
A Framework for Integrating Directed and

Undirected Annotations to Build Explanatory

Models of cis-eQTL Data.

David Lamparter,1,2 Rajat Bhatnagar,1 Katja Hebestreit,1

T. Grant Belgard,1,3 Victor Hanson-Smith1∗

1Verge Genomics, South San Francisco, CA 94080

∗To whom correspondence should be addressed; E-mail: victor@vergegenomics.com.

2 Current Address: Health 2030 Genome Center, Chemin des Mines 9, 1202 Geneva, Switzerland

3 Current Address: The Bioinformatics CRO, Niceville, FL 32578

1 Abstract

A longstanding goal of regulatory genetics is to understand how variants in genome sequences

lead to changes in gene expression. Here we present a method named Bayesian Annotation Guided

eQTL Analysis (BAGEA), a variational Bayes framework to model cis-eQTLs using directed and

undirected genomic annotations. In a use case, we integrated directed genomic annotations with

eQTL summary statistics from tissues of various origins. This analysis revealed epigenetic marks

that are relevant for gene expression in different tissues and cell types. We estimated the predictive

power of the models that were fitted based on directed genomic annotations. This analysis showed
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that, depending on the underlying eQTL data used, the directed genomic annotations could predict

up to 1.5% of the variance observed in the expression of genes with top nominal eQTL association

p-values < 10−7. For genes with estimated effect sizes in the top 25% quantile, up to 5% of the

expression variance could be predicted. Based on our results, we recommend the use of BAGEA

for the analysis of cis-eQTL data to reveal annotations relevant to expression biology.

2 Introduction

A longstanding goal in the field of genetics is to accurately predict the phenotypic consequences

of any given variant from the genome sequence alone, i.e. to ‘read the genome’[1]. This would

help to reveal the phenotypic effects of very rare variants even if their effect is weak. The effects

of such variants are typically studied via whole genome sequencing studies. However these studies

often have limited statistical power because, by definition, there are few carriers in any sampled

population[2].

Recently, progress has been made in predicting epigenetic marks and transcription factor (TF)

binding from genome sequence alone; these sequence-based models predict the effect of any

given sequence variant on epigenetic marks (and TF binding) [3][4][5][6][7]. The question now

is how to extend these models to predict effects on genetically complex phenotypes, such as

common diseases. A mechanistic stepping stone between the regulation of epigenetic marks

and the regulation of complex phenotypes is the regulation of gene expression, as suggested by

the previous observation that disease-causing sequence variants are enriched in gene expression

quantitative trait loci (eQTLs)[8][9]. Thus, there is a need for sequence-based models to predict

gene expression.

One strategy to build sequence-based models of gene expression is to leverage sequence-based

epigenetic mark models. Results of sequence-based models of epigenetic marks can be interpreted

as directed genome annotations. A genome annotation is defined as a collection of genome regions
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that have a shared property such as coverage by a particular epigenetic mark, or evolutionary

conservation across species. Each region can potentially carry an intensity value. For directed

annotations, the sign of its intensity value depends on characteristics of the sequence in the

region, such as the presence of a specific allele. A simple motivating example is that of a SNP in

a TF binding site. In this situation, the TF can have higher binding affinity for one allele versus

the other allele. This can cause consistent directional transcriptional effects: the allele inhibiting

binding of an activating TF for instance should lead to decreased expression of the target gene.

A simple strategy to express this effect as a directional annotation would be to use TF position

weight matrices that calculate TF affinity for a given sequence; current and more sophisticated

methods express the same relationship using deep neural networks.[3][4][5][6][7].

Methods to evaluate the effect of directed genome annotations on gene expression have recently

been proposed[7][10]. Specifically, Zhou et al. predicted variant impact without exploiting eQTL

data using models that predict expression from chromatin patterns directly[7]. Reshef et al.

presented a fast method to determine which directed annotations are enriched in variants causal

for a given phenotype. However, the method from Reshef et al. is geared towards screening and

hypothesis testing rather than towards detailed predictive modeling. For instance, the Reshef

model does not account for interactions between the effect of an annotation and the distance to

the transcription start site (TSS).

Here we present a new predictive model of gene expression, named Bayesian Annotation Guided

eQTL Analysis (BAGEA). BAGEA is a variational Bayes modeling framework to analyze eQTLs

using both directed and undirected annotations. BAGEA can model interactions between these

annotations by weighting the impact of the directed annotation based on the undirected annota-

tions. Consequently, BAGEA can directly model phenomena relevant to genetic architecture,

such as the relatively larger impact of SNPs close to the TSS on directed annotations compared

to that of distal SNPS, making BAGEA mores useful for predictive modeling. BAGEA’s results

are interpretable and highlight genome annotations that are particularly predictive for gene

expression. Further, BAGEA can model multiple causal SNPs per region. Our software imple-
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mentation of BAGEA can be run on summary statistics using external linkage disequilibrium

(LD) information as well as on individual level genotype data directly. Optionally, using a low

rank approximation of the LD information improves run-time and decreases BAGEA’s memory

requirements.

We used BAGEA to analyze results from a cis-eQTL meta-analysis in human monocytes and

from cis-eQTL summary statistics derived from tissues of various origins[9][11]. As additional

input, we gave the method regulatory impact predictions of common variants on epigenetic

marks from a recent deep neural network model[7]. We specified these predictions as directed

directional annotations in the method. We show that BAGEA highlighted biologically sensible

annotations as particularly predictive of eQTLs. Further we estimated the predictive power of

the directed annotations for various eQTL data sets. Overall, our results suggest that BAGEA is

a useful framework to build predictive models of gene expression based on directed annotations,

find biologically relevant annotations, and benchmark methods that produce such directed

annotations.

3 Results

3.1 Model Overview

BAGEA models gene expression as dependent on SNP genotypes in cis. In general, SNP effects

on gene expression depend on both directed and undirected annotations (Figure 1a). BAGEA

builds predictors of gene expression and ranks annotations by their impact on gene expression.

For every gene j, BAGEA takes as input a genotype matrix Xj , an expression vector yj ,

annotation matrices V j , F j and Cj . Xj has dimensions (n ×mj), where n is the number of

individuals assayed, and mj is the number of SNPs in cis of gene j’s TSS. The matrices V j F j

and Cj are of dimensions (mj × s), (mj × q), and (mj × t) respectively, where s, q and t are the

number of annotations used. BAGEA models gene expression as a linear combination of SNP

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 26, 2019. ; https://doi.org/10.1101/619452doi: bioRxiv preprint 

https://doi.org/10.1101/619452
http://creativecommons.org/licenses/by-nc-nd/4.0/


genotypes:

yj = Xjbj + εj , (1)

where εj is an i.i.d normal noise vector and bj is a vector of SNP effects. The vector bj is

modeled as:

bj ∼ Nmj ((V jω) · F jν)), diag(αj)−1), (2)

where · is the pointwise product (i.e. Hadamard product) and the diag(x) operator stands for a

diagonal matrix with elements on the diagonal set to x. Detailed descriptions of the terms are

as follows:

• V j encodes directed annotations. In our applications of BAGEA, V j is previously computed

from sequence-based models, where each column in V j represents an epigenetic mark and

each row represents a SNP. Each entry in V j expresses the predicted effect of a genotype

change on the epigenetic mark in question.

• F j encodes undirected annotations. Each element in F j expresses the presence or absence

of the annotation at a SNP’s location. In our applications of BAGEA, F j is derived from

the relative positions of a SNP and gene j’s TSS, where each column represents a particular

region around the TSS. For example, if a column in F j encodes a region of 20 kilobases

(KB) upstream from the TSS, all entries for rows corresponding to SNPs within 20 KB

upstream of that TSS will be set to 1 and entries for all other rows will be set to 0.

• ω and ν are vectors that are estimated by BAGEA. Specifically, ω and ν are the effects of

annotations in F j and V j on the SNP effects bj .

• α−1
j is a vector that is estimated by BAGEA and models the variances of elements of

bj . Allowing different variances for the elements of bj typically produces sparse estimates

where most elements in bj are close to zero[12]. Further, α is modeled as dependent on the

undirected annotation matrix Cj . Cj can potentially be identical to F j but can model
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different undirected annotations as well (see Method Details).

Typically, directed annotations are grouped by their cell type or assay type. BAGEA can use

this grouping structure in order to select groups of annotations that are useful for predicting

gene expression (Figure 1b). BAGEA selects annotation groups via a modeling strategy that

yields sparsity on the annotation group level similar to the group lasso[13]. In BAGEA, this

grouping strategy is implemented by partitioning annotations into multiple meta-annotations

(such as different cell types, assay types etc.). When using this partitioning mechanism, BAGEA

includes an extra random variable vector υ of the same length as the number of elements in the

partition structure (e.g. the number of cell types, or the number of assay types) (See Methods as

well as Figure 1b for an illustrative example). The kth element of υ, υk, controls the variance of

the effect sizes for annotations that fall into partitioning group k. Specifically, υk is proportional

to the inverse of the variance of the respective elements of ω. υ−1
k is therefore called the variance

modifier of annotation partition element k (see Methods).

Importantly, the model can be reformulated in terms of the summary statistics zj = XT
j yj/

√
n

and LD matrices Σj = XT
j Xj/n. The reformulation enables the application of BAGEA to

studies for which only summary statistics are available, by estimating Σj from external sources

(see Methods).

3.2 Evaluation Strategy for Model Fit

We developed an approach to evaluate the performance of BAGEA when fitting directed annota-

tions to genotype and gene expression data. An important feature of BAGEA is that its results

can be used to predict gene expression for a gene without using any expression data for that

gene, but rather using genotypes and genome annotations whose weights are fitted from other

genes. We can therefore validate BAGEA by training it on gene expression data for one set of

genes, and then calculating the extent to which the trained model predicts gene expression for
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other genes.

We propose a so-called directed predictor µ̂j , which predicts gene expression for gene j based

on knowledge of directed annotations and genotype for gene j. Using the same notation as in

equations (1) and (2), the predictor µ̂j is computed by

µ̂j = Xj((F j ν̂) · (V jω̂)) (3)

The squared magnitude Sj = µ̂T
j µ̂j measures how much gene expression variance the model

attempts to explain via the predictor µ̂j . To evaluate the predictor’s accuracy and degree of

overfitting, we use the directed mean squared error MSEdir
j = (yj − µ̂j)T (yj − µ̂j)/n. The

evaluation of the predictor is performed on a set of genes independent of the ones used to estimate

ω and ν.

Inspection of equation (3) shows that we can reformulate the right hand side in terms summary

statistics zj = XT
j yj/

√
n, LD matrices Σj = XT

j Xj/n, and estimated directed effect of SNPs

η̂j = (F j ν̂) · (V jω̂), i.e. we can write MSEdir
j = 1 − 2η̂jzj/

√
n + η̂T

j Σjη̂j if we assume that

yTy = n. In principle, the reformulation allows us to calculate a predictor’s directed mean

squared error, even if only summary statistics are available, by approximating Σj from external

sources.
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(a) (b)

Figure 1: Illustration of BAGEA model components.
a) The core components of the BAGEA model in the summary statistics formulation. Observed
variables are in squares while estimated variables are circled. Given are zj , the eQTL z-scores
for gene j, as well as the LD matrix Σj , defining the correlation between summary statistics.
Further, z-scores are influenced by the true eQTL effects bj . These effects in turn depend
on directed and undirected annotations, V j and F j respectively. The impact of annotations
on bj is estimated from the data via ω and ν. b) An example of the modeling of different
priors of elements of ω using meta-annotations via υ variable vectors. We assume that directed
annotations are available for nine annotations, which were derived from tissues Liver, Blood and
Brain via 3 assay types DNase1, H3K27ac and H3K4me3. It is reasonable to assume that for
a given eQTL study, particular tissues or cell types are more relevant than others. We model
this by introducing a variable υ for each tissue (or cell type) that affects the prior distribution
of only those elements of ω that are derived from this tissue, e.g. υLiver only affects elements
of ω tied to experiments performed in liver. Analogously to tissue, we model different priors
for various for assay types. Shown is the resulting network of influences of the variable υtissue,
υassay on ω. (For clarity, we used the actual group names as indices, while in the main text,
elements of υ’s and ω are indexed by natural numbers).

3.3 Directed Annotations Derived from Blood can Partially Explain cis-eQTLs in

Monocytes

We used BAGEA to determine the extent to which annotations can predict gene expression in

CD14 positive monocytes. To this end, we aggregated data from two eQTL studies on expression

genetics in CD14 positive monocytes[14][15]. For directed annotations, we used predictions of
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genetic variant effects on epigenetic marks (12 different histone mark assays and DNase1 with 4

different peak calling strategies) in various blood-derived cell types from the pre-trained Expecto

model. Expecto is a deep learning framework that predicts epigenetic marks based on sequence

context and performs in silico mutagenesis to evaluate the consequences of sequence variants[7].

Expecto yielded 2002 directed annotations of which 253 were from blood related celltypes. These

are referred to as the Blood annotation subset in this paper. We partitioned these directed

annotations by cell type and assay type, respectively, and modeled separate prior variance terms

for each partition (Figure 1b).

To train BAGEA, we used gene expression data from human chromosomes 1 through 15, filtering

for genes with a top nominal cis-eQTL p-value lower than 10−10, i.e. only genes that had a

SNP in cis showing a signficant assocation with a p-value lower than 10−10 were included. To

test model fit, we predicted expression for genes on chromosomes 16 through 22 with a top

nominal cis-eQTL p-value below 10−10. Specifically, we used the model fit on the training set

to derive the estimates ω̂ and ν̂ (see Equation 2). We then used these estimates to calculate

the directed predictors µ̂j for genes on the test set (see Equation 3). To assess the predictive

power of µ̂j , we calculated MSEdir
j for every gene in the test set. We observed that directed

genome annotations can partially explain gene expression variance (Figure 2). The average

MSEdir across all genes was 99.5%, which was significantly smaller than 100% (as evaluated

by bootstrap sampling genes; p-value smaller than 10−4). MSEdir
j showed a dependence on

predictor size Sj (where Sj = µ̂T
j µ̂j), such that for the top quartile of genes when ranked by Sj ,

the directed component was estimated to predict 1% to 3% of expression variance (Figure 2a).

For each gene, the variance explained is bounded by the additive genetic variance component in

cis which is typically much lower than 100%. We estimated the variance of expression explained

for each gene in cis in an unbiased way via Haseman-Elston (HE) regression[16]. This approach

suggested that around 6.6% of the total genetic variance in cis was explained by the externally

fitted directed component µ̂j for genes in the top quartile w.r.t Sj (Figure 2b).

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 26, 2019. ; https://doi.org/10.1101/619452doi: bioRxiv preprint 

https://doi.org/10.1101/619452
http://creativecommons.org/licenses/by-nc-nd/4.0/


●●●
●●●●●●

●
●

●

●

●

●

●

●●
●●
●●●●●●

●

●
● ●

●

●

0.98

0.99

1.00

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125

Av. Directed Predictor Size (S)

A
v.

 D
ire

ct
ed

 M
S

E
 (

M
S

E
di

r )

Annotation

●

●

Blood

TF

(a)

0.6

0.8

1.0

1.2

0.0 0.5 1.0

Genetic Variance (σ̂cis
2 )

D
ire

ct
ed

 M
S

E
 (

M
S

E
jdi

r )

(b)

Figure 2: Gene expression variance can be partially explained by directed genome annotations.
The BAGEA model was fitted on genes in the training set (all genes on chromosomes 1 through
15) using monocyte eQTL data on genes with a top nominal p-value below 10−10, and with
Expecto-derived directed annotations. Expecto includes 2002 total annotations, of which one
of two subsets were used: 253 annotations derived from histone and DNase1 assays in a blood
related cell types (Blood), or, alternatively, 690 annotations derived from TF ChIP-Seq (TF). For
each gene j in the test set (all genes on chromosomes 16 through 22 with a top nominal p-value
below 10−10), we calculated the directed predictor of expression µ̂j . As a measure of a predictor’s
size, we use its squared magnitude Sj = µ̂T

j µ̂j . To evaluate the predictor’s performance, we
calculated MSEdir

j , the mean squared error (MSE) when predicting gene expression yj from
µ̂j . To estimate what the smallest attainableMSEdir

j would be, we estimated σ2
gcis

, the additive
genetic variance in cis via Haseman-Elston regression per gene. a) The relationship between
the MSE of the predictor and its squared magnitude. We sorted results by predictor Size Sj

and averaged MSEdir
j within a sliding window containing 25% of genes and step size of 5%

of data. Averaged Directed Predictor Size S: The mean value of Sj per window on the
horizontal axis; Averaged Directed MSE (MSEdir): The averaged MSEdir

j of genes falling
into the window on the vertical axis. The 95% confidence interval for each window was derived
by bootstrapping. Most variance is explained by genes in the top quartile when ranked by Sj .
b) The relationship between MSEdir

j and σ2
gcis

for genes in the top quartile when ranked by Sj .
Genetic Variance (σ2

gcis
): The estimated additive genetic variance in cis on the horizontal

axis. Directed MSE (MSEdir
j ) on the vertical axis. 95% confidence intervals for the mean

of both the MSEdir and σ2
gcis

are represented as the corners of the red diamond (i.e. the
confidence interval for the average MSEdir is given by the upper and lower corner, whereas the
confidence interval for the average σ2

gcis
is given by the right and left corner respectively). A

linear regression is plotted as the blue line, with 95% confidence interval shown in grey.
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3.4 Joint Modeling of cis-eQTLs and Directed Annotations Highlights Biologically

Relevant Epigenetic Marks

We next evaluated if BAGEA can effectively be used to discover which annotations, or groups of

annotations, are most predictive of gene expression. We grouped the directed annotations by cell

type and assay type, and for each set of annotation groups, we modeled separate prior variance

modifiers υ−1 (Figure 1b). For each annotation group k we measured its contribution to gene

expression as its estimated variance modifier υ−1
k (See Model Overview).

For the monocyte data, BAGEA estimated the largest variance modifiers for annotations from

DNase1 as well as H3K27ac and H3K4me3 assays (Figure 3a). This observation is consistent

with results from a previous method, using undirected annotations, suggesting that SNPs with

an effect on gene expression are enriched in open chromatin (DNase1 ), activated enhancers

and promoters (H3K27Ac, H3K4me3 )[17]. Across cell type annotations, BAGEA estimated the

largest variance modifiers for annotations from two blood cell types that were both CD14 positive

(Figure 3b). This observation matches our expectations because the cells in the underlying

expression data were derived from CD14 positive cells[14][15]. Across all tested pairs of assays

and cell types, BAGEA estimated the largest positive effect sizes for annotations from DNase1,

H3K27ac,H3K4me3 assays in CD14 positive cells (Figure 3c).

It is well known that eQTLs increase in intensity closer to the TSS. This suggests that the effects

of directed annotations might also be bigger for SNPs close to the TSS than for SNPs that are

distal. BAGEA models SNP distance dependence of directed annotation effects by weighting

the directed annotation effect term V jω across SNP’s, with a distance modifier F jν (see Model

Overview). We next tested whether BAGEA estimated directed annotation effect sizes to be

dependent on a SNP’s distance to the TSS. We examined the value of a SNP’s estimated distance

modifier F j ν̂ against its position relative to the TSS. We observed a characteristic peak around

the TSS (Figure 3d), suggesting that BAGEA can indeed produce a similar pattern of distance

dependence for the effect sizes derived from directed annotations as for the eQTL effect sizes

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 26, 2019. ; https://doi.org/10.1101/619452doi: bioRxiv preprint 

https://doi.org/10.1101/619452
http://creativecommons.org/licenses/by-nc-nd/4.0/


themselves.

We repeated this analysis with a different set of directed annotations, namely 690 Expecto

annotations derived from transcription factor (TF) ChIP-Seq in any cell type. We estimated

the TF annotation subset to be similarly predictive of gene expression as the Blood annotation

subset (Figure 2a). Parameter estimates for ω suggest that binding sites of the TF c-Myc in

cell line NB4 have the largest effect size on gene expression among all tested 690 annotations

(Supplementary Figure 1). NB4 is a promyelocytic leukemia cell line that can be differentiated

into neutrophils or monocytes[18]. NB4 is therefore expected to have similar expression genetics

as CD14 positive monocytes, and, given that no TF ChIP-Seq experiment was performed in

monocyte cell lines directly, the large ω values for NB4 data are consistent with our expectations.
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Figure 3: BAGEA, fitted on monocyte eQTL data, selects relevant epigenetic marks and increases direc-
tional effect sizes for SNPs close to a TSS.
Parameter estimates when applying BAGEA to monocyte eQTL data using as directed annota-
tions histone and DNase1 Expecto predictions derived from blood-related cell types (i.e. Blood
from Figure 2). a) For each chromatin assay type, BAGEA models an assay variance modifier
υ̂−1

assay that captures the extent to which that assay type is predictive of gene expression. Shown
are the square roots for the assay types with the ten highest variance modifiers (from 17 assay
types total). In the BAGEA model, DNase1, H3K27Ac and H3K4me3 assays have largest
modifiers. b) For each cell type, BAGEA models a celltype variance modifier υ̂−1

cell, similar
to the assay variance modifier in panel a. Shown are the square roots for the cell types with
the ten highest variance modifiers (out of 61 cell types). In the BAGEA model, CD14 positive
cells have the largest modifiers. c) BAGEA reveals which experiments underlying the directed
annotations that were most predictive of gene expression. Assay Type x Cell Type: Each
experiment is a particular assay type performed in a particular cell type. Effect Size (ω̂i, for
experiment i): The BAGEA-estimated effect on gene expression. Shown are the ten largest
directed annotation effect sizes. In the BAGEA model, the experiments using DNase1, H3k27Ac
and H3Kme4 with CD14 positive cells have the largest effect sizes. We also see that most of
the 253 annotations are estimated to have a close to zero effect. d) Shown is the estimated
distance modifier of the directed component, F ν̂. We see a characteristic peak around the
TSS, implying that the directed annotations are upweighted close to the TSS.
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3.5 Modeling Directional Components is Robust to the Use of Summary Statistics

In many cases it is not feasible to compute LD for the population from which the summary

statistics were derived (i.e., the study population), and LD has to be derived from other sources

(i.e., external genotypes) [19][20]. The use of external genotypes allows publicly available summary

statistics to be analyzed without access to restricted individual level genotype data[9]. However,

LD computed on external genotypes can only approximate LD patterns of the study population.

We therefore need to test the accuracy of methods when using external genotypes.

We evaluated if directed annotation effects were robust to the genetic source of LD information.

We used 1000 Genomes data to compute LD as it is publicly-available and widely used for this

purpose[21]. We re-fit the BAGEA model to monocyte data with the Blood annotation subset,

using LD matrices derived from European 1000 Genomes data. We then compared ω estimates

when using LD from 1000 Genomes to ω estimates when using LD from the monocyte data

itself, for every annotation in the monocyte Blood data. We observed that the two approaches

produced similar effect sizes with a linear regression R2 of 97.5% and regression slope of 0.96

(Figure 4a). This suggests that directed annotation effect estimates are robust to the source of

LD information.

We then explored if the source of LD information affected our estimates of directed mean

squared error (MSEdir). To this end, we estimated MSEdir on chromosomes 16 through 22

from summary statistics and external LD matrices derived from 1000 Genomes alone, and then

compared these MSEdir values to the original MSEdir values computed with LD derived from

monocyte data. We ensured that the same SNPs were included, by removing SNPs with low

minor allele frequency (MAF) in either of the sets. We observed that the two sources of LD

produced MSEdir values that agree with each other, with a linear regression R2 of 99.9% and

regression slope of 1.002 (Figure 4a).
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Figure 4: Directed annotation effect estimates and modeling error are robust to source of LD information.
a) We sought to investigate the impact on the estimate of the directed annotation effect vector ω
when using cis-eQTL summary statistics with external reference LD information. We retrained
BAGEA with the blood monocyte summary statistics using reference LD matrices from the 1000
Genomes Project (1KG). ω̂i (1KG): Directed annotation effect, measured as ω estimates from
BAGEA using 1KG reference LD information. ω̂i (Monocyte LD): Directed annotation effect,
measured as ω estimates from BAGEA using individual-level genotypes from the monocyte
data itself (i.e. using the same genotypes as for the deriving the summary statistics). b) To
investigate the extent to which MSEdir

j can be approximated using summary statistics and
reference 1KG LD matrices, we calculated MSEdir

j on chromosomes 16 to 22 from summary
statistics of monocyte cis-eQTLs (see formula in main text). We then compared these to the
original MSEdir

j values that were computed using genotypes of the monocyte data sets. The
same SNPs were used in both calculations. R2: The coefficient of determination, measuring
goodness-of-fit, from a linear regression of the data shown.

3.6 Analysis of GTEx Summary Statistics Highlights Annotations Gathered from

Relevant Tissues

Having established that BAGEA performs well when using summary statistics, we next deter-

mined if BAGEA can identify relevant directed annotations for empirical data for which summary

statistics are available but genotypes are not. Specifically, we fit BAGEA on summary statistics

for eQTL studies of 13 tissues produced by the GTEx consortium with a sample size of at least

300 for each study[9]. We additionally supplemented this set with results for Lymphoblastoid
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cell lines (LCL) derived from a meta-analysis of GTEx and GEAUVADIS[11]. Because GTEx

gathered eQTLs in complex tissues and sampled fewer individuals than were sampled in the

monocyte studies, we expected lower power to produce robust parameter estimates. We therefore

used different parameter values than in our monocyte analysis, including genes with top nominal

cis-eQTL p-value lower than 10−7. We fitted models using Expecto derived annotation for all

1187 histone or DNase1 annotations derived from Roadmap consortium data[22].

We again split genes into training and test set, fitting BAGEA on the training set and building di-

rected expression predictors µ̂j for all genes in the test set. We observed that the averageMSEdir

per data set was variable across GTEx data sets ranging from 100% to below 98.5%(Figure 5a).

We again saw that increased directed predictor magnitude tended to decrease MSEdir. For

instance in fibroblast, the quarter of the genes with the highest directed predictor magnitude had

an average MSEdir of 97.2%, whereas the quarter with the lowest directed predictor magnitude

had an average MSEdir close to 100% (Figure 5b).

To mitigate the impact of limited power during variable selection, we additionally fit models

without splitting chromosomes into test and validation sets. The distribution of effect sizes of

the directional annotations revealed a bias towards positive values (Supplementary Figure 2).

Focusing on the largest positive effect sizes(top ten or ω̂i > 0.06), we saw many biologically

plausible pairings between the tissue assayed by GTEx via eQTL and the tissue assayed by

roadmap for epigenetic marks (Figure 6a). While some of the pairings are obvious from the

annotation names themselves (such as correct pairings for lymphoblastoid cells, lung and adipose

tissues) others are less obvious yet still plausible. For instance bone marrow derived mesenchymal

stem cells (BMD MSC ) are paired with fibroblast. A recent study found no functional differences

between the two cell types leading the authors to support a longstanding opinion in the field that

these two cell types should be classified as the same[23][24]. The pairing between Esophagus

Mucosa and keratinocytes can be explained by the fact that the Esophagus Mucosa is mainly

composed of squamous cells, i.e. keratinocytes[25][26]. The pairing between tibial artery and

BMD MSC can be explained by the fact that fibroblasts are the main component of vascular
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adventitia[27]. Our model also paired tibial nerve and muscle, which seems physiologically the

least plausible among the ten pairings. When looking at the largest negative values, we saw

some of the same tissue pairings repeated, with only one pairing with effect size ω̂i smaller than

-0.06 for the pairing between fibroblasts and BMD MSC ) (Supplementary Figure 3). When

looking at the variance modifier estimates for the different assay types, we saw that DNAse1 and

H3K27ac epigenetic marks were ranked consistently highly (Figure 6b). Interestingly, among

various annotations derived from the same DNase1 experiments, some performed consistently

better than others: DNase1 peak call annotations outperformed DNase1hotspots calls.
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Figure 5: Directed annotations parially explain gene expression variance in GTEx.
The BAGEA model was fit using various GTEx eQTL data (supplemented with GEAU-
VADIS eQTL data) and with Expecto-derived directed annotations on genes in the trainig set
(chr1,..,chr15) with a top nominal p-value< 10−7. Expecto includes 2002 total annotations, of
which histone and DNase1 annotations from Roadmap were used (1187 annotations in total).
For each gene j in the test set (chr16,..,chr22 and top nominal p-value< 10−7), we calculated
an approximate version of Sj , the squared magnitude of the directed predictor µ̂j , where the
approximation uses external LD information. Further, we calculated an approximate version
of MSEdir

j , the mean squared error (MSE) when predicting gene expression yj from µ̂j . a)
Displayed is the average (approximated) MSEdir

j across all genes for each GTEx experiment.
95% Confidence intervals are computed by bootstrapping. b) Displayed is the relationship
between the MSE of the predictor and its squared magnitude for the four GTEx experiments
with the lowest average MSEdir

j . We sorted results by predictor size Sj and averaged MSEdir
j

within a sliding window containing 25% of genes within the window and step size of 5% of data.
Averaged Directed Predictor Size S: The mean value of Sj per window on the horizontal
axis; Averaged Directed MSE (MSEdir): The averaged MSEdir

j of genes falling into the
window on the vertical axis. The 95% confidence interval for each window was derived by
bootstrapping. We see that most variance is explained by genes in the top quartile w.r.t. Sj .
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Figure 6: Model fit for GTEx summary statistics highlights directional annotations mainly from plausible
cell types.
Shown here are various parameter estimates from fitting 13 different GTEx eQTL summary
statistics data (supplemented with GEAUVADIS eQTL data) using histone and DNase1 Expecto
predictions derived from Roadmap (1187 annotations). 4 a) BAGEA reveals the experiments
underlying the directed annotations that are most predictive of gene expression. GTEx x
Roadmap(Rm): Each GTEx eQTL data set highlights particular Roadmap annotations .
Shown here are the 10 largest positive effect sizes across all eQTL and annotation pairings.
Effect Size: The estimate of ω̂i for experiment i. 4 b) For each chromatin assay type, BAGEA
models an assay variance modifier υ̂−1

assay that expresses the extent to which that assay type is
predictive of gene expression. Shown here is the distribution of the square roots of the assay
variance modifier for any given assay type across all 13 GTEx eQTL data sets. Results are
sorted by the maximal value achieved for each assay type and only the 10 highest scoring assay
types are shown.

4 Discussion

Here we introduced a new method, named Bayesian Annotation Guided eQTL Analysis (BAGEA).

BAGEA integrates directed and undirected genome annotations with eQTL data in a variational

Bayesian framework to build predictive models of gene expression. We applied this method to

eQTL results from CD14 positive monocytes as follows: First, we derived directed annotations

by predicting functional impacts on epigenetic marks for all common SNPs using the pre-trained

Expecto deep neural net[7]. Second, from these Expecto results, we extracted two annotation
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subsets of particular interest: histone ChIP-Seq and DNase1 in blood-derived cell types (the

Blood annotation subset), and TF ChIP-Seq in any cell type (the TF annotation subset).

We then ran BAGEA on both annotation subsets separately, while allowing the effect of the

directed annotations to depend on the distance to the TSS. We tested whether the model had

explanatory power with a training and test protocol (i.e. explanatory power was estimated on

genes that were excluded from training). We saw that the directed component µ of the model

explained part of the gene expression variance in a statistically significant manner (Figure 2a).

For genes with a strong cis-eQTL (p-value< 10−10) and in the top quartile for µTµ, we estimated

that the Blood derived directed component explained 6.6% of total additive genetic variance in

cis (Figure 2b). Importantly, BAGEA prioritized annotations that cohere with widely accepted

biological knowledge and are supported by existing literature (Figure 3).

Next, we investigated to which extent the model fit was affected when the LD information was

approximated via reference genomes. We observed agreement between the results in terms of the

directed component, suggesting that the use of eQTL summary statistics together with external

LD data is justified (Figure 4). We therefore used BAGEA to analyze eQTL summary statistics

results from GTEx. To accommodate the wide range of tissues explored in GTEx, we expanded

the number of directed annotations used in the fitting process to over a thousand. While for some

tissues, the analysis strategy was underpowered to derive a predictive model of gene expression

from directed annotations, others had a significant fraction of gene expression explained by

directed annotations (Figure 5). Many of the directed annotations BAGEA selected, were derived

from tissues that were biologically related to the original tissue of the eQTL studies (Figure 6a).

Additionally, we observed that DNAse1 and H3K27ac epigenetic marks were selected across

many different eQTL studies (Figure 6b).

BAGEA belongs to a class of models that allow the prior probability distribution of a SNP’s

effect size to vary based on the genome annotations with which it overlaps[17][28][29]. These prior

models explored the impact of undirected annotations. While BAGEA can model undirected

annotations, the main novelty comes from the concomitant modeling of directed and undirected
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annotations as well as interactions thereof. Using directed annotations to explain natural variation

in phenotypes was also recently proposed by both Zou et al. and Reshef et al., albeit with

different modeling philosophies[7][10]. Zou et al. use a model that predicts expression from

chromatin patterns directly. This has the advantage that genotype data is not needed. However,

this method does not model the causal impact of epigenetic marks on expression levels but

rather correlations, potentially negatively impacting modeling accuracy. Reshef et al.’s LD

profile regression method has more similarities to BAGEA as it can also be used to analyze

directed annotations and eQTL summary statistics. However, the method is geared towards

multiple hypothesis testing rather than high predictive accuracy. Compared to BAGEA, the

fitted model is simpler allowing for fast analysis of large collections of data. The increased speed

comes at the cost of not being able to model certain features like interactions of directed and

undirected annotations (such as distance to TSS). BAGEA uses a modeling approach that has

both prediction and interpretability in mind. It allows for more complex model features while

it is still useful for revealing relevant biology. Indeed, when using BAGEA on various eQTL

datasets, BAGEA highlighted many relevant cell types. Further, allowing the directed component

to depend on the distance to the TSS improved the model fit.

There are at least two drawbacks to BAGEA’s model complexity. First, there is a substantial

computational cost to fit the model. To mitigate this issue, we used computational tricks such

as fast matrix inversion of approximated LD matrices and parallelization. Second, variational

model fitting approach does not provide confidence intervals. While it does provide credibility

intervals, the approximative nature of mean field variational inference makes these credibility

intervals often unreliable[30]. In our analysis, we opted for evaluating statistical significance of

the model results by using a training and test protocol.

Future research could investigate whether using a different variational approximation rather

than the mean field approximation provides better estimates of the true credibility intervals. We

estimated the extent to which epigenetic marks are able to predict the genetic component of gene

expression in cis. Our results show that while the current generation of directed annotations can
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partially explain the genetic cis component of gene expression, most of the genetic cis component

remains unexplained, indicating that there is still room for improvement. Future gains in this

space will likely come from both improved directed annotations as well as improved modeling.

5 Methods

5.0.1 Model Details

We assume individual level genotype and expression data for n individuals. For gene j, we model

its n× 1 expression vector yj as

yj = Xjbj + εj , (4)

where Xj is the n×mj genotype matrix for the mj SNPs surrounding gene j’s TSS. bj is the

mj × 1 vector of SNP effect sizes and εj the expression noise unexplained by the genotype.

εj ∼ Nn(0, (λj)−1In).

The noise term precision λj is modeled in a hierarchical fashion:

λj ∼ Γ(λ1,λ2),

λ2 ∼ Γ(ρ1, ρ2).

with hyperparameters λ1, ρ1 and ρ2 (while this notation is overloaded, we expect it is clear from

context which parameter is meant). We model the vector of effect sizes bj as a multivariate

normal, whose mean and covariance is affected by annotation matrices. For gene j we assume

undirected 0− 1 coded annotation matrix F j and a directed continuous annotation matrix V j ,

with dimensions mj × q and mj × s respectively. Then,

bj ∼ Nmj ((F jν) · (V jω), diag(αj)−1),
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with αj being a vector of independently drawn gamma distributed random variables (the modeling

is described further down). ω and ν are s and q dimensional multivariate normal distributed

random variables respectively. ω denotes the vector of activities of directed annotations, whereas

ν allows the overall weight that the directed annotations contribute to the effect size vary based

on undirected annotations. This allows, for instance, the impact of the directed annotations to

vary dependent on the distance to the TSS. ω is modeled in a hierarchical fashion

ω ∼ Ns(0, diag(δ−1)),

where δ is again modeled as a random variable. The choice of model for δ enables the implemen-

tation of a grouping structure on the directional annotations (in our application, these groupings

are the assay used to derive the annotation and the cell type in which the assay was performed).

We allow the model to fit differences in prior variances based on group membership. Thereby,

entire groups of directional annotation effects are shrunk to zero (akin to the group lasso[13]). Let

dj be a positive integer vector of length s taking hj different values, i.e dj partitions the vector of

directed annotations into hj groups (in this context, j = 1, ..,w runs over the meta-annotations,

e.g. if the modeled meta-annotations are cell type and assay type, j can either take the value one

or two). Let υj be a random vector of length hj (i.e. these are the group specific weights). Then,

δi =
w∏

j=1
υj

dj
i

,

υj
k = Γ(χ1j ,χ2j),

with hyperparameter χ1j . χ2j is modeled as

χ2j ∼ Γ(ζ1, ζ2),

with hyperparameters ζ1 and ζ2.

ν is modeled as

ν ∼ Nq(c, diag(p)−1),
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where p and c are hyperparameter vectors of length q.

The vector of precisions of the effect size vector α is modeled as

αij ∼ Γ(γ1,κjγij),

where γ1 is a hyperparameter. Note that letting the precision for each SNP vary leads to sparse

estimates for bj ; this is akin to automatic relevance determination (ARD) regression[12]. κj is a

genewise parameter modeled in a hierarchical fashion

κj ∼ Γ(τ1, τ2),

τ2 ∼ Γ(ξ1, ξ2),

where τ1, ξ1 and ξ2 are hyperparameters. To model γij , we again make use of annotation matrices.

For gene j assume undirected 0− 1 coded annotation matrix Cj of dimension m× t. Then the

SNP-wise precision modifier γij is modeled as

γij =
∏

k:Cj
ik

=1

ak

where Cj
ik = 1 if annotation k is active at index i in gene region j. Further,

ak = Γ(φ1,φ2),

where φ1 and φ2 are hyperparameters.

5.1 summary statistics adaptation.

Instead of using individual level genotype and expression data, we can reformulate the model for

the use of summary statistics. Multiplying equation 4 with 1√
n
XT gives

1√
n
XTyj = 1√

n
XTXjbj + 1√

n
XT εj .
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A natural model to use with summary statistics is therefore,

zj =
√
nΣjbj + ε′j ,

where zj is the vector of summary statistics, Σj is the LD matrix and ε′j ∼ Nm(0,λ−1
j Σj).

Σj can be approximated from external sources such as 1KG[21]. Alternatively, we can use an

approximate and regularized version of the empirical LD matrix (see below).

5.2 Model fitting

The model was fit using variational bayes approach[30]. As the model is in the conjugate

exponential family, we can use the variational message passing strategy[31]. For detailed

updating steps see the supplementary information. Naive updates can be prohibitively expensive

due to the requirement to invert many large matrices of the form (cXTX +Dα), where c is a

constant and Dα is a diagonal matrix. To speed up computation, we can approximate the LD

matrix cXTX with a low rank approximation ATt At, where At is a t×m matrix with t < m.

This allows us to speed up a time critical matrix inversion step.

(cXTX +Dα)−1 ≈ Dα
−1 −Dα

−1At(It +ATt Dα
−1At)−1ATt Dα

−1.

If X is already low rank, it is computationally advantageous to use an At s.t. cXTX = ATt At.

If ATt At deviates from cXTX, we need to use the summary statistics formulation to avoid

convergence issues. For more detail, see the supplementary information.

5.3 Deriving Annotations

For common SNPs (minor allele frequency (MAF) above 2.5% in the 1000 Genomes European

population[21]), we ran the Expecto model to predict the effect of the variant on epigenetic

marks[7]. For each SNP we predicted the epigenetic effects within the 200 bp region encompassing
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it. For most SNPs the effects are very close to zero, allowing us to sparsify the results. Absolute

effects smaller than 0.008 were set to zero and all other effects were shrunk towards zero by 0.008

via xnew = x− 0.008 · sgn(x). Next, results for both strands were averaged and the shrinking

procedure repeated with a threshold of 0.008. This yielded matrix with 98.4% of entries zero.

The directed annotations were then scaled to have all the same 2-norm. The magnitude of the

2-norm was set to the average of the unscaled 2-norms. These were the directed annotations

used in BAGEA.

For undirected annotations, we used upstream and downstream distances to the TSS. Distance to

TSS annotations as well as SNP positional annotations were downloaded from the UCSC genome

annotation database with SNP and gene annotations taken from the refGene and snp147Common

tables respectively (see link below)[32].

5.4 cis-eQTL data sets

For monocyte eQTL data, we used two preprocessed monocyte datasets with a combined sample

size of 1176 (418 from Fairfax et al. and 758 from Rotival et al. respectively)[14][15]. Expression

matrices were quantile normalized and 10 PEER factors as well as 5 genotype PCs removed[33].

Genotype data was quality control filtered (4% SNP level missingness; 5% individual level

missingness; Hardy-Weinberg p-value above 10−13 relatedness below 0.1875) and imputed using

the human genome reference panel[34].

We further downloaded eQTL summary statistics for various tissues produced by the GTEx

project if the number of samples was above 300 individuals[9]. Additionally, for LCL, we meta-

analyzed eQTL summary statistics released for 117 samples by GTEx with summary statistics

derived from 358 European PEER-controlled samples collected as part of the GEUVADIS

study[11].
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5.5 Running BAGEA

For the monocyte eQTL analysis, BAGEA was run with default hyperparameter settings (see

supplementary information). Genotypes within a window of 150KB around a gene’s TSS were

used to construct a genewise LD matrix. Each Genewise LD matrix was approximated via

singular value decompostion with a low rank symmetric matrix of equal top eigenvalues and

eigenvectors, such that the trace of the approximation matrix was at least 99% of the trace of

the original LD matrix. Then, a scaled identity matrix was added such that the trace of the

resulting matrix was equal to the trace of the original LD matrix. As undirected annotations,

distance windows around the TSS (50KB, 20KB, 10KB, 5KB, 2KB, 1KB, 0.5KB, 0.25KB) split

into upstream and downstream windows were used. For all GTEx summary statistics analysis,

reference 1KG LD matrices where calculated and replaced with low rank approximation with 95%

of the matrix trace kept, anlagously to the above procedure. Default hyperparameter settings

where used except for c which was set to 0.3 instead of 0 to yield consistently positive signs for ν

estimates. BAGEA was run for 300 iterations in each analysis.
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5.9 Download Links

• UCSC: http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/

• EXPECTO: https://github.com/FunctionLab/ExPecto/

• 1KG: ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/

• GTEX: https://gtexportal.org/home/datasets

• GEUVADIS: ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-

GEUV-3/analysis_results/

• BAGEA: https://github.com/dlampart/bagea
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