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Figure 6. Inhibition of actin nucleation decreases BCR diffusivity. a) Plots of BCR 

diffusivity distributions for cells treated with CK666 or SMIFH2. (P < 0.001, Kruskal-Wallis test 

for comparison between DMSO and CK666, or DMSO and SMIFH2). b) Population fraction 

over time for cells treated with CK666. c) Population fraction over time for cells treated with 

SMIFH2. d) BCR diffusivity distribution for cells treated with wiskostatin (Wisko) compared 

with cNKO and control. (P < 0.01, Kruskal-Wallis test for comparison between DMSO and 

Wisko, or control and cNKO) e) Population fraction over time for cells treated with wiskostatin. 

Error bars in B, C and E represent a confidence interval of 95% on the population fraction 

calculation. f) Overall distribution of population fractions for inhibition of N-WASP (Wisko), 

Arp2/3 complex (CK666) and formin (SMIFH2) (Number of cells: DMSO, N = 14; Wisko, N = 

11; CK666, N = 10; SMIFH2, N = 16). 
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Figure 7. Effect of N-WASP on actin dynamics in activated B cells. a) iSIM images of 

activated Lifeact-EGFP B cells at consecutive time points for two conditions: DMSO carrier-

control and N-WASP inhibitor wiskostatin (10 μM concentration). The initial time corresponds 

to 5 min after spreading initiation. The blue arrows in the images indicate the emergence of actin 

foci and the yellow arrows point to spreading and contraction of the lamellipodial region of the 

cells. Scale bars are 2 μm. b) STICS (Spatio-Temporal Image Correlation Spectroscopy) vector 

map showing actin flows represented by velocity vectors indicating flow direction and color 
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coded for flow speed. In the zoomed region, the velocity vectors show the flow direction and 

flow speed. The vector map is overlaid on top of a grayscale image of Lifeact-EGFP. c) 

Pseudocolor map of actin flow speeds corresponding to 2 minutes after cell spreading for 

representative DMSO control and wiskostatin treated cells. d) Cumulative distribution of actin 

flow speeds for DMSO control cells (blue, N = 11 cells) and cells treated with wiskostatin (red, 

N = 12 cells). (P = 0.00074, Kruskal-Wallis test).  e) Directional coherence maps indicating the 

flow directions, which ranged from inward (1) to outward (-1). f, g) Probability distribution 

function plots showing directional coherence values of actin flow in cells during the early stage 

of activation f) or cells in the late stage of activation g), with subplots highlighting the flow 

fraction defined as inward flow (see methods). During early stage, fraction of inward flow is 

0.143 for DMSO and 0.1425 for Wisko treated cells (P = 0.5188 - not significant); during late 

stage the fraction of inward flow is 0.113 for DMSO and 0.1518 for Wisko treated cells (P < 

0.001). 

 

  

 
 

Figure 8. The actin cytoskeleton regulates B cell receptor mobility and signaling in 

different stages. Representative cartoon showing receptor distributions on a section of the B cell 

membrane: a) Resting B cell membrane: Actin networks restrict receptor lateral movement and 

interactions. b) B cell membrane at the early signaling activation stage. Actin remodeling 

enhances receptor mobility allowing for interactions between receptors, specifically BCR and 

CD19, enhancing signaling. Actin flows towards the center and edge of the immune synapse in 

similar proportions. c) B cell membrane at later activation stages. Top: Actin flows stir the 

cytoplasm at the membrane vicinity, increasing the mixing of receptors in the membrane and 

thereby allowing signal inhibitory molecules to downregulate BCR signaling. Bottom: N-WASP 

knockout reduces actin dynamics and changes the balance of actin flow directionality at later 

stages (5-10 min) of activation, leading to enhanced signaling. 
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