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ABSTRACT 

Motivation: Hi-C experiments have been widely adopted to study chromatin 
spatial organization, which plays an important role in genome function. 
Well-established Hi-C readouts include A/B compartments, topologically 
associating domains (TADs) and chromatin loops. We have recently pro-
posed another readout: frequently interacting regions (FIREs) and discovered 

them to be informative about tissue-specific gene expression. However, 
computational tools for detecting FIREs from Hi-C data are still lacking.   
Results: In this work, we have developed FIREcaller, a stand-alone, user-
friendly R package for detecting FIREs from Hi-C data. FIREcaller takes 
raw Hi-C contact matrix as input, performs within-sample and cross-sample 
normalization via HiCNormCis and quantile normalization respectively, and 
outputs continuous FIRE scores, dichotomous FIREs and super-FIREs.  
Availability and implementation: The FIREcaller package is implemented 
in R, freely available at https://yunliweb.its.unc.edu/FIREcaller. 

Contact: yunli@med.unc.edu or hum@ccf.org   

INTRODUCTION  
Chromatin folding in three-dimensional (3D) space is closely related to 

genome function (Dekker, et al., 2013). In particular, transcription regulation 
is orchestrated by a collection of cis-regulatory elements, including promot-

ers, enhancers, insulators and silencers. For example, enhancers, which can 
be hundreds of kilobase (Kb) or even over a megabase (Mb) away from their 
target gene(s), are brought into close spatial proximity of gene promoter, 
through looping between the corresponding chromatin segments. Alteration 
of chromatin spatial organization in the human genome can lead to gene 
dysregulation and consequently complex diseases including developmental 
disorders and cancers (Krijger and de Laat, 2016; Li, et al., 2018).   

High-throughput chromatin conformation capture (Hi-C) has been 
widely used to measure genome-wide chromatin spatial organization since 

first introduced in 2009 (Lieberman-Aiden, et al., 2009; Tjong, et al., 2016; 
Yardimci, et al., 2019). Analyzing Hi-C data has led to the discovery of 
structural readouts at a cascade of resolutions, including: (1) A/B compart-
ments (Lieberman-Aiden, et al., 2009), which are multiple megabases (Mb) 
in size and largely correspond to active or inactive chromatin; (2) Topologi-
cally associating domains (TADs) (Dixon, et al., 2012), which are on aver-
age approximately 1Mb in size and serve as the basic structural and func-
tional unit of the genome to constrain long-range chromatin interactions 
largely within TADs; (3) chromatin loops (Rao, et al., 2014) at Kb resolu-

tion, which are nested within TADs and anchored by a pair of convergent 

CTCF motifs; and (4) chromatin 3D contacts (Ay, et al., 2014; Ma, et al., 
2015; Xu, et al., 2016; Xu, et al., 2016), again at Kb resolution, which are 
pairs of chromatin segments brought in physical proximity more often than 
expected by random chromatin looping or collision. Among these Hi-C 

readouts, TADs and chromatin loops are largely conserved across cell types 
(Dixon, et al., 2012; Rao, et al., 2014), while A/B compartments and 3D 
contacts exhibit rather moderate levels of cell type specificity (Dixon, et al., 
2015). In an attempt to identify Hi-C readouts that are better indicative of 
cell type or tissue-specific chromatin spatial organizations, we discovered 
thousands of frequently interacting regions (FIREs) by studying a compen-
dium of Hi-C data across 14 human primary tissues and 7 cell types 
(Schmitt, et al., 2016). We defined FIREs as 40Kb genomic regions which 
have substantially more frequent contacts with its neighboring regions. 

FIREs are enriched for tissue-specific enhancers and nearby tissue-
specifically expressed genes, suggesting their potential relevance to tissue 
specific transcription regulatory programs. In our original study, we relied on 
an in-house pipeline to identify FIREs, limiting the general application of 
FIRE analysis and the full exploration of tissue-specific chromatin interac-
tion features from Hi-C data. In this work, we developed FIREcaller, a 
stand-alone, user-friendly R package for detecting FIREs from Hi-C data.    

IMPLEMENTATION 
The current implementation encompasses three components. First, 

FIREcaller takes the raw Hi-C contact matrix as input and calculates the total 
number of local (<200Kb) interactions for each genomic locus (40Kb bin by 
default). Next, FIREcaller performs within-sample normalization, and cross-

sample normalization when the input data contain multiple samples. Here, 
we use one sample to denote one Hi-C dataset, and multiple samples corre-
spond to multiple Hi-C datasets, for instance, from different tissues or cell 
types, or from different biological replicates. Specifically, we leverage the 
HiCNormCis method for within-sample normalization, which adopts a Pois-
son regression approach to adjust for systematic biases from restriction en-
zyme cutting, GC content and mappability (Hu, et al., 2012). The residuals 
from Poisson regression represent the normalized total local interactions and 
are termed as FIRE scores. When analyzing multiple samples, FIREcaller 

first applies HiCNormCis to each sample separately for within-sample nor-
malization, and then uses R function “normalize.quantiles” in the 
“preprocessCore” package to perform quantile normalization across sam-
ples. Subsequently, FIREcaller converts the FIRE scores into Z scores, cal-
culates the one-sided p-values based on the standard normal distribution, and 
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defines genomic loci with p-value < 0.05 as FIREs. In addition, similar to 
the observation that many typical enhancers are clustered to form stitched 
enhancers or super-enhancers (Whyte, et al., 2013), we noticed that many 
FIREs are close to each other. FIREcaller has a function to merge adjacent 
FIREs, following the ROSE algorithm (Whyte, et al., 2013), to identify 
clustered FIREs, termed as super-FIREs. FIREcaller outputs FIRE scores for 

each genomic locus, a list of FIREs and super-FIREs, for each sample.        

APPLICATION EXAMPLES  
We used the Hi-C data from human hippocampus tissue released in our 

previous study (Schmitt, et al., 2016) to showcase the usage of FIREcaller. 
Figure 1 shows an illustrative example of a 400Kb super-FIRE (red horizon-
tal bar), which overlaps with two hippocampus super-enhancers (two light 
blue horizontal bars). Notably, this super-FIRE contains a schizophrenia-
associated GWAS SNP rs9960767 (black vertical line) (Stefansson, et al., 
2009), and largely overlaps with gene TCF4 (pink horizontal bar depicted at 
the top), a gene that plays an important role in neurodevelopment (Forrest, et 
al., 2014). Since rs9960767 resides within a super-FIRE with highly frequent 
local chromatin interactions, we hypothesize that chromatin spatial organiza-

tion may play an important role in gene regulation in this region, elucidating 
potential mechanisms regarding how rs9960767 affects schizophrenia risk. 

In addition, we applied FIREcaller to cortical tissue samples across two 
developmental epochs, fetal (Won, et al., 2016) and adult (Wang, et al., 
2018). We identified 3,925 and 3,926 FIREs from fetal and adult brains, 
respectively. Among them, 4,815 FIREs are differentially regulated between 
fetal and adult, where 2,407 FIREs are fetal brain-specific and 2,408 adult 
brain-specific. The massive changes in FIREs recapitulate recently reported 
extensive chromatin rewiring during brain development (Wang, et al., 2018), 

exemplifying the tissue-specific nature of FIREs. We then overlapped FIREs 
with gene promoters and found that FIREs dynamic across brain develop-
mental stages are closely associated with developmental gene regulation. 
Specifically, integrative analysis of FIREs and brain gene expression data 
(Li, et al., 2018) have shown that genes with fetal brain-specific FIREs over-
lapping their promoters are significantly up-regulated in the fetal brain (p-
value<2.2e-16), while genes with adult brain-specific FIREs overlapping 
their promoters are significantly up-regulated in the adult brain (p-value 
<2.2e-16) (Supplementary Information). 

CONCLUSION 
In sum, we developed FIREcaller, a user-friendly R package to identify 

FIREs from Hi-C data. We demonstrated its utilities through applications to 

two real datasets. We believe that FIREcaller will become a useful tool in 
studying tissue-specific chromatin spatial organization features.   
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Fig 1. An example of super-FIRE in human hippocampus tissue. Virtual 4C plot of 
a 1Mb region (chr18:52,665,002-53,665,002) anchored at schizophrenia-associated 
GWAS SNP rs9960767 (black vertical line), visualized by HUGIn (Martin, et al., 
2017). The solid black, red and blue lines represent the observed contact frequency, 
expected contact frequency, and –log10(p-value) from Fit-Hi-C (Ay, et al., 2014), 
respectively. The dashed purple and reds line represent significant thresholds corre-
sponding to Bonferroni correction and 5% FDR, respectively. The red horizontal bar 
depicts the 400Kb super-FIRE region. The two blue horizontal bars mark two hippo-
campus super-enhancers in the region.  
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