+\gamma_{1} J_{1,2}, \tag{S16}\\
j_{1,2} & =F_{2} ل_{1}+F_{1} J_{2}-\left(\gamma_{1}+\gamma_{2}+\mu\right) J_{1,2},
\end{align*}
$$

where the definition of F_{i} is the same as in Eq. (2). The parameter μ (host renewal) is unchanged: this is the sum of the death rate and the unspecific clearance rate for infected hosts.

After inclusion of pathogen-specific clearance rates, Eq. (7) is replaced by

$$
\begin{equation*}
j_{\varnothing}=\mu\left(\jmath_{1}+\jmath_{2}+\jmath_{1,2}\right)-\left(F_{1}+F_{2}\right) \jmath_{\varnothing}+\gamma_{1} J_{1}+\gamma_{2} ل_{2}=\mu\left(1-\jmath_{\varnothing}\right)-\left(F_{1}+F_{2}\right) \jmath_{\varnothing}+\gamma_{1} J_{1}+\gamma_{2} J_{2} . \tag{S17}
\end{equation*}
$$

and the basic reproduction number is

$$
\begin{equation*}
R_{0, i}=\frac{\beta_{i}}{\gamma_{i}+\mu} . \tag{S18}
\end{equation*}
$$

Also, Eq. (8) is replaced by

$$
\begin{equation*}
j_{1,2}=\beta_{2} I_{2}\left(I_{1}-J_{1,2}\right)+\beta_{1} I_{1}\left(I_{2}-J_{1,2}\right)-\left(\gamma_{1}+\gamma_{2}+\mu\right) J_{1,2} . \tag{S19}
\end{equation*}
$$

Eq. (9) is unchanged as the relative deviation from statistical independence is unaffected by the specific clearance rates γ_{i}.

Finally, Eq. (S2) is replaced by

$$
\begin{equation*}
\dot{Z}=-\left(\beta_{1} I_{1}+\beta_{2} I_{2}+\gamma_{1}+\gamma_{2}+\mu\right) Z-\mu P . \tag{S20}
\end{equation*}
$$

where $Z(t)$ converges to the negative limit: $-\mu \bar{I}_{1} \bar{I}_{2} /\left(\beta_{1} \bar{I}_{1}+\beta_{2} \bar{I}_{2}+\gamma_{1}+\gamma_{2}+\mu\right)$. Again, the fate of Z is to become negative in finite time and to remain negative provided $\mu>0$.

S1.4.2 Analysis of the n-pathogen model

Introducing the notation for the set of hosts infected by one additional pathogen $\Lambda_{i}=\Gamma \cup\{i\}$ (for $i \notin \Gamma$), Eq. (5) in the main text becomes

$$
\begin{equation*}
j_{\Gamma}=\sum_{i \in \Gamma} F_{i} \Omega_{\Omega_{i}}-\left(\sum_{i \notin \Gamma} F_{i}+\sum_{i \in \Gamma} \gamma_{i}+\mu\right) J_{\Gamma}+\sum_{i \notin \Gamma} \gamma_{J} J_{\Lambda_{i}} . \tag{S21}
\end{equation*}
$$

with F_{i} the same as in Eq. (6). The final term in Eq. (S21) tracks the inflow due to hosts with one additional infection that clear a single infection. This final term is omitted in the single case in which Γ corresponds to infection by all pathogens. Also, the updated version of Eq. (10) for j_{\varnothing} with pathogen-specific clearance rates is

$$
\begin{equation*}
j_{\varnothing}=\mu\left(1-J_{\varnothing}\right)-\left(\sum_{i=1}^{n} F_{i}\right) \jmath_{\varnothing}+\sum_{i=1}^{n} \gamma_{J_{i}} . \tag{S22}
\end{equation*}
$$

Equilibrium analysis. The equilibrium equations with pathogen-specific clearance rates are

$$
\begin{equation*}
0=\sum_{i \in \Gamma} \bar{F}_{\bar{J}} \bar{J}_{\Omega_{i}}-\left(\sum_{i \notin \Gamma} \bar{F}_{i}+\sum_{i \in \Gamma} \gamma_{i}+\mu\right) \bar{J}_{\Gamma}+\sum_{i \notin \Gamma} \gamma_{i} \bar{J}_{\Lambda_{i}}, \tag{S23}
\end{equation*}
$$

and

$$
\begin{equation*}
0=\sum_{i \in \Gamma}\left(\beta_{i}-\left(\gamma_{i}+\mu\right)\right) \bar{J}_{\Omega_{i}}-\left(\sum_{i \notin \Gamma}\left(\beta_{i}-\left(\gamma_{i}+\mu\right)\right)+\sum_{i \in \Gamma} \gamma_{i}+\mu\right) \bar{J}_{\Gamma}+\sum_{i \notin \Gamma} \gamma_{i} \bar{J}_{\Lambda_{i}} . \tag{S24}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{F}_{i}=\beta_{i} \bar{I}_{i}=\beta_{i}\left(1-\frac{\gamma_{i}+\mu}{\beta_{i}}\right)=\beta_{i}-\left(\gamma_{i}+\mu\right) . \tag{S25}
\end{equation*}
$$

(replacing Eqs. (11-12-13)).
To fit the models to data, it would be necessary to scale by the rate of host renewal μ in Eq. (S24), leading to

$$
\begin{equation*}
0=\sum_{i \in \Gamma}\left(\hat{\beta}_{i}-\left(\hat{\gamma}_{i}+1\right)\right) \bar{J}_{\Omega_{i}}-\left(\sum_{i \notin \Gamma}\left(\hat{\beta}_{i}-\left(\hat{\gamma}_{i}+1\right)\right)+\sum_{i \in \Gamma} \hat{\gamma}_{i}+1\right) \bar{J}_{\Gamma}+\sum_{i \notin \Gamma} \hat{\gamma}^{\gamma_{\Lambda_{i}}}, \tag{S26}
\end{equation*}
$$

and so consider infection ($\hat{\beta}_{i}=\beta_{i} / \mu$) and specific clearance ($\hat{\gamma}_{i}=\gamma_{i} / \mu$) rates measured relative to the rate of host renewal. With the scaled force of infection at equilibrium

$$
\begin{equation*}
\hat{F}_{i}=\hat{\beta}_{i}-\left(\hat{\gamma}_{i}+1\right), \tag{S27}
\end{equation*}
$$

then Eq. (S26) can be written as

$$
\begin{equation*}
0=\sum_{i \in \Gamma} \hat{F}_{\bar{J}} \bar{J}_{\Omega_{i}}-\left(\sum_{i \notin \Gamma} \hat{F}_{i}+\sum_{i \in \Gamma} \hat{\gamma}_{i}+1\right) \bar{J}_{\Gamma}+\sum_{i \notin \Gamma} \hat{\gamma}_{\bar{J}} \bar{J}_{\Lambda_{i}} . \tag{S28}
\end{equation*}
$$

Given the values of $\hat{\beta}_{i}$ and $\hat{\gamma}_{i}$, the $2^{n}-1$ linear equations corresponding to Eq. (S28) can be solved simultaneously with the corresponding equation for the equilibrium density of uninfected hosts (i.e. the scaled version of Eq. (S22)):

$$
\begin{equation*}
-1=-\left(\sum_{i=1}^{n} \hat{F}_{i}+1\right) \bar{\jmath}_{\varnothing}+\sum_{i=1}^{n} \hat{\gamma} \bar{J}_{i} . \tag{S29}
\end{equation*}
$$

to find all 2^{n} equilibrium prevalences predicted by the n-pathogen model. However, since the recursive solution presented in the main text (Eq. (16)) is no longer available, the system must be solved using (standard) numerical methods for linear
systems of equations.

Worked example. When $n=3$ there is a total of $2^{3}=8$ classes of hosts, uninfected $\left(J_{\varnothing}\right)$, singly-infected $\left(J_{1}, J_{2}\right.$ and J_{3}), doubly-infected $\left(J_{1,2}, J_{1,3}\right.$ and $J_{2,3}$) and triply-infected $\left(U_{1,2,3}\right)$. The equilibrium prevalences can be concatenated into a single vector, given here in lexicographical order

$$
\begin{equation*}
\mathbf{v}=\left[\bar{J}_{\varnothing}, \bar{J}_{1}, \bar{J}_{2}, \bar{J}_{3}, \bar{J}_{1,2}, \bar{J}_{1,3}, \bar{J}_{2,3}, \bar{J}_{1,2,3}\right]^{T} . \tag{S30}
\end{equation*}
$$

If we define \mathbf{b} as

$$
\begin{equation*}
\mathbf{b}=[-1,0,0,0,0,0,0,0]^{\top}, \tag{S31}
\end{equation*}
$$

then Eq. (S28) and (S29) are equivalent to the system of 8 linear equations

$$
\begin{equation*}
H \mathbf{v}=\mathbf{b}, \tag{S32}
\end{equation*}
$$

in which matrix H equals
$\left[\begin{array}{cccccccc}-\left(\hat{F}_{1}+\hat{F}_{2}+\hat{F}_{3}+1\right) & \hat{\gamma}_{1} & \hat{\gamma}_{2} & \hat{\gamma}_{3} & 0 & 0 & 0 & 0 \\ \hat{F}_{1} & -\left(\hat{F}_{2}+\hat{F}_{3}+\hat{\gamma}_{1}+1\right) & 0 & 0 & \hat{\gamma}_{2} & \hat{\gamma}_{3} & 0 & 0 \\ \hat{F}_{2} & 0 & -\left(\hat{F}_{1}+\hat{F}_{3}+\hat{\gamma}_{2}+1\right) & 0 & \hat{\gamma}_{1} & 0 & \hat{\gamma}_{3} & 0 \\ \hat{F}_{3} & 0 & 0 & -\left(\hat{F}_{1}+\hat{F}_{2}+\hat{\gamma}_{3}+1\right) & 0 & \hat{\gamma}_{1} & \hat{\gamma}_{2} & 0 \\ 0 & \hat{F}_{2} & \hat{F}_{1} & 0 & -\left(\hat{F}_{3}+\hat{\gamma}_{1}+\hat{\gamma}_{2}+1\right) & 0 & 0 & \hat{\gamma}_{3} \\ 0 & \hat{F}_{3} & 0 & \hat{F}_{1} & 0 & -\left(\hat{F}_{2}+\hat{\gamma}_{1}+\hat{\gamma}_{3}+1\right) & 0 & \hat{\gamma}_{2} \\ 0 & 0 & \hat{F}_{3} & \hat{F}_{2} & 0 & 0 & -\left(\hat{F}_{1}+\hat{\gamma}_{2}+\hat{\gamma}_{3}+1\right) & \hat{\gamma}_{1} \\ 0 & 0 & 0 & 0 & \hat{F}_{3} & \hat{F}_{2} & \hat{F}_{1} & -\left(\hat{\gamma}_{1}+\hat{\gamma}_{2}+\hat{\gamma}_{3}+1\right)\end{array}\right]$

The equilibrium prevalence of hosts infected by any combination of pathogens can then be obtained by solving Eq. (S32) for \mathbf{v}.

Proof that there is always a unique equilibrium. For the case $n=3$ pathogens, the matrix $-H$ has off-diagonal entries that are non-positive and diagonal entries that are strictly positive. In addition, the absolute value of each diagonal entry is strictly greater than the absolute value of the sum of all of the other entries in that column. These properties of $-H$ make it a non-singular M-matrix. (Properties of an M-matrix are given in (Plemmons, 1977).) As a consequence of these properties, $-\mathrm{H}^{-1}$ exists and is a non-negative matrix from which it follows that the solution \mathbf{v} in Eq. (S32) is
non-negative and can be expressed as

$$
\begin{equation*}
\mathbf{v}=H^{-1} \mathbf{b} . \tag{S33}
\end{equation*}
$$

Generalizing to the case of n pathogens, it can be verified that matrix -H in Eq. (S32) will still have the same properties, making it a non-singular M-matrix and therefore, the equilibrium \mathbf{v} is the unique non-negative solution given by Eq. (S33).

S1.4.3 Relationship between the NiDP and multinomial models

In this subsection, we show that the equilibrium prevalences in the NiDP model with $\mu=0$ are equal to the expectations under statistical independence, i.e.,

$$
\begin{equation*}
\bar{J}_{\Gamma}=\prod_{i \in \Gamma} \bar{I}_{i} \prod_{j \notin \Gamma}\left(1-\bar{I}_{j}\right), \tag{S34}
\end{equation*}
$$

where $\bar{I}_{i}=1-\gamma_{i} / \beta_{i}$ for all $i \in\{1,2, \ldots, n\}$. In other words, when there is no infected host renewal (removal or unspecific clearance), the probability to be infected by a set of pathogens Γ follows a multinomial distribution with parameters n (the number of distinct pathogens) and $p_{i}=\bar{I}_{i}$ for all $i \in\{1,2, \ldots, n\}$.

In the specific case $\mu=0$, Eq. (S23) becomes

$$
\begin{equation*}
0=\sum_{i \in \Gamma} \bar{F}_{\bar{J}} \bar{\Omega}_{\Omega_{i}}-\left(\sum_{i \notin \Gamma} \bar{F}_{i}+\sum_{i \in \Gamma} \gamma_{i}\right) \bar{J}_{\Gamma}+\sum_{i \notin \Gamma} \gamma_{i} \bar{J}_{\Lambda_{i}}, \tag{S35}
\end{equation*}
$$

with $\bar{F}_{i}=\beta_{i}-\gamma_{i}$. Eq. (S34) implies

$$
\begin{equation*}
\bar{J}_{\Omega_{i}}=\bar{J}_{\Gamma} \frac{1-\bar{I}_{i}}{\bar{I}_{i}}, \quad \text { and } \quad \bar{J}_{\Lambda_{i}}=\bar{J}_{\Gamma} \frac{\bar{I}_{i}}{1-\bar{I}_{i}} . \tag{S36}
\end{equation*}
$$

Substituting the values in Eq. (S36) into the right side of Eq. (S35),

$$
\sum_{i \in \Gamma}\left(\bar{F}_{i} \frac{1-\bar{I}_{i}}{\bar{I}_{i}}\right)-\left(\sum_{i \notin \Gamma} \bar{F}_{i}+\sum_{i \in \Gamma} \gamma_{i}\right)+\sum_{i \notin \Gamma} \gamma_{i} \frac{\bar{I}_{i}}{1-\bar{I}_{i}}
$$

and simplifying leads to

$$
\sum_{i \in \Gamma}\left(\left(\beta_{i}-\gamma_{i}\right) \frac{\gamma_{i}}{\beta_{i}-\gamma_{i}}\right)-\sum_{i \notin \Gamma}\left(\beta_{i}-\gamma_{i}\right)+\sum_{i \in \Gamma} \gamma_{i}+\sum_{i \notin \Gamma} \gamma_{i} \frac{\beta_{i}-\gamma_{i}}{\gamma_{i}}=0 .
$$

Therefore, the values in Eq. (S34) are equilibrium values.
Similarly, in the specific case $\mu=0$, the equilibrium value for $J_{\varnothing}>0$ in Eq. (S22) satisfies

$$
\begin{equation*}
0=\left(\sum_{i=1}^{n} \bar{F}_{i}\right) \bar{\jmath}_{\varnothing}+\sum_{i=1}^{n} \gamma_{i} \bar{J}_{i} . \tag{S37}
\end{equation*}
$$

Applying Eq. (S36) and dividing by $\bar{\jmath} \varnothing$ in the right side of the preceding equation yields

$$
\begin{aligned}
\left(\sum_{i=1}^{n} \bar{F}_{i}\right)+\sum_{i=1}^{n} \gamma_{i} \frac{\bar{I}_{i}}{1-\bar{I}_{i}} & =\left(\sum_{i=1}^{n}\left(\beta_{i}-\gamma_{i}\right)\right)+\sum_{i=1}^{n} \gamma_{i} \frac{\beta_{i}-\gamma_{i}}{\gamma_{i}}, \\
& =0 .
\end{aligned}
$$

Hence, Eq. (S34) is the equilibrium solution of the NiDP model in the specific case $\mu=0$.

S1.4.4 Relationship between the NiDP and NiSP models

Assuming all pathogens are interchangeable, Eq. (17) of the main text can be replaced by

$$
\begin{equation*}
0=|\Gamma| \hat{F} \bar{\jmath}_{\Omega_{i}}-((n-|\Gamma|) \hat{F}+|\Gamma| \hat{\gamma}+1) \bar{J}_{\Gamma}+(n-|\Gamma|) \hat{\gamma} \bar{\jmath}_{\Lambda_{i}}, \tag{S38}
\end{equation*}
$$

in which

$$
\begin{equation*}
\hat{F}=\hat{\beta}-(\hat{\gamma}+1) . \tag{S39}
\end{equation*}
$$

For $1 \leq k<n$, substituting Eq. (19) into Eq. (S38) leads to

$$
\begin{equation*}
0=k \hat{F} \frac{\bar{M}_{k-1}}{C_{k-1}^{n}}-((n-k) \hat{F}+k \hat{\gamma}+1) \frac{\bar{M}_{k}}{C_{k}^{n}}+(n-k) \hat{\gamma} \frac{\bar{M}_{k+1}}{C_{k+1}^{n}} . \tag{S40}
\end{equation*}
$$

Noting that

$$
\frac{C_{k+1}^{n}}{C_{k-1}^{n}}=\frac{(n-k+1)(n-k)}{(k+1) k} \text { and } \frac{C_{k+1}^{n}}{C_{k}^{n}}=\frac{n-k}{k+1}
$$

it follows that

$$
\begin{equation*}
0=(n-k+1) \hat{F} \bar{M}_{k-1}-((n-k) \hat{F}+k \hat{\gamma}+1) \bar{M}_{k}+(k+1) \hat{\gamma} \bar{M}_{k+1}, \tag{S41}
\end{equation*}
$$

which holds for $1 \leq k<n$ (i.e. there is a total of $n-1$ such equations).

When $k=n$ the analogue of Eq. (S40) is

$$
0=n \hat{F} \frac{\bar{M}_{n-1}}{C_{n-1}^{n}}-(n \hat{\gamma}+1) \frac{\bar{M}_{n}}{C_{n}^{n}},
$$

223 and so, since $C_{n-1}^{n}=n$ and $C_{n}^{n}=1$, it follows that

$$
\begin{equation*}
0=\hat{F} \bar{M}_{n-1}-(n \hat{\gamma}+1) \bar{M}_{n} . \tag{S42}
\end{equation*}
$$

When $k=0$ the analogue of Eqn. (S40) obtained by substituting Eq. (20) into Eq. (S29), is

$$
\begin{equation*}
-(n \hat{F}+1) \frac{\bar{M}_{0}}{C_{0}^{n}}+n \hat{\gamma} \frac{\bar{M}_{1}}{C_{1}^{n}}=-1 \tag{S43}
\end{equation*}
$$

and so, since $C_{1}^{n}=n$ and $C_{0}^{n}=1$, it follows that

$$
\begin{equation*}
-(n \hat{F}+1) \bar{M}_{0}+\hat{\gamma} \bar{M}_{1}=-1 . \tag{S44}
\end{equation*}
$$

Taken together, Eqs. (S41-S42-S44) constitute a system of $n+1$ linear equations that fix the equilibrium prevalences of hosts infected by any number of distinct pathogens in the NiSP model.

Worked example. When $n=3$ there is a total of $n+1=4$ classes of host: uninfected $\left(M_{0}\right)$, singly-infected $\left(M_{1}\right)$, doubly-infected $\left(M_{2}\right)$ and triply-infected $\left(M_{3}\right)$. The equilibrium prevalences can be concatenated into a single vector

$$
\begin{equation*}
\mathbf{v}=\left[\bar{M}_{0}, \bar{M}_{1}, \bar{M}_{2}, \bar{M}_{3}\right]^{T} \tag{S45}
\end{equation*}
$$

If we define \mathbf{b} as

$$
\begin{equation*}
\mathbf{b}=[-1,0,0,0]^{T}, \tag{S46}
\end{equation*}
$$

then Eq. (S41-S42-S44) are equivalent to the system of 4 linear equations

$$
\begin{equation*}
H \mathbf{v}=\mathbf{b} \tag{S47}
\end{equation*}
$$

in which matrix H equals

$$
\left[\begin{array}{cccc}
-(3 F+1) & \hat{\gamma} & 0 & 0 \tag{S48}\\
3 \hat{F} & -(2 \hat{F}+\hat{\gamma}+1) & 2 \hat{\gamma} & 0 \\
0 & 2 \hat{F} & -(\hat{F}+2 \hat{\gamma}+1) & 3 \hat{\gamma} \\
0 & 0 & \hat{F} & -(3 \hat{\gamma}+1)
\end{array}\right]
$$

The equilibrium prevalences of hosts infected by any number of distinct pathogens can then be obtained by solving Eq. (S47).

S1.4.5 Relationship between the NiSP and binomial models

In this subsection, we show that the equilibrium prevalences in the NiSP model with $\mu=0$ are equal to the expectations under statistical independence, i.e.,

$$
\begin{equation*}
\bar{M}_{k}=C_{k}^{n} \bar{I}^{k}(1-\bar{I})^{n-k}, \tag{S49}
\end{equation*}
$$

in which $\bar{I}=1-\gamma / \beta$. In other words, the probability to be infected by k epidemiologicallyinterchangeable pathogens follows a binomial distribution with parameters n (the number of pathogens considered) and $p=\bar{I}$.

In the specific case $\mu=0$, Eq. (S38) becomes

$$
\begin{equation*}
0=|\Gamma| \bar{F} \bar{J}_{\Omega_{i}}-((n-|\Gamma|) \bar{F}+|\Gamma| \gamma) \bar{J}_{\Gamma}+(n-|\Gamma|) \gamma \bar{J}_{\Lambda_{i}}, \tag{S50}
\end{equation*}
$$

in which $\bar{F}=\beta-\gamma$. Eq. (S41) becomes

$$
\begin{equation*}
0=(n-k+1) \bar{F} \bar{M}_{k-1}-((n-k) \bar{F}+k \gamma) \bar{M}_{k}+(k+1) \gamma \bar{M}_{k+1} . \tag{S51}
\end{equation*}
$$

Eq. (S49) implies
$\bar{M}_{k-1}=\frac{C_{k-1}^{n}}{C_{k}^{n}} \frac{1-\bar{I}}{\bar{I}} \bar{M}_{k}=\frac{k}{n-k+1} \frac{1-\bar{I}}{\bar{I}}, \quad$ and $\quad \bar{M}_{k+1}=\frac{C_{k+1}^{n}}{C_{k}^{n}} \frac{\bar{I}}{1-\bar{I}} \bar{M}_{k}=\frac{n-k}{k+1} \frac{\bar{I}}{1-\bar{I}} \bar{M}_{k}$.

Substituting the values in Eq. (S52) into the right side of Eq. (S51)

$$
(n-k+1) \bar{F} \frac{k}{n-k+1} \frac{1-\bar{I}}{\bar{I}}-((n-k) \bar{F}+k \gamma)+(k+1) \gamma \frac{n-k}{k+1} \frac{\bar{I}}{1-\bar{I}}
$$

and simplifying leads to:

$$
\bar{F} k \frac{1-\bar{I}}{\bar{I}}-(n-k) \bar{F}-k \gamma+\gamma(n-k) \frac{\bar{I}}{1-\bar{I}}=k \gamma-(n-k) \bar{F}-k \gamma+(n-k) \bar{F}=0 .
$$

Therefore, the values in Eq. (S49) are equilibrium values.
Similarly, in the specific case $\mu=0$, Eq. (S42) becomes

$$
0=\bar{F} \bar{M}_{n-1}-(n \gamma) \bar{M}_{n},
$$

and substituting the values in Eq. (S52) leads to

$$
\bar{F} n \frac{1-\bar{I}}{\bar{I}}-n \gamma=n \gamma-n \gamma=0 .
$$

Lastly, in the specific case $\mu=0$, Eq. (S44) becomes

$$
0=-(n \bar{F}) \bar{M}_{0}+\gamma \bar{M}_{1},
$$

and substituting the values in Eq. (S52) leads to

$$
-n \bar{F}+\gamma n \frac{\bar{I}}{1-\bar{I}}=-n(\beta-\gamma)+n(\beta-\gamma)=0
$$

Hence, Eq. (S49) is the equilibrium solution of the NiSP model in the specific case $\mu=0$.

S1.4.6 Stochastic models

Continuous-time Markov chain. The continuous-time Markov chain model with pathogen-specific clearance rates has four additional events defined in Table S1.

Event number	Event	Rate	Change(s) to state variable $(\mathrm{s})(\Delta X)$
8	Specific clearance of pathogen 1 from host singly-infected by pathogen 2	$\gamma_{1} J_{1} \Delta t+o(\Delta t)$	$J_{1} \rightarrow J_{1}-1$
9	Specific clearance of pathogen 2 from host singly-infected by pathogen 1	$\gamma_{2} J_{2} \Delta t+o(\Delta t)$	$J_{\varnothing} \rightarrow J_{\varnothing}+1$
10	Specific clearance of pathogen 1 from co-infected host	$J_{2} \rightarrow J_{2}-1$	
11	Specific clearance of pathogen 2 from co-infected host	$\gamma_{1} J_{1,2} \Delta t+o(\Delta t)$	$J_{\varnothing} \rightarrow J_{\varnothing}+1$
		$\gamma_{2} J_{1,2} \Delta t+o(\Delta t)$	$J_{2} \rightarrow J_{2}+1$
$J_{1,2} \rightarrow J_{1,2}-1$			

Table S1: Additional transitions in the two-pathogen stochastic models.

Stochastic differential equations. Let $\mathrm{d} J=\tilde{f} \mathrm{~d} t$ be the unscaled version of the deterministic model as specified in Eq. (S16-S17). The extension of matrix Σ in Eq. (24) of the main text, to include pathogen specific clearance is

$$
\left[\begin{array}{cccc}
\mu\left(N-J_{\varnothing}\right)+\left(F_{1}+F_{2}\right) J_{\varnothing}+\gamma_{1} J_{1}+\gamma_{2} J_{2} & -F_{1} J_{\varnothing}-\left(\mu+\gamma_{1}\right) J_{1} & -F_{2} J_{\varnothing}-\left(\mu+\gamma_{2}\right) J_{2} & -\mu J_{1,2} \tag{S53}\\
-F_{1} / \varnothing-\left(\mu+\gamma_{1}\right) J_{1} & F_{1} / \varnothing+\left(F_{2}+\gamma_{1}+\mu\right) J_{1}+\gamma_{2} /_{1,2} & 0 & -F_{2} /_{1}-\gamma_{2} J_{1,2} \\
-F_{2} J_{\varnothing}-\left(\mu+\gamma_{2}\right) J_{2} & 0 & F_{2} / \varnothing+\left(F_{1}+\gamma_{2}+\mu\right) J_{2}+\gamma_{1} /_{1,2} & -F_{1} /_{2}-\gamma_{1} /_{1,2} \\
-\mu \mu_{1,2} & -F_{2} J_{1}-\gamma_{2} /_{1,2} & -F_{1} /_{2}-\gamma_{1} J_{1,2} & F_{2} /_{1}+F_{1} /_{2}+\left(\mu+\gamma_{1}+\gamma_{2}\right) J_{1,2}
\end{array}\right]
$$

where $N-J_{\varnothing}=J_{1}+J_{2}+J_{1,2}$ and N is constant.
The new matrix G has dimension 4×11 due to the four additional events in Table S1, (see Eq. (26)),

$$
\begin{aligned}
& \mathrm{d} \|_{\varnothing}=\tilde{f}_{0} \mathrm{~d} t-\sqrt{F_{1} \jmath_{\varnothing}} \mathrm{d} W_{1}-\sqrt{F_{2} \jmath_{\varnothing}} \mathrm{d} W_{2}+\sqrt{\mu J_{1}} \mathrm{~d} W_{5}+\sqrt{\mu \jmath_{2}} \mathrm{~d} W_{6}+\sqrt{\mu J_{1,2}} \mathrm{~d} W_{7} \\
& +\sqrt{\gamma_{1}{ }_{1}} \mathrm{~d} W_{8}+\sqrt{\gamma_{2}{ }_{2}} \mathrm{~d}_{9}, \\
& \mathrm{~d} /_{1}=\tilde{f}_{1} \mathrm{~d} t+\sqrt{F_{1} \varnothing} \mathrm{~d} W_{1}-\sqrt{F_{2} \jmath_{1}} \mathrm{~d} W_{4}-\sqrt{\mu J_{1}} \mathrm{~d} W_{5}-\sqrt{\gamma_{1}{ }_{1}} \mathrm{~d} W_{8}+\sqrt{\gamma_{2} ل_{1,2}} \mathrm{~d} W_{11} \text {,(S54) } \\
& \mathrm{d} /_{2}=\tilde{f}_{2} \mathrm{~d} t+\sqrt{F_{2} \varnothing} \mathrm{~d} W_{2}-\sqrt{F_{1} J_{2}} \mathrm{~d} W_{3}-\sqrt{\mu J_{2}} \mathrm{~d} W_{6}-\sqrt{\gamma_{2} J_{2}} \mathrm{~d} W_{9}+\sqrt{\gamma_{1} J_{1,2}} \mathrm{~d} W_{10}, \\
& \mathrm{~d} \mathrm{~d}_{1,2}=\tilde{f}_{1,2} \mathrm{~d} t+\sqrt{F_{1} /_{2}} \mathrm{~d} W_{3}+\sqrt{F_{2} \jmath_{1}} \mathrm{~d} W_{4}-\sqrt{\mu J_{1,2}} \mathrm{~d} W_{7}-\sqrt{\gamma_{1} /_{1,2}} \mathrm{~d} W_{10}-\sqrt{\gamma_{2} /_{1,2}} \mathrm{~d} W_{11} .
\end{aligned}
$$

Covariance matrix at the endemic equilibrium. The new matrices A and B (Eq. (S4)) are

$$
A=\left[\begin{array}{cc}
-\beta_{1}+\gamma_{1}+\mu & 0 \\
0 & -\beta_{2}+\gamma_{2}+\mu
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{cc}
2 N\left(\gamma_{1}+\mu\right)\left(1-\frac{1}{R_{0,1}}\right) & \mu \bar{J}_{12} \tag{S55}\\
\mu \bar{\jmath}_{12} & 2 N\left(\gamma_{2}+\mu\right)\left(1-\frac{1}{R_{0,2}}\right)
\end{array}\right] .
$$

The new steady-state covariance matrix \bar{C} (Eq. (S8)) is

$$
\bar{C}=\left[\begin{array}{cc}
\frac{1}{N R_{0,1}} & \frac{\mu \bar{\jmath}_{1,2}}{N^{2}\left[\beta_{1}-\left(\gamma_{1}+\mu\right)+\beta_{2}-\left(\gamma_{2}+\mu\right)\right]} \tag{S56}\\
\frac{\mu \bar{J}_{1,2}}{N^{2}\left[\beta_{1}-\left(\gamma_{1}+\mu\right)+\beta_{2}-\left(\gamma_{2}+\mu\right)\right]} & \frac{1}{N R_{0,2}}
\end{array}\right]
$$

where \bar{J}_{12} is defined in Eq. (9) of the main text.
The covariance between pathogen 1 and pathogen 2 prevalences (the off-diagonal
elements in Eq. (S56)) is

$$
\begin{aligned}
\bar{C}_{i j} & =\operatorname{cov}\left(\frac{I_{1}}{N}, \frac{I_{2}}{N}\right)=\frac{\mu \overline{1}_{1,2}}{N^{2}\left[\beta_{1}-\left(\gamma_{1}+\mu\right)+\beta_{2}-\left(\gamma_{2}+\mu\right)\right]} \\
& =\frac{\left(\beta_{1}+\beta_{2}\right)\left(\beta_{1}-\gamma_{1}-\mu\right)\left(\beta_{2}-\gamma_{2}-\mu\right) \mu}{N \beta_{1} \beta_{2}\left(\beta_{1}+\beta_{2}-\mu\right)\left(\beta_{1}-\gamma_{1}-\mu+\beta_{2}-\gamma_{2}-\mu\right)} \geq 0,
\end{aligned}
$$

(for $i \neq j$) with equality if and only if $\mu=0$ again (assuming $\beta_{i}>\gamma_{i}+\mu, i=1,2$); in the latter case, the deviation from statistical independence is zero (Eq. (9)).

In the special case that $\beta_{1}=\beta_{2}=\beta$ and $\gamma_{1}=\gamma_{2}=\gamma$,

$$
\frac{\partial \bar{C}_{i i}}{\partial \gamma}=-\frac{\mu}{\beta N(2 \beta-\mu)} \leq 0,
$$

meaning that the positive covariance decreases as γ increases (unless $\mu=0$), as expected.

S1.5 The prevalence of co-infections can be equal to the product of the prevalences of interacting pathogens

We consider the same two-pathogen model as Eq. (S16), except we let $\mu=0$. However, we include two interaction parameters $\sigma_{1}, \sigma_{2}>-1$, such that the forces of infection of both pathogens are

$$
\begin{equation*}
F_{1}=\beta_{1}\left(U_{1}+\left(1+\sigma_{1}\right) J_{1,2}\right), \quad F_{2}=\beta_{2}\left(U_{2}+\left(1+\sigma_{2}\right) J_{1,2}\right) . \tag{S57}
\end{equation*}
$$

If $\sigma_{i}<0$ (resp. >0), then transmission of pathogen i from a co-infected host is lower (resp. greater) than from singly infected hosts ($i=1,2$). With these assumptions, the model is

$$
\begin{align*}
j_{1} & =F_{1} \jmath_{\varnothing}-\left(F_{2}+\gamma_{1}\right) \jmath_{1}+\gamma_{2} J_{1,2} \\
j_{2} & =F_{2} \jmath_{\varnothing}-\left(F_{1}+\gamma_{2}\right) \jmath_{2}+\gamma_{1} J_{1,2} \tag{S58}\\
j_{1,2} & =F_{2} ل_{1}+F_{1} J_{2}-\left(\gamma_{1}+\gamma_{2}\right) \jmath_{1,2}
\end{align*}
$$

where $J_{\varnothing}=1-J_{1}-J_{2}-J_{1,2}$. If we let $I_{1}=J_{1}+J_{1,2}$ and $I_{2}=J_{2}+J_{1,2}$, then model (S58) is equivalent to

$$
\begin{align*}
\dot{I}_{1} & =\beta_{1}\left(I_{1}+\sigma_{1} J_{1,2}\right)\left(1-I_{1}\right)-\gamma_{1} I_{1} \\
\dot{I}_{2} & =\beta_{2}\left(I_{2}+\sigma_{2} J_{1,2}\right)\left(1-I_{2}\right)-\gamma_{2} I_{2} \tag{S59}\\
\dot{j}_{1,2} & =\beta_{1}\left(I_{1}+\sigma_{1} J_{1,2}\right)\left(I_{2}-J_{1,2}\right)+\beta_{2}\left(I_{2}+\sigma_{2} J_{1,2}\right)\left(I_{1}-J_{1,2}\right)-\left(\gamma_{1}+\gamma_{2}\right) J_{1,2}
\end{align*}
$$

Proceeding as in Supplementary Information, Section S1.1, let $P=I_{1} I_{2}$ and $Z=P-$ $J_{1,2}$. Thus,

$$
\begin{equation*}
\dot{Z}=-\left[\beta_{1}\left(I_{1}+\sigma_{1} J_{1,2}\right)+\beta_{2}\left(I_{2}+\sigma_{2} J_{1,2}\right)+\gamma_{1}+\gamma_{2}\right] Z . \tag{S60}
\end{equation*}
$$

Since the expression inside the brackets is positive, $Z(t) \rightarrow 0$ as $t \rightarrow \infty$. The prevalence of co-infection by interacting pathogens is asymptotically equal to the product of their prevalences. Therefore, $Z=0$ does not imply pathogens do not interact.

S2 Sources of data and side results of model fitting

S2.1 Additional fitting of the NiSP model

Results of fitting the NiSP model to data from four publications for strains of a single pathogen, that may plausibly be assumed epidemiologically-interchangeable (López-Villavicencio et al., 2007; Seabloom et al., 2009b; Chaturvedi et al., 2011; Koepfli et al., 2011) are presented in Fig. 3 of the main text. Results for three further data sets concerning different pathogens of a single host (Andersson et al., 2013; Moutailler et al., 2016; Nickbakhsh et al., 2016) are in Fig. S1.

For convenience the raw data as used in model fitting for these additional datasets are re-tabulated in Table S2. Results of model fitting are summarized in Table S3. Ambiguities needed to be resolved in collating these data from what is reported in the original publications. The data presented in Moutailler et al. (2016) are inconsistent, in as much as it is reported that a total of 267 ticks were tested, but the percentage data in the section "Co-infections and associations between pathogens" of the paper instead indicate 262 is the correct total. We have used the value 262 here. Misreporting of the number of uninfected hosts in reference Seabloom et al. (2009b) has been corrected by reference to the original data (Seabloom et al., 2009a) after
personal communication with the authors.

Pathogens with n distinct	Total											
types, strains or clones	n	0	1	2	3	4	5	6	7	8	9	N
Pathogens of Ixodes ricinus ticks	37	147	66	24	18	5	2	-	-	-	-	262
Barley and cereal yellow dwarf viruses	5	1570	224	69	17	6	4	-	-	-	-	1890
Respiratory viruses	11	17630	8568	964	105	15	2	-	-	-	-	27284

Table S2: Sources of data for fitting the NiSP model in which pathogen species, clones or strains are assumed to be epidemiologically-interchangeable. The data sets include pathogens of I. ricinus ticks (Moutailler et al., 2016), barley yellow dwarf viruses (Seabloom et al., 2009b), respiratory viruses (Nickbakhsh et al., 2016).

	NiSP		Binomial			GoF
	R_{0}	L	p	L	$\Delta \mathrm{AIC}=2 \Delta \mathrm{~L}$	p
Pathogens of Ixodes ricinus ticks	1.021	-314.1	0.020	-329.3	30.5	$\mathbf{0 . 4 7 6}$
Barley and cereal yellow dwarf viruses	1.051	-1180.8	0.048	-1261.9	162.2	0.000
Respiratory viruses	1.037	-22619.0	0.036	-21731.9	-1774.2	0.000

Table S3: Fitting the NiSP model. The NiSP model was highly supported over the binomial model (\triangle AIC $\gg 10$) in all cases tested but one (respiratory viruses), where the binomial model is highly supported over the NiSP model. The final column of the table - GoF - corresponds to the goodness-offit test of the NiSP model; values $p>0.05$ correspond to lack of evidence for failure to fit the data, and so the NiSP model is adequate for the data concerning pathogens of Ixodes ricinus ticks (Moutailler et al., 2016).

Figure S1: Comparing the best-fitting NiSP model with a binomial model (i.e. statistical independence) for: (A) Pathogens of Ixodes ricinus ticks (Moutailler et al., 2016); (B) Barley and cereal yellow dwarf viruses (Seabloom et al., 2009b); (C) Human respiratory viruses (Nickbakhsh et al., 2016). Insets to each panel show a "zoomed-in" section of the graph corresponding to high multiplicities of pathogen co-infection. Asterisks indicate predicted counts smaller than 0.1. For the data shown in (A), there is no evidence that the NiSP model does not fit the data, and so our test indicates the pathogens do not interact. For the data shown in (B), although the NiSP model is a better fit to the data than the binomial model, there is evidence of lack of goodness-of-fit, and so our test indicates these pathogens interact (or are epidemiologically different). For the data shown in (C), although the binomial model is a better fit to the data than the NiSP model, there is evidence of lack of goodness-of-fit, and again it can be concluded that these pathogens interact (or are epidemiologically different).

S2.2 Fitting the NiDP model

S2.2.1 Sources of data

Howard et al. (2001) report results of analyzing 73 data sets concerning multiple Plasmodium spp. causing malaria (rows 68-140 of Table 1 in that paper). We reanalyzed the subset of these studies satisfying the additional constraints that they considered:

- interactions between three Plasmodium species (omits 16 rows corresponding to only two pathogens, viz. 73, 81, 86, 89-92, 104, 105, 107, 110, 120, 126, 134 and 139-140, as well as 2 rows corresponding to four pathogens, viz. 125 and 128);
- disease status of at least 100 individuals (omits 8 rows, viz. 72, 85, 87, 115, $129,135,136$ and 138).

These constraints were imposed simply to reduce the number of studies, rather than because our methodology could not handle such data. We also omitted six of the remaining data sets - rows $83,93,94,121,122$ and 131 - since we found it impossible to unambiguously reconcile the data as reported in the publication to counts of different types of infection. Most often this was because the data were reported as percentages rounded to a small number of significant figures, which did not unambiguously specify the raw number of individuals infected by each combination of pathogens. This left a final total of 41 data sets taken from 35 distinct papers: 24 data sets considering the three-way interaction between P. falciparum, P. malariae and P. vivax (denoted FMV in Howard et al. (2001)) and 17 data sets considering the three-way interaction between P. falciparum, P. malariae and P. ovale (denoted FMO in Howard et al. (2001)). The data sets are re-tabulated for convenience in Table S4.

S2.2.2 Recreating the analyses of Howard et al. (2001)

We did not explicitly recreate the analysis based on log-linear models as presented by Howard et al. (2001), since no information was given in the paper on how to handle sampling zeros (i.e. cases in which within an individual data set the count of individual infected by a particular combinations of pathogens is zero). Given the

			Observed counts, O_{Γ}							
		N	\varnothing	F	M	V	FM	FX	MX	FMX
74	Léger et al. (1923)	250	83	111	49	1	6	0	0	0
75	Bédier et al. (1924)	135	45	58	27	3	2	0	0	0
76	Knowles and White (1930)	809	642	149	12	1	2	2	0	1
82 (!)	Dorolle (1927)	652	232	258	64	54	32	12	0	0
84	Phillips (1923)*	645	409	112	10	109	0	4	1	0
88	Lalor (1913)*	207	94	47	21	40	0	3	2	0
106	Wilson (1936)	3393	1784	1103	87	19	244	63	2	91
108 (!)	Borel and Levanan (1927)	1249	885	227	23	92	3	16	3	0
109 (!)	Borel and Levanan (1927)	1022	947	19	12	39	0	4	1	0
111	Banerjea (1930)*	1519	578	225	7	668	0	41	0	0
112	Khambata (1913)*	112	72	26	8	4	0	1	1	0
113	Ramsay (1928)*	1514	1073	268	9	160	0	3	1	0
114	Bailey (1928)*	1068	547	396	67	35	18	5	0	0
116	Masterman (1913)	700	238	317	75	55	4	9	2	0
117	Angus (1919)*	40168	28936	2614	9	8483	0	126	0	0
118	Gordon et al. (1991)	268	208	14	6	30	1	6	3	0
119	Lalor (1912)*	151	52	38	13	33	4	6	4	1
123	Carter (1927)*	11260	9510	170	568	986	2	4	19	1
124	Schnuffer (1938)	3266	2148	593	234	196	42	30	15	8
127	Banchongaksorn et al. (1996)	913	487	221	5	179	0	21	0	0
130	Treadgold (1918)	540	396	3	1	136	0	4	0	0
132	Collins et al. (1988)	614	407	151	11	19	3	21	2	0
133	Mizushima et al. (1994)	506	231	144	0	81	1	39	4	6
137	United Fruit Co. (1925)*	2742	1973	435	14	299	0	21	0	0
68	Campbell et al. (1987)	147	77	56	0	1	11	1	0	1
69	Campbell et al. (1987)	142	26	68	3	0	40	4	0	1
70	Campbell et al. (1987)	196	41	112	2	0	25	10	0	6
71	May et al. (1997)	230	40	123	1	0	32	7	0	27
77	Alifrangis et al. (1999)	126	5	72	2	0	31	13	0	3
78	Hellgren et al. (1994)	163	32	105	5	0	20	1	0	0
79	Thomson et al. (1994)	1465	770	641	17	2	30	5	0	0
80	Gbary et al. (1988)	735	444	234	22	7	20	7	1	0
95	Deloron et al. (1989)	1465	770	641	17	2	30	5	0	0
96	Deloron et al. (1989)	245	130	95	0	0	16	4	0	0
97	Deloron et al. (1989)	253	126	109	4	0	13	0	0	1
98	Deloron et al. (1989)	225	136	82	0	0	3	4	0	0
99	May et al. (1997)	159	97	56	0	1	3	2	0	0
100	Trape et al. (1992)	2465	2372	85	6	0	1	1	0	0
101	Trape et al. (1994)	8539	2208	4254	133	50	1435	227	3	229
102	Molineaux et al. (1980)	7026	2658	3295	143	36	742	108	6	38
103	Molineaux et al. (1980)	6526	3474	2015	183	15	757	42	2	38

Table S4: Data sets as extracted from the source references for studies focusing on interactions between P. falciparum, P. malariae and either P. vivax (i.e. FMV) or P. ovale (i.e. FMO). The asterisks indicate that the corresponding data sets were extracted from (Knowles and White, 1930). The number in the left-most column shows the number of the relevant row in Table 1 of Howard et al. (2001). The rows with (!) correspond to studies for which the total number of individuals sampled as reported by Howard et al. (2001) do not match what we found on interrogating the original paper; in all cases, we used the corrected values as shown in the table. Note that many of the references are to Knowles and White (1930); this corresponds to cases for which the data from the originally-listed source were extracted from the large compendium collated in 1930 by Knowles \& White. The notation X (in FX, MX, or FMX) corresponds either to V (i.e. P. vivax, upper part of the table, data sets 74-137) or to O (i.e. P. ovale, lower part of the table, data sets 68-103).
small size of many of the studies, this was quite common, affecting 34 of these 41 data sets. The statistical difficulty is that at least one of the models involved in the model selection procedure cannot then reliably be estimated, since an estimated coefficient in a Poisson regression model tends to negative infinity. In turn this means that model selection based on log-likelihood ratio tests breaks down (Fienberg and Rinaldo, 2012). How such sampling zeros affect log-linear models with sparse data sets is an active area of current research in the methodological statistical literature, e.g. (Fienberg and Rinaldo, 2012). It is unclear from what is presented in Howard et al. (2001) precisely how such cases were handled; correspondence with those authors we could contact also did not reveal what precisely had been done in the original analysis (personal communication Prof. Christl Donnelly). We note that, since our methods are based on multinomial sampling rather than Poisson counts, statistical difficulties surrounding sampling zeros simply do not affect our analyses.

S2.3 Fitting the models with specific clearance

S2.3.1 Fitting the models

All models were fitted after transformation to allow only biologically-meaningful values of parameters, by estimating $\log \left(\hat{\gamma}_{i}\right)$ to ensure only positive values of $\hat{\gamma}_{i}$ are permissible, and using these to estimate the infection rates after transformation, with $\log \left(\hat{\beta}_{i} /\left(\hat{\gamma}_{i}+1\right)-1\right)$ (which ensures $R_{0, i}>1$).

However, we noticed that this estimation method may return extremely high values of $\hat{\gamma}$ and $\hat{\beta}$ in the NiSP model. This is because we scaled β and γ relative to μ, while the optimal value of μ may be zero. The specific case $\mu=0$ corresponds to statistical independence (see Sections S1.4.3 and S1.4.5). When the data look statistically independent, the estimation algorithm may diverge. For this reason, we did not explore parameter estimation in the NiDP model with $\gamma>0$ for the malaria data, as its treatment would have required specific considerations that felt beyond the scope of this paper, since our purpose is not to draw conclusions about interaction among malaria species.

S2.3.2 Results of fitting the two-parameter NiSP model

Results of model fitting are summarized in Table S5.

	NiSP (β only)		NiSP (β \& γ)			Model selection		Binomial		$\triangle \mathrm{AIC}$	$\begin{gathered} \mathrm{GoF} \\ p \end{gathered}$
	β	L	β	γ	L	χ^{2}	p	p	L		
Human papillomavirus	1.032	-6580.9	1.178	0.142	-6573.1	7.794	0.005	0.031	-6868.8	589.3	0.986
Pathogens of I. ricinus ticks	1.021	-314.1	1.161	0.137	-313.7	0.360	0.549	0.020	-329.3	30.5	0.476
Anther smut (M. violaceum)	1.009	-611.4	1.009	0.000	-611.4	0.000	1.000	0.009	-690.8	158.8	0.000
Barley yellow dwarf viruses	1.051	-1180.8	1.051	0.000	-1180.8	0.000	1.000	0.048	-1261.9	162.2	0.000
Borrelia afzelii on bank voles	1.044	-652.1	1.044	0.000	-652.1	0.000	1.000	0.040	-799.0	293.8	0.000
Malaria (Plasmodium vivax)	1.021	-3169.2	1.162	0.138	-3164.6	4.588	0.032	0.021	-3467.3	603.5	0.000
Respiratory viruses	1.037	-22619.0	4.7×10^{9}	4.6×10^{9}	-21731.9	887.057	0.000	0.036	-21731.9	-2.0	0.000

Table S5: Fitting the NiSP model to data sets corresponding to human papillomavirus (Chaturvedi et al., 2011), pathogens of I. ricinus ticks (Moutailler et al., 2016), anther smut (M. violaceum) (LópezVillavicencio et al., 2007), barley yellow dwarf viruses (Seabloom et al., 2009b), Borrelia afzelii on bank voles (Andersson et al., 2013), malaria (Plasmodium vivax) (Koepfli et al., 2011), respiratory viruses (Nickbakhsh et al., 2016). Parameters for the best-fitting variant of the NiSP model for each pathogen species, strain or clone are highlighted in bold; the two-parameter model is supported in cases for which $p<0.05$ in the Model Selection part of the table (including human papillomavirus and malaria (Plasmodium vivax)). The NiSP model was highly supported over the binomial model (\triangle AIC $\gg 10$) in all cases tested but one (Respiratory viruses). The final column of the table - GoF - corresponds to the goodness-of-fit test of the best-fitting model; values $p>0.05$ correspond to lack of evidence for failure to fit the data, and so the NiSP model is adequate for the data concerning human papillomavirus and pathogens of Ixodes ricinus ticks. These results are qualitatively identical to those for the model without specific-clearance as presented in the main text. Note that in the NiSP model, β and γ are scaled relative to μ. This is why β and γ of NiDP reach extremely high values for respiratory viruses. Parameter estimation tends to $\mu=0$, which actually corresponds to the binomial model, which has one fewer parameter (see Section S1.4.5 and Fig. S2). Hence $\triangle \mathrm{AIC}=-2$ for Respiratory viruses, since the NiSP model requires one additional parameter compared to the binomial model.

Human viral respiratory infections

Figure S2: Comparing the best-fitting two-parameter NiSP model with a binomial model (i.e. statistical independence) for human respiratory viruses (Nickbakhsh et al., 2016). Insets to each panel show a "zoomed-in" section of the graph corresponding to high multiplicities of pathogen co-infection. This figure shows that the best-fitting NiSP model converges to the binomial model in this case (which is a special case of NiSP for $\mu=0$, see section S1.4.5).

Models were fitted by maximum likelihood, with model selection done via χ^{2} tests on the likelihood-ratio (Bolker, 2008) or the Akaike Information Criterion (Sakamoto et al., 1986), depending on whether or not models were nested.

S2.3.3 Fitting the NiDP model with specific clearance

Estimated parameters occasionally diverge in the more complex version of the NiSP model with specific clearance, and very large numeric values of best-fitting epidemiological parameters can be obtained (but a reasonable value of R_{0}). Exploratory investigations suggested that fitting the NiDP model with specific clearance to the malaria data was affected by this type of identifiability issue, and so would therefore have required a specific treatment. Since our purpose here was not to draw conclusions about interactions among malaria species, but instead to show the utility of our overall approach, we did not pursue this analysis further.

References

Alifrangis, M., Lemnce, M., Moon, R., Theisen, M., Bygbjerg, B., Ridley, R., and Jakobsen, P. (1999). IgG reactivities against recombinant Rhoptry-Associated Protein-1 (rRAP-1) are associated with mixed Plasmodium infections and protection against disease in Tanzanian children. Parasitology, 119:337-342.

Andersson, M., Scherman, K., and Råberg, L. (2013). Multiple-strain infections of Borrelia afzelii: a role for within-host interactions in the maintenance of antigenic diversity? The American Naturalist, 181:545-554.

Banchongaksorn, T., Yomokgul, P., Panyim, S., Rooney, W., and Vickers, P. (1996). A field trial of the ParaSight-Ftest for the diagnosis of Plasmodium falciparum infection. Transactions of the Royal Society of Tropical Medicine and Hygiene, 90:244245.

Bédier, E., Laruency, and Baury (1924). Index endémique du paludisme à Niamey à la fin de la saison des pluies. Bulletin de la Société de Pathologie Exotique, XVII:327.

Bolker, B. (2008). Ecological Models and Data in R. Princeton University Press, New Jersey.

Borel, P. and Levanan (1927). Le paludisme à Saïgon. Bulletin de la Société de Pathologie Exotique, XX:94.

Campbell, G., Collins, F., Brandling-Bennett, A., Schwartz, I., and Roberts, J. (1987). Age-specific prevalence of antibody to a synthetic peptide of the circumsporozoite protein of Plasmodium falciparum in children from three villages in Kenya. American Journal of Tropical Medicine and Hygiene, 39:220-224.

Chaturvedi, A. K., Katki, H. A., Hildesheim, A., Rodríguez, A. C., Quint, W., Schiffman, M., Van Doorn, L.-J., Porras, C., Wacholder, S., Gonzalez, P., et al. (2011). Human papillomavirus infection with multiple types: pattern of coinfection and risk of cervical disease. The Journal of Infectious Diseases, 203:910-920.

Collins, W., Cattani, J., Lourie, J., Taufa, T., Anderson, W., Skinner, J., Stanfill, P., and Huong, A. (1988). Antibody responses to malarial antigens in the Wopkaimin population of the star mountains, Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 39:241-245.

Deloron, P., Campbell, G., Brandling-Bennett, D., Roberts, J., Schwartz, I., Odera, J., Lai, A., Osanga, C., Cruz, V., and McCutchan, T. (1989). Antibodies to Plasmodium falciparum ring-infected erythrocyte surface antigen and P. falciparum and P. malariae circumsporozoite proteins: seasonal prevalence in Kenyan villages. American Journal of Tropical Medicine and Hygiene, 41:393-399.

Dorolle, P. (1927). Le paludisme à Hagiang (Tonkin). Bulletin de la Société de Pathologie Exotique, XX:895.

Fienberg, S. E. and Rinaldo, A. (2012). Maximum likelihood estimation in log-linear models. The Annals of Statistics, 40:996-1023.

Gbary, A., Guiguemdé, T., and Ouedraogo, J. (1988). Emergence of chloroquine resistant malaria in West Africa: the case of Sokode in Togo. Tropical Medicine and Parasitology, 39:142-144.

Gordon, D., DAvis, D., Lee, M., Lambros, C., Harrison, B., Samuel, R., Campbell, G., Selvarajan, K., and Lewis, G. (1991). Significance of circumsporozoite-specific antibody in the natural transmission of Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae in an aboriginal (Orang Asli) population of central peninsular Malaysia. American Journal of Tropical Medicine and Hygiene, 45:49-56.

Hellgren, U., Ericsson, O., Kihamia, C., and Rombo, L. (1994). Malaria parasites and chloroquine concentrations in Tanzanian schoolchildren. Tropical Medicine and Parasitology, 45:293-297.

Howard, S., Donnelly, C., and Chan, M.-S. (2001). Methods for estimation of associations between multiple species parasite infections. Parasitology, 122:233-251.

Knowles, R. and White, R. (1930). Studies in the parasitology of malaria. Indian Medical Research Memoirs, 18:1-436.

Koepfli, C., Ross, A., Kiniboro, B., Smith, T. A., Zimmerman, P. A., Siba, P., Mueller, I., and Felger, I. (2011). Multiplicity and diversity of Plasmodium vivax infections in a highly endemic region in Papua New Guinea. PLoS Neglected Tropical Diseases, 12:e1424.

Léger, M., Pinaud, J., and Bédier, E. (1923). Le paludisme à Zinder: index hématologique. Bulletin de la Société de Pathologie Exotique, XVI:137.

López-Villavicencio, M., Jonot, O., Coantic, A., Hood, M. E., Enjalbert, J., and Giraud, T. (2007). Multiple infections by the anther smut pathogen are frequent and involve related strains. PLoS Pathogens, 3:e176.

Masterman, E. (1913). Notes on some tropical diseases of Palestine. Journal of Hygiene, XIII:49.

May, J., Mockenhaupt, F., Ademowo, O., Falusi, A., Olumese, P., Bienzle, U., and Meyer, C. (1997). High rate of mixed and subpatent malarial infections in southwest Nigeria. American Journal of Tropical Medicine and Hygiene, 61:339-343.

May, R. M. and Nowak, M. A. (1995). Coinfection and the evolution of parasite virulence. Proceedings of the Royal Society, B, 261:209-215.

Mizushima, Y., Kato, H., Ohmae, H., Tanaka, T., Bobogare, A., and Ishii, A. (1994). Prevalence of malaria and its relationship to anemia, blood glucose levels, and serum somatomedin c (IGF-1) levels in the Solomon Islands. Acta Tropica, 58:207220.

Molineaux, L., Storey, J., Cohen, J., and Thomas, A. (1980). A longitudinal study of natural malaria in the West African Savanna in the absence of control measures: relationships between different Plasmodium species, in particular P. falciparum and P. malariae. American Journal of Tropical Medicine and Hygiene, 29:725-737.

Moutailler, S., Valiente Moro, C., Vaumourin, E., Michelet, L., Tran, F. H., Devillers, E., Cosson, J.-F., Gasqui, P., Van, V. T., Mavingui, P., Vourc'h, G., and Vayssier-Taussat, M. (2016). Co-infection of ticks: the rule rather than the exception. PLoS Neglected Tropical Diseases, 10:1-17.

Nickbakhsh, S., Thorburn, F., Von Wissmann, B., McMenamin, J., Gunson, R., and Murcia, P. (2016). Extensive multiplex PCR diagnostics reveal new insights into the epidemiology of viral respiratory infections. Epidemiology \& Infection, 144:20642076.

O'Dea, E. B., Park, A. W., and Drake, J. M. (2018). Estimating the distance to an epidemic threshold. Journal of the Royal Society: Interface, 15:20180034.

Plemmons, R. J. (1977). M-matrix characterizations. I-nonsingular M-matrices. Linear Algebra and its Applications, 18:175-188.

Sakamoto, Y., Ishiguro, M., and Kitagawa, G. (1986). Akaike Information Criterion Statistics. D. Reidel Publishing Company, Dordrecht.

Schnuffer, W. (1938). Two subjects relating to the epidemiology of malaria. Journal of the Malaria Institute of India, 1:221-256.

Seabloom, E. W., Hosseini, P. R., Power, A. G., and Borer, E. T. (2009a). Data from: Diversity and composition of viral communities: coinfection of barley and cereal yellow dwarf viruses in California grasslands (doi:10.5061/dryad.2bj836).

Seabloom, E. W., Hosseini, P. R., Power, A. G., and Borer, E. T. (2009b). Diversity and
composition of viral communities: coinfection of barley and cereal yellow dwarf viruses in California grasslands. The American Naturalist, 173:E79-E98.

Thomson, M., D’Alessandrao, U., Bennett, S., Connor, S., Langerock, P., Jawara, M., Todd, J., and Greenwood, B. (1994). Malaria prevalence is inversely related to vector density in The Gambia, West Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 88:638-643.

Trape, J., Lefebvre-Zante, E., Legros, F., Ndiaye, G., Bouganali, H., Druilhe, P., and Salam, G. (1992). Vector density gradients and the epidemiology of urban malaria in Dakar, Senegal. American Journal of Tropical Medicine and Hygiene, 47:181189.

Trape, J., Rogier, C., Konate, L., Diagne, N., Bouganali, H., Canque, B., Legros, F., Badji, A., Ndiaye, G., Brahimi, K., Faye, O., Druilhe, P., and Pereire da Silva, L. (1994). The Dielmo project: a longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal. American Journal of Tropical Medicine and Hygiene, 51:123-137.

Treadgold, C. (1918). Malaria in Macedonia with especial reference to the use of prophylactic quinine. Journal of the Royal Army Medical Corps, 30:571-586.

Van Kampen, N. G. (1992). Stochastic Processes in Physics and Chemistry. Elsevier.

Wilson, D. (1936). Rural hyper-endemic malaria in Tanganyika territory. Transactions of the Royal Society of Tropical Medicine and Hygiene, 29:583-618.

