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 2

Abstract 22 

There is growing evidence to suggest that human gene annotation remains incomplete, with a disproportionate 23 

impact on the brain transcriptome. We used RNA-sequencing data from GTEx to detect novel transcription in 24 

an annotation-agnostic manner across 13 human brain regions and 28 human tissues. We found that genes 25 

highly expressed in brain are significantly more likely to be re-annotated, as are genes associated with 26 

Mendelian and complex neurodegenerative disorders. We improved the annotation of 63% of known OMIM-27 

morbid genes and 65% of those with a neurological phenotype. We determined that novel transcribed regions, 28 

particularly those identified in brain, tend to be poorly conserved across mammals but are significantly 29 

depleted for genetic variation within humans. As exemplified by SNCA, we explored the implications of re-30 

annotation for Mendelian and complex Parkinson’s disease. We validated in silico and experimentally a novel, 31 

brain-specific, potentially protein-coding exon of SNCA. We release our findings as tissue-specific 32 

transcriptomes in BED format and via vizER: http://rytenlab.com/browser/app/vizER. Together these 33 

resources will facilitate basic genomics research with the greatest impact on neurogenetics.34 
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Introduction 35 

 36 

Genetic and transcriptomic studies are fundamentally reliant on accurate and complete human gene 37 

annotation. Gene definitions (namely genic coordinates and the isoforms/exons of which they are composed) 38 

are required for the quantification of expression or splicing from RNA-sequencing experiments, interpretation 39 

of significant genome-wide association studies (GWAS) signals and variant interpretation from genetic tests. As 40 

our understanding of transcriptomic complexity improves it is apparent that existing annotation remains 41 

incomplete even amongst known genes. Comparison of different gene annotation databases reveals that over 42 

17,000 Ensembl genes fall into intronic or intergenic regions according to the AceView database and 43 

predictably, the choice of reference annotation greatly influences the output of variant interpretation software 44 

such as VEP and ANNOVAR1,2. Thus, incomplete annotation may cause pathogenic variants to be overlooked 45 

within exonic regions that are yet to be annotated and limit our understanding of risk loci.  46 

Importantly, the impact of incomplete annotation of the transcriptome may not be evenly distributed 47 

across all types of tissues or cells and there is reason to believe that improvements to gene annotation may 48 

have a disproportionate impact on the understanding of Mendelian and complex neurological diseases. This 49 

view is supported by several analyses of bulk RNA-sequencing data derived from human brain tissues, which 50 

have discovered transcription originating from intronic or intergenic regions (henceforth termed novel)3–5. In 51 

particular, Jaffe and colleagues found that as much as 41% of transcription in the human frontal cortex was 52 

novel. Furthermore, it is becoming increasingly clear that RNA processing is highly complex in the human 53 

central nervous system due to the expression of long genes and the large diversity of cell types present6,7. In 54 

combination these factors could result in rare yet important transcripts being overlooked.  55 

In this study, we address this issue by leveraging publicly available transcriptomic data available through 56 

the Genotype-Tissue Expression Consortium (GTEx) to improve the annotation of genes across the genome. We 57 

define transcription in an annotation-agnostic manner using RNA-sequencing data from 13 regions of the 58 

human central nervous system and compare this to definitions generated from a further 28 GTEx non-brain 59 

tissues. While we discover novel transcription to be widespread across all tissues, it is most prevalent in human 60 

brain. We provide evidence to suggest that the additional annotations we generate are likely to be functionally 61 

important on the basis of the tissue and cell-type specificity of novel expressed regions (ERs), the significant 62 

depletion of genetic variation amongst humans within ERs and their protein coding potential. Finally, by 63 

combining novel expressed regions (ERs) with split read data, defined as reads that have a gapped alignment to 64 

the genome, we link these regions to known genes associated with Mendelian and complex neurodegenerative 65 

and neurospsychiatric disorders. We release our findings as tissue-specific transcriptomes in a BED format and 66 

in an online platform vizER (http://www.rytenlab.com/browser/app/vizER), which allows individual genes to 67 

be queried and visualised. Overall, we improve the annotation of 1929 (63%) OMIM genes and a further 317 68 

genes associated with complex neurodegenerative and neuropsychiatric disease. We anticipate that this will 69 

lead to improvements in diagnostic yield from whole genome sequencing (WGS) and the understanding of 70 

neurogenetic disorders.  71 
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Results 72 

Optimising the annotation-agnostic detection of transcription using known exons  73 

Pervasive transcription of the human genome, the presence of pre-mRNA even within polyA-selected 74 

RNA-sequencing libraries and variability in read depth complicates the identification of novel exons and 75 

transcripts using RNA-sequencing data8,9.  With this in mind, we identified a set of exons with the most reliable 76 

and accurate boundaries (namely all exons from Ensembl v92 that did not overlap with any other exon10) and 77 

then used this exon set to calibrate the detection of transcription from 41 GTEx tissues11.  We used the well-78 

established tool, derfinder, to perform this analysis12. However, we noted that while derfinder enables the 79 

detection of continuous blocks of transcribed bases termed expressed regions (ERs) in an annotation-agnostic 80 

manner, the mean coverage cut-off (MCC) applied to determine transcribed bases is difficult to define and 81 

variability in read depth even across an individual exon can result in false segmentation of blocks of expressed 82 

sequence.  Therefore, in order to improve our analysis and define ERs more accurately, we applied derfinder, 83 

but with the inclusion of an additional parameter we term the max region gap (MRG), which merges adjacent 84 

ERs (see detailed Methods). Next, we sought to identify the optimal values for MCC and MRG using our learning 85 

set of known, non-overlapping exons.   86 

This process involved generating 506 transcriptome definitions for each tissue using unique pairs of 87 

MRCs and MRGs, resulting in a total of 20,746 transcriptome definitions across all 41 tissues. For each of the 88 

20,746 transcriptome definitions, all ERs that intersected non-overlapping exons were extracted and the 89 

absolute difference between the ER definition and the corresponding exon boundaries, termed the exon delta, 90 

was calculated (Figure 1a). We summarised the exon delta for each transcriptome using two metrics, the 91 

median exon delta and the number of ERs with exon delta equal to 0. The median exon delta represents the 92 

overall accuracy of all ER definitions, whereas, the number of ERs with exon delta equal to 0 indicates the 93 

extent to which ER definitions precisely match overlapping exon boundaries. The MCC and MRG pair that 94 

generated the transcriptome with the lowest median exon delta and highest number of ERs with exon delta 95 

equal to 0 was chosen as the most accurate transcriptome definition for each tissue. Across all tissues, 50-54% 96 

of the ERs tested had an exon delta = 0, suggesting we had defined the majority of ERs accurately. Taking the 97 

cerebellum as an example and comparing ER definitions to those which would have been generated applying 98 

the default derfinder parameters used in the existing literature (MCC: 0.5, MRG: None equivalent to 0), we noted 99 

an 96bp refinement in ER size, equating to 67% of median exon size (Figure 1b &1c). In summary, by using 00 

known exons to calibrate the detection of transcription, we generated more accurate annotation-agnostic 01 

transcriptome definitions for 13 regions of the CNS and a further 28 human tissues.  02 

 03 

Novel transcription is most commonly observed in the central nervous system 04 

To assess how much of the detected transcription was novel, we calculated the total size in base pairs of 05 

ERs that did not overlap known annotation. ERs were then categorised with respect to the genomic features 06 

with which they overlapped as defined by the Ensembl v92 reference annotation (exons, introns, intergenic; 07 

Supplementary Figure 1a). Those that solely overlapped intronic or intergenic regions were classified as 08 

novel. We discovered 8.4 to 22Mb of potentially novel transcription across all tissues, consistent with previous 09 
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reports that annotation remains incomplete13,14. Novel ERs predominantly fell into intragenic regions 10 

suggesting that we were preferentially improving the annotation of known genes, rather than identifying new 11 

genes (Figure 2a). Although novel transcription was found to be ubiquitous across tissues, the abundance 12 

varied greatly between tissues (Figure 2b, 2d, 2e). To investigate this further, we calculated the coefficient of 13 

variation for exonic, intronic and intergenic ERs. We found that the levels of novel transcription varied 3.4-7.7x 14 

more between tissues than the expression of exonic ERs (coefficient of variation of exonic ERs: 0.066Mb, 15 

intronic ERs: 0.222Mb, intergenic ERs: 0.481Mb). Furthermore, focusing on a subset of novel ERs for which we 16 

could infer the precise boundaries of the presumed novel exon (using intersecting split reads), we found that 17 

more than half of these ERs were detected in only 1 tissue and that 86.3% were found in less than 5 tissues 18 

(Supplementary Figure 2a). Even when restricting to ERs derived from only the 13 CNS tissues, 34.3% were 19 

specific to 1 CNS region (Supplementary Figure 2b). This suggests that novel ERs are largely derived from 20 

tissue-specific transcription, potentially explaining why they had not already been discovered.  21 

This finding lead us to hypothesise that genes highly expressed in brain would be amongst the most 22 

likely to be re-annotated due to the difficulty of sampling human brain tissue, the cellular heterogeneity of this 23 

tissue and the particularly high prevalence of alternative splicing3. As we predicted, the quantity of novel 24 

transcription found within brain was significantly higher than non-brain tissues (p-value: 2.35e-10) (Figure 2e 25 

& 2f). In fact, ranking the tissues by descending Mb of novel transcription demonstrated that tissues of the CNS 26 

constituted 13 of the top 14 tissues. Interestingly, the importance of improving annotation in the human brain 27 

tissue was most apparent when considering purely intergenic ERs and ERs that overlapped exons and extended 28 

into intergenic regions (Figure 2d & 2e).  29 

This observation raised the question of whether there were specific genic features, which could be used 30 

to predict which genes were most likely to be re-annotated (connected to a novel ER). We used logistic 31 

regression to determine whether specific properties, including measures of structural gene complexity and 32 

specificity of expression to brain increased the likelihood of re-annotation. We also accounted for factors which 33 

might be expected to contribute to errors in ER identification, including whether the gene overlapped with 34 

another known gene making attribution of reads more complex. We found that the annotation of brain-specific 35 

genes and those with higher transcript complexity were more likely to have evidence for incomplete annotation 36 

(Table 1). Importantly, overlapping genes were not significantly more likely to be re-annotated (taking into 37 

account gene length), demonstrating that novel transcription is not merely a product of noise from intersecting 38 

genes. Taken together these findings demonstrated that widespread novel transcription is found across all 39 

human tissues, the quantity of which varies extensively between tissues. CNS tissues displayed the greatest 40 

quantity of novel transcription and accordingly, genes highly expressed in the human brain are most likely to 41 

be re-annotated.  42 

 43 

Validation of novel transcription across Ensembl versions and within an independent dataset 44 

We recognise that a proportion of novel transcription may originate from technical variability or pre-45 

mRNA contamination. Therefore, we assessed the reliability of novel ERs by classifying ERs using different 46 

versions of Ensembl and through an independent dataset. Firstly, we measured how many Kb of the 47 

transcription we detected would have been classified as novel with respect to Ensembl v87, but was now 48 
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annotated in Ensembl v92 and found that across all tissues an average of 68Kb (43-127Kb) had changed status. 49 

This value was 5.3x (3.2-10.1x) greater in every tissue compared to the Kb of ERs overlapping exons in 50 

Ensembl v87 that had become purely intronic or intergenic in Ensembl v92 (Figure 3a). To further assess 51 

whether this was greater than what would be expected by chance, we compared the total Kb of novel ERs 52 

entering v92 annotation for each tissue to 10,000 sets of random length-matched intronic and intergenic 53 

regions. For all tissues, the total Kb of both intronic and intergenic ERs that were now annotated in Ensembl 54 

v92 was significantly higher than the total Kb distribution of the randomised negative control regions, implying 55 

a high validation rate of novel ERs (Supplementary figure 3). Notably, brain regions had significantly higher 56 

Kb of ERs entering Ensembl v92 annotation from Ensembl v87 than non-brain tissues, even when subtracting 57 

the Kb of ERs leaving Ensembl v87 (p-value: 7.6e-9), suggesting the greater abundance of brain-specific novel 58 

transcription was not purely attributed to increased transcriptional noise.  59 

While our analysis of novel ERs across different Ensembl versions provided a high level of confidence in 60 

the quality of ER calling, it was limited to ERs which had already been incorporated into annotation and did not 61 

provide an overall indication of the rate of validation across all ERs. Therefore, we investigated whether our 62 

GTEx frontal cortex derived ERs could also be discovered in an independent frontal cortex dataset reported by 63 

Labadord and colleagues15. As expected, ERs which overlapped with annotated exons had near complete 64 

validation (>= 89%), but importantly 62% of intergenic and 70% of intronic ERs respectively were also 65 

detected in the second independent frontal cortex dataset (Figure 3b). While this high validation rate implied 66 

the majority of all ERs were reliably detected, we investigated whether a subset of ERs supported with 67 

evidence of RNA splicing as well as transcription would have even better rates of validation. Evidence of 68 

transcription is provided by the coverage data derived using derfinder, whilst split reads, which are reads with 69 

a gapped alignment to the genome provide evidence of the splicing out of an intron (Supplementary figure 70 

1b). With this in mind, we focused our attention on the putative spliced ERs as indicated by the presence of an 71 

overlapping split read. Consistent with expectation, we found that ERs with split read support had higher 72 

validation rates than ERs lacking this additional feature. This increase in validation rate for ERs with split read 73 

support was greatest for intergenic and intronic ERs with the validation rate rising to 87% for intergenic ERs 74 

and 88% for intronic ERs (as compared to 99% for ERs overlapping exons, Figure 3b). Even when considering 75 

this set of highly validated ERs with split read support, 1.7-3.8Mb of intronic and 0.5-2.2Mb of intergenic 76 

transcription was detected across all 41 tissues. Thus, in summary, the majority of novel ERs were reliably 77 

detected and validated in an independent dataset.  78 

 79 

Unannotated expressed regions are depleted for genetic variation and some have the potential to 80 

be protein coding suggesting they are functionally significant 81 

Given recent reports suggesting widespread transcriptional noise and acknowledging that 82 

transcription, even when tissue-specific, does not necessarily translate to function we investigated whether 83 

novel ERs were likely to be of functional significance using measures of both conservation and genetic 84 

constraint14,16. The degree to which a base is evolutionarily conserved across species is strongly dependent on 85 

its functional importance and accordingly, conservation scores have been used to aid exon identification17. 86 

However, this measure is unable to capture genomic regions of human-specific importance. Thus, we 87 
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investigated novel ERs not only in terms of conservation but also genetic constraint. Constraint scores, 88 

measured here as a context-dependent tolerance score (CDTS), represent the likelihood a base is mutated 89 

within humans18. By comparing our detected novel ERs to 10,000 randomised sets of length-matched intronic 90 

and intergenic regions, we found that both intronic and intergenic ERs were significantly less conserved, but 91 

more constrained than expected by chance (p-value < 2e-16, Figure 4a). This would suggest that they have an 92 

important functional role specifically in humans. Furthermore, considering the importance of higher-order 93 

cognitive functions in differentiating humans from other species, we measured the constraint of brain-specific 94 

novel ERs separately on the basis that these ERs may be the most genetically constrained of all novel ERs 95 

identified. Indeed, we found that brain-specific novel ERs were even more constrained than other novel ERs, 96 

supporting the view that improvements in gene annotation are likely to have a disproportionate impact on our 97 

understanding of human brain diseases.  98 

Another metric of functional importance is whether a region of the genome is translated into protein 99 

and notably the vast majority of all known Mendelian disease mutations fall within protein-coding regions. For 00 

this reason, we investigated whether novel ERs could potentially encode for proteins. Here, we focused on the 01 

subset of novel ERs which had evidence of splicing, since the overlapping split reads can be used to assign the 02 

precise boundaries of ERs, allowing us to confidently retrieve the DNA sequence and corresponding amino acid 03 

sequence for each novel ER. A total of 2,961 ERs covering 274Kb was found to be potentially protein coding, 04 

which represented 57% of the ERs analysed (Figure 4b). Amongst this set of ERs with protein coding potential, 05 

758 ERs also fell within the top 20% of most constrained regions of the genome. These ERs connect to 694 06 

genes, 30% of which are expressed specifically in the CNS (Supplementary table 1). Overall, we discovered 07 

that novel ERs broadly are likely to have a human-specific function. We also identified an important subset of 08 

novel ERs that have protein coding potential and are highly depleted for genetic variation in humans. Together, 09 

this suggested that at least a proportion of novel ERs are functionally significant.  10 

 11 

Incomplete annotation of brain-specific genes may be limiting our understanding of specific 12 

CNS-relevant cell types and complex diseases 13 

Given that we discovered the greatest abundance of novel transcription amongst brain tissues, we 14 

investigated whether this may be impacting on our understanding of certain cell types within the brain more 15 

than others. We tested this by calculating whether our set of 2962 re-annotated brain-specific genes were 16 

significantly enriched for cell-type specific genes, when compared to the background list of 2422 brain-specific 17 

genes without re-annotations. Of the 13 brain-specific cell types considered, genes specifically expressed by 18 

oligodendrocytes had the largest difference in enrichment (p-value of re-annotated: <2e-16; not re-annotated: 19 

0.169), suggesting incomplete annotation was disproportionately limiting our understanding of this cell type 20 

(Figure 5a).  For example, we found that MBP, which encodes for myelin basic protein, was amongst those 21 

genes re-annotated and with an oligodendrocyte-specific expression profile (Supplementary figure 4). In fact, 22 

we detected a 48bp ER specific to cortex and striatal tissues (anterior cingulate cortex, cortex, frontal cortex, 23 

nucleus accumbens, putamen), which was connected to two flanking protein-coding exons of MBP. The ER itself 24 

had protein-coding potential and evidence of functional importance specifically in humans, as demonstrated by 25 

low mammalian sequence conservation but depletion of genetic variation within humans (phasCons7: 0.03, top 26 
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20% CDTS) (Figure 5b). This finding is interesting because MBP specifically and oligodendroglial dysfunction 27 

more generally, have been implicated in a number of neurodegenerative disorders, including multiple system 28 

atrophy, which is characterised by myelin loss and degeneration of striatum and cortical regions19, as well as 29 

schizophrenia and Parkinson’s disease19–21.  30 

These observations led us to postulate whether incomplete annotation could also be hindering our 31 

understanding of complex neurodegenerative and neuropsychiatric disorders. Therefore, we assessed whether 32 

our list of re-annotated genes was enriched for genes associated with complex forms of neurodegenerative, 33 

neuropsychiatric or other neurological conditions. This analysis was performed by using the Systematic Target 34 

OPportunity assessment by Genetic Association Predictions (STOPGAP) database, which provides an extensive 35 

catalogue of human genetic associations mapped to effector gene candidates (see detailed methods)22. 36 

Interestingly, we found that genes associated with neurodegenerative disorders were significantly over-37 

represented within our re-annotated set (p-value: 0.004, Supplementary Table 2). In particular, important 38 

neurodegenerative disease genes such as SNCA, APOE and CLU were amongst those re-annotated, suggesting 39 

that despite being extensively studied the annotation of these genes remains incomplete (complete list found in 40 

Supplementary Table 3). Thus, we demonstrate that incomplete annotation of brain-specific genes may be 41 

hindering our understanding of specific cell types and complex neurodegenerative disorders. 42 

 43 

Incomplete annotation of OMIM genes may limit genetic diagnosis, particularly for 44 

neurogenetic disorders 45 

Since re-annotation of genes already known to cause Mendelian disease would have a direct impact on 46 

clinical diagnostic pipelines, we specifically assessed this gene set. Novel ERs were first connected to known 47 

genes using split reads (Supplementary figure 1b). Next, we filtered for OMIM-morbid genes and found that 48 

63% of this set of OMIM-morbid genes were re-annotated and 14% were connected to a potentially protein-49 

coding ER, suggesting that despite many of these genes having been extensively studied, the annotation of 50 

many OMIM-morbid genes remains incomplete (Figure 6a). Given that OMIM-morbid genes often produce 51 

abnormalities specific to a given set of organs or systems, we investigated the relevance of novel transcription 52 

to disease by matching the human phenotype ontology (HPO) terms obtained from the disease corresponding 53 

to the OMIM-morbid gene, to the GTEx tissue from which ERs connected to that gene were derived. We 54 

discovered that 72% of re-annotated OMIM-morbid genes had an associated novel ER originating from a 55 

phenotypically relevant tissue (Figure 6b). This phenomenon was exemplified by the OMIM-morbid gene 56 

ERLIN1, which when disrupted is known to cause spastic paraplegia 62 (SPG62), an autosomal recessive form 57 

of spastic paraplegia, which has been reported in some families to cause not only lower limb spasticity, but also 58 

cerebellar abnormalities23. We detected a cerebellar-specific novel ER that was intronic with respect to ERLIN1. 59 

The novel ER had the potential to code for a non-truncated protein and connected through intersecting split 60 

reads to two flanking, protein-coding exons of ERLIN1, supporting the possibility of this ER being a novel 61 

protein-coding exon. Furthermore, the putative novel exon was highly conserved (phastcons7 score: 1) and 62 

was amongst the top 30% most constrained regions in the genome, suggesting it is functionally important both 63 

across mammals and within humans (Figure 6c).  64 
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Similarly, we detected a brain-specific novel ER in the long intron of the gene SNCA, which encodes alpha-65 

synuclein protein implicated in the pathogenesis of Mendelian and complex Parkinson’s disease. This ER 66 

connected to two flanking protein-coding exons through split reads (Figure 6d) and appeared to also have 67 

coding potential. Interestingly, while the ER sequence is not conserved within mammals (phastcons7 score: 68 

0.09) or primates (phastcons20 score: 0.21), it is in the top 19% of most constrained regions in the genome 69 

suggesting it is of functional importance specifically in humans. We validated the existence of this ER both in 70 

silico and experimentally. The expression of this ER was confirmed in silico using an independent frontal cortex 71 

dataset reported by Labadord and colleagues15. Using Sanger sequencing, we validated the junctions 72 

intersecting the ER and the flanking exons in RNA samples originating from pooled human frontal cortex 73 

samples (Supplementary Figure 5). In order to gain more information about the transcript structure in which 74 

the novel ER was contained, we also performed Sanger sequencing from the first (ENSE00000970013) and last 75 

coding exons (ENSE00000970014) of SNCA to the novel ER. This implied a full transcript structure containing a 76 

minimum of 609bp with the novel ER predicted to add an additional 63 amino acids (45% of existing transcript 77 

size). This example highlights the potential of incomplete annotation to both hinder genetic diagnosis and limit 78 

our understanding of a common complex neurological disease. Variants located in the novel ER linked to SNCA 79 

would not be captured using using whole exome sequencing (WES) and if identified in WGS or through GWAS 80 

would be misassigned as non-coding variants. 81 

 82 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 29, 2019. ; https://doi.org/10.1101/499103doi: bioRxiv preprint 

https://doi.org/10.1101/499103
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1

Discussion 83 

 84 

In this study, we demonstrate that novel transcription though commonly detected across all tissues, 85 

disproportionately affects genes highly expressed in the brain and some brain-specific cell types, namely 86 

oligodendrocytes. We provide evidence to suggest that novel ERs are functionally important, since they are 87 

more depleted for genetic variation within humans than would be expected by chance and some have the 88 

potential to code for protein. Furthermore, we find that genes known to cause Mendelian and complex 89 

neurodegenerative disorders are enriched amongst the set of genes we reannotate. In order to illustrate the 90 

potential impact of incomplete annotation on such disorders, we highlight the specific example of SNCA, a gene 91 

implicated in Mendelian and complex Parkinson’s disease. We experimentally validate the existence of a novel 92 

transcript of SNCA containing a potentially protein coding novel ER. Together, this suggests that incomplete 93 

annotation may be limiting our understanding of both Mendelian and common complex diseases.   94 

We find that the majority of probable novel exons we detect have a restricted expression pattern across 95 

tissues. The practical difficulty of accessing the brain reduces the number of available brain-specific datasets 96 

and its regional and cellular heterogeneity is one of the factors driving the high number of brain-specific 97 

transcripts. Furthermore, since our approach does not depend on conservation across species to annotate 98 

novel exons, we are able to identify ERs which are likely to be of human-specific importance18. In fact, we find 99 

that brain-specific ERs have the highest constraint scores, emphasising their specific importance in humans. 00 

Together these factors suggest that the resource we have generated will have the greatest impact on 01 

neurogenetic disorders. 02 

Finally, we release our results through a dedicated web resource, vizER 03 

(http://rytenlab.com/browser/app/vizER), which enables individual genes to be queried for incomplete 04 

annotation as well as the download of all novel ER definitions. We believe that vizER will be an important 05 

resource for clinical scientists in the diagnosis of Mendelian disorders, neuroscientists studying individual gene 06 

structures and functions, and with the emergence of larger long read sequencing data sets will accelerate novel 07 

transcript discovery particularly in human brain. 08 
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Online Me thods 09 

OMIM data 10 

Phenotype relationships and clinical synopses of all Online Mendelian Inheritance in Man (OMIM) genes were 11 

downloaded using http://api.omim.org on the 29th of May 201824. OMIM genes were filtered to exclude 12 

provisional, non-disease and susceptibility phenotypes retaining 2,898 unique genes that were confidently 13 

associated to 4,034 Mendelian diseases. Phenotypic abnormality groups were linked to corresponding affected 14 

Genotype-Tissue Expression (GTEx) tissues through manual inspection of the HPO terms within each group by 15 

a medical specialist11.  16 

 17 

GTEx data 18 

RNA-seq data in base-level coverage format for 7,595 samples originating from 41 different GTEx tissues was 19 

downloaded using the R package recount version 1.4.64. Cell lines, sex-specific tissues and tissues with 10 20 

samples or below were removed. Samples with large chromosomal deletions and duplications or large CNVs 21 

previously associated with disease were filtered out (smafrze = “USE ME”). Coverage for all remaining samples 22 

was normalised to a target library size of 40 million 100bp reads using the area under coverage value provided 23 

by recount2. For each tissue, base-level coverage was averaged across all samples to calculate the mean base-24 

level coverage. GTEx split read data, defined as reads with a non-contiguous gapped alignment to the genome, 25 

was downloaded using the recount2 resource and filtered to include only split reads detected in at least 5% of 26 

samples for a given tissue and those that had available donor and acceptor splice sequences. 27 

 28 

Optimising the detection of transcription  29 

Transcription was detected across 41 GTEx tissues using the package derfinder version 1.14.012. The mean 30 

coverage cut-off (MCC), defined as the number of reads supporting each base above which bases were 31 

considered to be transcribed, and max region gap (MRG), defined as the maximum number of bases between 32 

expressed regions (ERs) below which adjacent ERs will be merged, were optimised. Optimisation was 33 

performed using 156,674 non-overlapping exons (defined by Ensembl v92) as the gold standard10. Exon 34 

biotypes of all Ensembl v92 exons were compared to this set of non-overlapping exons to ensure we were not 35 

preferentially optimising for one particular biotype (Supplementary figure 6). Non-overlapping exons were 36 

selected as these definitions would be least likely to be influenced by ambiguous reads. For each tissue, we 37 

generated ERs using mean coverage cut-offs increasing from 1 to 10 in steps of 0.2 (46 cut-offs) and max gaps 38 

increasing from 0 to 100 in steps of 10 (11 max region gaps) to produce a total of 506 unique transcriptomes. 39 

For each set of ERs, we found all ERs that intersected with non-overlapping exons, then calculated the exon 40 

delta by summing the absolute difference between the start/stop positions of each ER and the overlapping exon 41 

(Figure 1a). Situations in which a single ER overlapped with multiple exons were removed to avoid assigning 42 

the ER to an incorrect exon when calculating downstream optimisation metrics. For each tissue, we selected the 43 

mean coverage cut-off and max region gap, which minimised the difference between ER and “gold standard” 44 

exon definitions (median exon delta) and maximised the number of ERs that precisely matched the boundaries 45 
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of exons (number of ERs with an exon delta equal to 0). All ERs that were <3bp in width were removed as these 46 

were below the minimum size of a microexon25.  47 

 48 

Calculating the transcriptome size per annotation feature 49 

ERs were classified with respect to the annotation feature (exon, intron, intergenic) with which they 50 

overlapped. A minimum of 1bp overlap was required for an ER to be categorised as belonging to a given 51 

annotation feature. ERs overlapping multiple annotation features were labelled with a combination of each. 52 

This generated 6 distinct categories – “exon”, “exon, intron”, “exon, intergenic”, “exon, intergenic, intron”, 53 

“intergenic” and “intron” (Supplementary figure 1a). ERs classified as “exon, intergenic, intron” were 54 

removed from all downstream analysis as these formed only 0.54% of all ERs and were presumed to be 55 

technical artefacts generated from regions of dense, overlapping gene expression. For each tissue, the length of 56 

all ERs within each annotation feature was summed generating the total Mb of ERs per annotation feature. 57 

Normalised variance of exonic, intronic and intergenic ERs was calculated by dividing the standard deviation of 58 

the total Mb of ERs across tissues by the mean total Mb of ERs for each annotation feature. To compare between 59 

brain and non-brain tissues, the total Mb of intronic and intergenic ERs were first summed together to generate 60 

an overall measure of novel transcription abundance across brain and non-brain tissues, then a two-sided 61 

Wilcoxon rank sum test was applied. 62 

 63 

Annotating ERs with split read data 64 

Intronic and intergenic ERs were connected to known genes using reads, which we term split reads, with a 65 

gapped alignment to the genome, presumed to be reads spanning exon-exon junctions (Supplementary figure 66 

2b). Such exon-exon junctions are defined as non-contiguous reads which fall on the boundary between two 67 

exons of the same mRNA molecule, therefore when aligned to the genome these reads have a break in the 68 

middle indicating the splicing out of an intron. Split read data was categorised into three groups: annotated 69 

split reads, with both ends falling within known exons; partially annotated split reads, with only one end falling 70 

within a known exon; and unannotated split reads, with both ends within intron or intergenic regions. In this 71 

way, intron and intergenic ERs that overlapped with partially annotated split reads were connected to known 72 

genes.  73 

 74 

Validation of detected transcription 75 

Transcription was validated across different versions of Ensembl and within an independent dataset. ERs that 76 

overlapped purely intronic or intergenic regions according to Ensembl v87, but fell within exons according to 77 

v92, were counted as novel transcription that was validated in later versions of Ensembl. Furthermore, ERs 78 

overlapping exonic regions in Ensembl v87 now classified as intronic or intergenic in v92 were measured to 79 

control for expected corrections in gene definitions. To assess whether the total Kb of validated novel ERs 80 

entering v92 annotation was greater than what would be expected by chance, we generated 10,000 random 81 

sets of length-matched regions for each tissue that were intronic or intergenic with respect to Ensembl. Using a 82 

one sample Wilcoxon test, we compared the total Kb of intronic and intergenic ERs entering annotation to the 83 

total Kb distribution of the randomised intronic and  intergenic regions, respectively.  84 
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Validation within an independent dataset was performed using RNA-seq coverage data from 49 control 85 

frontal cortex (BA9) samples originally reported by Labadorf and colleagues (2015) and available via the 86 

recount R package version 1.4.64,15. ERs derived from the GTEx frontal cortex (BA9) data were re-quantified 87 

using this independent frontal cortex dataset and those that had a mean coverage of at least 1.4 (the optimised 88 

MCC for the GTEx frontal cortex data), were counted as novel transcription that was validated.  89 

 90 

Analysing the conservation and constraint of novel ERs 91 

Conservation scores in the form of phastCons7 (derived from genome-wide alignments of 7 mammalian 92 

species) were downloaded from UCSC26,27. Constraint scores generated from the genome-wide alignment of 93 

7,794 unrelated human genomes were downloaded as context dependent tolerance scores (CDTS)18. The raw 94 

phastCons7 and CDTS were in bins of 1bp and 10bp, respectively, therefore when annotating the 95 

corresponding positions of ERs, we aggregated each score as a mean across the entire genomic region of 96 

interest. To account for missing CDTS values, we calculated the coverage of each ER by dividing the number of 97 

bases annotated by the CDTS by the total length of the ER. For all downstream analysis, we filtered out ERs for 98 

which CDTS coverage was less than 80%.  99 

 To assess whether our novel ERs were more constrained or conserved than by expected by chance, we 00 

compared the phastCons7 and CDTS of novel ERs to 10,000 randomised length-matched sets of intronic and 01 

intergenic ERs for each tissue. For each of the 10,000 iterations, we first selected a random intronic or 02 

intergenic region that was larger than the respective ER, then selected a random segment along the randomised 03 

region which matched the length of the corresponding ER. The randomised regions were annotated with 04 

constraint scores and CDTS using the aforementioned method. The mean CDTS and phastCons7 of the novel 05 

ERs (split by annotation feature) were compared to the corresponding distribution of CDTS and phastCons7 of 06 

the randomised regions using a one sample, two-tailed t-test. For easier interpretation when plotting, CDTS 07 

scores have been converted to their opposite sign, therefore for both phastCons and CDTS, the higher the value 08 

the greater the magnitude of conservation or constraint as shown in Figure 4a.  09 

 10 

Checking ER protein coding potential 11 

Intronic and intergenic ERs that were intersected by 2 split reads were extracted. The split reads were used to 12 

determine the precise boundaries of the ER. The R package Biostrings version 2.46.0 was used to extract the 13 

DNA sequence corresponding to the ER genetic co-ordinates from the genome build hg3828. Since the 14 

translation frame was ambiguous without knowledge of the other exons that are part of the transcript that 15 

included the novel ER, we converted the DNA sequence to amino acid sequence for all three possible frames 16 

starting from the first, second or third base. Any ER that had at least 1 frame that did not include a stop codon 17 

was considered to be potentially protein coding.  18 

 19 

Gene properties influencing re-annotation  20 

All Ensembl v92 genes were marked with a 1 or a 0 depending on whether we detected a re-annotation for that 21 

gene in the form of an ER connected to the gene using a split read, with 1 representing a detected re-annotation 22 

event. Details of gene length, biotype, transcript count and whether the gene overlapped another gene were 23 
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retrieved from the Ensembl v92 database. Brain-specificity was assigned using the Finucane dataset and 24 

selecting the top 10% of brain-specific genes when compared to non-brain tissues29. Mean gene TPM was 25 

calculated by downloading tissue-specific TPM values from the GTEx portal and summarised by calculating the 26 

mean across all tissues. The list of OMIM genes (May 2018) was used to assign whether a gene was known to 27 

cause disease or not. We used a logistic regression to test whether different gene properties significantly 28 

influenced the variability of re-annotation (formula = re-annotated ~ brain specific + mean TPM + overlapping 29 

gene + transcript count + gene biotype + gene length).  30 

 31 

Sanger sequencing of novel junctions  32 

Commercially purchased (Takara) frontal cortex and cerebellum RNA samples, isolated from individuals of 33 

European descent, were used for validation of novel junctions detected in SNCA and ERLIN1 respectively. 34 

Tissues were chosen to match the tissue in which the re-annotation for each gene was detected. Reverse 35 

transcription was performed using 1ug of RNA from each tissue, then converted to cDNA using the High-36 

Capacity cDNA Reverse Transcription Kit with RNase Inhibitor (Applied Biosystems) and random primers as 37 

per manufacturer’s instructions. Primers were designed to span predicted exon-exon junctions using Primer-38 

BLAST (NCBI) and ordered from Sigma (Supplementary Table 4). PCR was performed using FastStart PCR 39 

Master (Roche) and enzymatic clean-up of PCR products was performed using Exonuclease I (Thermo 40 

Scientific) and FastAP Thermosensitive Alkaline Phosphatase (Thermo Scientific). Sanger sequencing was 41 

performed using the BigDye terminator kit (Applied Biosystems) and sequences were viewed and exported 42 

using CodonCode Aligner (V. 8.0.2). Sequences were blatted against the human genome (hg38) and alignment 43 

visually inspected for confirmation of validation.  44 

 45 

Expression-weighted cell-type enrichment (EWCE): evaluating enrichment of theta-correlated 46 

genes 47 

EWCE was used to determine whether brain-specific genes (both re-annotated and not re-annotated) have 48 

higher expression within particular cell types than expected by chance30. As our input, we used 1) neuronal and 49 

glial clusters of the central nervous system (CNS) identified in the Linnarsson single-cell RNA sequencing 50 

dataset (amounting to a subset of 114 of the original 265 clusters identified) and 2) lists of genes split by 51 

whether or not they were re-annotated, and if re-annotated, by their overlap with Ensembl v92 annotation 52 

features (see Supplementary Table 5 for full list of CNS neuronal clusters and genes used)31. For each gene in 53 

the Linnarsson dataset, we estimated its cell-type specificity (the proportion of a gene’s total expression in one 54 

cell type compared to all cell types) using the ‘generate.celltype.data’ function of the EWCE package. EWCE with 55 

the target list was run with 100,000 bootstrap replicates, which were sampled from a background list of genes 56 

that excluded all genes without a 1:1 mouse:human ortholog. We additionally controlled for transcript length 57 

and GC-content biases by selecting bootstrap lists with comparable properties to the target list. We performed 58 

the analysis with major cell-type classes classes (e.g. “astrocyte”, “microglia”, etc.). Data are displayed as 59 

standard deviations from the mean, and any values < 0, which reflect a depletion of expression, are displayed as 60 

0. P-values were corrected for multiple testing using the Benjamini-Hochberg (FDR) method over all cell types 61 

and gene lists displayed.  62 
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Enrichment of re-annotated genes for neurological disorder associated genes 63 

The STOPGAP database detailing all genes associated with 4684 GWASs was downloaded from 64 

https://github.com/StatGenPRD/STOPGAP/blob/master/STOPGAP_data/stopgap.bestld.RData. To select 65 

which genes were associated to a GWAS, the “best gene” as determined by STOPGAP using functional evidence 66 

was used22. The medical subject heading for each disease was used to further subgroup GWASs into 4 67 

categories; neurodegenerative, neuropsychiatric, other neurological conditions and the remaining as other 68 

(Supplementary table 6). For each of the subgroups, we generated a contingency table, counting the number 69 

of genes that were re-annotated or not in relation to whether they fell into that particular subgroup. For genes 70 

that were overlapping between GWASs, we classified a gene to be part of a subgroup if it was associated with at 71 

least 1 GWAS contained in that subgroup. A Fisher’s Exact test was used to examine whether our re-annotated 72 

gene list was significantly enriched for genes from any of the subgroups. Benjamini-Hochberg (FDR) method 73 

was used for to correct for multiple testing. 74 
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Figures75 

76 

Figure 1 – Optimisation of the detection of transcription. a) Transcription in the form expressed regions (ERs) was detected in an 77 

annotation agnostic manner across 41 human tissues. The mean coverage cut-off (MCC) is the number of reads supporting each base ab78 

which that base would be considered transcribed and the max region gap (MRG) is the maximum number of bases between ERs below w79 

adjacent ERs would be merged. MCC and MRG parameters were optimised for each tissue using the non-overlapping exons from Ensem80 

v92 reference annotation. b) Line plot illustrating the selection of the MCC and MRG that minimised the difference between ER and exon81 

definitions (median exon delta). c) Line plot illustrating the selection of the MCC and MRG that maximised the number of ERs that preci82 

matched exon definitions (exon delta = 0). The cerebellum tissue is plotted for (b) and (c), which is representative of the other GTEx tiss83 

Green and red lines indicate the optimal MCC (2.6) and MRG (70), respectively.   84 
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85 

Figure 2 – Transcription detected across 41 GTEx tissues categorised by annotation feature. Within each tissue the length of the E86 

Mb overlapping a) all annotation features b) purely exons c) exons and introns d) exons and intergenic regions e) purely intergenic reg87 

f) purely introns according to Ensembl v92 was computed. Tissues are plotted in descending order based on the respective total size of 88 

intronic and intergenic regions. Tissues are colour-coded as indicated in the x-axis, with GTEx brain regions highlighted with bold font. 89 

least 8.4Mb of novel transcription was discovered in each tissue, with the greatest quantity found within brain tissues (mean across bra90 

tissues: 18.6Mb, non-brain: 11.2Mb, two-sided Wilcoxon rank sum test p-value: 2.35e-1091 
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 93 

Figure 3 – Validation of novel transcription. a) The classification of ERs based on v87 and v92 of Ensembl was compared. Across all 94 

tissues, the number of intron or intergenic ERs with respect to v87 that were known to be exonic in Ensembl v92 was greater than the 95 

number of ERs overlapping exons according to v87 that were now unannotated in v92. Tissues are plotted in descending order based on96 

total Mb of novel ERs with respect to Ensembl v87 that were validated (classified as exonic in the Ensembl v92). Tissues are colour-code97 

indicated in the x-axis, with GTEx brain regions highlighted with bold font. b) Barplot represents the percentage of ERs seeding from th98 

GTEx frontal cortex that validated in an independent frontal cortex RNA-seq dataset. ERs defined in the seed tissue were re-quantified u99 

coverage from the validation dataset, after which the optimised mean coverage cut off was applied to determine validated ERs. Colours00 

represent the different annotation features that the ERs overlapped and the shade indicates whether the ER was supported by split read01 
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02 

Figure 4 – Novel ERs collectively serve an important function for humans and a proportion can form potentially protein coding03 

transcripts. a) Comparison of conservation (phastCons7) and constraint (CDTS) of intronic and intergenic ERs to 10,000 sets of rando04 

length-matched intronic and intergenic regions. Novel ERs marked by the red, dashed line are less conserved than expected by chance, b05 

are more constrained. Brain–specific ERs marked by the green, dashed lines are amongst the most constrained. Data for the cerebellum06 

shown and is representative of other GTEx tissues. b) The DNA sequence for ERs overlapping 2 split reads was obtained and converted t07 

amino acid sequence for all 3 possible frames. 2,168 ERs (57%) lacked a stop codon in at least 1 frame and were considered potentially 08 

protein-coding. 09 
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10 

Figure 5 – Incomplete annotation of genes disproportionately affects oligodendrocytes a) Bar plot displaying the enrichment of r11 

annotated and not re-annotated genes within brain cell-type specific gene sets. Blue bars represent the re-annotated genes and grey ar12 

those without re-annotations. Of all analysed cell-types, the greatest difference between enrichment of re-annotated and not re-annota13 

was observed in oligodendrocytes. b) Novel potentially protein coding ER discovered in MBP, with an oligodendrocyte specific expressio14 
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16 

Figure 6 – Re-annotation  of OMIM genes. a) A novel ER connected through a split read was discovered for 63% of OMIM-morbid gen17 

Comparison of the phenotype (HPO terms) associated with each re-annotated OMIM-morbid gene and the GTEx tissue from which nove18 

were derived. Through manual inspection, HPO terms were matched to disease-relevant GTEx tissues and for 72% of re-annotated OMI19 
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the split reads and ERs overlapping the genomic region derived from the labelled tissue. Blue ERs overlap known exonic regions and red ERs 22 

fall within intronic or intergenic regions. Blue split reads overlap blue ERs, while green split reads overlap both red and blue ERs, connecting 23 

novel ERs to OMIM-morbid genes. Thickness of split reads represents the proportion of samples of that tissue in which the split read was 24 

detected. Only partially annotated split reads (solid lines) and unannotated split reads (dashed lines) are plotted. The last track displays the 25 

genes within the region according to Ensembl v92, with all known exons of the gene collapsed into one “meta” transcript.26 

27 
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 50 

 51 

Gene property 

Estimate P-value 

Brain-specific 0.093 

*** 

Transcript count 0.016 

*** 

Gene length 4.18E-07 

*** 

Gene biotype - protein coding 0.218 

*** 

Gene biotype – lincRNA -0.039 

*** 

Gene biotype - processed pseudogene 
-0.154 

*** 

Gene biotype - unprocessed pseudogene -0.093 

*** 

Gene biotype – other -0.113 

*** 

Gene TPM -2.62E-06 

0.4 

Overlapping gene 1 0.83 

  *** p <= 2e-16 

Table 1 – Gene properties influencing re-annotation. Gene characteristics such as brain specificity, transcript count, gene 

length, mean TPM and whether the gene overlapped with another were used to assess which genes were the most likely to be 

identified as re-annotated. Brain-specific, longer, protein-coding genes of high transcript complexity were the most likely to be 

re-annotated. Blue and red highlights positive and negative significant estimates, respectively.  
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