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Abstract

Background: Host immune response is coordinated by a variety of different

specialized cell types that vary in time and location. While host immune response

can be studied using conventional low-dimensional approaches, advances in

transcriptomics analysis may provide a less biased view. Yet, leveraging

transcriptomics data to identify immune cell subtypes presents challenges for

extracting informative gene signatures hidden within a high dimensional

transcriptomics space characterized by low sample numbers with noisy and

missing values. To address these challenges, we explore using machine learning

methods to select gene subsets and estimate gene coefficients simultaneously.

Results: Elastic-net logistic regression, a type of machine learning, was used to

construct separate classifiers for ten different types of immune cell and for five T

helper cell subsets. The resulting classifiers were then used to develop gene

signatures that best discriminate among immune cell types and T helper cell

subsets using RNA-seq datasets. We validated the approach using single-cell

RNA-seq (scRNA-seq) datasets, which gave consistent results. In addition, we

classified cell types that were previously unannotated. Finally, we benchmarked

the proposed gene signatures against other existing gene signatures.

Conclusions: Developed classifiers can be used as priors in predicting the extent

and functional orientation of the host immune response in diseases, such as

cancer, where transcriptomic profiling of bulk tissue samples and single cells are

routinely employed. Information that can provide insight into the mechanistic

basis of disease and therapeutic response. The source code and documentation

are available through GitHub: https://github.com/KlinkeLab/ImmClass2019.
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Background3

Host immune response is a coordinated complex system, consisting of different spe-4

cialized cell types of innate and adaptive immune cells that vary dynamically and5

in different anatomical locations. As shown in Fig. 1, innate immune cells comprise6

myeloid cells including eosinophils, neutrophils, basophils, monocytes, and mast7

cells. Adaptive immune cells are mainly B lymphocytes and T lymphocytes that8

specifically recognize different antigens [1]. Linking innate with adaptive immunity9

are antigen presenting cells, like macrophages and dendritic cells, and Natural Killer10

cells. Traditionally, unique cell markers have been used to characterize and separate11

different immune cell subsets from heterogeneous cell mixtures using flow cytom-12

etry [2, 3, 4]. However, flow cytometry measures on the order of 10 parameters13

simultaneously and relies on prior knowledge for selecting relevant molecular mark-14

ers, which could provide a biased view of the immune state within a sample [5].15

Recent advances in technology, like mass cytometry or multispectral imaging, have16

expanded the number of molecular markers, but the number of markers used for17

discriminating among cell types within a sample remains on the order of 101.5.18

In the recent years, quantifying tumor immune contexture using bulk transcrip-19

tomics or single-cell RNA sequencing data (scRNA-seq) has piqued the interest of20

the scientific community [6, 7, 8, 9, 10]. Advances in transcriptomics technology,21

like RNA sequencing, provide a much higher dimensional view of which genes are22

expressed in different immune cells (i.e., on the order of 103) instead of focusing23

on a small number of genes [11]. Conceptually, inferring cell types from data us-24

ing an expanded number of biologically relevant genes becomes more tolerant to25

non-specific noise and non-biological differences among samples and platforms. In26

practice, cell types can be identified using gene signatures, which are defined as27

sets of genes linked to common downstream functions or inductive networks that28

are co-regulated [12, 13], using approaches such as Gene Set Enrichment Analy-29

sis (GSEA) [12]. However, as microarray data can inflate detecting low abundance30

and noisy transcripts and scRNA-seq data can have a lower depth of sequencing,31

opportunities for refining methods to quantify the immune contexture using gene32

signatures still remain.33

Leveraging transcriptomics data to identify types of immune cells presents an-34

alytic challenges for extracting informative gene signatures hidden within a high35
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dimensional transcriptomics space that is characterized by low sample numbers36

with noisy and missing values. Typically, the number of cell samples is in the range37

of hundreds or less, while the number of profiled genes is in the tens thousands [14].38

Yet, only a few number of genes are relevant for discriminating among immune cell39

subsets. Datasets with a large number of noisy and irrelevant genes decrease the40

accuracy and computing efficiency of machine learning algorithms, especially when41

the number of samples are very limited. Hence, it is essential to use feature selec-42

tion algorithms to reduce redundant genes [15]. The application of feature selection43

methods enables developing gene signatures in different biomedical fields of study44

[16]. There are many proposed feature selection methods to select gene sets with the45

properties that enable high accuracy classification. In recent years, regularization46

methods have became more popular, which efficiently select features [17] and also47

control for overfitting [18]. As a machine learning tool, logistic regression is consid-48

ered to be a powerful discriminative method [18]. However, logistic regression alone49

is not applicable for high-dimensional cell classification problems [19]. Regularized50

logistic regression, in the other hand, has been shown to be successfully applicable51

for high-dimensional problems [20]. Regularized logistic regression selects a small52

set of genes with strongest effects on the cost function [17]. A regularized logistic53

regression can be applied with different regularization terms. The most popular54

regularized terms are LASSO, Ridge [21], and elastic-net [22] which impose the55

l1 norm, l2 norm, and linear combination of l1 norm and l2 norm regularization,56

respectively, to the cost function. It has been shown that, specially in very high57

dimensional problems, elastic-net outperforms LASSO and Ridge [17, 22].58

In this study, we focused on two-step regularized logistic regression techniques to59

develop immune cell signatures and immune cell and T helper cell classifiers using60

RNA-seq data for the cells highlighted in bold in Fig. 1. The first step of the process61

included a pre-filtering phase to select the optimal number of genes and implemented62

an elastic-net model as a regularization method for gene selection in generating the63

classifiers. The pre-filtering step reduced computational cost and increased final64

accuracy by selecting the most discriminative and relevant set of genes. Finally, we65

illustrate the value of the approach in annotating gene expression profiles obtained66

from single-cell RNA sequencing. The second step generated gene signatures for67
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individual cell types using selected genes from first step and implemented a binary68

regularized logistic regression for each cell type against all other samples.69

Results70

We developed classifiers for subsets of immune cells and T helper cells separately71

with two main goals. First, we aimed to annotate RNA-seq data obtained from an72

enriched cell population with information as to the immune cell identity. Second, we73

developed gene signatures for different immune cells that could be used to quantify74

the prevalence from RNA-seq data obtained from a heterogeneous cell population.75

Prior to developing the classifiers, the data was pre-processed to remove genes that76

have low level of expression for most of samples (details can be found in Meth-77

ods section) and normalized to increase the homogeneity in samples from different78

studies and to decrease dependency of expression estimates to transcript length79

and GC-content. Genes retained that had missing values for some of the samples80

were assigned a values of -1. Next, regularized logistic regression (elastic-net) was81

performed and the optimal number of genes and their coefficients were determined.82

Generating and validating an immune cell classifier83

In development of the immune cell classifier, we determined the optimal number of84

genes in the classifier by varying the lambda value used in the regularized logistic85

regression of the training samples and assessing performance. To quantify the perfor-86

mance using different lambdas, a dataset was generated by combining true-negative87

samples, which were created by randomly scrambling associated genes and their88

corresponding value from the testing datasets, with the original testing data, which89

were untouched during training and provided true-positive samples. The accuracy90

of predicting the true-Positive samples were used to generate Receiver Operating91

Characteristic (ROC) curves (Fig. 2a). Performance using each lambda was quan-92

tified as the Area Under the ROC Curve (AUC).93

The optimal lambda for immune cell classifier was the smallest value (i.e., highest94

number of genes) that maximized the AUC. Functionally, this lambda value repre-95

sents the trade-off between retaining the most possible number of informative genes96

(i.e., classifier signal) in the first step for developing the gene signature later, while97

not adding non-informative genes (i.e., classifier noise). Consequently, we selected98
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a lambda value of 1e-4 (452 genes) for the immune cell classifier, where the selected99

genes and their coefficients are shown in Table S1.100

To explore correlations between the weights of selected genes with their expression101

level, we generated heatmaps shown in Fig. 2, panels b and c. A high level of gene102

expression is reflected as a larger positive coefficient in a classifier model, while103

low or absent expression results in a negative coefficient. This is interpreted as, for104

example, if gene A is not in cell type 1, the presence of this gene in a sample decreases105

the probability for that sample to be cell type 1. For instance, E-cadherin (CDH1)106

was not detected in almost all monocyte samples and thus has a negative coefficient.107

Conversely, other genes are only expressed in certain cell types, which results in a108

high positive coefficient. For instance, CYP27B1, INHBA, IDO1, NUPR1, and UBD109

are only expressed by M1 macrophages and thus have high positive coefficients.110

The differential expression among cell types suggests that the set of genes in-111

cluded in the classifier model may also be a good starting point for developing112

gene signatures, which is highlighted in Fig. 2d. Here, we focused on the expres-113

sion of the 452 genes included in the classifier model and the correlations between114

samples clustered based on cell types. The off-diagonal entries in the correlation115

matrix are colored by euclidean distance values with the color indicating similarity116

between sample pairs (similar: pink versus dissimilar: blue) and color bars along the117

axes highlight the cell types for the corresponding RNA-seq samples. As expected,118

RNA-seq samples from the same cell type were highly similar. More interestingly,119

correlation between different cell types can also be seen, like high similarity between120

CD4+ and CD8+ T cell samples, CD8+ T cell and NK cell samples, and monocyte121

and dendritic cell samples. Collectively, these heatmaps illustrate that the selected122

genes are a highly condensed but still representative set of genes that include main123

characteristics of the immune cell types. It is also notable to compare the clustering124

result of cell types based on their coefficients in the classifier shown in Fig. 2b with125

similarity matrix in Fig. 2d. Since in the classifier coefficients are forcing the model126

to separate biologically close cell types (like CD4+ T cell and CD8+ T cell), the127

resulted clustering did not find them in close relationship (Fig. 2b). However, in the128

case of their expression values, their similarity is remains (Fig. 2d).129
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Evaluating the Immune Cell classifier using scRNA-seq datasets130

To evaluate the proposed classifier in immune cell classification, two publicly ac-131

cessible datasets generated by scRNA-seq technology were used [23, 24]. The first132

dataset reported by [23] included malignant, immune, stromal and endothelial cells133

from 15 melanoma tissue samples. We focused on the immune cell samples, which134

included 2761 annotated samples of T cells, B cells, Mphi and NK cells, and 294135

unresolved samples. The immune cells in this study were recovered by flow cytom-136

etry by gating on CD45 positive cells. Annotations were on the basis of expressed137

marker genes while unresolved samples were from the CD45-gate and classified as138

non-malignant based on inferred copy number variation (CNV) patterns (i.e., CNV139

score < 0.04).140

Following a pre-processing step to filter and normalize the samples similar to141

the training step, the trained elastic-net logistic regression model was used to clas-142

sify cells into one of the different immune subsets based on the reported scRNA-seq143

data with the results summarized in Fig. 3a. The inner pie chart shows the prior cell144

annotations reported by [23] and the outer chart shows the corresponding cell anno-145

tation predictions by our proposed classifier. Considering T cells as either CD4+ T146

cell or CD8+ T cell, the overall similarity between annotations provided by [23] and147

our classifier prediction is 96.2%. The distribution in cells types contained within148

the unresolved samples seemed to be slightly different than the annotated samples149

as we predicted the unresolved samples to be mainly CD8+ T cells and B cells.150

The only cell type with low similarity between our classifier predictions and prior151

annotations was NK cells, where we classified almost half of samples annotated152

previously as NK cells as CD8+ T cell. Discriminating between these two cell types153

is challenging as they share many of the genes related to cytotoxic effector function154

and can also be subclassified into subsets, like CD56bright and CD56dim NK subsets155

[25]. To explore this discrepancy, we compared all annotated samples based on their156

CD8 score and NK score provided by the classifier, as shown in Fig. 3b. Although157

the number of NK cell samples are relatively low, it seems that the NK samples158

consist of two groups of samples: one with a higher likelihood of being a NK cell159

and a second with almost equal likelihood for being either CD8+ T cell or NK cell.160

We applied principal component analysis (PCA) to identify genes associated with161

this difference and used Enrichr for gene set enrichment [26, 27]. Using gene sets162
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associated with the Human Gene Atlas, the queried gene set was enriched for genes163

associated with CD56 NK cells, CD4+ T cell and CD8+ T cell. Collectively, the164

results suggests that the group of cells with similar score for NK and CD8 in the165

classifier model are Natural Killer T cells.166

We also analyzed a second dataset that included 317 epithelial breast cancer167

cells, 175 immune cells and 23 non-carcinoma stromal cells, from 11 patients di-168

agnosed with breast cancer [24]. We only considered samples annotated previously169

as immune cells, which were annotated as T cells, B cells, and myeloid samples170

by clustering the gene expression signatures using non-negative factorization. The171

scRNA-seq samples were similarly pre-processed and analyzed using the proposed172

classifier, with the results shown in Fig. 4. The inner pie chart shows the prior cell173

annotations reported by [24] and the outer chart shows the corresponding predicted174

cell annotation by our proposed classifier. Considering T cells as either CD4+ T175

cell or CD8+ T cell, 94.4% of reported T cells are predicted as the same cell type176

and other 5.6% is predicted to be DC or NK cells. However, for reported B cells177

and myeloid cells, we predicted relatively high portion of samples to be T cells (178

15.7% of B cells and 40% of myeloid cells). The rest of the myeloid samples were179

predicted to be macrophages or dendritic cells. Collectively, our proposed classifier180

agreed with many of the prior cell annotations and annotated many of the samples181

that were previously unresolved.182

Developing a classifier for T Helper cell subsets183

Similar to the immune cell classifier, we next wanted to generate a classifier to dis-184

tinguish among T helper cells and applied regularized logistic regression to corre-185

sponding training samples. We explored different values of the regression parameter186

lambda to find the optimal number of genes. To visualize the performance of differ-187

ent lambdas, we generated True-Negative samples by randomly scrambling testing188

datasets. Original testing data that were completely untouched during training were189

used as True-Positive samples. The True-Negative and True-Positive samples were190

used to generate ROC curves (Fig. 5a) and the AUC was used to score each lambda191

value. Generally, the lambda values for T helper cell classifier represents the trade-192

off between retaining genes and keeping the AUC high. However, there appeared to193

be an inflection point at a lambda value of 0.05 whereby adding additional genes,194
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by increasing lambda, reduced the AUC. Consequently, we selected a lambda value195

equal to 0.05 (72 genes) for T helper classifier. The selected genes and their coeffi-196

cients are listed in Table S1. The gene list was refined subsequently by developing197

a gene signature.198

Similar to the immune cell classifier, the coefficients of the selected genes for the T199

helper cell classifier correlated with their expression levels, as seen by comparing the200

heatmaps shown in Fig. 5, panels b and c. For instance, FUT7 has been expressed in201

almost all T helper cell samples except for iTreg that result in a negative coefficient202

for this cell type. In addition, there are sets of genes for each cell type that have large203

coefficients only for certain T helper cell subsets, like ALPK1, TBX21, IL12RB2,204

IFNG, RNF157 for Th1 that have low expression in other cells. As illustrated in205

Fig. 5d, the genes included in the classifier don’t all uniquely associate with a206

single subset but collectively enable discriminating among T helper cell subsets.207

Interestingly, the T helper subsets stratified into two subgroups where naive T208

helper cells (Th0) and inducible T regulatory (iTreg) cells were more similar than209

effector type 1 (Th1), type 2 (Th2), and type 17 (Th17) T helper cells. Similar210

to the immune cell classifier, we also noted that the clustering of the classifier211

coefficients is different from what similarity matrix shows in Fig. 5d because the212

classifier coefficients aim to create a “classifying distance” among closely related213

cell types.214

Finally by comparing the results of immune cell classifier with that of the T helper215

classifier, the intensity of differences among cell types can be seen in Fig. 2c and216

Fig. 5c. In the first figure you can find completely distinct set of genes in each cell217

type while in the second figure the gene sets are not as distinct which could be due218

to either the few number of samples or high biological similarity between T helper219

cell types.220

Application of the Classifiers221

Clinical success of immune checkpoint inhibitors (ICI) for treating cancer coupled222

with technological advances in assaying the transcriptional signatures in individual223

cells, like scRNA-seq, has invigorated interest in characterizing the immune contex-224

ture within complex tissue microenvironments, like cancer. However as illustrated225

by the cell annotations reported by [24], identifying immune cell types from noisy226
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scRNA-seq signatures using less biased methods remains an unsolved problem. To227

address this problem, we applied our newly developed classifiers to characterize the228

immune contexture in melanoma and explored differences in immune contexture229

that associated with immune checkpoint response. Of note, some melanoma pa-230

tients respond to ICIs durably but many others show resistance [28]. Specifically,231

we annotated immune cells in the melanoma scRNA-seq datasets [23, 29] using232

our classifiers separately for each patient sample and ordered samples based on the233

treatment response, with the results shown in Fig. 6a, b. We used the percentage234

of cell type for each tumor samples as it is more informative and meaningful than235

using absolute cell numbers. It is notable that untreated and NoInfo samples likely236

include both ICI-resistant and ICI-sensitive tumors.237

In comparing samples from resistant tumors to untreated tumors, we found in-238

terestingly that there are samples with high prevalence of NK in untreated tumors239

(Mel53, Mel81, and Mel82) while no samples in resistant tumors have a high preva-240

lence of NK cells. The mentioned untreated tumors also have no or very low number241

of Th2 cells in their populations. In addition, untreated tumors have a more uni-242

form distribution of immune cell types in contrast to ICI-resistant ones, which could243

reflect a therapeutic bias in immune cell prevalence in the tumor microenvironment244

due to ICI treatment.245

Next, we combined the annotation data from both classifiers and applied PCA246

and clustering analysis, as shown in Fig. 6, panels c and d. Using scrambled data247

to determine principal components and their associated eigenvalues that are not248

generated by random chance (i.e., a negative control), we kept the first and second249

principal components that capture 68% and 21% of the total variance, respectively,250

and neglected other components that fell below the negative control of 8.4%. As it251

shown in 6c, resistant samples mainly located in lowest value of second principal252

component (PC2). Upon closer inspection of the cell loadings within the eigen-253

vectors, the low values of PC2 corresponds to a low prevalence of Mφ or high254

percentage of B cells. In addition, based on the first principal component (PC1),255

resistant samples have either lowest values of PC1 (Mel74, Mel75, Mel58, Mel 78)256

which correspond to higher than average prevalence of CD8+ T cells or highest257

values of PC1 (Mel60, Mel72, Mel94) that show higher than average prevalence of258

B cells.259
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In hierarchical clustering, the optimal number of clusters was selected based on cal-260

culation of different cluster indices using the NbClust R package [30] which mainly261

identified two or three clusters as the optimal number. In considering three group-262

ings of the hierarchical clustering results shown in 6d, seven out of eight ICI-resistant263

samples clustered in first two clusters while the third cluster mainly contained un-264

treated samples. The comparison of results from PCA and clustering analyses shows265

that the first cluster contained samples with extreme low value of PC1 which itself266

divided into two groups; one with extreme low value of PC2 and the other with267

higher amount of PC2. The second cluster located in highest amount of PC1 and268

lowest amount of PC2. All remained samples were clustered as third group, which269

were predominantly untreated samples. The difference in clustering suggests dissim-270

ilarities between ICI-resistant and untreated samples and the possibility of having271

ICI-sensitive tumors in untreated samples.272

Developing Gene Signatures273

While classifiers are helpful for annotating scRNA-seq data as the transcriptomic274

signature corresponds to a single cell, gene signatures are commonly used to deter-275

mine the prevalence of immune cell subsets within transcriptomic profiles of bulk276

tissue samples using deconvolution methods. Leveraging the classifier results, we277

generated corresponding gene signatures using binary elastic-net logistic regression.278

Specifically, classifier genes with non-zero coefficients were used as initial features of279

the models, which were regressed to the same training and testing datasets as used280

for developing the classifiers. Lambda values were selected for each immune and T281

helper cell subset based on similar method of lambda selection for classifiers and282

their values and corresponding AUC are shown in Table S2. Finally, all generated283

signatures are summarized in Table S3.284

We visualized the expression levels of remained set of genes, which at least occur285

in one gene signature, in Fig. 7. The expression of genes retained in immune cell sig-286

natures (Fig. 7a) and T helper cell signatures (Fig. 7b) were clustered by similarity287

in expression (rows) and by similarity in sample (columns). For both immune and288

T helper cell subsets, samples of same cell type were mainly clustered together. The289

only exception is for macrophages (Mφ and M2) which can be attributed to high290

biological similarity and a low number of technical replicates for these cell types.291
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In general, the gene set generated from the logistic regression model performed292

well with far fewer requisite genes in the testing set, a desirable result for a gene293

set intended to be used for immunophenotyping. In Fig. 8, the results of the bench-294

marking are shown separated by comparative gene set. Both the CIBERSORT and295

Single-Cell derived gene sets contain an average of 64 and 135 genes, respectively,296

while the logistic regression gene set contains an average of just 19. The new lo-297

gistic regression gene set performed comparably to the existing contemporary gene298

sets and far exceeded the performance of the manually curated gene set used previ-299

ously [6]. The benchmarking results indicate that logistic regression gene set is an300

improvement in efficacy over compact gene sets, such as those that are manually301

annotated or hand-picked. Meanwhile, the logistic regression gene set also demon-302

strates an optimization of broader gene sets that contain too many genes for deep303

specificity when used in further analysis. The inclusion of too many genes in the set304

can dilute the real data across a constant level of noise, while including too few lacks305

the power to draw conclusions with high confidence. The logistic regression gene306

set demonstrates a balance of these two issues through its highly refined selection307

of genes that can be fine-tuned using its lambda parameter.308

Discussion309

Recent developments in RNA sequencing enable a high fidelity view of the tran-310

scriptomic landscape associated with host immune response. Despite considerable311

progress in parsing this landscape using gene signatures, gaps remain in developing312

unbiased signatures for individual immune cell types from healthy donors using high313

dimensional RNA-seq data. Here, we developed two classifiers - one for immune cell314

subsets and one for T helper cell subsets - using elastic-net logistic regression with315

cross validation. The features of these classifiers have been used as starting point for316

generation of gene signatures captured with fifteen binary elastic-net logistic regres-317

sion models as the most relevant gene sets to distinguish among different immune318

cell types without making too much noise.319

Gene signatures in previous studies have been developed and used mainly as320

a base for deconvolution of tumor microenvironment and to find the fractions of321

existing immune cells. Therefore, as the first step, determining cell-specific gene322

signatures critically influences the results of deconvolution methods [31]. Newman323
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et al. defined gene signatures for immune cells using two-sided unequal variances324

t-test as base matrix for CIBERSORT [8]. In another study, Li et al. in developing325

TIMER, generated gene signatures for six immune cell types with selecting genes326

with expression levels that have a negative correlation with tumor purity [9]. More327

recently, Racle et al. developed a deconvolution tool based on RNA-seq data (EPIC)328

by pre-selecting genes based on ranking by fold change and then selected genes329

by manually curating and comparing the expression levels in blood and tumor330

microenvironment [10]. Finally, quanTIseq (the most recently developed tool for331

deconvolution) has been developed for RNA-seq data based on the gene signatures332

generated by quantizing the expression levels into different bins and selecting high333

quantized genes for each cell type that have low or medium expression in other cell334

types [7]. Although all methods obtained high accuracy based on their developed335

signatures, a more rigorous and unbiased gene signature developed by RNA-seq336

data and precise feature selection methods can be used to improve the accuracy337

even further and validate the process for downstream analyses.338

In addition, to identify cell types based on their transcriptome, clustering tech-339

niques have been used in many studies [32, 33]. However, there are high variability340

levels of gene expression even in samples from the same cell type. Moreover, tran-341

scriptomics data has high dimensions (tens of thousands) and this is too complicated342

for clustering techniques specially because only few number of genes are discrimi-343

native. To overcome these problems some studies used supervised machine learning344

methods like Support Vector Machine (SVM) [34, 35]. However, to the best of our345

knowledge, this paper is the first to apply two-step regularized logistic regression346

on RNA-seq transcriptomic of immune cells. This method increases the chance to347

capture the most discriminative set of genes for each cell type based on the power348

of an elastic-net [22]. In addition, using a two-step elastic net logistic regression349

enabled eliminating the most irrelevant genes while keeping the most possible sig-350

nificant genes in the first step and more deeply selecting among them in the second351

step to generate robust gene signatures for immune cells.352

Moreover, contemporary methods have only considered a limited number of im-353

mune cell types, and specifically T helper subsets as individual cell types have been354

neglected [23, 29, 24] in comprehensive studies. Therefore, the other novel aspect355

of this study is the separation of models for immune cells and T helper cells and356
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development of gene signatures for vast number of immune cell types (fifteen differ-357

ent immune cell types) including different T helper cell subsets. This can be used358

to study immune system in different diseases in more depth. As we used publicly359

available RNA-seq datasets for immune cells and T helper cells, we acknowledge360

that our developed classifiers and gene signatures may be still constrained by the361

limited number of samples specifically for T helper cells. As more data describing362

the transcriptome of for immune cells will become accessible, one can update the363

classifiers and gene signatures. Despite the limited number of samples used in the364

approach, the developed classifiers can even be applied to completely untouched365

and large datasets [23, 24] that have been generated using scRNA-Seq technology366

which creates noisier data.367

Conclusions368

Here, we developed an immune cell classifier and classifier for T helper cell subsets369

along with gene signatures to distinguish among fifteen different immune cell types.370

Elastic-net logistic regression was used to generate classifiers with 10-fold cross-371

validation after normalizing and filtering two separate RNA-seq datasets that were372

generated using defined homogeneous cell populations. Subsequently, we generated373

gene signatures using a second step of binary regularized logistic regression applied374

to the RNA-seq data using previously selected classifier genes. As an external val-375

idation, the resulting classifiers accurately identified the type of immune cells in376

scRNA-seq datasets. Our classifiers and gene signatures can be considered for a377

different downstream applications. First, the classifiers may be used to detect the378

type of immune cells in under explored bulks and to verify uncertainly annotated379

immune cells. Second, the gene signatures could be used to study tumor micro-380

environments and the connections of immune systems with cancer cells, which is381

emerging to be an important clinical question.382

Methods383

Data Acquisition384

RNA-seq datasets for 15 different immune cell types including T helper cells, were385

obtained from ten different studies [36, 37, 38, 39, 40, 41, 42, 43, 44, 45] which were386

publicly accessible as part of Gene Expression Omnibus [46]. The list of samples387

is provided as Supplementary Table S1. Cell types divided into two groups: the388
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immune cells includes B cells, CD4+ and CD8+ T cells, monocytes (Mono), neu-389

trophils (Neu), natural killer (NK) cells, dendritic cells (DC), macrophage (Mφ),390

classically (M1) and alternatively (M2) activated macrophages, and the T helper391

cells includes Th1, Th2, Th17, Th0, and Regulatory T cells (Treg). The goal was392

to train the gene selection model on immune cell types, and CD4+ T cell subsets393

(T helper cells), separately. As if these two groups of cells are analyzed together,394

many of the genes that potentially could be used to discriminate among T helper395

cell subsets might be eliminated as they overlap with genes associated with CD4+396

T cells.397

In short, a total of 233 samples were downloaded and divided into two sets of398

185 and 48 samples, for immune cells and T helper cells, respectively. Moreover,399

immune cell samples have been further divided into 108 training and 77 testing400

samples. Numbers for T helper samples are 31 and 17, respectively. Training and401

testing data include samples from all studies. For a verification dataset, scRNA-402

seq data derived from CD45+ cell samples obtained from breast cancer [24] and403

melanoma [23] were used with GEO accession numbers of GSE75688 and GSE72056,404

respectively.405

Data Normalization406

The expression estimates provided by the individual studies were used, regardless407

of the underlying experimental and data processing methods (Table S1). For devel-408

oping individual gene signatures and cell classification models, we did not use raw409

data due to sample heterogeneity such as different experimental methods and data410

processing techniques used by different studies as well as differences across biolog-411

ical sources. Rather, we applied a multistep normalization process before training412

models. To eliminate obvious insignificant genes from our data, for immune cell413

samples, genes with expression values higher than or equal to five, in at least five414

samples have been kept, otherwise, they were eliminated from the study. However,415

for T helper samples, due to fewer number of samples, four samples with values416

higher than or equal to five were enough to be considered in the study. After first417

step of filtering, the main normalization step was used to decrease dependency of418

expression estimates to transcript length and GC-content[47, 48]. For all four sets419

of samples, including training and testing samples for immune cells and for T helper420
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cells, expression estimates were normalized separately by applying withinLaneNor-421

malization and betweenLaneNormalization functions from EDASeq package [49] in422

R programming language (R 3.5.3), to remove GC-content biases and between-lane423

differences in count distributions [49]. After normalization, the second step of filtra-424

tion, just similar to the first step, was applied to eliminate genes with insignificant425

expression.426

Missing Values427

In contrast to previous studies that only considered intersection genes [50], in order428

to avoid of deletion of discriminative genes, we tried to keep genes with high ex-429

pression, as much as possible. However, for most of genes, values for some samples430

were not estimated. Hence, to deal with these missing values, we used an imputa-431

tion method [51] and instead of mean imputation we set a dummy constant since432

mean imputation in this case is not meaningful and can increase error. Specifically,433

we generated a training set for each group of cell types, by duplicating the original434

training set 100 times and randomly eliminating ten percent of expression values.435

We next set -1 for all these missing values (both original missing values and those436

we eliminated) as a dummy constant because all values are positive and it is easy to437

be learned by the system as noise. This approach makes the system learn to neglect438

specific value (-1) and treat it like noise, instead of learning it as a feature of the439

samples.440

Classifier Training and Testing441

Considering the few number of training samples in comparison with the high di-442

mensions (15453 genes in immune cell samples and 9146 genes in the T helper443

samples) and to avoid both over fitting the model and adding noise to the pre-444

diction model, we used regularization with logistic regression to decrease the total445

number of genes and select the most discriminative set of genes. To perform gene446

selection, we trained a lasso-ridge logistic regression (elastic-net) model, which au-447

tomatically sets the coefficients of a large number of genes to zero and pruned448

the number of genes as features of the classifier. We cross-validated the model by449

implementing cv.glmnet function with nfold=10 from glmnet package [21] in R pro-450

gramming language, using training sets for both groups of cell types. We normalized451

the gene expression values using a log2 transform over training sets to decrease the452
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range of values that can affect the performance of the model (log2(counts+1)).453

In order to find the optimal number of genes, we tried 7 different lambdas and454

tested the results over the testing samples (cv.glmnet(family=”multinomial”, al-455

pha=0.93, thresh=1e-07, lambda=c(0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001),456

type.multinomial=”grouped”, nfolds=10)). To select the optimal value for lambda,457

True-Negative samples were generated by randomly scrambling testing datasets,458

then we generated ROC curves and considered original testing datasets as True-459

Positive samples.460

Developing Gene Signatures461

Genes selected by the classifier models were used as initial point to build gene462

signatures. In this case, we trained a new binary elastic-net model for each cell type463

by considering a certain cell type as one class and all other cell types as another class.464

The training and testing samples used to build gene signatures were the training465

and testing samples used in developing the classifiers with the difference being466

that they only contained the selected genes. Similar steps including dealing with467

missing values, applying log2 and visualization by ROC to select optimal number468

of genes were applied for each cell type. This two-step gene selection approach has469

the advantage that it eliminates a large number of undiscriminating genes at the470

first and finally select few number of genes for each cell type.471

Benchmarking472

Fisher exact testing was used for each gene set to characterize true and system-473

atically scrambled data as a measure of performance of the gene set as a means474

of distinguishing between cell subtypes. Data was scrambled by randomly redis-475

tributing expression values by gene as well as patient in order to establish negative476

control values for determining specificity. The threshold for expression binarization477

for Fisher exact testing was selected based on gene expression histograms of the478

data to separate the measured expression from background noise levels, with 2.48479

being used as the threshold (after log2 normalization). One-thousand iterations480

were processed and compiled in order to produce ROC curves with 95% confidence481

intervals shaded about the averaged ROC curve for each gene set’s performance.482

The tested gene sets were the logistic regression gene set, the CIBERSORT gene set483
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[8], the single cell gene set [29], and the manually curated gene set that had been484

used previously.485

List of abbreviations486

ROC: receiver-operator curves487

scRNA-seq: single-cell RNA-seq488

AUC: area under the ROC curve489

CNV: copy number variation490

PCA: principal component analysis491
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SVM: support vector machine493
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Lähdesmäki, H., Lahesmaa, R.: Identification of global regulators of t-helper cell lineage specification. Genome629

medicine 7(1), 122 (2015)630

44. Spurlock III, C.F., Tossberg, J.T., Guo, Y., Collier, S.P., Crooke III, P.S., Aune, T.M.: Expression and functions631

of long noncoding rnas during human t helper cell differentiation. Nature communications 6, 6932 (2015)632

45. Schmidt, A., Marabita, F., Kiani, N.A., Gross, C.C., Johansson, H.J., Éliás, S., Rautio, S., Eriksson, M.,633
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50. Schwalie, P.C., Ordóñez-Morán, P., Huelsken, J., Deplancke, B.: Cross-tissue identification of somatic stem and644

progenitor cells using a single-cell rna-sequencing derived gene signature. Stem Cells 35(12), 2390–2402 (2017)645
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Figures648

Figure 1 Lineage tree representation of cells of the immune system. Gene signatures were

developed in this study for immune cells highlighted in bold.

Additional Files649

Table S1. — Coefficients of immune cell classifier and T helper cell classifier650

Coefficients of immune cell classifier were located in the first sheet and coefficients of T helper cells were located in651

the second sheet.652
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Figure 2 Development of immune cell classifier and similarity heatmap. a) ROC curve for the

immune cell classifier was calculated using the indicated lambda values and 10-fold cross

validation. The lambda value that maximized the AUC value was used for subsequent calculations.

Elastic-net logistic regression was used to discriminate among ten immune cell types, where the

value of the non-zero coefficients (panel b), expression levels (panel c), and similarity map (panel

d) for the 452 genes included in the classifier are indicated by color bars. In panel b, blue to red

color scheme indicates coefficients ranging from negative to positive values. Ordering of genes is

the same in panels b and c. Similarity between samples calculated using distance matrix based on

same 452 genes.

Table S2. — Lambda Selection by AUC Values653

Lambdas with corresponding calculated AUC. The final column shows the selected lambdas654

Table S3. — Genes in developed gene signature for immune and T helper cells655

Yellow boxes show genes with negative impact in possibility of being related cell type.656

Table S4. — Data information used in training models.657

The second sheet shows names that used in creating datasets.658
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Figure 3 Immune cell annotation prediction based on scRNA-seq data against prior

annotations reported in melanoma dataset. a) The inner pie chart summarizes the cell

annotations reported by Tirosh et al [23] and includes 298 unannotated CD45-positive

non-malignant cells (labeled as Unresolved) isolated from melanoma tissue samples. Unannotated

samples were acquired following gating for CD45+ single cells and classified as non-malignant

based on inferred copy number variation patterns. Using gene expression values reported for each

scRNA-seq sample, a new cell annotation was determined based on the closest match with the

alternative cell signatures determined using elastic-net logistic regression, which are summarized in

outer pie chart. b) The contour plot for the likelihood of a sample to be either an NK cell or

CD8+ T cell based on gene expression stratified by cells previously annotated by [23] to be T

cells, macrophages, B cells, or NK cells.
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Figure 4 Immune cell annotation prediction against prior annotations reported in breast cancer

scRNA-seq dataset. The inner pie chart summarizes the cell annotations reported by Chung et al

[24], which annotated scRNA-seq results by clustering by gene ontology terms using likelihood

ratio test. Using the gene expression profile reported for each scRNA-seq sample, a new cell

annotation was determined based on the closest match with the alternative cell signatures

determined using elastic-net logistic regression, which is summarized in the outer pie chart.
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Figure 5 Development of T helper cell classifier and similarity heatmaps a) ROC curve for the

T helper cell classifier was calculated using the indicated lambda values and 10-fold cross

validation. The lambda value that maximized the AUC value was used for subsequent calculations.

Elastic-net logistic regression to discriminate among five T helper cell types, where the value of

the non-zero coefficients (panel b), expression levels (panel c), and similarity map (panel d) for

the 72 genes included in the classifier are indicated by color bars. In panel b, blue to red color

scheme indicates coefficients ranging from negative to positive values. Ordering of the genes is the

same in panels b and c. In panel d, similarity between samples calculated using a euclidean

distance matrix based on same 72 genes, where the color indicates the distance (pink: high

similarity/low distance; blue: low similarity/high distance). Color bar on the top/side of the

heatmap indicates the cell type of origin.
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Figure 6 Annotation of scRNA-seq results from melanoma dataset stratified by patient

treatment status. Treatment status of patients diagnosed with melanoma was stratified based on

their response to ICIs ([23, 29]). a) The distribution in immune cell annotations and b) T helper

cell annotations based on scRNA-seq data were separated into samples obtained from ICI-resistant

tumors, untreated tumors, and tumors reported in melanoma data without information about

treatment status. Cell annotations were based on immune cell classifier and T helper cell classifier

results. c) PCA analysis was applied on data obtained from both classifiers. d) Samples were

clustered based on the percentages of nine immune cells and five T helper cells
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Figure 7 Heatmaps of the expression levels for the final list of genes created by gene

signatures. The expression of genes retained in immune cell signatures (panel a) and T helper cell

signatures (panel b) were clustered by similarity in expression (rows) and by similarity in sample

(columns) The color bar at the top indicates the sample cell type.

Figure 8 Benchmarking ROC performance curves. ROC curves to illustrate relative performance

between logistic regression gene set and the manually curated (Panel A), CIBERSORT (Panel B),

and single cell gene sets (Panel C). The logistic regression gene set’s performance is shown in red.

Shaded regions are 95% confidence intervals about the average ROC curve simulated from 1000

iterations.
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