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SUMMARY 
 
Understanding factors that shape the immune landscape 
across hematological malignancies is essential for 
immunotherapy development. Here, we integrated over 
8,000 transcriptomes and over 1,000 samples with 
multilevel genomic data of hematological cancers to 
investigate how immunological features are linked to 
cancer subtypes, genetic and epigenetic alterations, and 
patient survival. Infiltration of cytotoxic immune cells was 
associated with distinct microenvironmental responses 
and driver alterations in different cancers, such as TP53 
in acute myeloid leukemia and DTX1 in diffuse large B 
cell lymphoma. Epigenetic modification of CIITA 
regulating antigen presentation, cancer type-specific 
immune checkpoints such as VISTA in myeloid 
malignancies, and variation in cancer antigen expression 
further contributed to immune heterogeneity. Prognostic 
models highlighted the significance of immunological 
properties in predicting survival. Our study represents the 
most comprehensive effort to date to link immunology 
with cancer subtypes and genomics in hematological 
malignancies, providing a resource to guide future 
studies and immunotherapy development. 
 
 
INTRODUCTION 
 
Immune checkpoint blockade therapies are 
revolutionizing cancer therapy in several tumor types, 
demonstrating that the immune system can be 
successfully harnessed for effective anti-cancer 
treatment (Ribas and Wolchok, 2018). In hematological 
malignancies, immune checkpoint inhibition has 

demonstrated efficacy in classical Hodgkin’s lymphoma 
(CHL) (Ansell et al., 2015), and adoptive chimeric antigen 
receptor (CAR) T cell therapy has been successful in 
several B cell malignancies (Maude et al., 2014; 
Schuster et al., 2017). Allogeneic hematopoietic stem cell 
transplantation (allo-HSCT) is also considered to rely on 
the immune system by inducing the graft-versus-
leukemia effect (Casucci et al., 2013). It is typical for 
immune-based therapies that only some cancer types or 
a subset of patients within a cancer type achieve 
responses. Therefore, rational patient selection based on 
the immune milieu of each tumor type may be crucial to 
achieve optimal benefit from immunotherapies. However, 
in hematological cancers the immunological diversity and 
underlying mechanisms resulting in distinct immune 
landscapes are unclear.  
 
The immune landscape of cancers comprises various 
elements influencing the anti-cancer immune response 
(Chen and Mellman, 2013). The composition of the 
immune infiltrate, importantly cytotoxic lymphocytes that 
mediate elimination of cancer cells, has been associated 
with favorable outcomes in several cancers (Fridman et 
al., 2012; Galon et al., 2006) and with immunotherapy 
responses (Tumeh et al., 2014; Van Allen et al., 2015). 
Furthermore, antigen presentation is essential for 
adaptive immune responses. Antigen presentation by 
cancer cells is commonly considered to occur in the 
context of human leukocyte antigen (HLA) class I 
molecules, and somatic mutations in the HLA genes are 
frequent immune evasion mechanisms in solid tumors 
(Garrido et al., 2010; Shukla et al., 2015). However, as 
the normal cellular counterpart for most hematological 
malignancies is closely related to antigen-presenting 
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cells (APCs), hematopoietic cancer cells may present 
antigen also in the context of HLA class II (Bachireddy et 
al., 2015). HLA II expression has been linked to 
prognosis (Rimsza et al., 2004) and response to PD-1 
blockade immunotherapy in lymphoma (Roemer et al., 
2018), and loss of mismatched HLA (Vago et al., 2009) 
or transcriptional downregulation of HLA II (Christopher 
et al., 2018) has been associated with relapse after allo-
HSCT in acute myeloid leukemia (AML), demonstrating 
the importance of HLA II in hematological malignancies. 
 
In addition to antigen presentation, T cells require co-
stimulatory signals for effective activation. The balance of 
activating and inhibitory signals from tumor cells and 
APCs regulates both T and NK cell responses, and 
inhibitory signals such as PD-L1 are proven therapy 
targets (Chen and Flies, 2013). Finally, the presence of 
cancer antigens is essential to initiate and maintain the 
adaptive immune response. Cancer antigens include 
neoantigens derived from somatically mutated genomic 
regions and cancer-germline antigens (CGAs) normally 
expressed only in immune-privileged germ cells 
(Simpson et al., 2005). Several hematological 
malignancies have been shown to harbor low neoantigen 
loads (Alexandrov et al., 2013). However, CGA 
expression across hematological malignancies has not 
been systematically analyzed, although studies within 
cancer types have been conducted (Atanackovic et al., 
2007; Meklat et al., 2007). 
 
Emerging evidence from solid tumors suggests that 
cancer cell-intrinsic genetic and epigenetic aberrations 
influence tumor immune landscapes (Wellenstein and de 
Visser, 2018). Recently, several studies have integrated 
the genetics of solid tumors with immunological 
properties by leveraging extensive genomic datasets 
(Charoentong et al., 2017; Gentles et al., 2015; Li et al., 
2016; Rooney et al., 2015; Thorsson et al., 2018). In 
contrast, large-scale studies of genotypic-
immunophenotypic connections in hematological 
malignancies have not been performed. However, it is 
likely that heterogeneity exists in immunological 
properties given the vast genetic and epigenetic 
heterogeneity in hematological malignancies such as 
AML (Cancer Genome Atlas Research Network, 2013; 
Figueroa et al., 2010). 
 
Here, we perform a comprehensive immunogenomic 
analysis in hematological cancers, investigating cytotoxic 
immune infiltration, antigen presentation, immune cell co-
stimulation, and cancer antigen expression patterns in 
relation to cancer subtypes and genomics. We utilize a 
resource of over 8,000 transcriptomes collected across 
36 hematological malignancies and normal 
hematopoietic cells (Hemap, http://hemap.uta.fi), 
together with multi-omics datasets of AML and diffuse 
large B cell lymphoma (DLBCL). In addition to 
transcriptomics, we integrate somatic DNA alterations, 
DNA methylation, quantitative multiplex 
immunohistochemistry, and flow cytometry to 
comprehensively map immunological features and 
validate the robustness of the findings. We identify 
microenvironmental differences between immune-
infiltrated and immune-excluded cancers and 
demonstrate how the genetic and epigenetic makeup is 

linked to immune infiltration and antigen presentation. 
This understanding has implications for the development 
of precision immune intervention strategies in 
hematological malignancies. 
 
 
RESULTS 

 
Assessment of cytotoxic lymphocyte infiltration 
across hematological malignancies 
We used 8,472 samples from 36 hematological 
malignancies, with 629 healthy donor hematological cell 
populations and 530 cell lines as controls, to 
comprehensively analyze immunological properties in 
hematological cancer transcriptomes (Figures 1A and 
S1A and Table S1). To facilitate linking immunological 
features to molecular cancer subtypes, we visualized the 
data using t-Distributed Stochastic Neighbor Embedding 
(t-SNE) (van der Maaten and Hinton, 2008) and utilized 
unsupervised sample stratification using density-based 
assignment of clusters with distinct molecular profiles 
(Cheng, 1995; Mehtonen et al., 2019).  
 
CD8+ cytotoxic T lymphocytes (CTLs) and natural killer 
(NK) cells are considered to be essential for effective 
anti-tumor immunity and responsiveness to 
immunotherapy (Joyce and Fearon, 2015; Morvan and 
Lanier, 2016; Tumeh et al., 2014; Van Allen et al., 2015). 
We first aimed to quantify the cytolytic immune infiltrate 
in the tumor microenvironment from bulk transcriptomes 
across hematological malignancies genes specifically 
expressed in CTLs and NK cells (Figure S1B). Based on 
the high specificity of the genes GZMA, GZMH, GZMM, 
PRF1, and GNLY to CTLs/NK cells compared to 
hematopoietic cancer cells and their essential role in 
cytolytic effector functions, we defined the geometric 
mean of these five genes as the cytolytic score reflecting 
CTL/NK abundance, (Figures 1B and S1C).  
 
To validate our strategy of inferring cytotoxic lymphocyte 
abundance in hematological malignancies, we analyzed 
T and NK cell fractions using flow cytometry from 
diagnostic bone marrow (BM) aspirates of AML patients 
and performed paired RNA-seq from BM mononuclear 
cells. Cytolytic score correlated highly with the combined 
fraction of T and NK cells out of all BM cells, indicating 
good performance in leukemia samples (Spearman’s R = 
0.74, P = 4.8 × 10-7, Figure 1C and S1D). Demonstrating 
utility also in lymphomas, cytolytic score correlated with 
the immunohistochemistry-based T cell content in a 
mucosa-associated lymphoid tissue (MALT) lymphoma 
dataset included in Hemap (Chng et al., 2009) (R = 0.68, 
P = 0.00013, Figure S1E). Built for hematological 
malignancies, cytolytic score also agreed well with 
previously reported methods of estimating immune cell 
subset abundance in solid tumors, including gene sets 
proposed by Bindea et al. (Bindea et al., 2013) and MCP-
counter (Becht et al., 2016) (Figures S1F and S1G). 
Correlation to the deconvolution method CIBERSORT 
(Newman et al., 2015), designed to infer relative fractions 
of immune cell types rather than their abundance, was 
lower (Figure S1H). In conclusion, cytolytic score robustly 
estimates the abundance of CTLs and NK cells in bulk 
gene expression profiles of hematological malignancies, 
enabling its use for immunogenomic analyses.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 26, 2019. ; https://doi.org/10.1101/618918doi: bioRxiv preprint 

https://doi.org/10.1101/618918
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

 
 

 
 

 
 

 

F

D

pre-B-ALL MMTCLAML
CLL BCLT-ALLCML MDS

E

CB

 

Cancer subtypes

Transcriptional
signatures

Mutations/CNVs

DNA methylation

A

H

 

Cytolytic score
High Low

Hemap

Sorted sample

 

 

AML
n=173

DLBCL
n=48

MM
n=1076

Lymphoma
n=1288

Leukemia
n=4293

MDS/LCH
n=435

Cell lines
n=610

Normal cells
n=770

Pure/sorted samples Unsorted samples
Details Figure S1

C
yt

ol
yt

ic
 s

co
re

●

● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

R = 0.74
P = 4.8e−07

0

10

20

30

2 3 4 5 6
Cytolytic score (RNA−seq)

%
 T

/N
K 

ce
lls

 (f
lo

w
 c

yt
om

et
ry

)

AML validation

Cell lines
n=143

AML
n=505

DLBCL
n=137

Clinical
parameters

Micro-
environment

Cytotoxic lymphocytes

Antigen
presentation

 

Normal healthy
Cell lines

Hemap

 

GNLY

GZMH

GZMA

GZMM

PRF1

2 4 6 8 10 12 14
Gene expression (log2)

G
en

e 
ex

pr
es

si
on

 d
en

si
ty

CD8+/NK
mix/unsorted
pure/sorted

Cytolytic score

Cancer
antigens

Leukemia
n=221

DLBCL
n=233

●

●

●●

●

●

●

●

●

● ●

●●
●

●

●●

●
●

●

●

●
●●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●
●
●
●●
●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●●

●
●

●

●

●
●●
●●

4

6

8

10

CLL BCL
MDS

CML
AML

pre
−B
−A

LL

38
37

32
11

8.2
7.1

0 10 20 30

CLL

BCL

MDS

CML

AML

pre−B−ALL

0 25 50 75 100

DLBCL THRBCL
NLPHL

DLBCL testicular
DLBCL PMBL

CHL
DLBCL

MALT
DLBCL CNS

FL
MCL

BL

 
 Samples with high 

cytolytic activity (%)
Samples with high 
cytolytic activity (%)

G

Cytolytic
score

Co-stimulation

C
TL N

K

Hemap transcriptomics

Multilevel TCGA Multilevel CCLE

Other multilevel

+ -

mIHC + flow
cytometry validation

HLA score

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 26, 2019. ; https://doi.org/10.1101/618918doi: bioRxiv preprint 

https://doi.org/10.1101/618918
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 3 

Figure 1. Identification of cytotoxic lymphocyte infiltration in hematological malignancies A. Schematic overview of the study. Data from 
hematological malignancies and normal hematopoietic cells from Hemap and other sources were integrated to study associations of immune states 
to cancer subtypes, transcriptional, genetic and epigenetic properties, and clinical parameters. B. Distributions of expression levels (log2 
expression) of genes included in cytolytic score for sorted cancer cells, unsorted tumor samples, and sorted CD8+ cytotoxic T lymphocytes and NK 
cells. C. Correlation (Spearman) of cytolytic score obtained from RNA-seq and combined T and NK cell fraction obtained by flow cytometry from 35 
AML BM samples. D. Visualization of Hemap samples on a t-SNE map, with cancer types, cell lines, and normal cell populations colored. E. 
Cytolytic score colored on the Hemap t-SNE map. Red and blue color tones correspond to high and low scores, respectively. Sorted samples (score 
not calculated) are colored in beige. F. Cytolytic score across main cancer types in Hemap shown as box plots. Grey shading indicates samples 
with Z-score > 1. G. Percentages of samples with high cytolytic score (Z-score > 1) across main cancer types. H. Percentages of samples with high 
cytolytic score (Z-score > 1) shown as in G across Hemap BCL subtypes. See also Figure S1 and Table S1. 
 
 
Across transcriptomes of hematological malignancies, we 
observed the highest cytolytic score in chronic 
lymphocytic leukemia (CLL) and B cell lymphomas (BCL) 
(Figures 1D-F and Table S1). In contrast, acute 
leukemias and chronic myeloid leukemia (CML) were 
characterized by lower cytolytic scores. Importantly, we 
observed substantial variation in cytolytic infiltrate within 
cancer types, with most cancer types, including acute 
leukemias, harboring a subset of samples with high 
cytolytic score (Z-score > 1 across all cancers) (Figure 
1G). Within BCL, we observed the highest levels in T 
cell/histiocyte-rich B cell lymphoma (THRBCL) and CHL, 
and the lowest in Burkitt’s lymphoma (BL) (Figure 1H), 
consistent with known characteristics of the immune 
infiltrate across BCL subtypes (Scott and Gascoyne, 
2014). Activated B cell-like (ABC) DLBCL showed higher 
cytolytic score compared to the germinal center B cell-
like (GCB) subtype. T cell lymphoma (TCL) subtypes had 
high cytolytic score, likely partially due to malignant T 
cells. Testicular DLBCL demonstrated high cytolytic 
score, in contrast to central nervous system DLBCL, 
indicating differences related to tumor site. Together, 
these data show that cytolytic score captures variation in 
cytolytic infiltrates across hematological malignancies 
and indicate that even in disease entities with generally 
low cytolytic activity, a subset of cases with abundant 
cytotoxic lymphocyte infiltration can be identified. 
 
 
IFNγ signature linked to cytolytic infiltration 
distinguishes lymphoma microenvironment from 
leukemias 
To characterize cancers with abundant cytolytic infiltrate 
in more detail, we explored genes whose expression 
correlated with cytolytic score in each cancer type. As 
expected, genes positively correlated with cytolytic score 
were enriched in signatures reflecting T cell activation 
and inflammatory response, also confirmed at the protein 
level (Figures S2A and S2B and Table S2). To dissect 
genes expressed in cell types other than CTLs and NK 
cells, we contrasted the transcripts correlated with 
cytolytic score with the difference in expression between 
purified CTLs/NKs and the unsorted tumor samples 
(Figures 2A and S2C). We also investigated which 
normal cell types expressed the identified genes to 
define cell types co-infiltrating with cytolytic cells (Table 
S2). This analysis revealed strong correlations of genes 
expressed in monocytes and macrophages to cytolytic 
score both in B cell lymphomas and chronic leukemias 
(e.g. CD14, R > 0.6, FDR = 0.0), suggesting frequent co-
infiltration of myeloid cells with cytotoxic lymphocytes 
(Figure 2B). In contrast, correlations of 
microenvironmental genes with cytolytic score were 
much more modest in AML, pre-B-ALL, T-ALL, and 
myelodysplastic syndrome (MDS) (e.g. CD14 R ≤ 0.3). 

 
Characteristic microenvironmental genes associated with 
cytolytic infiltration in lymphomas included those 
encoding the immunosuppressive tryptophan-
catabolizing enzyme IDO1 (Munn and Mellor, 2016), T 
cell-recruiting chemokines highly expressed in 
proinflammatory M1-type macrophages (CXCL9, 
CXCL10, CXCL11), and complement components 
expressed in macrophages and dendritic cells (DCs) 
(C1QA, C1QB, C1QC) (Figure 2B). The expression of 
IDO1 and the CXCR3-ligand chemokines is known to be 
strongly induced by IFNγ (Groom and Luster, 2011; 
Spranger et al., 2013), suggesting evidence of a 
microenvironmental response to IFNγ associated with 
cytolytic infiltration. Expression of these genes in normal 
lymph nodes and leukemias was low (Figure 2B), 
indicating cancer-associated modulation of the 
lymphoma immune microenvironment.  
 
To validate the distinct lymphoma microenvironment 
characterized by myeloid infiltration and IFN-y-induced 
expression signature, we analyzed tissue microarrays 
(TMAs) constructed from DLBCL and AML BM biopsies 
using multiplex immunohistochemistry (Figure 2C). 
Consistent with the gene expression data, CTLs (CD8+) 
correlated with macrophages (CD68+) and IDO1+ and 
CXCL9+ cells in DLBCL (Figures 2D and 2E). In AML, 
however, IDO1+ or CXCL9+ cells were generally sparse 
and did not correlate with CTLs, in concordance with the 
gene expression data  (Figure S2D). CD68 did not 
correlate either with CTLs, but was likely expressed on a 
subset of blasts, potentially confounding correlations. 
Collectively, these data indicate general 
macrophage/monocyte infiltration associated with 
cytolytic cells and a distinct immunological tumor 
microenvironment in lymphomas characterized by IFNγ-
responsive genes. 
 
 
Cytolytic infiltration is associated with driver 
alterations and molecular subtypes in AML and 
DLBCL 
We next asked whether specific genetic alterations or 
molecular subtypes could be associated with increased 
abundance of cytotoxic lymphocytes. We first explored 
correlations of cytolytic score to somatic mutations and 
CNVs in the TCGA AML dataset (Table S3). Cytolytic 
score positively correlated with mutations in the TP53 
tumor suppressor gene (FDR < 0.00018), as well as 
deletions located in the long arm of chromosome 5 
(Figure 3A). These alterations often co-occurred with 
complex cytogenetics and elevated genome 
fragmentation, whereas no correlation to mutation load 
was detected. In contrast, the common AML driver 
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Figure 2. Distinct immune microenvironments associate with cytolytic infiltration in lymphoma and leukemia A. Correlation of gene 
expression with CTL/NK abundance in B cell lymphoma. The average correlation between the expression of each gene and the cytolytic score in 
BCL samples (y axis) is compared to the fold change of the respective expression level between purified CTLs/NKs and bulk BCL transcriptomes (x 
axis). Genes more specific to CTLs/NKs are colored in red and genes more specific to other cell types in the tumor sample (stromal/cancer cells) 
are colored in blue. B. Heatmaps of correlation coefficients (Spearman correlation to cytolytic score) of selected genes across Hemap leukemia and 
lymphoma subtypes (left) and mean gene expression in normal cell types (right). C. Workflow of multiplex immunohistochemistry-based validation 
of protein-level expression of genes correlating with cytolytic score in lymphoma and leukemia microenvironments. D. Multiplex 
immunohistochemistry images of in representative DLBCL samples with low (left) or high (right) percentage of CD8+ cells (CTLs). CD8 (CTL 
marker), CD68 (macrophage marker), CXCL9, IDO1, and DAPI stainings are shown. E. Scatter plots comparing the percentage of CD8+ cells 
(CTLs) out of total cells with the percentages of CD68+ cells (macrophages), IDO1+ cells, and CXCL9+ cells out of total cells in the DLBCL IHC 
cohort (n=233). Spearman correlation coefficients and P values adjusted using the BH method are shown. See also Figure S2 and Table S2. 
 
mutations FLT3 and NPM1 preferentially occurred in 
samples with low cytolytic activity. The samples with high 
cytolytic score were enriched in a cluster characterized 
by an MDS-like transcriptomic phenotype (FDR = 10-6, 
Fisher’s exact test) that we have previously identified 
(Pölönen et al., 2019) and mutations frequently found in 
MDS such as RUNX1 and ASXL1, suggesting that a 
distinct MDS-like transcriptional signature may be 
associated with elevated cytotoxic lymphocytes in AML 
(Figures 3B-E).  
 
To validate the association of cytolytic infiltration to a 
transcriptomic subtype linked to complex cytogenetics 
and MDS-associated alterations, we identified matching 
transcriptional clusters in the Hemap AML and BeatAML 
datasets using a cluster-specific gene set enrichment 
approach (Mehtonen et al., 2019) (Figures S3A-D). The 
cases with high cytolytic score in Hemap AML and 
BeatAML were enriched in a cluster corresponding to the 
TCGA MDS-like cluster (FDR = 0.0044, Fisher’s exact 
test in BeatAML) with frequent complex cytogenetics and 
prior MDS cases. Cytolytic score correlated with 
diagnosis of AML with myelodysplasia-related changes 
(FDR = 0.05), further suggesting a link between an MDS-
like/secondary AML subtype and increased cytolytic 
infiltration. 
 
We next examined cytolytic score in relation to mutations 
and CNVs in DLBCL (Chapuy et al., 2018) (Table S3). 
BCL2 translocations, which almost exclusively occur in 
GCB DLBCL, correlated negatively with cytolytic 
infiltration (FDR = 0.065, Figure 3F), consistent with the 
lower cytolytic score observed in this molecular subtype 
in Hemap (Figure 1H) and fewer CD8+ cells assessed by 
mIHC (Figure S3E). Several CNVs and GCB-associated 
mutations (BCL2, KMT2D, CREBBP) were negatively 
associated with cytolytic infiltration, whereas mutations in 
ETV6, ETS1, and DTX1 showed positive correlations 
(FDR < 0.25). Cytolytic score correlated negatively with 
tumor purity assessed by ABSOLUTE (Carter et al., 
2012), consistent with increased immune infiltrate linked 
to lower tumor cell fractions. Given the strong impact of 
the molecular subtype on cytolytic infiltrate, we analyzed 
both ABC and GCB subtypes separately to identify more 
direct associations to specific genetic alterations (Figures 
S3F and S3G). 7q amplifications were preferentially 
found in ABC with low cytolytic infiltration and GCB 
(Figure 3G). The correlation of DTX1 mutations with 
cytolytic infiltration was even stronger in the GCB 
subtype alone compared to all DLBCL (FDR = 0.06, 
Figure 3H). Together, our data suggest that specific 
cancer cell-intrinsic genetic alterations and molecular 
subtypes are linked to cytotoxic infiltrate in both AML and 
DLBCL. 
 

 
Epigenetic modification of the HLA class II 
transactivator CIITA regulating antigen presentation 
in AML 
Given the importance of effective antigen presentation for 
adaptive anti-tumor immune responses, we analyzed the 
expression of HLA genes to detect potential 
transcriptional downregulation. As the normal cellular 
counterpart of several hematological malignancies is an 
APC, the cancer cells could elicit T cell responses by 
presenting antigen in HLA class II molecules in addition 
to HLA I expressed in all nucleated cells. We constructed 
an HLA I score, comprised of B2M, HLA-A, HLA-B, and 
HLA-C, and an HLA II score, containing HLA II genes 
significantly upregulated in APCs (macrophages, DCs, B 
cells) compared to non-APCs and whose expression 
highly correlated with each other (Figures S4A and S4B 
and Table S4).  
 
We observed a lower HLA I score in cells of the erythroid 
lineage,  hematopoietic progenitors, and T cell acute 
lymphoblastic leukemia (T-ALL) compared to other cell 
populations (Figure 4A and Table S1). While the 
differences in HLA I expression were rather modest, HLA 
II expression varied more substantially. B cell 
malignancies, including pre-B-ALL, CLL, and B cell 
lymphomas had high HLA II score as expected by their 
APC origin, whereas in multiple myeloma (MM) HLA II 
was downregulated consistent with HLA II loss upon 
plasmacytic differentiation (Silacci et al., 1994) (Figures 
4B and 4C and Table S1). In AML, specific transcriptomic 
clusters showed downregulated HLA II expression, 
including the acute promyelocytic leukemia cluster 
harboring PML-RARA fusion known to be characterized 
by low surface HLA-DR (Wetzler et al., 2003), and a 
cluster characterized by NPM1 mutations and M1 or M2 
FAB subtype. HLA II score correlated with HLA-DR 
surface expression in AML blasts measured using flow 
cytometry and paired RNA-seq, indicating that the HLA II 
score accurately reflects variation in surface HLA II 
protein levels (Figures 4D and S4C).  
 
We next correlated molecular features, including 
mutations, CNVs, and DNA methylation in the TCGA 
AML cohort to the HLA II score to shed light on the 
molecular mechanisms leading to downregulation of the 
HLA II genes (Table S4). Expression of the HLA class II 
transactivator CIITA strongly correlated with the HLA II 
score (R = 0.84, FDR = 6.1 × 10-43, Figure 4E). However, 
methylation of promoter regions of CIITA (R = -0.54, FDR 
= 4.6 × 10-10, probe cg01351032) and several HLA II 
genes correlated negatively with the HLA II score (Figure 
S4D). CIITA methylation was enriched in transcriptomic 
clusters with low HLA II score corresponding to those 
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Figure 3. Genetic alterations associated with cytolytic infiltration A. Top genetic alterations associated with cytolytic score in TCGA AML 
patients shown as an oncoprint, where columns corresponding to a sample are ranked by cytolytic score and different data values are plotted on 
rows. Discrete state/class is indicated as color (genetic alterations and sample categories) and continuous values are represented as barcharts 
(score or percentage values). FDR for correlations between cytolytic score and genetic alterations are shown. B-D. Visualization of TCGA AML 
samples using a t-SNE representation. Clusters, cytolytic score, cytogenetics, and MDS signature are colored on the t-SNE maps, respectively. Key 
characteristics of the clusters are annotated. E. Top genetic alterations associated with cytolytic score in DLBCL (data from GSE98588) patients are 
shown as in A. F. Comparison of cytolytic score in DLBCL between cases with 7q amplification and without (WT) stratified by molecular subtype. 
Nominal P values obtained using two-sided Wilcoxon rank sum test are shown. G. Comparison of cytolytic score in DLBCL between cases with 
DTX1 mutations and without (WT) stratified by molecular subtype. Nominal P values obtained using two-sided Wilcoxon rank sum test are shown. 
See also Figure S3 and Table S3. 
 
identified in Hemap, harboring PML-RARA fusion or 
M1/M2 FAB subtype co-occurring with mutations in 
NPM1 (Figures 4F and S4E). Upon closer examination, 
highest CIITA hypermethylation occurred in a cluster with 
mutations in the DNA methylation regulators IDH1, IDH2, 
and TET2. We observed a similar connection between 
epigenetic modifier mutations and low HLA II in the 
BeatAML dataset (Figure S4F), further suggesting a link 
between AML driver mutations and antigen presentation 
mediated by alterations in DNA methylation. In contrast, 
AML harboring CBFB-MYH11 or RUNX1-RUNX1T1 
translocations were characterized by high HLA II and 
CIITA hypomethylation, and RUNX1 mutations correlated 
with high HLA II score (FDR = 0.0013, TGCA and 2.9 × 
10-8, BeatAML). In addition to AML, CIITA was 
methylated in T-ALL with low HLA II expression (Holling 
et al., 2004), suggesting potential epigenetic regulation of 
antigen presentation in different hematological cancer 
types (Figures S4G and S4H).  
 
To validate the finding in an independent dataset, we 
analyzed differentially methylated cytosines (DMCs) in 
the CIITA promoter region between AML patients with 
high and low HLA II score using ERRBS data (Glass et 
al., 2017). This analysis demonstrated a differentially 
methylated region encompassing a CpG island and 
CIITA promoter III, active in lymphocytes, and the IFNγ-
inducible promoter IV (Muhlethaler-Mottet, 1997) 
(Figures 4G and 4H). Further validating the observation, 
CIITA promoter methylation negatively correlated with 
HLA II score in AML cell lines (Figure S4G). In MOLM13 
AML cells expressing low levels of HLA II with 
hypermethylation of the CIITA promoter, treatment with 
the hypomethylating agent decitabine partially restored 
HLA-DR surface expression and potentiated the HLA-DR 
induction by IFNγ, a known inducer of HLA II (Steimle et 
al., 1994) (Figures 4I and S4I). Taken together, these 
data show that AML cells may evade antigen 
presentation through transcriptional downregulation of 
HLA II genes, which is linked to CIITA methylation in 
distinct genetic and transcriptional subtypes of AML and 
across hematological cancers. 
 
 
Immune checkpoints are linked to cancer subtypes 
and genetic alterations 
Immunomodulatory genes or immune checkpoints 
regulating T cell co-stimulation or NK cell activation 
represent important immunotherapy targets. We focused 
on ligands for T and NK cell co-stimulatory and co-
inhibitory receptors and other immunomodulators to 
identify potentially targetable immune checkpoints in 
subtypes of hematological malignancies. We tested for 
enrichment of the immune checkpoints across cancer 
types and found distinct patterns of immunomodulatory 
genes in myeloid malignancies and mature B cell 

malignancies (Figure 5A and Table S5). The cancer 
samples also clustered together with their normal 
counterparts, suggesting that the cell-of-origin influences 
the repertoire of immunomodulatory genes expressed by 
cancer cells (Figure S5A).  
 
Myeloid malignancies, including AML, CML, JMML, and 
MDS, highly expressed VISTA (C10orf54/VSIR/PD-1H), 
encoding an inhibitory T cell checkpoint of the B7 family 
(FDR < 10-132 AML compared to other cancers, Wilcoxon 
rank sum test). In addition to VISTA, ARG1 encoding the 
immunosuppressive enzyme arginase represented 
another potential myeloid-specific immune evasion 
mechanism (FDR < 10-84 in AML). In contrast, the NK cell 
inhibitory receptor KLRB1 ligand CLEC2D (LLT1) (Figure 
S5B) and the T cell inhibitory butyrophilin BTN2A2 were 
enriched in mature B cell malignancies. In addition to 
myeloid and B cell malignancies, lymphoma samples 
clustered together, characterized by elevated CD274 
(PD-L1), PDCD1LG2 (PD-L2), IDO family enzymes, and 
TNFSF15 (TL1A). These genes were lowly expressed in 
the purified CD19+ lymphoma cells, but strongly in 
macrophages and DCs, suggesting microenvironmental 
origin of these genes (Figure S5A). Other cancer type-
specific immune checkpoints included PVRL3, encoding 
a ligand for the inhibitory receptor TIGIT, in myeloma 
(FDR < 10-156) and T cell malignancies (Figure S5B), and 
NT5E, encoding the immunosuppressive adenosine-
producing enzyme CD73 (Beavis et al., 2012), in pre-B-
ALL (FDR < 10-303). Together, these results suggest 
cancer type-specific immune checkpoints in 
hematological malignancies, such as VISTA in myeloid 
malignancies. 
 
To investigate potential mechanisms of 
immunomodulatory gene regulation leading to the 
observed expression patterns, we examined correlations 
with DNA methylation in AML and DLBCL in the TCGA 
dataset (Table S5). Comparison of AML and DLBCL 
revealed differential methylation at gene promoters linked 
to the cancer type-specific expression of several 
immunomodulators, such as PDCD1LG2 (FDR = 4.4 × 
10-28 for differential methylation and 4.3 × 10-55 for 
expression between AML and DLBCL) and CD80 (FDR = 
1.3 × 10-62 and 1.0 × 10-47) (Figures 5B, S5C, and S5D). 
In addition to variation between cancers, promoter 
methylation also correlated with expression of 
immunomodulators within cancer types. In AML, 
promoter methylation correlated negatively with 
expression of CD200, CD274, the NKG2D ligands 
ULBP1 and ULBP3, and PDCD1LG2 and CD80 (R ≤ -
0.4, FDR < 10-6, Figure 5C). Similarly in DLBCL, 
expression of ULBP1 and CD200, among other genes, 
correlated negatively with promoter methylation,
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Figure 4. Expression of antigen-presenting HLA genes is linked to molecular subtypes and epigenetic regulation A. HLA I score (log2 
geometric mean of B2M, HLA-A, HLA-B, and HLA-C) is shown as boxplots comparing main cancer types and normal cell populations in Hemap. B. 
HLA II score (log2 geometric mean of HLA-DRA, HLA-DRB1, HLA-DPA1, HLA-DPB1, HLA-DMA, and HLA-DMB) is shown as in A. C. HLA II score 
colored on Hemap t-SNE map. Specific clusters with low HLA II score are highlighted with circles. D. Comparison of HLA II score and HLA II 
surface protein expression level in blasts in a validation cohort of AML BM samples (n = 37) profiled using both RNA-seq and flow cytometry for 
HLA-DR. E.CIITA expression, HLA II score, and methylation of CIITA and HLA II genes in TCGA AML data shown as a heatmap. F. Methylation of 
CIITA colored on the TCGA AML t-SNE map. NPM1 and IDH1, IDH2, and TET2 mutation status is labeled for cluster with low HLA II score. G. 
Differentially methylated cytosines (DMCs) in the CIITA region between samples with low and high HLA II score in GSE86952 ERRBS dataset. 
Histogram indicates the negative log10 P value of differential methylation at each cytosine, with red and blue colors indicating hypermethylated and 
hypomethylated cytosines in HLA II low samples, respectively. CpG areas, including CpG islands, CpG shores (< 2 kb flanking CpG islands), and 
CpG shelves (< 2 kb flanking outwards from CpG shores) are shown above CIITA exons belonging to isoforms pIII (lymphoid) and pIV (IFNγ-
inducible). Transcription factor binding sites (TFbs) are shown below. E. Heatmap showing methylation of cytosines at CIITA regions significantly 
hypermethylated in the HLA II low group compared to high in the AML GSE86952 ERRBS dataset. 0 indicates no methylation and 1 indicates 
complete methylation. Patients (columns) are grouped by HLA II score and PML-RARA status. Rows correspond to cytosines at the CpG island, 
shores, and inter-CGI area (> 4 kb outwards from a CpG island) shown on the right. Major AML genetic alterations, HLA scores, and FAB 
classification are shown. F. Percentages of HLA-DR+ MOLM13 cells measured by flow cytometry after 72 h treatment with indicated concentrations 
of decitabine (DAC) and/or 10 ng/mL IFNγ. Dots indicate individual technical replicate wells. Data are shown for one of two independent 
experiments. P values are obtained using two-sided Wilcoxon rank sum test. See also Figure S4 and Table S4. 

suggesting that DNA methylation contributes to variation 
in immune checkpoints across cancer types (Figure 
S5E). 

In addition to epigenetic modification, several genetic 
driver alterations were linked to distinct immune 
checkpoints, suggesting potential immune evasion 
strategies. In AML, NPM1 mutations were linked to 
elevated expression of VISTA (FDR = 0.00041) and the 
NKG2D ligand ULBP1 (FDR = 0.00027, Figures 5C and 
S5F). RUNX1-mutated AML highly expressed the B cell-
associated BTN2A2, SLAMF7, and LY9 in addition to 
HLA II, suggesting that the lineage infidelity and B 
lineage transcriptional program induced by RUNX1 
mutations influences also co-inhibitory signaling by AML 
cells (Silva et al., 2009). TP53 mutations were linked to 
higher CD274 (PD-L1) expression, potentially related to 
increased cytolytic activity. In DLBCL, the co-stimulatory 
CD70 was often mutated when highly expressed (FDR = 
10-9, Figure 5D), suggesting evasion from the T cell
stimulatory interaction through somatic mutations. Other
alterations potentially enabling immune evasion included
downregulation of MICB, encoding an activating ligand
for the NKG2D receptor, through 6p21.33 losses
containing MICB, and 9p24.1 amplifications or gains
associated with elevated expression of PD-1 ligands
(Figure S5G). Thus, genetic alterations contribute to
variation in immunomodulatory gene expression in
hematological malignancies such as AML and DLBCL.

Finally, to validate the cancer type-specific immune 
checkpoints at the protein level, we performed mIHC on 
BM biopsies focusing on VISTA which we identified 
enriched in myeloid malignancies. In Hemap, VISTA 
(C10orf54) expression was strongly enriched in a cluster 
representing NPM1-mutated AML with M4/M5 FAB 
subtype, and a cluster comprising MLL-rearranged 
cases, suggesting association of VISTA expression with 
monocytic differentiation of leukemic cells (Figure 5E). 
Quantitative mIHC confirmed elevated VISTA in 
monocyte-like AML and CML BM compared to lymphoid 
malignancies or healthy controls (Figures 5F, 5G, and 
S5H). Together, our data suggest that several immune 
checkpoints such as VISTA are expressed in a cancer 
type-specific fashion and may be influenced by DNA 
methylation or driver alterations. 

Frequent expression of cancer-germline antigens in 
multiple myeloma  

To evaluate potential targets of the adaptive cytotoxic 
immune response, we investigated cancer-germline 
antigens (CGAs) that can be readily identified from 
transcriptomic data but have not been systematically 
studied in hematological malignancies. CGAs are 
expressed only in the immune-privileged germ cells 
among healthy tissues, but aberrantly activated in 
cancers. We integrated the Genotype-Tissue Expression 
(GTEx) project (Mele et al., 2015) and Hemap data to 
define genes with a cancer-germline expression pattern 
in hematological malignancies by first selecting genes 
expressed in testis but not in other human tissues using 
GTEx and then requiring the genes to be expressed in 
5% hematological cancers but not in normal 
hematopoietic cells (Figure 6A). Using these stringent 
criteria, we recovered 27 CGA genes. Most of the genes 
are included in the CTdatabase (Almeida et al., 2009), 
which however contains several genes whose expression 
is not testis-restricted (Figure S6A). 

Strikingly, across hematological cancers, CGAs were 
most frequently expressed in multiple myeloma (MM) 
(Figures 6B and S6B). One third of MM patients 
expressed more than four CGAs. Both B and T cell 
lymphomas also showed frequent CGA expression, 
whereas CGAs were largely transcriptionally silent in 
leukemias. Several CGAs were expressed in a cancer 
type-specific manner, including MAGEC1, MORC1, 
DPPA1, COX7B2, PAGE1, and GAGE1 in MM, ADAM29 
in CLL (Vasconcelos et al., 2005), SAGE1 in AML, 
DMRT1 in anaplastic large-cell lymphoma (ALCL), and 
MAGEB2 and MAGEB1 in DLBCL (Figures 6C and S6C). 

To understand mechanisms leading to aberrant CGA 
expression in MM and lymphomas, we studied whether 
alterations in DNA methylation are associated with 
activated CGA transcription. CGAs were frequently 
hypomethylated and expressed in myeloma cell lines in 
CCLE, consistent with primary myeloma samples 
(Figures 6D and 6E). Similarly, expression of the most 
frequent CGAs in DLBCL in patients in the TCGA 
dataset, MAGEB1 and MAGEB2, was linked to 
hypomethylation at probes located near the transcription 
start site (Figures S6D and S6E). 

We next explored transcriptional and genetic signatures 
correlated with the number of expressed CGAs. In 
Hemap MM, CGA expression was associated with gene 
sets reflecting cell cycle and MYC targets, implying that 
highly proliferative cancers frequently express multiple 
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Figure 5. Immune checkpoints are linked to cancer subtypes and genetic alterations A. Expression levels (Z-scores of median log2 
expression) of co-stimulatory, co-inhibitory, and other immunomodulatory genes across Hemap cancer types shown as a heatmap. Sorted and 
unsorted samples are shown as separate categories. Rows and columns are clustered using Spearman correlation distance and Ward’s linkage. 
Corresponding receptors and the nature of the interaction is shown according to Table S5. B. Comparison of PDCD1LG2 and CD80 expression 
between TCGA DLBCL and TCGA AML. Dots indicating individual patients are colored by average methylation within 1 kb of the transcription start 
site. C. Volcano plot of correlations (Spearman) of immune checkpoint gene expression with genetic alterations and DNA methylation in TCGA 
AML. Dot size is proportional to the adjusted P value. ULBP1 expression is compared between NMP1-mutated (mut) and wild type (WT) samples 
and the nominal P value obtained using two-sided Wilcoxon rank sum test is shown. D. Volcano plot of correlations (Spearman) of 
immunomodulatory gene expression with genetic alterations in DLBCL (GSE98588). Dot size is proportional to the adjusted P value. CD70 
expression is compared between CD70-mutated (mut) and wild type (WT) samples and the nominal P value obtained using two-sided Wilcoxon 
rank sum test is shown. E. Expression of VISTA colored on Hemap t-SNE map. Circles indicate clusters highly expressing VISTA. F. Percentages 
of VISTA-positive cells out of all BM cells in AML (n=57), CML (n=62), pre-B-ALL (n=51), T-ALL (n=9), and healthy BM (n = 11) tissue microarrays 
analyzed by quantitative multiplex immunohistochemistry. The P values indicate comparisons of leukemia types to healthy BM using two-sided 
Wilcoxon rank sum test. G. Multiplex immunohistochemistry of AML BM from a patient with M4 FAB subtype AML with high VISTA expression. 
VISTA, CD11b (myeloid marker), CD14 (monocyte marker), CD34 (blast/progenitor marker), and DAPI stainings are shown. See also Figure S5 
and Table S5. 

CGAs (Figure 6F). Furthermore, the presence of 
cytogenetic abnormalities was linked to increased CGA 
expression, whereas HLA II score correlated negatively 
with the number of expressed CGAs. In DLBCL, number 
of CGAs correlated with mutation and CNV load (FDR < 
0.05) as well as specific alterations such as 1p13.1 
deletions containing CD58 (FDR = 0.02) and CD58 
mutations (FDR = 0.1), providing a potential immune 
evasion mechanism for CGA-expressing cancers through 
disruption of the CD2-CD58 interaction with T cells 
(Figure 6G). In the ABC subtype, a mutational signature 
including 6q deletions and MYD88, HLA-A, and ETV6 
mutations (FDR < 0.15), resembling cluster 5 (Chapuy et 
al., 2018), was enriched in cases expressing multiple 
CGAs (Figure S6F), suggesting a link between a distinct 
genetic subtype and activation of germline-restricted 
genes. Cytolytic score and gene sets reflecting 
inflammatory response were interestingly downregulated 
in ABC DLBCL expressing multiple CGAs (Figure S6G). 
In the GCB subtype, 1p13.1 deletions and KLHL6 
mutations correlated with CGA expression, similarly as in 
all DLBCLs (FDR < 0.08). Together, these data suggest 
that CGA expression is activated in myelomas and 
lymphomas harboring genomic aberrations or distinct 
genetic alterations associated with immune evasion, 
often involving promoter hypomethylation. 

Immunological features are associated with survival 
Finally, we aimed to delineate how immunological 
features are associated with overall survival. To 
comprehensively profile the prognostic associations of 
immune properties, we obtained survival models using 
elastic net Cox proportional hazards modeling in DLBCL, 
MM, and AML where multiple datasets with outcome data 
were available in Hemap (Table S7). Tested features 
included cytolytic score, HLA scores, number of 
expressed CGAs and individual CGAs, 
immunomodulatory genes, microenvironmental genes 
linked to cytolytic infiltrate, as well as established clinical 
risk scores, International Prognostic Index (IPI) in DLBCL 
and International Staging System (ISS) in MM. We used 
Hemap datasets for training the models (Figures S7A 
and S7B) and validated the results in independent test 
cohorts. The established models remained prognostic for 
overall survival in independent external validation 
datasets (Figures 7A and 7B), indicating that the 
identified associations of immune features to survival are 
robust. Although clinical risk scores were strong 
predictors of survival both in DLBCL and MM as 
expected, immunological features significantly improved 

outcome predictions in both cancer types, further 
stratifying patients within existing risk groups, including 
the cell-of-origin subtype and IPI in DLBCL and ISS in 
MM (Figures S7C and S7D).  

In DLBCL, certain monocyte/macrophage genes 
correlated with cytolytic score, such as LYZ and APOC1, 
strongly associated with better overall survival according 
to the risk model and also in univariate analysis (Figures 
7C, S7E, and S7F). However, several macrophage-
associated genes, including C1QA, C1QB, C1QC, 
CD163, and MS4A6A, were linked to worse survival, 
suggesting that distinct types or states of infiltrating 
myeloid cells characterized by these genes may have 
opposing impact on outcomes. The co-stimulatory genes 
CD58 (CD2 ligand) and CD86 (CD28/CTLA-4 ligand) 
were associated with improved outcomes. HLA II 
expression was also associated with survival benefit, 
consistent with previous findings (Lenz et al., 2008). 

In MM, the butyrophilin BTN3A1 expressed in B cell 
malignancies was linked to better overall survival, 
reflected also in univariate analysis (Figures 7D, S7G, 
and S7H). Several immune checkpoint receptor ligands 
associated with superior survival, including CD274 (PD-
L1), PDCD1LG2 (PD-L2), VISTA (C10orf54), and 
CD276. However, the TIGIT ligand PVRL3 (CD113), 
highly expressed in MM compared to other cancers, was 
linked to poor survival. The expression of several CGAs 
was linked to worse outcome in both MM and DLBCL, 
suggesting increased CGA expression in more 
aggressive or advanced cancers. 

In AML, we found establishing a risk model generalizable 
across datasets challenging, likely due to heterogeneity 
in the composition of the studied patient cohorts. 
However, we were able to identify individual genes with 
robust survival associations across multiple datasets 
(Table S7). Elevated VISTA (C10orf54) expression was 
associated with adverse outcomes in both Hemap and 
TCGA AML datasets (Figure 7E). Together, these 
findings show that immunological properties of 
hematological cancers have complex associations with 
survival. 

DISCUSSION 

Understanding the determinants that shape the 
immunological landscape in cancer subtypes could 
enable more precise development of immune 
intervention approaches. We explored large-scale 
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Figure 6. Cancer-germline antigen expression is frequent in multiple myeloma and linked to DNA methylation A. Schematic of identification 
of genes with cancer-germline expression pattern. B. Expression of CGAs across hematological malignancies (Hemap). Color indicates percentage 
of samples from each cancer types expressing a given antigen. C. Expression of MAGEB2 across Hemap cancer types and healthy samples. 
Examples of expression of other CGAs are shown in Figure S6C. D. Expression of CGAs across cell lines of hematological malignancies (CCLE) 
shown as a heatmap. Numbers of expressed  (> 0.5 RPKM) and hypomethylated (< 0.5 average methylation) CGAs in each cell line are indicated 
as bars above the heatmap. Correlation (Spearman) of gene expression with average methylation and the corresponding FDR is shown on the 
right. Cell lines within cancer types are ordered by number of expressed CGAs and genes are ordered by correlation coefficient between gene 
expression and average methylation. E. Expression of MAGEA4 in CCLE hematological cancer subtypes. Dots indicating individual cell lines are 
colored by average methylation value, where 0 indicates no methylation and 1 indicates complete methylation. F. Gene sets correlated with the 
number of expressed CGAs in MM. Heatmap shows GSVA scores of gene sets for each patient. G. Genetic alterations correlated with the number 
of expressed CGAs in DLBCL (Chapuy et al.). See also Figure S6 and Table S6. 
 
genomic datasets to uncover factors explaining 
immunological heterogeneity in hematological 
malignancies. We validated the discoveries in 
independent datasets and using orthogonal methods 
including multiplex immunohistochemistry and flow 
cytometry, lending robustness to the findings. The data 
suggest that both microenvironmental properties and 
cancer cell-intrinsic genetic and epigenetic features are 
associated with cytotoxic immune response, expression 
and presentation of antigens, and immune checkpoints. 
Our findings thus underline the importance of integrating 
data of genetic and epigenetic aberrations as well as the 
tumor microenvironment for a complete understanding of 
factors that may impact immunotherapy responsiveness. 
  
We found consistently higher cytolytic score in 
lymphomas compared to other hematological 
malignancies, suggesting a higher ratio of cytotoxic 
lymphocytes to cancer cells in the lymphoma 
microenvironment. Increased cytolytic activity within 
lymphomas was associated with monocyte/macrophage-
derived and IFNγ-inducible genes. A similar IFNγ-related 
profile has been shown to predict clinical response to 
PD-1 blockade (Ayers et al., 2017). Specific types of 
macrophages, monocytes, and DCs expressing these 
genes were recently identified using single-cell 
transcriptomics in melanoma (Li et al., 2018), 
corroborating our cell type inference and suggesting that 
similar cell types may infiltrate solid tumors and 
lymphomas. A distinct microenvironmental response 
might thus influence efficacy of immunotherapies in 
lymphomas as opposed to acute leukemias, where we 
were unable to detect similar microenvironmental 
signatures associated with cytolytic activity.  
 
We identified cancer cell-intrinsic genetic alterations 
linked to cytotoxic infiltration, including TP53 mutations, 
5q deletions, and complex karyotype in AML. These 
genetic aberrations have been demonstrated to co-occur 
in elderly AML patients with dismal prognosis (Rücker et 
al., 2012). Both negative (Rooney et al., 2015) and 
positive (Thorsson et al., 2018) associations between 
TP53 alterations and immune infiltration have been 
observed in other cancers. In DLBCL, DTX1 mutations 
marked an immune-infiltrated group of especially GCB 
lymphomas. Cytolytic infiltration was linked to distinct 
molecular subtypes, including AML with myelodysplasia-
related changes and ABC DLBCL, suggesting that the 
molecular phenotype of cancer cells may influence the 
immune infiltrate together with genetic alterations. 
 
Downregulation of HLA class II genes was associated 
with hypermethylation of the transactivator CIITA, 
potentially resulting in defective antigen presentation to T 
helper lymphocytes. As HLA loss has been linked to AML 

relapse after allo-HSCT (Vago et al., 2009), low 
expression level already at diagnosis could restrict CD4+ 
T helper cell-mediated recognition both during an 
autologous immune response and in the allogeneic 
setting. Moreover, CIITA hypermethylation could be 
responsible for the transcriptional downregulation of HLA 
II upon relapse after allo-HSCT (Christopher et al., 2018). 
Given the reversible nature of epigenetic silencing as 
demonstrated by combined hypomethylating and IFNγ 
treatment of AML cells, reversal of promoter methylation 
could potentially augment HLA II-dependent immunity. Of 
interest, combining PD-1 blockade immunotherapy with 
hypomethylating agents has demonstrated efficacy in 
AML patients (Daver et al., 2018). 
 
Several co-inhibitory immune checkpoints were 
expressed in a cancer type-specific fashion. Targeting 
different inhibitory interactions might thus be required for 
maximizing immunotherapy benefit in each disease. 
VISTA emerged as a novel checkpoint enriched in 
myeloid malignancies, including CML, MDS, JMML, and 
particularly monocytic, NPM1-mutated AML. VISTA 
expression was also linked to inferior outcomes in AML. 
VISTA is expressed in monocytes and neutrophils in 
healthy hematopoiesis (Flies et al., 2014), and could 
potentially be utilized by cancer cells of these lineages 
for immune evasion. VISTA has been implicated as a 
potential novel immunotherapy target in some solid 
tumors, such as prostate and pancreatic cancer and 
mesothelioma (Blando et al., 2019; Gao et al., 2017; 
Hmeljak et al., 2018). We also identified both genetic and 
epigenetic factors impacting immunomodulatory gene 
expression, such as high expression of VISTA in NPM1-
mutated AML and copy number losses of MICB, 
encoding a ligand for the activating T/NK cell receptor 
NKG2D, thus providing additional potential layers of 
regulation to the cancer type-specific expression 
patterns. 
 
CGA expression was more frequent in multiple myeloma 
and B and T cell lymphomas compared to other 
hematological malignancies. Although comparison to 
other cancers has not been previously performed, CGA 
expression and anti-CGA immune responses have been 
demonstrated in MM (Atanackovic et al., 2007; van Duin 
et al., 2011). Higher mutation loads have been described 
in MM and DLBCL compared to other hematological 
malignancies (Alexandrov et al., 2013), suggesting 
higher immunogenicity in these diseases conferred both 
by neoantigens and CGAs. CGA expression correlated 
with promoter hypomethylation and poor prognosis both 
in MM and DLBCL. Consistently, progression from 
monoclonal gammopathy with undetermined significance 
to advanced MM has been linked to global 
hypomethylation (Heuck et al., 2013). Thus, treatment of 
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Figure 7. Immunological properties are associated with survival A. Kaplan-Meier curves of overall survival for DLBCL patients stratified by the 
risk index of the immunological risk model (shown in Figure 7C) in the validation set (GSE98588). Patients were divided into three groups based on 
quartiles and P value was obtained using the score (log-rank) test. B. Kaplan-Meier curves of overall survival, as in A,  for MM patients stratified by 
the risk index of the immunological risk model (shown in FIgure 7D) in the validation set (GSE16716 and GSE24080). C. Heatmap depicting 
features included in the DLBCL immunological risk model in the validation set (GSE98588). Patients are ordered by the risk index and hazard ratio 
(HR) for each feature is shown on the left. Features are grouped based on their function and clinical features are shown below the model heatmap. 
D. Heatmap depicting features included in the MM immunological risk model in the validation set (GSE16716 and GSE24080). Patients are ordered 
by the risk index and hazard ratio (HR) for each feature is shown on the left. Features are grouped based on their function and clinical features are 
shown below the model heatmap. E. Kaplan-Meier curves of overall survival for AML patients stratified by C10orf54/VISTA expression in Hemap 
and TCGA AML. Patients were divided into three groups based on quartiles and P value was obtained using the Wald test. See also Figure S7 and 
Table S7. 
 
advanced myelomas could potentially benefit from 
immunotherapies leveraging the high number of 
expressed antigens, such as vaccines or T cell receptor 
therapies tailored for most common CGAs. CGA 
expression has been associated with resistance to 
CTLA-4 blockade (Shukla et al., 2018) and, in contrast, 
with response to PD-1 inhibition (Saghafinia et al., 2018), 
suggesting also relevance for patient stratification for 
immune checkpoint blockade therapies. In contrast, CGA 
expression was sparse due to hypermethylation in 
leukemias, where treatment with hypomethylating agents 
could be used increase antigenicity.  
 
The immunological risk models revealed complex links 
between immunological features and patient survival, 
and highlighted potential immune properties that could be 
targeted to improve outcomes. In AML, the unfavorable 
prognosis linked to high VISTA expression further 
underlines VISTA as a potential target for novel immune 
checkpoint blockade approaches. Distinct subsets of 
monocyte/macrophage genes correlated with CTL/NK 
infiltration displayed diverging survival associations in 
DLBCL. Different cell populations marked by these genes 
co-infiltrating with cytotoxic lymphocytes may modulate 
the resulting immune response thus influencing 
outcomes, possibly explaining the lack of favorable 
prognostic survival association of cytolytic score itself. 
Although the cohorts studied here have received 
immunomodulatory treatments such as rituximab in 
DLBCL and thalidomide in MM, correlating immune 
signatures to outcomes of novel immunotherapies such 
as immune checkpoint blockade or CAR T cell therapy 
may reveal patterns distinct from those highlighted here. 
 
Our approach of estimating immune cell composition 
from bulk gene expression data is limited in the analysis 
of rare cell types and normal immune cells 
transcriptionally resembling cancer cells, which is often 
the case in hematological malignancies. We anticipate 
that single-cell transcriptomics studies will further 
illuminate the association between infiltrating immune cell 
types and their transcriptional programs, such as those 
regulating antigen presentation or co-stimulatory 
signaling. Moreover, the genotypic-immunophenotypic 
associations identified from genomic data are unable to 
yield mechanistic insights into causal relationships 
between tumor genetics and immune states. We envision 
that the results presented here can guide further 
experimental investigation into the underlying tumor 
characteristics that modulate inter-tumor heterogeneity in 
immune landscapes. 
 
In summary, our integrative analysis provides evidence 
of genomic and microenvironmental factors associated 
with variation in the immune contexture between different 
tumors. The findings of this study highlight the need to 

integrate genetic, epigenetic, and transcriptomic data of 
different aspects of the immune landscape to understand 
potential determinants of responsiveness to cancer 
immunotherapies. 
 
 
MATERIALS AND METHODS 
 
Patients 
RNA sequencing and flow cytometry 
Bone marrow (BM) aspirates from 37 AML patients were 
collected at diagnosis after signed informed consent from 
each patient (permit numbers 239/13/03/00/2010, 
303/13/03/01/2011, Helsinki University Hospital (HUH) 
Ethics Committee) in accordance with the Declaration of 
Helsinki. 
 
Tissue microarrays (TMA) 
We collected diagnostic BM biopsies from AML (n=66), 
B-ALL (n=54), T-ALL (n=14), and CML (n=62) patients 
treated in the Department of Hematology, HUH between 
2005-2015, and DLBCL biopsies treated at the 
Department of Oncology, HUH (n=233). In addition, BM 
biopsies taken in 2010 from subjects due to persistent 
abnormal leukocyte, erythrocyte, or platelet count and 
without diagnosis of hematological malignancy, chronic 
infection, nor autoimmune disorder in six years of follow-
up were included as controls (n=11). Study subjects gave 
written informed research consent to the study and to the 
Finnish Hematology Registry. The study complied with 
the Declaration of Helsinki and the HUH ethics 
committee (permit number 303/13/03/01/2011). Fresh 
BM biopsies and lymphoma samples were formalin-fixed 
and paraffin-embedded (FFPE) in the Department of 
Pathology, HUSLAB and stored at the Helsinki Biobank 
at HUH. TMA blocks were constructed from up to four 1 
mm cores from representative regions of tumor samples. 
RNA sequencing-defined molecular subtypes were 
available from a subset of DLBCL TMA patients (Reddy 
et al., 2017). 
 
Cell line 
The MOLM13 cell line established from the peripheral 
blood of a 20-year-old man with AML was obtained from 
the Deutsche Sammlung von Mikroorganismen und 
Zellkulturen GmbH (DSMZ).  Cells were cultured in 
RPMI-1640 (Lonza) with 10% FBS, 2 mM L-glutamine, 
100 U/mL penicillin, and 100 μg/mL streptomycin (R10). 
The cell line was authenticated using GenePrint10 
System (Promega) and confirmed to have an overall 
identity estimate of 100% at all 18 tested alleles.  
  
Processing of genome-wide multilevel data 
Each dataset and sample numbers used in the analysis 
are listed in Figure S1. 
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Hemap 
The Hemap dataset includes 9,544 gene expression 
profiles collected across several studies from the Gene 
Expression Omnibus (GEO) database described in 
(Pölönen et al., 2019). The data, curated sample 
annotations and disease categories are available at 
http://hemap.uta.fi. Briefly, these data represent 
microarray data from the commonly used hgu133Plus2 
platform that were processed using the RMA probe 
summarization algorithm (Irizarry et al., 2003) with probe 
mapping to Entrez Gene IDs (from BrainArray version 
18.0.0, ENTREZG) and a bias-correction method (Eklund 
and Szallasi, 2008) to generate gene expression signal 
levels. To ensure representative samples for the 
immunological analyses, we performed filtering on the 
original dataset. Treatments that induced cell 
differentiation or activation of normal cells were kept, 
while other ex vivo treatments (617 samples), non-
malignant cells from patients (417), or clusters 
representing only a single study (>90% samples with the 
same study ID, 38 samples) were excluded from the 
analysis performed here, resulting in a dataset of 8,472 
samples. We also distinguished sorted (using FACS, 
isolated by magnetic beads using either positive or 
negative selection, or microdissected), unsorted, and cell 
line samples based on sample descriptions. Finally, 
clinical information was added when available (survival 
from GSE10358, GSE10846, GSE11877, GSE12417, 
and GSE14468; progression-free survival, sex, age, 
race, and tumor cell contents from GSE13314, 
GSE10846, GSE24080, and GSE19784). All annotations 
for the samples used are provided in Table S1. 
 
TCGA 
Processed data were retrieved into feature matrices for 
AML and DLBCL, containing expression, mutation, CNV, 
methylation, and clinical data, using TCGA Feature 
Matrix Pipeline and fmx-construction.sh command, 
available at https://github.com/cancerregulome/gidget. 
For representing the data at individual gene loci, level 3 
RSEM RNA-seq and methylation data for each TCGA 
AML and DLBCL sample was obtained from firehose 
GDAC, run stddata__2015_11_01. Methylation data 
were annotated using FDb.InfiniumMethylation.hg19 R 
package to assign probes at TSS.  
 
CCLE 
RNA-seq read counts (RPKM) dated 2018.05.02, RRBS 
methylation data for CpG islands and TSS 1 kb dated 
2018.06.14, and cell line annotations dated 2012.10.18 
were downloaded from: 
https://portals.broadinstitute.org/ccle/data.  
 
Other multilevel datasets 
Affymetrix Human Genome U133 Plus 2.0 gene 
expression datasets (DLBCL: GSE98588 and AML: 
GSE6891) were normalized using affy 1.52.0 (Gautier et 
al., 2004) RMA and gene expression values obtained 
using Brainarray v18 probe mapping. Mutations, 
chromosomal rearrangements, and clinical and sample 
characteristics were obtained from Supplementary 
Tables 2-5 for the DLBCL study (Chapuy et al., 2018). 
Clinical data, mutations, and sample annotations were 
obtained from Supplementary Tables 1-2 for AML (Glass 
et al., 2017).  

Methylation data from pre-B-ALL and T-ALL samples in 
GSE49031 (processed beta values for each probe) were 
used in the analysis of CIITA expression and methylation 
(CIITA probe cg04945379).  
BeatAML mutation, clinical, and sample annotation data 
were downloaded from source data (from Supplementary 
Table 3) (Tyner et al., 2018). The RNA-seq count matrix 
was obtained from the authors. Genes with log2 cpm 
level > 1 in over 1% of samples were voom transformed 
and quantile normalized using limma (Ritchie et al., 
2015). Mutation status was assigned based on exome 
sequencing and clinical sequencing data. Only bone 
marrow samples were used in the statistical analysis of 
immunological features. 
 
Sample stratification based on gene expression 
profiles 
Molecular subtypes were identified from the Hemap, 
TCGA AML, and BeatAML datasets using an data-driven 
approach as previously described (Mehtonen et al., 
2019). Briefly, the Barnes-Hut approximated version of t-
SNE implementation (BH-SNE) (16) was used with 15% 
most variable genes to perform dimensionality reduction. 
Kernel density-based clustering algorithm known as 
mean-shift clustering (Cheng, 1995) with bandwidth 
parameter set to 1.5 (subsets of data, one cancer type) 
or 2.5 (all data) was used (LPCM package in R) to cluster 
the data following the dimensionality reduction. To 
identify corresponding clusters in different datasets of the 
same cancer type, similarity in sample clustering 
between datasets was evaluated in a data-driven manner 
using GSVA (Hänzelmann et al., 2013) enrichment 
scores as previously described (Mehtonen et al., 2019). 
Briefly, top 20 positively and negatively correlated genes 
per cluster were used to identify similar clusters in a new 
dataset with significant enrichment for cluster specific 
genes.  
 
Statistical analysis using discrete gene expression 
features 
For individual genes, discrete categories (high, low, and 
not detected) were assigned based on mixture model fit 
as described previously for Hemap and DLBCL 
GSE98588 datasets (Pölönen et al., 2019). Briefly, 
Gaussian finite mixture models were fitted by 
expectation-maximization algorithm (R package mclust 
version 4.3). The model was chosen by fitting both equal 
and variable variance models and ultimately choosing the 
model which achieved a higher Bayesian Information 
Criterion (BIC) to avoid overfitting. To assure minimal 
amount of misclassifications of data samples to discrete 
categories, three additional rules were implemented. 
First, if the uncertainty value from the model was above 
0.1, value of 0 was assigned to denote low level. 
Secondly, log2 expression values lower than 4 or higher 
than 10 were assigned to a value -1 and 1, respectively. 
Thirdly, genes without clear background distribution 
(gene is always expressed), or if over 90% of the 
samples had uncertain expression based on the model 
classification, categories were re-evaluated. If >60% of 
the uncertain samples had expression above or below 6, 
categories were assigned as 1, and -1, respectively. For 
binary classification, values -1 and 0 were merged as 
low/not detected expression and 1 as expressed for 
statistical evaluation.  
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Sample group specificity Hypergeometric tests followed 
by Bonferroni adjustment of P values were used to 
estimate statistical enrichment of gene expression in a 
particular sample group. Secondly, one-tailed Wilcoxon 
rank sum test was performed to compare the mean of a 
sample group expression to other groups to test whether 
gene is expressed at higher level. P value was corrected 
using Bonferroni if multiple groups were compared. 
Thirdly, fold change was computed between the tested 
groups. 
 
Development of immunological scores 
Cytolytic score 
To find genes most specifically expressed in CD8+ T 
cells/NK cells, specificity to these cell types was 
evaluated with the sample group specificity tests as 
described above (hypergeometric test adjusted P value < 
1e-5, fold change > 1.5, Wilcoxon rank sum test adjusted 
P value < 0.01 ) using Hemap samples. Genes with 
significantly higher expression compared to B cells, HSC, 
erythroid cells, macrophage, monocyte, and dendritic 
cells were kept, resulting in 46 CD8+/NK cell-specific 
marker genes (Figure S1B). Known CD8+ T cell/NK cell-
specific genes GZMA, GZMB, PRF1, GNLY, GZMH, and 
GZMM were chosen for further exploration, as they are 
directly related to cytolytic activity of T/NK cells. 
Sorted BCL and AML samples and cell lines from all 
cancers, excluding T cell-like TCL lymphomas (because 
of transcriptomic similarity of TCL cancer cells and T/NK 
cells), were used to check whether these genes are 
expressed in pure cancer cell populations by requiring 
that expression values from pure samples (probeset 
noise distribution) were well separated from T/NK cells 
with high expression of the genes. As a second criteria, 
unsorted BCL and AML populations were compared to 
sorted BCL and AML samples to inspect if unsorted 
populations have samples with higher expression of the 
gene, indicating that increased signal is coming from 
T/NK cells. GZMB was filtered out, as it was highly 
expressed in a subset of pure samples. Geometric mean 
of gene expression for GZMA, PRF1, GNLY, GZMH, 
GZMM was computed followed by log2 transformation to 
be used as a proxy of cytolytic activity in hematological 
cancers. 
 
HLA scores 
To find genes related to HLA II antigen presentation, 
normal non-APC cells including 
CD4/CD8/regulatory/gamma-delta T cells, NK cells, 
erythroid lineage cells, and neutrophils were compared to 
normal APC cells including DCs, B cells, and 
macrophages to find HLA II genes that are expressed 
highly in APC cells, but not in any non-APC cells. 
Wilcoxon rank sum test was computed with option 
“greater” to find genes with higher expression in APC 
cells. Adjusted P value cutoff 0.001 and fold change 
cutoff > 4 were set to find significant genes, resulting in 
350 genes. Genes were further filtered by computing fold 
change between each individual APC and non-APC cells 
to ensure genes are expressed higher in each APC cell 
type (median fold change > 2 to non-APC) resulting in 
total of 66 genes (Figure S4A and  Table S4). Pairwise 
Spearman correlation of the genes overexpressed in 
APC was used to identify HLA II genes whose 
expression most highly correlated with each other using 

Hemap cancer samples (Figure S4B). The geometric 
mean of the HLA II genes HLA-DMA, HLA-DMB, HLA-
DPA1, HLA-DPB1, HLA-DRA, and HLA-DRB1 was 
defined as HLA II score.  
Due to the ubiquitous expression of HLA I on all cell 
types, no filtering was necessary and the geometric 
mean of known HLA I genes B2M, HLA-A, HLA-B, and 
HLA-C was used to detect HLA I expression in the 
samples.  
   
Validation of immunological scores  
Flow cytometry of AML patient samples 
To analyze T and NK cell percentages in 37 AML BM 
samples, fresh diagnostic-phase BM aspirates in EDTA 
tubes were used. Antibodies according to Tables S1 and 
S4 were added to 50 µl of the BM sample, mixed and 
incubated for 15 min, washed with PBS + 0,1% NaN3, 
centrifuged, and the supernatant was discarded. 
Erythrocytes were lysed by incubating the sample in 
FACS Lysing Solution (BD) and the sample was washed 
with PBS + 0,1% NaN3, centrifuged, and the supernatant 
was discarded. The sample was resuspended into 0.5 ml 
FACSFlow Sheath Fluid (BD) and 200,000 events were 
acquired with FACSCanto (BD Pharmingen). Data were 
analyzed using FlowJo (10.0.8r1). For quantification of 
T/NK cells for cytolytic score validation, cell debris was 
excluded based on low forward scatter (FSC), 
lymphocytes were identified as CD45highSSClow cells, 
and T cells gated as CD3+ and NK cells as CD3-CD2+ 
out of lymphocytes (Figure S1D). Percentage of the sum 
of T and NK cells was calculated out of all non-debris 
cells. For quantification of HLA-DR+ AML blasts for HLA 
II score validation, cell debris was excluded based on low 
forward scatter (FSC), blasts were identified based on 
CD45 and SSC, and HLA-DR+ blasts gated as shown in 
Figure S4C.  
 
RNA sequencing of AML patient samples for flow 
cytometry comparison 
RNA sequencing was performed from the same 37 AML 
patient samples. Briefly, total RNA (2.5-5 µg) was 
extracted from BM mononuclear cells obtained by Ficoll-
Paque gradient centrifugation using the miRNeasy kit 
(Qiagen) and depleted of ribosomal-RNA (Ribo-Zero™ 
rRNA Removal Kit, Epicentre) after purification, then 
reverse transcribed to double stranded cDNA 
(SuperScript™ Double-Stranded cDNA Synthesis Kit, 
Thermo Fisher Scientific). Sequencing libraries were 
prepared with Illumina compatible Epicentre Nextera™ 
Technology and ScriptSeq v2™ Complete kit (Illumina) 
and were purified with SPRI beads (Agencourt AMPure 
XP, Beckman Coulter) and library QC was evaluated on 
High Sensitivity chips by Agilent Bioanalyzer (Agilent). 
Paired-end sequencing with 100 bp read length was 
performed using Illumina HiSeq 2000. The reads were 
preprocessed as described previously (Kumar et al., 
2017). Briefly, Trimmomatic was used to correct read 
data for low quality, Illumina adapters, and short read-
length. Filtered paired-end reads were aligned to the 
human genome (GRCh38) using STAR (Dobin et al., 
2013) with the guidance of EnsEMBL v82 gene models. 
Default 2-pass per-sample parameters were used, 
except that the overhang on each side of the splice 
junctions was set to 99. The alignments were then sorted 
and PCR duplicates were marked using Picard, feature 
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counts were computed using SubRead (Liao et al., 
2013), feature counts were converted to expression 
estimates using Trimmed Mean of M-values (TMM) 
normalization (Robinson and Oshlack, 2010) in edgeR 
(Robinson et al., 2010), and lowly expressed genomic 
features with counts per million (CPM) value ≤ 1.00 were 
removed. Default parameters were used, with exception 
that reads were allowed to be assigned to overlapping 
genome features in the feature counting. The 
immunological scores were calculated from TMM values 
based on geometric mean of selected genes, as 
described above. 
 
Validation samples from Hemap 
We used GSE13314 MALT lymphoma pathologic data 
from Chng et al. (Chng et al., 2009) (Table 1) to validate 
cytolytic score in lymphoma samples. GSMids with MALT 
immunohistochemistry data scored by a pathologist was 
compared to cytolytic score using Spearman’s 
correlation. 
 
Comparison to other immunological scores 
CIBERSORT (Newman et al., 2015) was computed for 
Hemap dataset with parameters perm=100 and QN=F. 
Similarly, R package “MCPcounter“ command 
MCPcounter.estimate was used to infer immunology 
scores in Hemap dataset. GSVA was used to compute 
enrichment of Bindea et al. gene sets (Bindea et al., 
2013) for Hemap data using parameter tau=0.25. 
Cytolytic score was correlated to CIBERSORT, MCP-
counter, and Bindea et al. gene set scores using 
Pearson's correlation in Hemap data.  
 
Analysis of microenvironment genes correlated to 
cytolytic score 
Spearman correlation between gene expression level 
and cytolytic score was computed in unsorted cancer 
samples. Expression in CTL/NK cells was compared to a 
particular unsorted cancer sample group based on fold 
change. To distinguish genes that are CTL/NK cell-
expressed, genes with significantly differential expression 
in CTL/NK cells compared to a particular normal cell 
type/purified cancer sample group were identified using 
the sample group specificity tests were performed as 
described above (hypergeometric test adjusted P value < 
1e-3, fold change > 1.5, Wilcoxon rank sum test adjusted 
P value < 1e-5 ) using Hemap samples.  
 
Multiplexed immunohistochemistry (mIHC) 
General 
TMA blocks were sliced in 3.5 µm sections on Superfrost 
objective slides. We used 0.1% Tween-20 diluted in 10 
mM Tris-HCL buffered saline pH 7.4 as washing buffer. 
 
Tissue preparation 
Tissue deparaffinization and rehydration was performed 
in xylene and graded ethanol series. Then, heat-induced 
epitope retrieval (HIER) was carried out in 10 mM Tris-
HCl - 1 mM EDTA buffer (pH 9) in +99°C for 20 min (PT 
Module; Thermo Fisher Scientific). Tissue peroxide 
quenching with 0.9% H2O2 for 15 min was followed by 
protein blocking with 10% normal goat serum (TBS-NGS) 
for 15 min. 
 
Staining 

Primary antibody diluted in protein blocking solution as in 
(Tables S2 and S5) and secondary anti-mouse or anti-
rabbit horseradish peroxidase-conjugated (HRP) 
antibody (Immunologic) diluted 1:1 in washing buffer 
were applied for 1h45min and 45 min, respectively. 
Tyramide signal was amplified (TSA; PerkinElmer) for 10 
min. Primary antibodies and HRP activity were 
inactivated with HIER, followed by peroxide and protein 
block steps as described above. The second primary 
antibody with its matching HRP-conjugated secondary 
antibody diluted 1:5 in washing buffer were added and 
TSA signal amplified. We repeated HIER, peroxide block 
and protein block and applied two additional primary 
antibodies immunized in different species overnight in 
+4°C. AlexaFluor647 and AlexaFluor750 fluorochrome-
conjugated secondary antibodies (Thermo Fisher 
Scientific) diluted 1:150 in washing buffer (45 min) and 
4′,6-diamidino-2-phenylindole counterstain (DAPI; 
Roche/Sigma-Aldrich) diluted 1:250 in TBS (15 min) were 
added. Last, ProLong Gold (Thermo Fisher Scientific) 
was used to mount slides. 
 
Imaging 
Fluorescent images were acquired with the 
AxioImager.Z2 (Zeiss) microscope equipped with Zeiss 
Plan-Apochromat 20x objective (NA 0.8). Scanned 
images were acquired and converted to JPEG2000 
format (95% quality). For representative images shown in 
figures, image channels were recolored using Fiji 
(Schindelin et al., 2012; Schneider et al., 2012), 
brightness and contrast were adjusted using identical 
parameters for images acquired using the same antibody 
panel to maintain comparability and representative 
regions of the images were selected. 
 
Image analysis 
Unfocused images were eliminated from the analysis. 
Cell segmentation and intensity measurements were 
computed based on adaptive Otsu thresholding and 
gradient intracellular intensity of grayscaled DAPI 
staining with the image analysis platform CellProfiler 
2.1.2 (Carpenter et al., 2006). Cores with fewer than 
1500 cells were eliminated from analysis. Cutoffs for 
marker positivity were based on staining intensity 
patterns of pooled cells of all samples and were 
confirmed visually (Tables S2 and S5, ‘mIHC panel’). 
Counts of all cells and cells positive for marker 
combinations were averaged across multiple cores of 
each patient when available. Immune cells were 
quantified as proportion of positive cells to all cells (e.g. 
proportion of CD68+ cells to total core cell count). 
 
Gene set enrichment analysis 
Gene set enrichment analysis was computed using the 
command line version of GSEA (Subramanian et al., 
2005). A total of 1645 genesets from MsigDB V5 c2 
category gene sets (BIOCARTA, KEGG, REACTOME, 
SA, SIG, ST), MsigDB HALLMARKS, version 4 of NCI 
NATURE Pathway Interaction Database, and WIKIPW 
(6.2015) were used for enrichment analysis. 
Immunological scores were used as a continuous 
phenotype to rank genes using Pearson correlation as 
metric for ranking. Sample permutation and multiple 
hypothesis testing correction was done to obtain FDR for 
each gene set. Gene sets were limited to contain 
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between 5 to 500 genes per gene set. Single sample 
enrichment score was assigned to significant pathways 
for visualization and for Bindea gene sets using GSVA 
package 1.24.0 (Hänzelmann et al., 2013) in R.  
 
Genomic correlations with immunological features 
Feature generation from multilevel data 
Feature matrix generation, pairwise analysis run, and 
feature-specific filtering was based on the TCGA 
featurematrix pipeline available in 
https://github.com/cancerregulome/gidget/tree/master/co
mmands/feature_matrix_construction. 
Continuous/discrete numeric data matrices were 
generated for the analyzed datasets Hemap, TCGA AML 
and DLBCL, Chapuy et al. DLBCL, and Glass et al. AML 
including clinical, genomic and immunologic features. In 
case of categorical features, binary indicator features 
were generated to compare i) each categorical feature to 
the rest of the samples, ii) two categorical features to rest 
of the samples and iii) comparing two categorical 
features against each other. Feature types (gene 
expression, protein expression, clinical, methylation, 
CNV, mutations, sample annotation) were distinguished 
from each other. Missing values were assigned as NA. 
To account for differential methylation within the same 
locus, probes associated with each gene were first 
correlated to gene expression using Spearman's 
correlation (P < 0.05) and divided into positive and 
negatively correlated sets. Probes with standard 
deviation below 0.1 were removed. Mean methylation for 
these sets were computed to obtain two methylation 
features per gene, with positive and negative association 
to gene expression.  
 
Feature statistical analysis 
Spearman correlation was used to for numeric-numeric 
and numeric-binary feature pairs (in R 
use=”pairwise.complete.obs”), while one-tailed Fisher’s 
exact test test of co-occurrence was used for binary-
binary feature analysis. To keep the number of 
comparisons smaller and statistically reliable, only 
features with at least 5 observations were used in the 
analysis. 
 
For P value adjustment, the number of features and 
intrinsic correlation are very different for different data 
pairs. Therefore, we performed separate statistical tests: 
The first test was to find whether features of a gene 
(methylation, mutation, CNV, gene expression) are 
correlated with each other (to identify alterations of the 
gene itself associated with each other), followed by 
Benjamini-Hochberg (BH) correction of the obtained P 
values. The second test was to assess whether features 
of a gene are correlated to features of other genes (to 
identify e.g. driver alterations associated with 
immunological features) and included additional feature 
types, such as clinical variables and sample annotations, 
followed by BH correction of P values. Multiple 
hypothesis testing was performed separately for the 
correlation and Fisher's test results, as these produce 
different P value distributions. Similarly, different 
significance level cutoffs were used for different data 
pairs. Methylation-methylation and CNV-CNV pairs were 
omitted. FDR cutoff was set to 0.1, except for mutations 
FDR < 0.25 was permitted. Further filtering criteria are 

specified in the result tables. This procedure allowed us 
to identify most relevant correlations and to filter out 
correlations difficult to interpret. 
 
Differential methylation analysis 
ERRBS (Glass et al. AML) 
GSE86952 raw aligned ERRBS AML methylation data 
were analyzed using the methylSig (Park et al., 2014) R 
package to identify methylation changes in patients with 
low HLA II expression or PML-RARA mutation compared 
to rest of the samples. Intersection of samples with both 
methylation, gene expression, and mutation data was 
106 samples. Data files were read in R using the 
methylSigReadData command with parameters 
context=”CpG” and destranded=TRUE. methylSigCalc 
command was run to obtain differentially methylated 
CpGs with parameters min.per.group=5 to require a 
minimum of 5 CpGs per group for calling differential 
methylation. All significant DMCs with  FDR < 0.05 and 
absolute methylation change > 25% for CIITA genomic 
locus were obtained. 
 
Illumina 450k (TCGA) 
For comparison of differentially methylated immune 
checkpoint genes between TCGA AML and DLBCL 
samples, beta values of Illumina 450k probes within 1 kb 
of the transcription start site of the genes were averaged 
to obtain a single value representing methylation of the 
gene promoter area. M values were calculated from 
mean beta values using log2(beta/(1-beta)) and 
differential methylation analysis was performed using 
limma. For the corresponding differential gene 
expression analysis, RNA-seq read counts were 
converted to cpm and normalized using limma voom with 
quantile normalization, and differential expression 
analysis was performed using limma. 
CCLE For correlation of gene expression to methylation 
in CCLE RRBS data, CpG and TSS 1 kb methylation 
values of each gene were averaged and the resulting 
mean methylation value was compared with gene 
expression using Spearman correlation. 
 
Cell culture experiments 
For drug treatment experiments, MOLM13 cells were 
plated on flat-bottom 96-well plates at 50,000 cells/well in 
a volume of 100 µL. Cell were treated with 10, 100 or 
1,000 nM decitabine (Selleck) or DMSO as a control, 
both in the presence or absence of 10 ng/mL 
recombinant human interferon gamma (Peprotech), all 
conditions in triplicate wells. After 3 days, 25 µL of cell 
suspension from each well was washed with 100 µL 
PBS-EDTA and stained with 5 µL of HLA-DR-FITC (clone 
G46-6, BD BioSciences) or isotype control (clone G155-
178, BD BioSciences) antibodies or left unstained in a 
total volume of 25 µL PBS-EDTA and antibodies. Cells 
were then washed with 100 µL PBS-EDTA, resuspended 
to 50 µL PBS-EDTA, and 10,000 events were acquired 
on a FACSVerse flow cytometer (BD BioSciences). Flow 
cytometry data were analyzed using FlowJo 10.0.8r1. 
Viable cells were gated using forward (FSC-A) and side 
scatter (SSC-A), followed by gating for singlets using 
FSC-A and FSC-H. HLA-DR+ cells were gated such that 
untreated isotype control-stained cells were gated 
negative. Final HLA-DR+ cell percentages were obtained 
by subtracting isotype control-stained HLA-DR+ cell 
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percentages (mean of triplicate wells) from HLA-DR 
antibody-stained HLA-DR+ cell percentages at each 
treatment condition. 
 
Immune checkpoint gene list curation 
A list of co-stimulatory and co-inhibitory ligands and 
immunomodulatory enzymes known to be expressed on 
APCs or T/NK cell target cells was curated based on the 
literature. T cell ligands were based largely on a 
comprehensive review on T cell co-stimulation (Chen and 
Flies, 2013), and the list was supplemented with NK cell 
receptor ligands and immunomodulatory enzymes. 
References for the receptor-ligand interactions and their 
stimulatory or inhibitory effect on T/NK cells are listed in 
Table S5.  
 
Antigen expression analysis 
Genes expressed only in normal or cancer cells were 
identified using the sample group specificity tests were 
performed as described above (hypergeometric test 
adjusted P value < 1e-2, fold change > 1.25, Wilcoxon 
rank sum test adjusted P value < 1e-5 ) using Hemap 
samples. Genes expressed in cancer were required to be 
expressed highly in > 5% of the patients in at least one 
disease based on mixture model categories (high vs. low 
expressed/not detected) and not expressed in normal 
cells. GTEx database (GTEx Consortium, 2015) V6 RNA-
seq gene median RPKM values for each tissue were 
used to find genes specific to testis when compared to 
other tissues (excluding ovary). Testis genes were 
defined to have < 0.25 RPKM expression in all other 
tissues, resulting in a total of 1,563 genes common 
between Hemap and GTEx datasets. This list of genes 
was filtered to contain only coding genes expressed in 
Hemap cancer samples, resulting in 59 genes. CCLE cell 
line data for hematological cancers was also used to filter 
out genes not expressed > 0.5 RPKM levels in at least 5 
cell lines, resulting in a final antigen genelist containing 
27 genes. Number of expressed CGA genes was 
computed for each sample using mixture model-
discretized gene expression values for Hemap data, and 
using a cutoff of 0.25 RPKM for CCLE data. For Chapuy 
et al. DLBCL, patient LS2208 with testicular DLBCL was 
omitted from the analysis. 
 
Survival analysis 
Univariate analysis 
Cox regression available in R package ‘survival’ version 
2.42-4 was applied for univariate analyses of numeric 
immunology scores, including HLA I score, HLA II score, 
and CGA number in myeloma, AML, and DLBCL 
datasets, and cytolytic score in AML and DLBCL where 
unsorted samples were available (for myeloma 
GSE19784, GSE16716, GSE24080, for DLBCL 
GSE10846, GSE11318, and GSE17372 and for AML 
GSE10358, GSE12662, GSE12417, 
GSE14468,GSE6891). Furthermore, all co-stimulatory 
genes and individual CGAs were included in the analysis. 
Additionally, non-T/NK expressed genes with expression 
fold change > 2 between CTLs/NK cells and the unsorted 
cancer samples and correlation with cytolytic score 
above 0.4 (as in Figures 2 and S2). Well-known 
prognostic markers, including ISS for myeloma and IPI 
for DLBCL were also included in the analysis. Survival 
data were analyzed also for each individual study in 

Hemap to make sure findings are not due to differences 
in survival cohorts.  
 
Multivariate analysis 
Features correlated to overall survival in univariate 
analysis for each disease were selected for multiple 
regression analyses computed in Hemap myeloma and 
DLBCL datasets to evaluate their prognostic significance. 
Features were filtered using an adjusted P value cutoff 
0.2 to reduce the number of features for the multiple 
regression analysis and to decrease the the false 
discovery rate. Regularized Cox regression model 
available in glmnet 2.0.16 R package was used to fit the 
Cox model. L1 and L2 norm ratio (alpha parameter) was 
optimized using 10-fold cross-validation and alpha values 
from 0 to 1 with 0.05 increments. To reduce variability in 
the model, cross-validation for each alpha value was 
iterated 100 times. Alpha and lambda with the lowest 
mean fitting error were used for the final model fitting. 
Independent test datasets were used for model 
validation. Hemap RCHOP-treated samples from 
GSE10846 and GSE17372 were used for training and 
GSE98588 for testing in DLBCL, and for myeloma 
GSE19874 was used for model training and GSE24080 
for model testing. Prognostic index (PI) was computed for 
each sample as in (Royston and Altman, 2013) for 
training and test sets. Cox proportional hazards model 
and Kaplan-Meier plots were used to compare model 
performance between training and test sets. PI with a 
similar hazard ratio and a low overall P value were used 
to verify that a set of distinct immunology features could 
be used to distinguish different patient outcomes 
independently of the dataset where the model was 
generated.  
 
Data visualization 
R package “ComplexHeatmap” (Gu et al., 2016) was 
used for drawing heatmaps and oncoprints and “ggplot2” 
for drawing boxplots, barplots, and dot plots. Gene 
expression Z-scores were used for t-SNE map 
visualization to denote samples with low and high 
expression (low: < -2 to -1 and high 1 to > 2). For Hemap 
dataset, e-staining was used for gene expression 
visualization for mixture model components (not 
detected, low, and high) as described above.  
 
Statistical analysis 
The statistical details of all experiments are reported in 
the text, figure legends, and figures, including statistical 
analysis performed, statistical significance, and counts. 
Significance codes correspond to P values or FDR as 
follows: * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001. In 
boxplots, horizontal line indicates the median, boxes 
indicate the interquartile range, and whiskers extend from 
the hinge to the smallest/largest value at most 1.5 * IQR 
of the hinge. Generally, nonparametric methods including 
Spearman correlation and Wilcoxon rank sum test were 
used for statistical analyses. 
 
 
Data and software availability 
Software used for the analyses are described and 
referenced in the individual Method Details subsections 
and are listed in the Key Resources Table. Scripts used 
to generate results are available upon request. Hemap 
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data can be queried and visualized from http://hemap.uta.fi. 

 
REAGENTS AND RESOURCES 
 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
CD2 FITC (clone S5.2) BD Cat#: 347404 
CD3 PerCP-Cy5.5 (clone SK7)  BD Cat#: 332771 
CD10 PE (clone HI10a) BD Cat#: 332776 
CD19 PE-Cy7 (clone SJ25C1) BD Cat#: 341113 
CD22 APC (clone S-HCL-1) BD Cat#: 333145 
CD45 APC-Cy7 (clone 2D1) BD Cat#: 348814 
CD56 FITC (clone NCAM16.2) BD Cat#: 345811 
CD13 PE (clone L138) BD Cat#: 347406;  

RRID:AB_2732011 
CD34 PerCP-Cy5.5 (clone 8G12) BD Cat#: 347222 
CD117 PC7 (clone 104D2D1) Beckman Coulter Cat#: IM3698; 

RRID:AB_131184 
CD33 APC (clone P67.6) BD Cat#: 345800 
CD11b APC-Alexa Fluor 750 (clone Bear 1) Beckman Coulter Cat#:  B36295 
HLA-DR V450 (clone L243) BD Cat#: 655874; 

RRID:AB_2716783 
CD45 KromeOrange (clone J.33) Beckman Coulter Cat#: A96416 
CD14 FITC (clone MP9) BD Cat#: 345784 
CD64 PE (clone 10.1) Bio-Rad (Formerly AbD 

Serotec) 
Cat#: MCA756PE; 
RRID:AB_321800 

CD33 PE-Cy7 (clone P67.6) BD Cat#: 333952; 
RRID:AB_2713932 

HLA-DR APC (clone L243) BD Cat#: 347403 
HLA-DR FITC (clone G46-6) BD Cat#: 555811 
IgG2a κ isotype control FITC (clone G155-178) BD Cat#: 555573 
CD8 (clone C8/144B) BioSB Cat#: BSB 5172 
CD11b (clone EP45) BioSB Cat#: BSB 6439 
CD34 (clone QBEnd 10) Dako Cat#: M716501-2; 

RRID:AB_2750581 
CD68 (clone KP1) Abcam Cat#: ab955; 

RRID:AB_307338 
IDO (clone D5J4E) Cell Signaling Technology Cat#: 86630; 

RRID:AB_2636818 
VISTA (clone D1L2G) Cell Signaling Technology Cat#: 64953 
CXCL9 (polyclonal) Thermo Fisher Scientific Cat#: PA5-34743; 

RRID:AB_2552095 
CD14 (clone D7A2T) Cell Signaling Technology Cat#: 75181 
DAPI (4′,6-Diamidine-2′-phenylindole dihydrochloride) Sigma-Aldrich Cat#: 10236276001  
Alexa Fluor 647 Goat Anti-Mouse IgG (H+L) Thermo Fisher Scientific Cat#: A-21236;  

RRID:AB_2535805 
Alexa Fluor 647 Goat Anti-Rabbit IgG (H+L) Thermo Fisher Scientific Cat#: A-21245; 

RRID:AB_2535813 
Alexa Fluor 750 Goat Anti-Mouse IgG (H+L) Thermo Fisher Scientific Cat#: A-21037; 

RRID:AB_2535708 
Alexa Fluor 750 Goat Anti-Rabbit IgG (H+L) Thermo Fisher Scientific Cat#: A-21039; 

RRID:AB_2535710 
BrightVision Poly-HRP Goat Anti-Mouse  Immunologic VWR Cat#: 

VWRKDPVM55HRP 
BrightVision Poly-HRP Goat anti-Rabbit Immunologic VWR Cat#: 

VWRKDPVR55HRP 
Chemicals, Peptides, and Recombinant Proteins 

Decitabine Selleck Chemicals Cat#: S1200; CAS: 2353-
33-5 

Recombinant human interferon gamma PeproTech Cat#: 300-02 
DAPI (4′,6-Diamidine-2′-phenylindole dihydrochloride) Sigma-Aldrich Cat#: 10236276001  
ProLong Gold Thermo Fisher Scientific Cat#:  P36934; 

RRID:SCR_015961 
Alexa Fluor 488 Tyramide Reagent Thermo Fisher Scientific Cat#: B40953 
Alexa Fluor 555 Tyramide SuperBoost Kit Thermo Fisher Scientific Cat#: B40933 

Critical Commercial Assays 
miRNeasy kit Qiagen Cat#: 217004 
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Ribo-Zero™ rRNA Removal Kit Illumina (formerly Epicentre) Cat#: MRZH11124 
SuperScript™ Double-Stranded cDNA Synthesis Kit Thermo Fisher Scientific Cat#: 11917010 
ScriptSeq v2™ Complete kit Illumina Cat#: BHMR1224 
Agencourt AMPure XP PCR purification system Beckman Coulter Cat#: A63881 
   

Deposited Data 
Raw and processed clinical, array, and sequence data (Hemap) (Pölönen et al., 2019) hemap.uta.fi 
AML ERRBS methylation, gene expression, genetic alteration and 
clinical data 

(Glass et al., 2017) GEO: GSE86952 

BeatAML gene expression, genetic alteration and clinical data (Tyner et al., 2018)  
CCLE RNA-seq, RRBS methylation data, and cell line annotations (Barretina et al., 2012) RRID:SCR_013836; 

https://portals.broadinstitu
te.org/ccle/data 

DLBCL gene expression, genetic alteration, and clinical data (Chapuy et al., 2018) GEO: GSE98588 
GTEx gene expression data (GTEx Consortium, 2015) RRID:SCR_013042; 

https://gtexportal.org/hom
e/datasets 

pre-B-ALL and T-ALL processed methylation data (Nordlund et al., 2013) GEO: GSE49031 
   
Experimental Models: Cell Lines 

MOLM-13 DSMZ Cat#ACC-554; 
RRID:CVCL_2119  

Software and Algorithms 
affy 1.52.0 (Gautier et al., 2004) RRID:SCR_012835; 

http://www.bioconductor.o
rg/packages/release/bioc/
html/affy.html 

Bioconductor  RRID:SCR_006442; 
http://www.bioconductor.o
rg/ 

CellProfiler 2.1.2 (Carpenter et al., 2006) RRID:SCR_007358; 
https://cellprofiler.org/ 

CIBERSORT (Newman et al., 2015) https://cibersort.stanford.e
du/ 

ComplexHeatmap (Gu et al., 2016) https://bioconductor.org/p
ackages/release/bioc/html
/ComplexHeatmap.html 

edgeR (Robinson et al., 2010) RRID:SCR_012802; 
http://bioconductor.org/pa
ckages/edgeR/ 

Fiji (Schindelin et al., 2012) RRID:SCR_002285; 
http://fiji.sc 

FlowJo 10.0.8r1 Tree Star RRID:SCR_008520 
ggplot2  RRID:SCR_014601;  

https://ggplot2.tidyverse.o
rg 

glmnet 2.0.16 (Friedman et al., 2010) RRID: SCR_015505; 
https://cran.r-project.org/ 
web/packages/glmnet/ind
ex.html 

GSEA (Subramanian et al., 2005) RRID:SCR_003199; 
http://software.broadinstit
ute.org/gsea 

GSVA 1.24.0 (Hänzelmann et al., 2013) https://bioconductor.org/p
ackages/release/bioc/ 
html/GSVA.html 

FDb.InfiniumMethylation.hg19  http://bioconductor.org/pa
ckages/release/data/anno
tation/html/FDb.InfiniumM
ethylation.hg19.html 

limma (Ritchie et al., 2015) RRID:SCR_010943; 
http://bioconductor.org/pa
ckages/release/bioc/html/l
imma.html 

mclust 5.4 (Scrucca et al., 2016) https://cran.r-
project.org/web/packages/
mclust/ index.html 

MCPcounter (Becht et al., 2016) https://github.com/ebecht/
MCPcounter 

methylSig (Park et al., 2014) http://sartorlab.ccmb.med.
umich.edu/software 

MSigDB (Subramanian et al., 2005) RRID:SCR_016863; 
http://software.broadinstit
ute.org/gsea/msigdb 
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Picard http://broadinstitute.github.io
/picard/ 

RRID:SCR_006525; 
http://broadinstitute.github
.io/picard/ 

R R Core Team https://www.r-project.org 
STAR (Dobin et al., 2013) RRID:SCR_015899; 

https://github.com/alexdob
in/STAR 

Subread (Liao et al., 2013) RRID:SCR_009803;  
http://subread.sourceforge
.net/ 

survival 2.42-4  https://cran.r-
project.org/web/packages/
survival/index.html 

Trimmomatic (Bolger et al., 2014) RRID:SCR_011848; 
http://www.usadellab.org/
cms/index.php?page=trim
momatic 
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