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Abstract

Motivation: Personalized medicine aims at combining genetic, clinical, and environmental
data to improve medical diagnosis and disease treatment, tailored to each patient. This pa-
per presents a Bayesian nonparametric (BNP) approach to identify genetic associations with
clinical/environmental features in cancer. We propose an unsupervised approach to generate
data-driven hypotheses and bring potentially novel insights about cancer biology. Our model
combines somatic mutation information at gene-level with features extracted from the Electronic
Health Record. We propose a hierarchical approach, the hierarchical Poisson factor analysis (H-
PFA) model, to share information across patients having different types of cancer. To discover
statistically significant associations, we combine Bayesian modeling with bootstrapping tech-
niques and correct for multiple hypothesis testing.

Results: Using our approach, we empirically demonstrate that we can recover well-known asso-
ciations in cancer literature. We compare the results of H-PFA with two other classical methods
in the field: case-control (CC) setups, and linear mixed models (LMMs).

1 Introduction

Cancer encompasses not one, but a large group of genetic diseases involving abnormal cell
growth with the potential to invade or spread to other parts of the body. Although a small set
of universal underlying principles were identified, the so-called “hallmarks” of cancer [19, 20],
each type of cancer presents unique properties, making this disease very hard to treat [37, 22, 43].
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Genetic association studies have been successful in relating somatic mutation to carcinogene-
sis, but has been limited to the detection of common large-effect variants in the presence of only
small cohorts [9, 27, 8]. Finding somatic driver mutations is even more challenging since these
mutations are often rare. The large phenotypic heterogeneity, which reduces statistical power in
the discovery method, causes some associations to remain hidden [38, 29, 40]. Cohort sizes tend
to be small, especially in rare cancers, which makes the discovery of small effect size associations
difficult [3]. Additionally, carcinogenesis is driven by the accumulation of mutations that may
act epistatically or pleiotropically during the disease, further reducing the power of typical ap-
proaches [48, 11, 42, 12]. To overcome these difficulties, new approaches for interpreting genetic
variation across different cancer types are required.

In recent years, efforts to mine electronic health records (EHRs) show promise to impact
nearly every aspect of healthcare [26]. The adoption of EHRs in hospitals has increased dra-
matically and has become a powerful resource for phenotyping [2, 32], with the potential for
establishing new patient-stratification principles and for revealing unknown disease correlations.
Integrating EHRs data with genetic data will also give a better understanding of genotype-
phenotype relationships [49]. EHRs consist of both structured and unstructured information.
Structured data is a valuable source of information that includes billing codes, laboratory re-
ports, physiological measurements, and demographic information, among others. Yet, most of
the clinical data comes as unstructured notes, e.g., around 98% of the EHRs [26]. These in-
clude a broad spectrum of clinically-relevant information which might be useful to identify novel
phenotypic relationships so far unknown by the clinicians [32, 26].

This work presents a joint generative model to discover associations between somatic muta-
tions and clinical features in cancer that deals with phenotype heterogeneity, small cohort size,
epistasis and pleiotropy in a straightforward way. Our method infers latent topics from the clin-
ical text and genetic information, capturing complex interactions between groups of genes and
clinical features. It is directly inspired by the Poisson factorization model for recommendation
systems [16], with three important differences.

First, we introduce confounding effects as conditional variables, i.e., variables that might
cause spurious associations to appear. In particular, our model considers multiple types of cancer
together (the type of cancer is treated as a confounder) and shares information among all patients
in a hierarchical fashion. Indeed, most cancers are known to share common pathogenesis despite
specificities of the cell type and tissue origin [43]. By doing so, specific effects for each type of
cancer can be isolated, and additional (less well-known) associations with somatic mutations of
smaller effect size can be obtained.

Second, we force sparsity on the textual and genetic topics by using shape parameters smaller
than one in the Gamma distribution priors. Sparsity is crucial to find meaningful, easy-to-
interpret associations; those can be validated either through previous studies by looking in the
literature, or subsequent tests in the lab.

Third, we present a nonparametric alternative model to [16] by replacing the continuous
patient weights with a binary matrix whose probability distribution is induced by a hierarchical
extension of the Indian buffet process (IBP). Also in the literature, the authors in [17] propose
a nonparametric Poisson factorization model, but they rely on a stick-breaking construction
different from the IBP, and the weights are continuous, which renders interpretability of the
latent variables more tedious. The discrete nature of the IBP helps in terms of interpretability
and allows combining the proposed Bayesian model with classical frequentist approaches for
statistical testing between the inferred patient partitions. An efficient Markov chain Monte
Carlo (MCMC) procedure based on a slice sampler for the hierarchical IBP is presented.

Bayesian modeling has already been proven useful for epistasis [53], pleiotropy [53, 52] or
sub-phenotyping applications [35, 28]. To our knowledge, the proposed model is the first one to
deal with clinical text data and genetic information jointly in a Bayesian nonparametric way,
capturing phenotypic heterogeneity, epistasis and pleiotropy in a straightforward way while
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correcting for the cancer type as confounder. We consider multiple cancers jointly in order
to increase statistical power, allow for the analysis of rare cancers, and identify fundamental
mechanisms shared across different types of cancer.

2 Methods

2.1 Study design and setting

The study was designed as a retrospective cohort study for the development and analysis of
techniques to analyze clinical narratives in the context of somatic mutations. It was performed at
Memorial Sloan Kettering Cancer Center (MSKCC). The institutional review board of MSKCC
provided a Waiver of Authorization (WOA; WA0426-13) for this study. Clinical notes were
provided by the IT services group at MSKCC. The Center for Molecular Oncology at MSKCC
provided the information about somatic mutations from the MSK Impact panels of patient
tumors. We included 1,946 patients for which we had MSK Impact panel data and at least
one clinical narrative available at the time of delivery. Data analyses were performed on the
HPC compute systems at MSKCC. Additional statistical analyses were performed at University
Carlos III and ETH Zürich.

2.2 Database Description

So far, genomic testing of tumors has been done routinely only for certain solid cancer tumors,
such as melanoma, lung, or colon cancer. For most cancers, the available tests have been limited
to analyzing one or a handful of genes at a time, and within each gene, only the most common
mutations could be detected.1 A new targeted tumor sequencing test called MSK-IMPACT
(Integrated Mutation Profiling of Actionable Cancer Targets) is able to detect somatic mutations
and other critical somatic aberrations in both rare and common cancers [10, 51].

Using the MSK-IMPACT panels[51], somatic mutations regarding specific screened genes
can be obtained as follows. For each patient, tumor cells are compared with healthy cells of
that same patient, extracted from the blood stream, as illustrated in Figure 1. In this work, a
gene is said to be mutated when there exists at least one difference in the sequence between the
tumor cells and healthy cells for that particular gene.2 We finally obtain a binary matrix for
N = 1946 patients and G = 410 genes where “1” encodes for a mutated gene and “0” otherwise.
The screened genes have been shown to play a role in the development or behavior of tumors,
although their individual relation to specific phenotypes remains obscure [10, 51].

Concerning the clinical information, based on all EHRs, we build a bag-of-word representa-
tion of unified medical language system (UMLS) terms, extracted using the Metamap3 processing
tool [4]. The UMLS refers to a standardized, comprehensive thesaurus and ontology for biomed-
ical concepts, whose objective is to provide facilities for natural signal processing tasks [7]. Since
each patient can have a varying number of records, we group all clinical history into a single
EHR, and only consider the appearance or absence of each UMLS term, i.e., binarized clinical
features. We compute the tf-idf score for each UMLS term, and only keep the 300 clinical terms
with highest score.

The database includes clinical and genetic information for N = 1946 patients and 5 different
cancer types: bladder cancer, breast carcinoma, colorectal cancer, non-small cell lung cancer,
and prostate cancer. We consider genes and UMLS terms that are present in at least 1% of the
patient population, resulting in D = 249 dimensions, including 72 genes and 177 clinical terms.

1https://www.mskcc.org/msk-impact
2The considered sequencing technology is able to remove most of the technical noise, in contrast to other tech-

nologies.
3Source code available at: https://metamap.nlm.nih.gov/
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Figure 1: Diagram illustrating molecular profiling of tumors with the MSK-IMPACT Panel. (top)
For each patient, tumor DNA is compared against normal tissue DNA in order to detect somatic mutations. The
MSK-IMPACT panel is routinely used for a large number of patients per year at MSKCC [51].

Even if the dataset is binary, we can use a Poisson likelihood because of the high sparsity degree
of such matrix (7.28% of non-zero values). In such scenario, the Poisson distribution is a good
approximation of a Bernoulli, and we adopt it by mathematical convenience in the inference
process [14, 46]. In the following, we use this data for: a) discovering latent factors and, b)
testing for significant features (either genetic or phenotypical) associated to each factor.

2.3 Classical Approach: Case-Control Setup

The most common approach for genetic association studies is the case-control (CC) setup, which
compares two large groups of individuals, one case group presenting a particular phenotype, and
one control group without such phenotype.All individuals in each group are genotyped to identify
somatic mutations in a panel of genes. For each of these genes, it is then investigated if the
somatic mutation is significantly associated with the phenotype of interest. In such setups, the
fundamental unit for reporting effect sizes is the odds ratio. The odds ratio in this case refers
to the odds of exhibiting the phenotype for individuals having a specific somatic mutation and
the odds of exhibiting the phenotype for individuals who do not present such somatic mutation.
A p-value for the significance of the odds ratio is typically computed using a simple χ-squared
test or Fisher test. Finding odds ratios that are significantly different from one is the objective
of an association study because this shows that there is statistical evidence that the somatic
mutation is associated with the phenotype.

2.4 Confounder Correcting Approach: Linear Mixed Model

Linear mixed models (LMMs) have proved particularly useful for genetic association studies due
to its capacity to account for confounding effects and limit the number of false associations [31,
30]. Let X be the observation matrix, where each element xng corresponds to an indicator
variable for a particular patient n ∈ {1, . . . , N} and somatic mutation in gene g ∈ {1, . . . , G},
and xg ∈ {0, 1}N×1 is the indicator vector for gene g across all patients. The binary variable
xng indicates whether any somatic mutation occurred in the corresponding gene. Let ynq be the
binary indicator variable of the presence of a certain clinical feature q ∈ {1, . . . , Q} for a given
patient n, and yq ∈ RN×1 the indicator vector for clinical feature q across all patients. Finally,
let us define cnl as the binary indicator variable of patient n to the cancer type ` ∈ {1, . . . , L},
and cn ∈ {0, 1}1×L the cancer type assignment vector, where

∑
` cn` = 1 (for simplicity, we only

consider patients having one single type of cancer). For each pair of gene g and clinical feature
q, a LMM can be defined as follows:
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yq = xgβqg + uqg + εqg, (1)

where βqg ∈ R refer to the fixed effect of feature q and gene g, and uqg, εqg ∈ RN×1 are the
random effects (structured noise and observational noise, respectively). The prior assumptions
for the structured and uniform noises are uqg ∼ N (0, σ2

uK) and εqg ∼ N (0, σ2
eI), where K

refers to a similarity matrix between the patients, for instance, the cosine similarity of the
cancer type assignment vectors ci and cj , K = CCT . The LMM assumes that the output yq is
Gaussian-distributed:

yq ∼ N (xgβqg, σ
2
uK + σ2

eI). (2)

When the data is binary or count data, a common practice is to apply a standard rank-based
inverse normal transformation beforehand as a preprocessing step [24], although this has become
controversial more recently [5]. LMMs are discriminative since they try to model the conditional
probability p(yq|xg). In this paper, we propose an alternative generative approach that models
the joint distribution p(yq,xg) and captures complex correlations via latent factors.

2.5 Hierarchical Bayesian Nonparametric Approach

Let X ∈ NN×D be the observation matrix of count data for N patients and D dimensions, where
D includes both clinical and genetic information, i.e., D = G + Q, where G is the number of
genes and Q is the number of clinical terms. In the following, we propose two Poisson factor
analysis (PFA) approaches to model the joint observation matrix X of genetic information
and clinical data. In these models, patients will be represented by binary feature activation
vectors, and each of these features will capture common correlation patterns among the somatic
mutations and clinical term occurrences.

2.5.1 Poisson Factor Analysis (PFA)

We first consider a nonparametric non-negative matrix factorization model with Poisson likeli-
hood and Gamma-distributed factors:

xnd ∼ Poisson
(
ZnAd

)
, (3)

Akd ∼ Gamma
(
αA,

µA

αA

)
, (4)

Z ∼ IBP(α), (5)

where α is the concentration parameter of the IBP controlling the a priori number of ones in
matrix Z (i.e., the a priori expected number of latent features), and µA, αA are the prior mean
and shape parameter for each element of matrix A. Sparsity can be induced easily in the factors
by choosing αA � 1. Inference is performed using an MCMC approach based on a semi-ordered
stick-breaking representation of the IBP prior [44].

2.5.2 Hierarchical Poisson Factor Analysis (H-PFA)

Although different types of cancer are known to share similar phenotypes and underlying mech-
anisms (shared activation of certain pathways), the mutation rate and phenotype occurrence
might vary in different proportions, according to each type of cancer. Given this premise, we
propose a hierarchical Bernoulli process Poisson factor analysis model to allow for different fea-
ture activation levels depending on each type of cancer. In the following, we will shorten the
name of this model to hierarchical Poisson factor analysis (H-PFA).

Let rn ∈ [1, . . . , L] be a categorical variable indicating the type of cancer of patient n among
the total number of cancer types L (rn corresponds to the index of the non-zero value in vector
cn defined in Section 2.4). A hierarchical construction can be formulated based on the finite
representation of the IBP and letting K → ∞, such that different levels of feature activation
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are allowed for each type of cancer. Let ρk be the global activation probability of feature k, and
π`k be the specific activation probability of feature k for cancer type ` ∈ [1, . . . , L]. We can then
assume that each specific activation probability is Beta-distributed such that E`[π`k] = ρk:

ρk ∼ Beta
( α
K
, 1
)

π`k|ρk ∼ Beta
( ρk

1− ρk
, 1
) znk ∼ Bernoulli(πrnk )

Akd ∼ Gamma
(
αA,

µA

αA

) (6)

xnd ∼ Poisson
(
ZnAd

)
, (7)

where the feature activation variables in vector Zn are drawn from different activation probability
vectors {π1, . . . ,πL} depending on the type of cancer rn of patient n. When K →∞, this prior
over Z is equivalent to a hierarchical Beta process (BP) construction [45] on top of Bernoulli
processes (BePs) in the De Finetti representation. In the same way that a hierarchical Dirichlet
process (HDP) allows for atom sharing with varying weights across different groups of data,
the H-PFA allows for feature sharing with different activation weights across different types of
cancer.

2.6 Statistical Methodology

Once the model has been trained (samples from an approximate posterior distribution can be
drawn), we proceed with a classical frequentist approach4 to identify statistically significant
clinico-genetic associations across cancer types. First, we take M posterior samples from the
posterior distribution of Z given A fixed. For each sample, patients that have the same feature
assignment vector (activation pattern of features) can be grouped together in the same sub-
population. For instance, subpopulation (1001) refers to all patients having the first and fourth
feature active. Let P refer to the total number of inferred subpopulations across the M posterior
samples. By considering multiple posterior samples, we obtain slightly different partitions of
patients in subpopulations. This can be seen as performing soft-clustering of patients, i.e., pa-
tients that are in-between subgroups might be assigned to different subpopulations in different
posterior samples. Thus, the method is more robust against model inaccuracies at clustering
patients. This is an important benefit of the Bayesian framework.

Next, to make our method robust against outliers (e.g., patients with rare features), we
perform bootstrapping B times for each subpopulation and posterior sample. Bootstrapping
relies on random sampling with replacement. It is a technique used for computing robust
estimators against outliers by sampling from an approximating distribution, which is particularly
useful for hypothesis testing when the model assumptions are in doubt or unknown [50]. The
standard bootstrapping approach relies on the construction of an estimator for hypothesis testing
based on a number B of resamples with replacement of the observed dataset (and of equal size
to the observed dataset), i.e., sampling with replacement from the empirical distribution of the
observed data.

Finally, given M posterior samples and B bootstrapping instances for each sample, we end
up with MB different subpopulation instances. Measures of effect size (quantitative measure of
the difference between two subpopulations) and statistical significance can be computed for each
instance and then averaged across them, so that partition inaccuracies and outlier effects are
mitigated. To identify statistically significant dimensions for each latent feature k = 1, . . . ,K in
sample m and bootstrap b, we split the whole patient population in two subgroups, Sk(m, b) and
S−k(m, b), corresponding to patients whose latent feature k is active or inactive respectively,
and perform two-sample statistical tests for each dimension d.

4Note that statistical significance could also be accounted for using Bayesian factors or posterior predictive
checks [13]. We here adopt the most established approach in the field for statistical significance.
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2.6.1 Effect size

For each latent feature k and dimension d (either clinical or genetic), we compute the effect size
∆kd as:

∆kd = Em,b [δkd(m, b)] , (8)

where δkd = {δkd(m, b)}∀m,b is an M ×B matrix of effect sizes for each posterior sample m and
bootstrap iteration b. The expectation is done across all posterior samples and bootstrapping
iterations, which are equally probable. For each feature k and input dimension d, we check for
mean differences, i.e.,

δkd(m, b) = µd (Sk (m, b))− µd (S−k(m, b)) , (9)

where µd(G) is the mean value of variable d for a given subpopulation G.

2.6.2 Statistical significance

To measure how significant an effect size δkd(m, b) is, for each posterior sample m and bootstrap
instance b, we compute a statistical significance value υkd(m, b) as the p-value resulting from a
Fisher test, which is a standard test for discrete variables [50]. We define the K ×D matrix of
statistical significance Υ, for each latent feature k and input dimension d as the median p-value
across the M samples and B bootstrapping instances:

Υkd = medianm,b [υkd(m, b)] , (10)

where υkd denote the M×B matrix of statistical significance values υkd(m, b) for each posterior
sample m and bootstrapping instance b. Finally, we follow the Benjamini Hochberg procedure
for multiple hypothesis testing to adjust the statistical significance threshold αs such that a
certain false discovery rate (FDR) is guaranteed [6]. An input dimension d (either clinical or
genetic) is said to be statistically significant for latent feature k if its significance value Υkd

(the median p-value across posterior samples and bootstrapping instances) is smaller than the
adjusted threshold, i.e., Υkd < αs. The whole procedure is summarized in Algorithm 1.

Algorithm 1 Statistical approach for discovery of clinico-genetic associations (post-processing
procedure).

Require: M posterior samples from Z, where P is the number of subpopulations, and K is the
number of inferred latent features.

1: for m = 1, . . . ,M do
2: bootstrap for each subpopulation B times
3: end for
4: for k = 1, . . . ,K do
5: compute effect size according to Eq. 8 and 9.
6: compute statistical significance (p-value) according to the Fisher test adjusting for multiple

hypothesis testing [6].
7: end for

Ensure: effect size matrix ∆ and significance matrix Υ, both of dimensions K ×D

2.7 Experimental Setup

We compare the proposed H-PFA approach with a LMM and a standard case-control set-up for
each potential clinico-genetic association. The model parameters for each LMM are found by
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maximizing the log likelihood using standard optimization techniques within a python platform
called LIMIX [30]. In the final step, we obtain p-values for each pair (yq,xg) using likelihood
ratio tests. Regarding the case-control analysis, for each clinical term we consider a case and con-
trol group corresponding to the patients having that clinical term active or inactive respectively.
Given such a partition, we perform an individual Fisher test for each gene. For all methods,
we correct for multiple hypothesis testing based on the Benjamini-Hochberg approach [6]. To
quantify the statistical significance of the features discovered by the H-PFA model, we follow the
statistical procedure described in Section 2.6. To increase interpretability of the H-PFA model,
we force one of the latent features to be active for all patients. This is a common practice in
BNP models to capture mean effects [41, 47, 46], which in this case corresponds to phenotypi-
cal attributes common to all types of cancer. Finally, we have set the hyperparameters of the
proposed H-PFA as αA = 0.01 and µA = 1, while we infer the values for the concentration
parameter α.

3 Results

3.1 Identification of Clinico-Genetic Associations

Figure 2 represents the number of associations found by each method, and how many overlap
across techniques. LMM found 14 clinico-genetic associations, CC found 178, and H-PFA found
95.5 LMM finds the least number of associations, since it corrects for the cancer type as a
confounder effect, and only gets less well-known associations that are present across all types of
cancer. CC discovered the highest number of associations, from which only 30% are shared with
H-PFA. Out of the 95 associations discovered by the H-PFA approach, 63% were also present
in any of the other methods. Figure 3 lists the associations that are shared across methods.
Tables 1 and 2 present the list of clinico-genetic associations found by LMM and CC methods
(for CC, we only report a random selection of associations, but the complete list can be found
in the Appendix).

Next, Table 3 shows the list of inferred latent features by the H-PFA model. The bias term
F0 reflects the high rate mutation of the TP53 gene which occur across all types of cancer.
The TP53 gene is essential for the production of a protein called tumor protein p53. This
protein acts as a tumor suppressor, which means that it regulates cell division by keeping
cells from growing and dividing too fast or in an uncontrolled way. Because p53 is essential for
regulating cell division and preventing tumor formation, it has been nicknamed the “guardian of
the genome” [34]. On top of the bias term F0, H-PFA inferred 19 other latent features. Features
F3, F5, and F17 capture complex phenotypes (no somatic mutations involved), whereas F4 and
F18 mostly capture somatic mutations. Interestingly, F18 relates Esophagogastroduodenoscopy
(a test to examine the lining of the esophagus, stomach, and the beginning of the small intestine)
to multiple somatic mutations, which was already revealed by LMM in Table 2. The remaining
14 features capture co-ocurrence of somatic mutations and clinical UMLS terms. Some latent
features reflect well known relationships in oncology research. To name a few, mutations of
gene PIK3CA (captured by F1 and F16) are present in over one-third of breast cancers; such
mutations are nowadays known to be oncogenic and also implicated in cervical cancers [18].
Somatic mutations in the triad APC-KRAS-TP53 genes (captured by F0 and F6 together)
are prominent in colon cancer [1]. Finally, previous studies have found direct physiological
and molecular evidence for a role of gene FOXA1 in controlling cell proliferation in prostate
cancer [23], which is accounted for in factor F12.

Figure 4 depicts the cancer-specific activation weights π`l for each type of cancer `, as de-
scribed in previous section.The activation of features present strong variations across cancer

5The H-PFA model is very flexible, as it can also find correlations between the genes, or between the clinical
terms. 95 is the number of clinico-genetic associations only.
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Figure 2: Venn Diagram of number of associations.

Phenotype Gene

Stage IV Lung Adenocarcinoma EGFR

A
L

L

Adenocarcinoma of lung (disorder) EGFR
Malignant neoplasm of urinary bladder TERT

KRAS gene KRAS
Potassium Ion KRAS

C
C
∩

L
M

M

Pulmonary function tests STK11
Rash and Dermatitis Adverse Event Associated
with Chemoradiation

TCF7L2

Colorectal Carcinoma APC
capecitabine APC
Colorectal KRAS
Lumpectomy of breast PIK3CA
Adriamycin PIK3CA
Renal function ARID1A

C
C
∩

H
-P

F
A

Simple mastectomy GATA3
Malignant neoplasm of urinary bladder TERT
Hydronephrosis KDM6A
. . . . . .

Figure 3: Shared associations across methods.

Phenotype Gene βqg p-value

pump (device) APC 0.61 2.78e-53
S3 (sacral segmental innervation) TP53 0.29 1.02e-09
Stage IV Lung Adenocarcinoma EGFR 0.32 2.07e-29
Folinic Acid-Fluorouracil-Irinotecan Regimen APC 0.59 1.08e-60
Folinic Acid-Fluorouracil-Irinotecan Regimen KRAS 0.30 1.16e-18
Hepatectomy APC 0.65 1.21e-52
Hepatectomy KRAS 0.27 7.27e-12
FOLFOX Regimen APC 0.66 5.12e-113
Tract ARID1A 0.21 5.61e-12
Malignant neoplasm of urinary bladder TERT 0.55 1.07e-61
Renal function TERT 0.28 8.40e-12
Flushing APC 0.30 1.54e-11
Non-Small Cell Lung Carcinoma EGFR 0.18 4.11e-11
Colorectal Carcinoma APC 0.61 2.34e-63
Adenocarcinoma of lung (disorder) EGFR 0.26 1.49e-22
Simple mastectomy PIK3CA 0.16 3.40e-08
Immunotherapy TERT 0.23 2.76e-12
Imodium APC 0.30 6.51e-15
capecitabine APC 0.30 1.94e-15
Pulmonary function tests STK11 0.16 2.19e-09

Table 1: Subset of clinico-genetic associations found using the CC setup. A complete list can be found
in the Appendix.

types. Some features are clearly cancer-specific (F1 and F3 typically activate for breast carci-
noma patients; F6, F11 and F15 are typically active for colorectal cancer; F7, F8 and F10 are
almost exclusively active for non-small cell lung cancer, etc.), whereas other factors occur in
similar proportions across cancers, e.g., feature F5 which capture typical adverse effects that
manifest for all types of cancer (Prednisone is a synthetic corticosteroid drug which is regularly
used to treat certain types of cancer, but has significant adverse effects).

Tables 4, 5, 7,8, and 9 show statistically-significant group associations across different somatic
mutations and UMLS terms. For each clinical and genetic term, we give both the effect size

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2019. ; https://doi.org/10.1101/623215doi: bioRxiv preprint 

https://doi.org/10.1101/623215
http://creativecommons.org/licenses/by/4.0/


Phenotype Gene βqg p-value

Stage IV Lung Adenocarcinoma EGFR 0.14 9.90e-14
Pulmonary function tests STK11 0.11 5.67e-06
Esophagogastroduodenoscopy ERBB3 0.10 4.62e-06
Adenocarcinoma of lung (disorder) EGFR 0.09 3.20e-06
Rash and Dermatitis Adverse Event Associated with Chemoradiation TCF7L2 0.09 1.57e-04
Atrophic PTEN 0.09 2.06e-05
Esophagogastroduodenoscopy ALK 0.09 1.43e-05
Stage level 2 ERBB4 0.08 3.34e-05
Positive Surgical Margin EP300 0.08 1.43e-04
Esophagogastroduodenoscopy CDH1 0.08 1.33e-04
Esophagogastroduodenoscopy FLT4 0.08 4.15e-05
Malignant neoplasm of urinary bladder TERT 0.08 7.91e-05
Potassium Ion KRAS 0.08 6.72e-06
KRAS gene KRAS 0.07 9.76e-05

Table 2: Clinico-genetic associations found using the LMM approach. The associations have been
sorted according to the effect size βqg which refers to the linear weight of the regression, as described
in Section 2.4.

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9

Inferred latent features

0

0.2

0.4

0.6

0.8

1

l k

F10 F11 F12 F13 F14 F15 F16 F17 F18 F19

Inferred latent features

0

0.2

0.4

0.6

0.8

1

l k

Bladder Cancer
Breast Carcinoma
Colorectal Cancer
Non-Small Cell Lung Cancer
Prostate Cancer

Figure 4: Activation weights π`
k for each cancer type ` inferred by H-PFA.

and significance. Our method is able to provide concise grouping of both clinical terms and
somatic mutations. Among the clinical terms, we find both phenotypical terms, as well as
names of chemotherapy medications (Adriamycin, Irinotecan, or Leucovorin). Table 4 shows
cancer-specific clinico-genetic associations. We recover well-known associations (such as APC
gene mutation being prominant in colorectal cancer, or STK11 to lung carcinoma), but other
associations are more surprising, such as GATA3 gene with bone mineral density.

Finally, H-PFA found several statistically significant sets of associations involving somatic
mutations in gene TERT, as shown in Table 5. Somatic mutations in the gene promoter of
telomerase reverse transcriptase (TERT) have been found in 70-79% of bladder tumors in a
multi-institutional study published in European Urology [36]. Table 5 shows that TERT muta-
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Feat. mk Phenotypes Genes

F0. 1946 None TP53 (0.40)

F1. 460 Simple mastectomy (0.17), Xeloda (0.15), Lumpectomy of breast (0.12), capecitabine (0.09) PIK3CA (0.31)

F2. 402 Renal function (0.29), Coronary Artery Disease (0.28), Stent, device (0.22), cardiologist
(0.21), Urology (0.20), Hydronephrosis (0.16)

MTOR (0.04)

F3. 400 Invasive Ductal Breast Carcinoma (0.57), axillary lymph node dissection (0.38), Simple mas-
tectomy (0.37), Noninfiltrating Intraductal Carcinoma (0.36), Lumpectomy of breast (0.33),
Adriamycin (0.29)

None

F4. 392 None ETV6 (0.22), PT-
PRD (0.19), ATR
(0.19), PTPRT
(0.17), , . . .

F5. 361 Entire intercostal space (0.22), Midclavicular line (0.21), Per Minute (0.20), Prednisone
(0.19), Upper Extremity (0.19), Entire head (0.18), Dizziness (0.17), Redness (0.17), Serum
(0.17), Bedtime (qualifier value) (0.16), . . .

None

F6. 352 Colorectal (0.39), FOLFOX Regimen (0.29) APC (0.71), KRAS
(0.47)

F7. 350 Lobectomy (0.48), Pulmonary function tests (0.29), Thoracotomy (0.27), Non-Small Cell
Lung Carcinoma (0.27)

EGFR (0.09)

F8. 326 Non-Small Cell Lung Carcinoma (0.13), Stage IV Lung Adenocarcinoma (0.10), natural
daughter - RoleCode (0.09), pemetrexed (0.08)

KRAS (0.36),
STK11 (0.26),
KEAP1 (0.20)

F9. 326 Lytic lesion (0.29), Zometa (0.27), Fracture (0.25), Sclerosis (0.25), Bone Lesion (0.23), Bone
structure of sacrum (0.23), Hip arthralgia (0.23), Bone structure of ilium (0.19), Palliative
Care (0.17)

ATRX (0.04)

F10. 266 Stage IV Lung Adenocarcinoma (0.62), pemetrexed (0.61), Adenocarcinoma of lung (disor-
der) (0.60), mediastinal lymphadenopathy (0.35)

EGFR (0.30), TP53
(0.18)

F11. 265 FOLFOX Regimen (0.54), KRAS gene (0.45), Folinic Acid-Fluorouracil-Irinotecan Regimen
(0.43), Leucovorin (0.43), irinotecan (0.39), Colorectal Carcinoma (0.39), Cold intolerance
(0.37), Midclavicular line (0.27), Sigmoid colon (0.27), Colorectal (0.27)

PTPRT (0.05),
CARD11 (0.04)

F12. 262 Prostate carcinoma (0.74), adenocarcinoma of the prostate (0.69), Biopsy of prostate (0.62),
Extracapsular (0.55), Lupron (0.46), Personal Attribute (0.40)

FOXA1 (0.11), APC
(0.06)

F13. 261 Tract (0.52), Malignant neoplasm of urinary bladder (0.51), Gross hematuria (0.44), Incon-
tinence (0.29), Immunotherapy (0.28)

TERT (0.66),
KDM6A (0.36)

F14. 169 Lovenox (0.28), Pulmonary Embolism (0.27), Deep Vein Thrombosis (0.23), swollen feet/legs
(0.19)

None

F15. 159 Rectum (0.45), Rash and Dermatitis Adverse Event Associated with Chemoradiation (0.28),
capecitabine (0.26), Node stage N0 (0.23)

APC (0.14),
TCF7L2 (0.14),
TSC2 (0.09)

F16. 149 Consistency (0.55), Vagina (0.50), Clinic / Center - Mobile (0.43), Bilateral Salpingectomy
with Oophorectomy (0.39), Atrophic (0.39), New medications (0.35), Personal Attribute
(0.32), Uterus (0.31), Ovarian (0.30), Bone Mineral Density Test (0.30), Ovary (0.29)

PIK3CA (0.12),
PTEN (0.07)

F17. 107 Depression motion (0.95), Structure of long bone (0.82), S3 (sacral segmental innervation)
(0.82), pump (device) (0.79), intrahepatic (0.78), Pulse taking (0.74), Midclavicular line
(0.73), Entire intercostal space (0.70), Hepatectomy (0.62), Flowcharts (Computer) (0.57)

None

F18. 95 Esophagogastroduodenoscopy (0.12) POLE (0.65), ROS1
(0.61), DNMT1
(0.59), ATR (0.58),
ATM (0.57), FAT1
(0.54), . . .

F19. 41 Optic Nerve (0.90), Gross hematuria (0.90), Dyspepsia (0.57), Lupron (0.45) AR (0.22)

Table 3: Latent features inferred by H-PFA. We depict the UMLS terms and genes with highest weights
separately, up until the weight decays more than 50%. mk is the number of patients with each feature active.
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100% patients with breast carcinoma

Clinical record Genetic information

Phenotype q Akq p-value Gene g Akg p-value

Invasive Ductal Breast Carcinoma 0.64 3.54e-49 PIK3CA 0.22 4.38e-07
Simple mastectomy 0.39 4.26e-22 GATA3 0.12 3.08e-05
Noninfiltrating Intraductal Carcinoma 0.34 2.02e-20
Lumpectomy of breast 0.32 3.94e-17
axillary lymph node dissection 0.28 3.43e-16
Fishes 0.22 1.01e-10
Adriamycin 0.21 4.09e-11
Bone Mineral Density Test 0.15 2.19e-06

100% patients with non-small cell lung cancer

Clinical record Genetic information

Phenotype q Akq p-value Gene g Akg p-value

FOLFOX Regimen 0.80 1.52e-29 APC 0.63 3.50e-17
Colorectal 0.37 4.04e-09 TP53 0.42 3.50e-08
Sigmoid colon 0.35 1.88e-09
Colorectal Carcinoma 0.33 8.49e-08
Cold intolerance 0.32 2.03e-08
irinotecan 0.29 8.72e-08
Leucovorin 0.29 4.90e-07
Folinic Acid-Fluorouracil-Irinotecan
Regimen

0.25 1.19e-05

Hepatectomy 0.23 3.35e-06

97% patients with breast carcinoma, 3% with non-small cell lung cancer

Clinical record Genetic information

Phenotype q Akq p-value Gene g Akg p-value

Lobectomy 0.37 4.98e-11 KRAS 0.36 2.73e-08
Non-Small Cell Lung Carcinoma 0.31 5.69e-08 STK11 0.26 1.74e-07

100% patients with bladder cancer

Clinical record Genetic information

Phenotype q Akq p-value Gene g Akg p-value

Lobectomy 0.37 3.60e-07 STK11 0.38 8.62e-08
KEAP1 0.35 1.17e-07

Table 4: Clinico-genetic associations found by the H-PFA (1/2). These tables depict the statistically sig-
nificant clinical and genetic features associated to the latent factors listed in Table 3, after applying the statistical
methodology described in Section 2.6. On top of each table, we describe the distribution of cancer types of patients
for which the association is active.
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100% patients with colorectal cancer

Clinical record Genetic information

Phenotype q Akq p-value Gene g Akg p-value

Tract 0.37 3.39e-08 TERT 0.57 4.56e-12
Malignant neoplasm of urinary
bladder

0.36 3.92e-07 FGFR3 0.50 4.15e-13

Gross hematuria 0.33 2.67e-06

100% patients with prostate cancer

Clinical record Genetic information

Phenotype q Akq p-value Gene g Akg p-value

Gross hematuria 0.74 1.81e-20 TERT 0.58 5.59e-12
Malignant neoplasm of urinary
bladder

0.41 2.80e-08 KDM6A 0.31 6.48e-06

Tract 0.39 2.08e-08
chain of objects 0.32 1.92e-06
Hydronephrosis 0.26 2.52e-05

100% patients with non-small cell lung cancer

Clinical record Genetic information

Phenotype q Akq p-value Gene g Akg p-value

Gross hematuria 0.39 1.72e-07 TERT 0.64 4.86e-13
Malignant neoplasm of urinary
bladder

0.37 9.85e-07 FGFR3 0.50 1.97e-11

Tract 0.30 2.19e-05 KDM6A 0.36 1.20e-06
CREBBP 0.32 3.19e-06

100% patients with bladder cancer

Clinical record Genetic information

Phenotype q Akq p-value Gene g Akg p-value

Malignant neoplasm of urinary
bladder

0.56 4.24e-12 TERT 0.67 1.79e-14

Tract 0.46 2.00e-10 ARID1A 0.45 2.32e-08
Renal function 0.45 5.51e-11
Gross hematuria 0.36 8.69e-07

Table 5: Clinico-genetic associations found by the H-PFA (2/2). All these associations involve gene TERT.
One same set (depicted in bold) appears in all associations.

tions are associated to not only malignant neoplasm of urinary bladder (which is not surprising),
but also hematuria and hydronephrosis. Hematuria refers to the presence of red blood cells in
the urine. Also, hydronephrosis is a condition that typically occurs when the kidney swells due
to the failure of normal drainage of urine from the kidney to the bladder. Hydronephrosis is not
a primary disease, but results from some other underlying disease (cancer in this case) as the
result of a blockage or obstruction in the urinary tract. H-PFA points out to interesting gene
relationships (KDM6A, CREBBP, and ARID1A genes) with TERT, which have been partially
studied in the literature [33, 39, 25].
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4 Conclusion

This paper proposes a novel Bayesian nonparametric approach for discovering clinico-genetic
associations between somatic mutations and EHR-based clinical features. We present a hierar-
chical Bernoulli process Poisson factor analysis model based on a hierarchical construction of
Beta processes and Bernoulli processes. Our approach is not specific to cancer data nor Elec-
tronic Health Records, but can be broadly used to discover associations between arbitrary count
data features. Compared to other approaches, our model delivers group-associations instead of
pairwise ones, accounting for epistatic and pleiotropical effects straightforwardly. The delivered
associations are statistically significant after correction for multiple hypothesis testing combined
with a bootstrapping procedure, to better account for false positives. These associations give
potentially interesting insights for future research in oncology. Under the proposed model, we
hopefully open the door to find new associations that give rise to hypotheses, and if those are
validated, then we may get new insights about cancer biology. Ultimately, studies like this one
have the potential to lead us towards more accurate diagnosis, and inform us about actionable
pathways when considering cancer therapy, where interventions through drug administration
can be designed.
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5 Appendix: Complete List of Associations

5.1 Case-control setup (CC)

Clinical term Gene βqg p-value

FOLFOX Regimen APC 0.66 5.12e-113
Leucovorin APC 0.65 6.61e-65
Hepatectomy APC 0.65 1.21e-52
irinotecan APC 0.62 4.39e-47
pump (device) APC 0.61 2.78e-53
Colorectal Carcinoma APC 0.61 2.34e-63
Colorectal APC 0.60 2.31e-73
Folinic Acid-Fluorouracil-Irinotecan Regimen APC 0.59 1.08e-60
Malignant neoplasm of urinary bladder TERT 0.55 1.07e-61
S3 (sacral segmental innervation) APC 0.54 3.58e-35
intrahepatic APC 0.53 1.03e-30
Tract TERT 0.50 1.62e-42
Sigmoid colon APC 0.48 6.82e-38
Gross hematuria TERT 0.47 1.23e-47
Flowcharts (Computer) APC 0.47 4.29e-32
Entire intercostal space APC 0.42 1.33e-41
Unresectable APC 0.42 1.78e-20
Structure of long bone APC 0.42 5.86e-29
Midclavicular line APC 0.41 1.46e-41
KRAS gene APC 0.39 6.40e-29
Cold intolerance APC 0.39 1.70e-22
Rectum APC 0.38 3.88e-26
Data Port APC 0.37 1.35e-19
pump (device) TP53 0.35 8.51e-17
Depression motion APC 0.35 5.62e-22
Avastin APC 0.35 1.58e-22
KRAS gene KRAS 0.33 2.44e-23
FOLFOX Regimen KRAS 0.32 1.96e-32
Stage IV Lung Adenocarcinoma EGFR 0.32 2.07e-29
Tract KDM6A 0.31 1.66e-24
Unresectable TP53 0.31 3.62e-10
capecitabine APC 0.30 1.94e-15
Imodium APC 0.30 6.51e-15
Ulcer APC 0.30 3.96e-12
Flushing APC 0.30 1.54e-11
Folinic Acid-Fluorouracil-Irinotecan Regimen KRAS 0.30 1.16e-18
irinotecan KRAS 0.30 5.60e-14
FOLFOX Regimen TP53 0.29 4.61e-19
Hepatectomy TP53 0.29 1.19e-10
S3 (sacral segmental innervation) TP53 0.29 1.02e-09
Colorectal KRAS 0.29 2.18e-21
Leucovorin KRAS 0.29 8.95e-16
Ablation APC 0.29 5.61e-15
Rash and Dermatitis Adverse Event Associated with Chemora-
diation

APC 0.29 5.40e-13

Pulse taking APC 0.29 2.28e-15
Malignant neoplasm of urinary bladder KDM6A 0.29 5.14e-27
Potassium Ion KRAS 0.28 4.17e-14
Renal function TERT 0.28 8.40e-12
Structure of long bone TP53 0.27 5.79e-11
Hydronephrosis TERT 0.27 3.21e-12
Hepatectomy KRAS 0.27 7.27e-12
Xeloda APC 0.26 1.53e-11
Midclavicular line TP53 0.26 6.98e-15
Adenocarcinoma of lung (disorder) EGFR 0.26 1.49e-22
Leucovorin TP53 0.26 1.57e-09
Entire intercostal space TP53 0.26 1.47e-13
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Data Port KRAS 0.26 4.25e-11
Gross hematuria KDM6A 0.26 4.71e-22
Folinic Acid-Fluorouracil-Irinotecan Regimen TP53 0.26 8.08e-11
Colorectal Carcinoma TP53 0.24 1.39e-09
pump (device) KRAS 0.24 2.59e-11
Sigmoid colon TP53 0.24 3.38e-09
Potassium Ion APC 0.24 4.02e-10
Colorectal Carcinoma KRAS 0.23 3.18e-12
Immunotherapy TERT 0.23 2.76e-12
intrahepatic TP53 0.23 1.37e-05
Rectum TP53 0.22 5.43e-08
Neutrophil count decreased APC 0.22 8.18e-07
Response process APC 0.22 9.43e-07
Tract FGFR3 0.22 1.16e-15
Colorectal TP53 0.21 5.78e-09
Flowcharts (Computer) TP53 0.21 1.46e-06
Tract ARID1A 0.21 5.61e-12
Sigmoid colon KRAS 0.21 6.84e-10
Flowcharts (Computer) KRAS 0.21 1.20e-08
Rectal hemorrhage APC 0.21 1.88e-09
Avastin TP53 0.21 4.41e-07
Bilateral Salpingectomy with Oophorectomy PIK3CA 0.20 1.65e-06
Unresectable KRAS 0.20 6.65e-07
Urology TERT 0.20 8.42e-09
Depression motion TP53 0.20 1.43e-06
irinotecan TP53 0.20 3.11e-05
Combined Modality Therapy APC 0.20 4.41e-06
hearing impairment TERT 0.19 1.41e-06
Malignant neoplasm of urinary bladder FGFR3 0.19 4.27e-15
Gross hematuria FGFR3 0.18 3.11e-14
Adriamycin PIK3CA 0.18 4.47e-06
pemetrexed EGFR 0.18 2.06e-12
Entire intercostal space KRAS 0.18 2.80e-10
S3 (sacral segmental innervation) KRAS 0.18 1.25e-05
Non-Small Cell Lung Carcinoma EGFR 0.18 4.11e-11
Rash and Dermatitis Adverse Event Associated with Chemora-
diation

KRAS 0.18 6.24e-06

Creatinine TERT 0.17 1.24e-05
Bone Mineral Density Test PIK3CA 0.17 1.65e-06
Hydronephrosis KDM6A 0.17 1.01e-07
Cold intolerance KRAS 0.17 2.64e-06
intrahepatic KRAS 0.17 3.49e-05
Avastin KRAS 0.17 3.87e-07
KRAS gene TP53 0.17 1.28e-05
Lobectomy EGFR 0.16 1.72e-08
Malignant neoplasm of urinary bladder ARID1A 0.16 3.25e-09
lung lesion APC 0.16 8.22e-06
Attribution EGFR 0.16 8.10e-06
Simple mastectomy PIK3CA 0.16 3.40e-08
Renal function ARID1A 0.16 8.41e-06
Pleura EGFR 0.16 4.16e-07
Gross hematuria ARID1A 0.16 1.34e-08
Pulmonary function tests STK11 0.16 2.19e-09
Tract CREBBP 0.16 8.83e-10
Invasive Ductal Breast Carcinoma PIK3CA 0.15 8.87e-09
Midclavicular line KRAS 0.15 5.38e-08
capecitabine KRAS 0.15 1.89e-05
Lumpectomy of breast PIK3CA 0.15 7.20e-07
Malignant neoplasm of urinary bladder ERBB2 0.15 1.40e-10
Incontinence TERT 0.15 1.07e-06
chain of objects TERT 0.15 1.08e-05
Renal function KDM6A 0.15 6.54e-06
Stent, device TERT 0.14 4.23e-06
Superficial TERT 0.14 1.68e-05
Tibialis anterior muscle structure EGFR 0.14 1.34e-06
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Thoracotomy STK11 0.14 9.65e-07
Tract ERBB2 0.14 1.87e-07
Urology KDM6A 0.13 2.55e-06
Lobectomy STK11 0.13 1.25e-07
Malignant neoplasm of urinary bladder RB1 0.13 5.74e-08
Lobectomy KEAP1 0.13 1.22e-08
Tract STAG2 0.13 4.54e-07
Malignant neoplasm of urinary bladder CREBBP 0.12 8.84e-08
Leucovorin SMAD4 0.12 5.31e-08
Tract PBRM1 0.12 2.11e-07
Tract ROS1 0.12 1.89e-05
Bilateral Salpingectomy with Oophorectomy GATA3 0.12 1.93e-05
Non-Small Cell Lung Carcinoma STK11 0.12 1.09e-07
Non-Small Cell Lung Carcinoma KRAS 0.12 8.61e-05
Folinic Acid-Fluorouracil-Irinotecan Regimen SMAD4 0.11 8.21e-08
Malignant neoplasm of urinary bladder EP300 0.11 2.57e-07
Pulmonary function tests KEAP1 0.11 8.29e-07
Colorectal Carcinoma SMAD4 0.11 4.47e-07
FOLFOX Regimen SMAD4 0.11 2.03e-10
Tract FAT1 0.11 3.77e-05
Urology ERBB2 0.11 1.95e-05
KRAS gene SMAD4 0.11 4.34e-07
irinotecan SMAD4 0.11 1.45e-05
Immunotherapy RBM10 0.11 9.55e-06
Rash and Dermatitis Adverse Event Associated with Chemora-
diation

TCF7L2 0.11 2.14e-05

Tract EP300 0.10 1.24e-05
Superficial FGFR3 0.10 2.29e-05
Immunotherapy FGFR3 0.10 4.13e-05
Colorectal PTPRS 0.10 9.11e-07
Malignant neoplasm of urinary bladder ATM 0.10 8.03e-05
Non-Small Cell Lung Carcinoma PTPRD 0.10 9.64e-06
Adenocarcinoma of lung (disorder) KEAP1 0.10 1.46e-07
Tract SPEN 0.10 3.32e-05
Gross hematuria CREBBP 0.10 1.43e-05
Gross hematuria NSD1 0.10 7.95e-07
Tract FANCA 0.10 3.20e-05
Gross hematuria ERBB2 0.10 1.81e-05
Sigmoid colon TCF7L2 0.10 6.46e-06
Tract ERBB3 0.10 2.09e-05
Non-Small Cell Lung Carcinoma KEAP1 0.10 1.02e-06
Invasive Ductal Breast Carcinoma GATA3 0.10 3.71e-08
Malignant neoplasm of urinary bladder ERBB3 0.09 6.40e-06
Sigmoid colon SMAD4 0.09 3.46e-05
Colorectal ERBB4 0.09 3.22e-05
Adenocarcinoma of lung (disorder) STK11 0.09 1.91e-05
Simple mastectomy GATA3 0.09 2.59e-06
pemetrexed STK11 0.09 1.23e-05
Extracapsular FOXA1 0.08 3.92e-05
Malignant neoplasm of urinary bladder PBRM1 0.08 7.37e-05
Malignant neoplasm of urinary bladder NSD1 0.08 4.75e-05
pemetrexed KEAP1 0.08 1.31e-05
Colorectal SMAD4 0.08 1.87e-05
Malignant neoplasm of urinary bladder BRCA1 0.08 1.80e-04
Colorectal TCF7L2 0.08 2.29e-05
Stage IV Lung Adenocarcinoma RBM10 0.08 5.16e-05
FOLFOX Regimen PTPRS 0.08 1.31e-05
Non-Small Cell Lung Carcinoma EPHA3 0.08 7.61e-05
Prostate carcinoma FOXA1 0.07 3.61e-05

Table 6: Complete list of clinico-genetic associations found using the
Case-Control Set-up. βqg refers to the linear weight as described in Sec-
tion 2.4. Associations in bold have also been discovered by the H-PFA.
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5.2 Hierarchical Poisson Factor Analysis

100% patients with prostate cancer

Clinical record Genetic information

Phenotype q Akq p-value Gene g Akg p-value

Prostate carcinoma 0.63 4.06e-43 None
Biopsy of prostate 0.52 1.63e-34
Extracapsular 0.48 3.54e-32
adenocarcinoma of the prostate 0.43 3.98e-26
Personal Attribute 0.33 2.23e-16
Robotics 0.25 5.86e-13
Pelvic lymph node group 0.20 2.34e-09
Lupron 0.20 2.37e-07
Incontinence 0.17 7.87e-07
External Beam Radiation Therapy 0.17 1.04e-06
Positive Surgical Margin 0.14 7.71e-06

32.3% patients with breast carcinoma, 41.2% non-small cell lung cancer, 26.5% prostate cancer

Clinical record Genetic information

Phenotype q Akq p-value Gene g Akg p-value

Invasive Ductal Breast Carcinoma 0.47 1.86e-11 None
Adriamycin 0.37 6.54e-11
Lytic lesion 0.33 2.45e-09
Lumpectomy of breast 0.33 4.86e-08
Zometa 0.32 2.47e-08
Palliative Care 0.22 8.32e-06

Table 7: Additional clinical associations (complex phenotypes) found by the H-PFA.

Clinical record Genetic information

Phenotype q Akq p-value Gene g Akg p-value

FOLFOX Regimen 0.77 3.47e-19 APC 0.59 5.34e-11
Rectum 0.59 1.56e-14
Sigmoid colon 0.43 8.36e-09
Rash and Dermatitis Adverse Event Associated
with Chemoradiation

0.42 1.24e-09

capecitabine 0.42 5.37e-09
Colorectal 0.42 1.19e-07
Folinic Acid-Fluorouracil-Irinotecan Regimen 0.40 1.11e-07
KRAS gene 0.38 2.12e-07
Ulcer 0.36 3.64e-08
irinotecan 0.35 3.10e-07
Rectal hemorrhage 0.34 3.31e-06
Avastin 0.32 1.13e-05
Leucovorin 0.29 2.95e-05
Combined Modality Therapy 0.26 5.02e-05
Response to treatment 0.25 4.10e-05

Table 8: Additional clinico-genetic association found by the H-PFA involving APC gene. This group of
associations was found in a subgroup of 100% bladder cancer patients.
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Clinical record Genetic information

Phenotype q Akq p-value Gene g Akg p-value

Stage IV Lung Adenocarcinoma 0.64 3.47e-15 EGFR 0.35 8.65e-06
Adenocarcinoma of lung (disorder) 0.56 3.92e-11
pemetrexed 0.51 7.89e-10
Tibialis anterior muscle structure 0.32 3.40e-06

Table 9: Additional clinico-genetic associations found by the H-PFA involving EGFR gene. This group
of associations was found in a subgroup of 100% non-small cell lung cancer patients.

6 Appendix: Inference details for Poisson Factor Analysis

Poisson factorization models have been successfully applied for recommendation systems [15],
topic modeling [14], and analysis of Electronic Health Records among others [21]. Let X ∈ NN×D
be a sparse matrix of count-data observations with N samples and D dimensions. The generative
model for the Bernoulli process Poisson factor analysis (PFA) is given by:

xnd ∼ Poisson(Zn•A•d) (11)

Z ∼ IBP(α) (12)

Akd ∼ Gamma
(
αA,

µA
αA

)
, (13)

where Z is a N × K matrix of binary weights, and A is a K × D matrix of non-negative
hidden factors. Direct inference in such models is intractable, but we can easily solve the
problem using MCMC techniques. For each observation xnd, we introduce the auxiliary variables
x
′

nd,1, . . . , x
′

nd,K such that xnd =
∑K
k=1 x

′

nd,k, and x
′

nd,k ∼ Poisson(θnkAkd) for k = 1, . . . ,K.
Each Poisson count is separated in a sum of Poisson contributions corresponding to each latent
factor. Given such auxiliary variables, the model is conditionally conjugate, and a Gibbs sampler
can be derived straightforwardly. In particular, we use the following theorem:

Theorem 1 Let Y1, . . . , Yn be Poisson distributed random variables with rates λ1, . . . , λn re-
spectively. Let us define S =

∑N
n=1 Yn. Then,

{Y1, . . . , Yn}|S ∼ Multinomial

({
λi∑N
n=1 λn

}
i

, S

)
. (14)

Using Theorem 1, x
′

nd,• can be sampled from a Multinomial given xnd, θn• and A•d. In
the following, we propose two MCMC algorithms: a collapsed Gibbs sampler where matrix A
is marginalized out using a Laplace approximation, and an uncollapsed slice sampler version
which allows for parallel sampling of both the elements in Z and A given the auxiliary variables
x
′

nd,1, . . . , x
′

nd,K . The results shown in this work have been generated using the uncollapsed
Gibbs Sampler.

6.1 Collapsed Gibbs Sampler

We first propose a collapsed Gibbs sampler where matrix A is marginalized out, and we only
need to sample the elements of matrix Z. We need to compute its posterior distribution:

p(znk|X,Z¬nk) ∝ p(znk|Z¬nk)p(X|Z)

∝ p(znk|Z¬nk)

∫
p(X|Z,A)p(A)dA (15)

∝ p(znk|Z¬nk)
D∏
d=1

∫ ( N∏
n=1

p(xnd|Zn•,A•d)

)
p(A•d)dA•d (16)
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In order to approximate the integral in (16), we resort to a Laplace approximation, which
assumes that: ∫

eψ(A•d)dA•d (17)

has a peak at a certain value of AMAP
•d . The idea is to Taylor-expand the un-normalized log-

posterior of A•d and approximate eψ(A•d) by an unnormalized Gaussian. The integral thus
corresponds to the normalizing constant of this Gaussian, in our case:∫ ( N∏

n=1

p(xnd|Zn•,A•d)

)
p(A•d)dA•d = eψ(A

MAP
•d )

√
(2π)K

| − ∇∇ψ(AMAP
•d )|

(18)

Equations to find maximum a posteriori AMAP
•d . Let us define ψ(A•d) as the un-

normalized log-posterior of A•d, i.e,

ψ(A•d) =
N∑
n=1

log p(xnd|Zn•,A•d) + log p(A•d) (19)

ψ(A•d) =

N∑
n=1

xnd log(Zn•A•d)−
N∑
n=1

Zn•A•d +

K∑
k=1

(αA − 1) log Akd −
αA
µA

K∑
k=1

Akd +R (20)

where R = −
N∑
n=1

log xnd!−K
(
αA log

µA
αA

+ log Γ(αA)
)

(21)

∇ψ(A•d) =

N∑
n=1

xnd
Zn•

Zn•A•d
−

N∑
Zn• + (αA − 1)

1

A•d
− αA
µA

(22)

∇∇ψ(A•d) = −
N∑
n=1

xnd
Zn•Z

T
n•

(Zn•A•d)2
− (

αA − 1

A2
•d

)T I (23)

In order to find the maximum value AMAP
•d , we can use either Newton’s method or gradient

descent. Where applicable, Newton’s method might converge faster towards a local maximum
or minimum than gradient descent. Newton’s method is an iterative method for optimization

where each value A
(t)
•d at iteration t is computed as:

A
(t)
•d = A

(t−1)
•d + γ[∇∇ψ(A

(t−1)
•d )]−1∇ψ(A

(t−1)
•d ) (24)

where γ ∈ (0, 1] is the step-size of the algorithm. Note that for the Laplace approximation to
work properly, −∇∇ψ(A•d) should be a positive semi-definite matrix. This is guaranteed only
if αB > 1, so the collapsed Gibbs sampler will only work for shape parameters bigger than one,
resulting in non-sparse A matrices.

6.2 Uncollapsed Gibbs Sampler

Inference for the PFA model can be performed using an uncollapsed Gibbs sampler together
with a slice sampler for semi-ordered stick-breaking representation of the IBP [44]. For the
sake of completeness, the slice sampling procedure for matrix Z is described in Algorithm 2.
Using the auxiliary random variables described at the beginning of this Appendix, the complete
conditionals can be easily derived as follows:

p(Akd|Z•k,x
′

•d,k) ∝ Gamma

(
c+

N∑
n=1

x
′

nd,k, d+
N∑
n=1

znk

)
(25)

p(x
′

nd,•|xnd,A•d) ∝ Multinomial

({
zniAid∑K
k=1 znkAkd

}K
i=1

, xnd

)
(26)

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2019. ; https://doi.org/10.1101/623215doi: bioRxiv preprint 

https://doi.org/10.1101/623215
http://creativecommons.org/licenses/by/4.0/


Algorithm 2 Slice sampler for the semi-ordered stick-breaking representation of the IBP [44].

1: Sample auxiliary slice variable s for the creation of new sticks, if s < µ(K?), create new sticks
using adaptive rejection sampling, and sample corresponding feature parameters from prior.

2: Sample Z matrix. Given the stick weights, each row can be sampled independently and in
parallel:

p(znk|rest) ∝ µ(k) ·
D∏
p(x

′
nd,k|znk, θnk,Akd). (27)

3: Remove inactive features.
4: Sample sticks

p(µ(k)|rest) ∼ Beta(m•,k, 1 +N −m•,k), (28)

where m•,k =
∑N

i=1 znk.

log p(znk = 1|Z¬nk,Ak•, πk) =
1

1 + e−unk
, (29)

where unk =
D∑
d=1

xndlog

(∑
j 6=k znjAjd +Akd∑

j 6=k znjAjd

)
−

D∑
d=1

Akd + log
πk

1− πk
. (30)

Inference for the hierarchical Poisson Factor Analysis (H-PFA) is analoguous to Algorithm 2
except step 4, where we sample the per-category feature probability πlk for each cancer type l
and feature k from a Beta distribution based on counts per cancer type as follows:

p(πl(k)|rest) ∼ Beta(ml
•,k, 1 +Nl −ml

•,k), (31)

where Nl is the number of patients with cancer type l, ml
•,k is the number of patients having

feature k active and cancer type l, rn is the cancer type indicator for patient n, and ml
•,k =∑N

i=1 znk1[rn = l].
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