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Abstract: 

Background: Clinical symptoms-based ADHD diagnosis is considered “subjective”. Machine learning (ML) 
classifiers have been explored to develop objective diagnosis of ADHD using magnetic resonance imaging 
(MRI) biomarkers. 

Methods: We reviewed previous literature and developed ensemble classifiers using the ENIGMA-ADHD 
dataset, with the implementation of data balancing to control for age, sex, diagnostic groups, and sample sites 
and a held-out test set for independent evaluation.  

Results: Our review showed that classification accuracies reported previously using cross-validation (CV) 
samples were inflated and did not generalize well to independent test samples. Our results showed a 
significant discrimination between ADHD and control samples for both adult and children, but the accuracies 
were modest (the area under the receiver operating characteristic curve (AUC): 66% and 67% respectively). 
We found that child samples were informative for predicting adult ADHD, and vice versa. The most important 
brain MRI structures for prediction were intracranial volume (ICV), followed by surface area and some 
subcortical volumes. The cortical thickness measurements were the least useful.   

Conclusions: Although previous ML classification studies reported overly optimistic accuracies and suffered 
methodological limitations, our results suggest that clinically useful classification of ADHD may be possible with 
larger samples. In contrast to prior reports of ENIGMA-ADHD studies, our work finds ADHD-related sMRI 
differences in adults and shows that the brain differences between cases and controls seen in youth can be 
useful in discriminating adults with and without ADHD. This provides additional evidence for the continuity of 
ADHD’s pathophysiology from childhood to adulthood. 
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Introduction 

Clinicians diagnose attention-deficit/hyperactivity disorder (ADHD) by evaluating symptoms and impairments.  
Despite of the concurrent and predictive validity of clinical diagnosis (1, 2), many raised concerns about the 
possibilities of over-diagnosing ADHD in the community (3, 4) because it relies on clinicians’ "subjective" 
evaluation of responses from patients, parents, and/or informants. Concerns also exist about the under-
diagnosis of ADHD (5, 6), especially in girls and women. The misdiagnosis of ADHD is also a serious concern, 
with an estimated misdiagnosis rate as high as 20% in the US (7). Those who are inappropriately diagnosed 
with the disorder may be unnecessarily exposed to chronic use of medications. Those who have ADHD and 
are not diagnosed will continue to have impaired functioning leading to increased risks for other health and 
social problems (8). When people who have ADHD are incorrectly diagnosed with another disorder, they may 
be exposed to unnecessary treatments and still face many impairments associated with ADHD. 

In response to such concerns, researchers have sought to develop objective measures. Measures examined 
in the past years included peripheral biochemical markers(9, 10) and measures of oxidative stress (11), 
neuropsychological (12), electroencephalographic (EEG) (13), actigraphy (14), eye vergence (15), interactive 
gaming (16) and continuous performance tests (CPTs) (e.g. 17, 18, 19). Although many significantly 
differentiated subjects according to their ADHD diagnosis, none met the criteria of a “useful” biomarker defined 
by the World Federation of ADHD, which accordingly, must exceed 80% sensitivity and specificity, be reliable, 
reproducible, inexpensive, non-invasive, easy to use, and confirmed by at least two independent studies(20).  

Magnetic resonance (MRI) data has also been examined for their potential to provide objective biomarkers 
for ADHD (21). The enthusiasm was further kindled by the ADHD-200 Global Competition (22), which provided 
an opportunity for researchers to compete for the best diagnostic classifier using a dataset much larger than 
any existing neuroimaging biomarker studies at that time, consisting of 776 children (63% healthy controls, 
37% ADHD) contributed from eight sites(23-25). Although no predictive biomarkers were observed from those 
studies (26), the ADHD-200 dataset continues to be used by researchers to look for better brain-based 
biomarkers (27). It was later incorporated into a larger consortium by the Enhancing Neuro Imaging Genetics 
Through Meta Analysis (ENIGMA) ADHD Working Group. By Aug 2017, The ENIGMA-ADHD dataset 
contained 3,377 subjects, including >1,000 adults, from 23 participating sites. The initial report from ENIGMA-
ADHD found small but significant and widespread regional volumetric differences between ADHD patients and 
healthy controls for children but not adults. These differences included volumetric reductions in intracranial 
volume (ICV), amygdala, caudate nucleus, nucleus accumbens, hippocampus, and cortical surface areas from 
many brain regions (28). The largest effect was found for total surface area: Cohen’s d= -0.21, pFDR=<0.001 
and the effect was larger in the youngest tertile (4-9 years, d =-0.35, pFDR=<0.001)(29). 

The present study had three main objectives. We first sought to perform a systematic review of studies 
seeking to develop clinically useful classifiers for ADHD based on MRI data. Second, we applied ML to the 
ENIGMA-ADHD data with the goal of developing an improved neuroimaging classifier. Third, we used ML to 
test the hypothesis of continuity between childhood and adult ADHD (30-32). This idea has been challenged 
by recent studies (33). Given that symptoms and impairments persist into adulthood for a majority of children 
with ADHD (36), we hypothesized that ADHD-related brain structure differences in adults would be consistent 
with those in children and that ML methods may help uncover those differences.   

Materials and Methods 
Literature search and review 

We searched PubMed using the key-words ‘ADHD AND (classif*[ti] OR biomarker [ti]) AND machine learning’ 
(up to May 1st, 2018) to identify studies that used neuroimaging to discriminate ADHD and non-ADHD groups. 
Additional studies were extracted by examining their cited references. We examined the relationship of logit-
transformed accuracies reported (percent of correct classifications) with their cross-validation or testing 
methods, and sample sizes using a linear regression model and Pearson’s correlation in STATA15. The 
analyses were weighted by the training sample sizes of the contributing studies. 
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MRI Samples  
The ENIGMA-ADHD project provided T1-weighted structural MRI (sMRI) data from 3,377 subjects from 23 
participating sites (by Aug 2017) to the current study. Images were processed using the consortium’s standard 
segmentation algorithms in FreeSurfer (V5.1 and V5.3) (28). Variables used included 72 cortical surface area 
and thickness measurements from each hemisphere, 14 subcortical regions, and intracranial volume (ICV). 
Subjects missing more than 50% of variables were removed. Remaining missing values and outliers (outside 
of 1.5 times the interquartile range (iqr 1.5)) were replaced with imputed values using multiple imputation with 
chained equations in STATA15. Four sites that provided only cases with no controls were excluded from ML 
model training. However, they were used in additional test for assessment of model generalizability. The final 
ML dataset consisted of 48.7% non-ADHD controls (n=1320, male to female ratio (m/f) = 1.44) and 51.4% 
ADHD participants (n=1393, m/f=2.52). Ages ranged from four to 63 years old; 62.8% were children (age<18 
years) and 37.2% were adults (age≥18 years, Table 1).  

Subjects were randomly assigned to training (~70%), validation (~15%), and test (~15%) subsets. The random 
splitting was carried out within each diagnosis, sex, age subgroup and site. Next, we balanced the case and 
control groups within each site and age group by random oversampling of under-represented diagnostic 
groups, a procedure commonly used to deal with class imbalance.  

Feature preprocessing 
Principal factors factor analysis (PFFA) with varimax rotation on sMRI features on the training set identified 16 
factors that explained >80% of the variance. Factor scores were computed for all subjects based on the 
training set PFFA. Outliers of the factor score (irq 1.5) were replaced with their closest values. We included 
age and sex as predictors because: 1) they are readily available, and 2) given the known effects of age and 
sex on brain structures, they may interact with sMRI features and improve predictive accuracy. All input 
features were scaled based on the training set’s minimum and maximum values. 

ML Algorithms  
We implemented ensemble classifier in Scikit-learn (37), by combining support vector machine (SVM), random 
forest (RF), K-Nearest Neighbors (KNN), and gradient boosting (GB) classifiers.  The mathematical basis of 
the individual classifiers were described previously (38-41).  We estimated each individual classifier using 
Scikit-learn’s grid search function to find the best hyperparameters, including C and gamma for SVM, the 
number of features, maximum depth and number of estimators for RF, the number of neighbors (parameter k), 
p and the leaf size for KNN, the learning rate, number of estimators and maximum depth for GB. A second grid 
search was performed on the ensemble model with the best hyperparameters from individual classifiers to fine-
tune their combinations and the weights for the individual classifiers. We used area under the curve (AUC) 
statistic from the training and the validation subsets for model optimization during this two-tiered grid search. 
The final models were selected based on the highest validation AUCs (to improve accuracy) and the smallest 
difference between the training and validation AUCs (to avoid overfitting), with preference for hyperparameters 
favoring less overfitting. Receiver operating characteristic (ROC) curves and AUC statistics from the test 
subsets were reported. We also plotted learning curves using the training and test scores from different 
fractions of the training set to evaluate model overfitting and sample size effect. 

Testing ADHD Hypotheses about the Continuity of ADHD from Children to Adults 

Our analysis pipeline starts with three base models that classify ADHD in children, adults or combined 
samples. The base models used data from the corresponding age groups during the model training and 
validation phase and tested also on data from their corresponding age groups. Therefore, we referred to them 
as “Child, Child, Child”, “Adult, Adult, Adult” and “Both, Both, Both”, denoting their corresponding training, 
validation and test sets.  

Next, we tested if the ADHD vs. control sMRI differences seen in adults would be useful in predicting ADHD in 
children.  To do that, we used the model that was trained and validated on the adult data to predict the child 
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test set.  We refer this result as “Adult, Adult, Child”.  If the adult data are irrelevant to the child data, they will 
result in reduced or non-significant accuracy. We hypothesized that the AUC for this model would be 
statistically significant.   

In like manner, we tested if the ADHD vs. control sMRI differences seen in children are useful in predicting 
ADHD in adults.  To do that, we used the model that was trained and validated on the child data to predict the 
adult data.  We refer to this result as “Child, Child, Adult”.  If the child data are irrelevant to the adult data, they 
will result in reduced or non-significant accuracy. We hypothesized that the AUC for this model would be 
statistically significant. 

Model evaluation 

We applied a softmax function (42) in our final models to generate a continuous brain risk score (BRS), which 
assess the probability for each individual to be diagnosed with ADHD. Cohen’s d effect sizes were computed 
using the BRSs. In addition, we assessed the clinical utility of the model with sensitivity, specificity, positive 
predictive power (PPP), and negative predictive power(NPP) using various cut-points to the BRSs probabilities.  
The sensitivity is the percentage of ADHD subjects correctly predicted among true ADHD subjects.  The 
specificity is the percentage of control subjects correctly predicted in true control groups. The PPP is the 
percentage of true ADHD in the total predicted ADHD subjects. The NPP is the percentage of true controls in 
the total predicted control subjects. 

The overall accuracies (percentage of correct predictions) were also reported and stratified by age, sex, and 
diagnostic groups. We used logistic regression to determine if prediction errors were significantly influenced by 
age, sex, diagnostic status, and MRI acquisition site. Pearson’s correlation was used to determine if the 
subgroup accuracies were associated with the sample sizes in their corresponding training sets. 

Evaluating model generalizability 

We applied our model on 168 samples from four sites that had only provided cases. To prepare these samples 
for the test, we computed the 16 scaled factor scores based on the PFFA analysis of the training set. AUC 
statistics could not be computed due to the lack of control subjects. Only prediction accuracies (equivalent to 
sensitivity) were reported. 

Feature importance 

Importance scores were computed for 16 MRI factors, age and sex from RF and GB models (the other 
classifiers do not have a method for computing importance) (43). The importance of age and sex as features 
was further assessed by comparing the AUCs of models with age and sex excluded. For brain MRI 
measurement, we computed a composite score by summing the products of their factor loading with their 
corresponding factor’s feature importance scores for both the RF and GB classifiers. We used the composite 
scores to assess how the different hemispheres and classes of MRI features contributed to predictive accuracy 
using a linear regression model. The four classes of MRI features were cortical surface areas, cortical 
thicknesses, subcortical volumes and total intracranial volume (ICV).  

Results 
Literature Review 
Nine studies were retained from the literature search (Table 2), among which three main methods were used to 
assess their model accuracies: 1) Various k-fold cross-validation (CV) methods: Seven studies used either 10-
fold, 70/30, or predefined CV. For the first two types, the training sets were randomly split each time and were 
trained many times on either 90% or 70% of the data and validated on the remaining portion. Predefined CV 
used fixed sets of samples as training and validation sets. 2) Leave one out CV (LOOCV): In six studies 
training was performed many times on the training set excluding one randomly selected sample for validation.  
Because the k-fold CV and LOOCV studies did not differ from one another in accuracy (F(1, 13) = 2.69, p=0.13), 
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we combined them into one CV group.  Among the above 14 studies, cross-validation accuracies were the only 
reported results in nine studies (64.3%). Only five studies used additional held-out test samples that were not 
used in the model training and validation. 3) Held-out tests: A total of nine studies reported accuracy evaluation 
using a held-out test sample that had not been used for either training or validation. Significantly lower 
accuracies were reported using held-out test samples than those using CV methodology (F(1, 18) = 26.38, 
p<0.0001, Figure 1). Training sample sizes did not have any significant effect on accuracy (F(1,   18) = 0.33, 
p=0.57). The correlations between accuracy and training sample size were 0.10 for the cross-validation results 
(p=0.71) and 0.25 for the held-out tests (p=0.38). 

Accuracy of Predictions 
The validation AUCs of the ensemble classifiers and their constituent classifiers were listed in Supplementary 
Table 1 for the best of the three base models. The child data performed better than the adult data for each 
constituent classifier as well as for the ensemble classifier.  The same pattern was also observed for the 
corresponding test AUCs. Figure 2A shows the test set AUCs (as dots) and their 95% confidence intervals (as 
horizontal lines) for the three base models, which are denoted by their training, validation and test samples. 
The vertical line at an AUC of 0.5 indicates a chance level of diagnostic accuracy. The “Child, Child, Child” 
model had the highest AUC 0.67 with 95%CI (0.60, 0.73) that did not overlap with the 0.5 line, indicating 
significant predictive accuracy. The combined model (“Both, Both, Both”) had a lower AUC (0.61, 95%CI: 0.56, 
0.67), which was significantly different from 0.5, but not significantly different from the child model. The “Adult, 
Adult, Adult” model yielded the lowest test AUC (0.54, 95%CI: 0.45, 0.64), which did not differ significantly from 
0.5, and was significantly lower than the Child AUC (Χ2

(1) = 4.53, p = 0.03).  

Tests of Hypotheses  
When the Adult model was tested on the child samples ((“Adult, Adult, Child”), we obtained a significant 
AUC(0.59, 95%CI: 0.52, 0.66) that was slightly lower but not significantly different from the “Child, Child, Child”, 
or “Both, Both, Child” AUCs.  

When the Child model was tested on the adult samples (“Child, Child, Adult”), we obtained a significant AUC 
(0.66, 95%CI: 0.57, 0.75) that significantly improved prediction when compared with either the “Adult, Adult, 
Adult” model (X2

(1)=3.88, p =0.048), or the combined model prediction of the adult data (“Both, Both, Adult”, 
X2

(1)=5.53, p =0.02). 

Model Evaluation 
The receiver operating characteristic (ROC) curves (Figure 3) show that the “Child, Child” model predicts child 
and adult ADHD equally well.  The Cohen’s d effect sizes comparing the BRS between ADHD and control 
samples were 0.62 for children (95%CI: 0.37, 0.87) and 0.56 for adults (95%CI: 0.23, 0.90).   

Table 3 shows the model accuracies stratified by diagnostic, sex and age subgroups. Logistic regression found 
that prediction errors were significantly associated with diagnosis (Χ2

(1) =50.73, p<0.0001), sex (Χ2
(1) =40.02, 

p<0.0001), and their interactions (Χ2
(1) = 84.67, p<0.0001), but not with age (Χ2

(1) =0, p=0.97) or study site 
(Χ2

(18) = 20.43, p=0.31). For both children and adults, the highest accuracies were for female control and male 
ADHD subjects. When the training sample sizes in subgroups were considered, the accuracies were found 
significantly associated with sample sizes (F(1, 5) =  51.9, p= 0.0008) and sex (F(1, 5) =  43.28, p= 0.001), but not 
with diagnosis.  

Examining sensitivity, specificity, PPP and NPP in separate sex groups (Supplementary Figure 1), we found 
that at default 0.5 BRS probability cutoff point, the female subgroup has low sensitivity and high specificity.  By 
contrast, the male subgroup has high sensitivity and low specificity (Supplementary Table 2). We can obtain 
similar sensitivities and specificity (57~58%) for both sexes, or lower sensitivity (~20%) but higher specificity 
(>84%) for both sexes, if we shift the cut-points in opposite directions (Supplementary Table 2). However, male 
subgroup has higher PPP and lower NPP, yet female subgroup has higher NPP and lower PPP overall. 
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Feature importance 
Feature importance scores from RF and GB models were significantly correlated (Pearson’s r=0.66, p=0.003, 
Supplementary Figure 2). The ranked features using the average scores between both models were listed in 
Supplementary Table 3. Factor 1 ranked the first and sex ranked last.  Age ranked higher than sex but was still 
among the lowest. When we excluded age and sex from the model, we obtained an AUC 0.65 for the child 
samples (95%CI: 0.58, 0.71), which was similar to the AUC of the child set with age and sex included as 
features. Excluding age and sex resulted a lower AUC 0.59 (95%CI: 0.49, 0.68) for the adult samples, which 
also was not significantly different from that of the adult model with age and sex included. This suggests that 
the predictive information afforded by age and sex is redundant with the predictive information afforded by the 
sMRI features. 

The ranked brain features and their corresponding importance scores are in Supplementary Table 3. The 
importance scores were similar between left and right brain hemispheres but differed significantly across 
feature types (F[3,153] = 134, p<0.0001). ICV had the highest score (Figure 4B). The mean scores for surface 
area measures (0.125, 95%CI: 0.122, 0.127) and subcortical volumes (0.125, 95%CI: 0.117, 0.134) were 
similar and both were significantly higher than those for cortical thickness (0.102, 95%CI: 0.099, 0.104). 

Learning curves and effects of sample size on model performance 
Figure 5 plots the learning curves for the prediction in children (Left) and adults (Right), showing similar 
converging trends for training and testing AUCs as the sample size increases. Final AUCs did not reach the 
accuracy achieved during training when all samples were used. The characteristics of the learning curves 
suggest some degrees of overfitting and that increasing sample size should improve performance and reduce 
overfitting.  By extrapolating the training and test accuracies, we would predict that collecting more data would 
improve accuracy to about 0.75.  Further improvement would likely require additional predictive features, such 
as functional MRI data. 

Model generalizability 

Testing on the four excluded sites showed an overall 79.8% sensitivity (95%CI: 73.6%, 85.9%).  Sensitivity did 
not differ between the child (82%, 50 male subjects, 95%CI: 71.0%, 93.0%) and adult samples (78.8%, 18 
females and 100 males, 95%CI: 71.3%, 82.3%). There were no differences in sensitivities across the four 
sites. However, sensitivity was significantly lower for females (11.1%, 95%CI: -0.05%, 27.2%) than for males 
(88%, 95%CI: 82.7%, 93.3%) (X2

(1) = 9.39, p=0.002), consistent with the test results in Table 3.  

Discussion 
We achieved three main goals. First, our review found that many prior studies seeking to develop clinically 
useful classifiers for ADHD based on MRI data did not use a held-out test set and reported overly optimistic 
assessments of classification accuracy. Second, our results from ENIGMA ADHD data suggest that clinically 
useful classification may be possible, although achieving that will still require larger samples and, perhaps, 
additional predictive features. Third, we used ML in an innovative manner to provide supporting evidence for 
the continuity of ADHD’s pathophysiology from childhood to adulthood.  

What Makes Our Study Different From Prior Studies 
Almost 40% prior studies of ADHD MRI classifiers only reported cross-validation (CV) accuracies (23, 24, 44-
50)). Samples used in iterations of cross-validation influence the hyperparameter estimation. Therefore, CV 
results may overestimate actual accuracy, as our results showed. The sample size of ENIGMA ADHD data 
allowed us to properly estimate model accuracies from true test sets that were not involved in hyperparameter 
tuning.  

Other concerns regarding many previous studies were confounding factors such as sites and case-control 
imbalance. For example, ADHD-200 dataset comprised of data from many different sites and has more 
controls (63%) than ADHD (51). Learning algorithms can be confounded by base rate of the disorder and 
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difference among sites.  In our study, we applied oversampling of under-represented groups in each age 
subgroup and site. In addition, we used AUC statistic for model evaluation, instead of commonly used 
accuracy (percentage correct), which can be influenced by case-control imbalances in data sets. Our results 
showed indeed that we removed the confounding effects of different acquisition sites and age groups. Although 
our accuracies were modest (61.2% for children and 62.1% for adults), they were at the high end of prior 
results with the held-out test sets (Figure 1). Two studies reported higher test accuracies than ours (52, 53). 
Both studies utilized functional MRI in addition to sMRI data as features. More importantly, both reported 
significant site variations. One estimated that the site information alone resulted in 66% prediction 
accuracy(52).  Our results, in contrast, generalized well to different sites.  

Another factor that has contributed to our models’ generalizability was the rigorous regularization. 
Hyperparameters that favor less overfitting were selected so that models had training AUCs close to the 
validation AUCs.  Learning curve analysis also helped us to assess how well our models learned with 
increasing sample sizes, and whether our models were overfit. No previous studies of ADHD have 
implemented and reported these measures.  

Clinical Utility  

Examining different accuracies in subgroups of sex and diagnosis, we found that male ADHD and female 
control groups had the highest accuracies for both children and adults (73.3% ~ 89.2%). Same pattern was 
observed in samples from the excluded sites. Conditional probability analysis suggests that sex-specific BRS 
thresholds should be considered. For example, shifting BRS cut-points in opposite directions for male and 
female groups, we achieve ~20% sensitivity and specificity >84% for both sexes. The higher PPP and lower 
NPP values in males suggest that our model is often correct when predicting a male as having ADHD, but 
often wrong when classifying a male as non-ADHD . On the contrary, for girls we are often wrong when 
classifying a girl as having ADHD, although we are often correct when classifying a girl as non-ADHD.  
Although the current levels of accuracy do not suggest our models for clinical practice, our learning curve 
analysis indicate that increasing sample sizes could improve the model performance (54, 55), particularly more 
samples from the underrepresented sex and diagnostic groups, i.e. female ADHD and male control samples.  

Machine Learning Tests of Hypotheses 

Our results support the hypotheses about the continuity of child and adult ADHD pathophysiology and extend 
the results of prior ENIGMA ADHD studies (28, 29). Firstly, consistent with prior ENIGMA reports, we found 
that adult ADHD could not be successfully discriminated from the controls when using only adult data.  It could 
be due to the smaller sample size, or larger variations in brain differences in adults rendering it more difficult to 
discriminate. However, we show that using child data to train and validate the model, we can significantly 
improve the adult ADHD prediction, which suggests that the ADHD vs. control differences observed in children 
provide information relevant to adult ADHD and argues against recent hypothesis that adult ADHD is 
etiologically distinct from childhood ADHD (33).  Indeed, our BRS estimated similar case-control effect sizes 
(Cohen’s d) for children and adults.  Both were two to three times greater than those of the individual regions 
reported in prior ENIGMA studies (Cohen’s d 0.09 ~0.25) (28, 29). Secondly, some main features in our 
prediction models were consistent with preceding ENIGMA reports, for example, our most important feature 
ICV (28). Previously, total surface area was identified as the most significant measure with the highest Cohen’s 
d effect size (28).  We also found high scores for many surface areas in our model. One caution in interpreting 
importance scores is that one feature may mask the importance of the others because of high correlations, 
particularly for interconnected brain structures.   

 

Limitations 
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First, although we eliminated the confounding effects of age and sites, we still observed sex and sample size 
differences. Future studies with more samples from under-represented groups will help improve model 
performance and generalizability. Second, we only used sMRI data.  Incorporating other imaging modalities 
could help improve classification accuracy. Finally, we used pre-defined structures from ENIGMA standard 
image processing pipeline as features. It is possible that other methods such as one using 3D images as input 
features, in a convolutional neural network would uncover useful features leading to increased classification 
accuracy.  

In conclusion, our application of ML to the ENIGMA ADHD data suggests that clinically useful classification 
may be possible, although achieving that will require larger samples. ML can uncover ADHD vs. control 
structure differences in adults that were not detected in prior ENIGMA ADHD reports using standard statistical 
methods. These analyses show that sMRI differences associated with ADHD are similar for adults and youth, 
which supports the continuity of ADHD’s pathophysiology from childhood to adulthood. 
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Supplementary Table 1. Highest Validation Score (AUC) for The Individual Classifiers and the Ensemble 
Classifiers 
 
Supplementary Table 2. Conditional probability analysis of different sex groups 
 
Supplementary Table 3. Ranked feature importance scores for factors and brain MRI measurements. 
 
Figure Legends 
 
Figure 1. Reported accuracies from previously published studies plotted against their training sample 
sizes. 

Blue dots are results from held-out test set methodology and red triangles are results from cross-validation 
methodology. Higher accuracy scores were found for cross-validation compared with held-out test 
methodology.  

Figure 2. Test set performance of the best ensemble models. 

Area under the receiver operating characteristic curve (AUC) accuracy statistics for the held-out test results 
were plotted (as dots) with their 95% confidence intervals (as horizontal lines). The models were defined based 
on what samples were used for training, validation, and testing (Train, Valid, Test). The vertical line at an AUC 
of 0.5 indicates a chance level of diagnostic accuracy. If the 95%CI does not overlap with the 0.5 vertical line, it 
indicates significant predictive accuracy.  

Three base models are plotted on the top group: the “Adult, Adult, Adult”, the “Both, Both, Both”, and the 
“Child, Child, Child” models. These used either only the adult, or the child or both samples respectively to train, 
validate, and test. Middle portion plots the adult and child subset AUCs from the “Both, Both, Both” models. 
Bottom portion showed the test AUC for adult samples by using the child model (“Child, Child, Adult”, and the 
test AUC for the child samples by using the adult model (“Adult, Adult, Child”).  

 

 

Figure 3. ROC curves for ADHD prediction in adults and children.   

Receiver operating characteristic (ROC) curves for our best model were compared for the test set prediction 
results in adults (red ROC) and children (blue ROC).  

 

Figure 4. Feature Importance. 

A. The importance scores were derived from the two models that provide such scores: Random Forests (RF) 
and Gradient Boosting (GB). The features used are 16 brain MRI factors , age, and sex. These scores indicate 
the degree to which each feature contributed in predicting ADHD diagnostic status. The scores from two 
models were significantly correlated. Factor 1 ranked highest and sex ranked lowest. 
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B. The composite importance scores for MRI brain features were plotted to show mean differences across four 
main classes. The scores were generated by summing the products of the importance scores of the 16 factors 
in RF and GB models and the factor loading of the individual brain regions in each factor.  

 

Figure 5. Learning curves for model prediction of the child ADHD (Left) and adult ADHD (Right). The 
learning curves plot the training (red line) and test (green line) AUCs achieved for increasing training sample 
sizes. The whole training data were randomly split into eight parts. We started the training with 1/8th of the total 
data, and repeated the process at an increment of 1/8th each time. For both graphs, a converging trend of 
training and testing AUCs was observed, although the final test AUCs did not reach the training AUCs when all 
the samples were used. The converging pattern and the gap indicate the presence of overfitting and suggest 
more samples are needed to improve model performance. 

 

Supplementary Figure 1. Analysis of Sensitivity, Specificity, PPP and NPP In Different Sex groups. 
Classification sensitivity, specificity, PPP and NPP were computed and plotted for males and females 
separately at various probability cut-offs, which we referred as the brain risk score (BRS) that dichotomizes the 
case and control.  
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Tables 
Table 1. Sample Characteristics 

Diagnosis 
 

Child (Age <18) Adult (Age ≥18) 
Total 

Female Male Female Male 

Control 

N of Subjects 309 548 233 230 1320 

Mean Age 10.7 11.7 34.0 30.1 18.6 

SD of Age 2.8 2.9 12.0 9.9 12.1 

ADHD 

N of Subjects 179 667 217 330 1393 

Mean Age 11.2 12.0 34.2 29.6 19.5 

SD of Age 3.1 2.9 11.6 11.1 12.2 

Total 

N of Subjects 488 1215 450 560 2713 

Mean Age 10.9 11.9 34.1 29.8 19.1 

SD of Age 2.9 2.9 11.8 10.6 12.2 

 

*Note: SD, standard deviation; N, total numbers. 
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Table 2. Machine Learning Literature on Classification of ADHD Using Neuroimaging Data. 

Author, Year 
Training Set Test Set 

Sample Source 
Best ML Methods/ 

Models 
Features Type of Test 

Highest 
Percent 
Correct Sample 

Size 
ADHD% Sample 

Size 
ADHD% 

Brown MR  668 36% 171 45% ADHD-200 SVM rs-fMRI 10-fold CV 71% 

2012        test 55% 

Colby JB, 2012 776 37% 197 
 

ADHD-200 SVM sMRI and rs-fMRI test 55% 

Dai D, 2012 624 36% 165 
 

ADHD-200 MKL 
sMRI and 

10-fold CV 68% 

       
rs-fMRI 

test 62% 

Deshpande G,  2015 1177 37% 
  

ADHD-200 FCCANN rs-fMRI LOOCV 90% 

Du J, 2016 216 55% 
  

ADHD-200 SVM rs-fMRI 10-fold CV 95% 

Eloyan A,  2012 572 37% 193 34% ADHD-200 Voting 
sMRI, rs-fMRI and 
demographics  

 

test 61% 

       
~1/4 randomly 
chosen validation 
sample 

78% 

Fair DA 2013 104 50% 
  

ADHD-200 SVM rs-fMRI LOOCV 83% 

Ghiassian S, 2016 769 36% 171 45% ADHD-200 MHPC sMRI and rs-fMRI and 
demographics 

test 70% 

Hao A, 2015 216 55% 41 71% ADHD-200 (NYU 
subset) 

DBAY rs-fMRI test 49% 

 85 28% 50 46% ADHD-200 
(Peking subset) 

DBAY rs-fMRI test 54% 

 83 27% 11 27% ADHD-200 (KKI 
subset) 

DBAY rs-fMRI test 72% 

Hart H, 2014 60 50% 
  

clinic and local 
community 

GPC task-fMRI LOOCV 77% 

.
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Iannaccone R, 2015 36 50% 
  

Outpatient clinic 
and local schools 

SVM task-fMRI LOOCV 78% 

Igual L, 2012 78 50%   URNC database SVM sMRI of the caudate 
nucleus 

5-fold CV 72% 

Johnston BA, 2014 68 50% 
  

clinic and local 
schools 

SVM sMRI LOOCV 93% 

Kuang D, 2014 83  11  ADHD-200 (KKI 
subset) 

DBN rs-fMRI test 73% 

 85  50  ADHD-200 
(Peking subset) 

DBN rs-fMRI test 54% 

 222  41  ADHD-200 (NYU 
subset) 

DBN rs-fMRI test 37% 

Olivetti E, 2015 923 38% 
  

ADHD-200 extremely 
randomized tree 

rs-fMRI 10-fold CV 66% 

Peng X, 2013 110 50% 
  

ADHD-200 
(Peking subset) 

ELM 
sMRI 

LOOCV 90% 

Qureshi MN, 2016 106 50% 
  

ADHD-200 H-ELM 
sMRI 

10-fold CV 80% 

       
 

70/30 CV 85% 

Sen B, 2018 558 50% 171 45% ADHD-200 SVM 
sMRI + rs-fMRI 

5-fold CV 68.9% 

       test 67.3% 

Zou L, 2017 559 35% 171 45% ADHD-200 CNN 
sMRI 

test 65.9% 

       
rs-fMRI 

test 66.0% 

       
sMRI + rs-fMRI 

test 69.2% 

 

*Note: ML, Machine learning;  

fMRI, funcitonal MRI; rs-fMRI, resting state- functional MRI; sMRI, structure MRI;  

CV, cross-validation;  LOOCV, leave-one-out cross validation;  
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SVM, support vector machine; MKL, multi-kernel learning; FCCANN, fully connected cascade artificial neural network; GBM, a gradient boosting 
method; MHPC, the histogram of oriented gradients (HOG)-feature-based patient classification; GPC, Gaussian process classifiers; DBAY, Deep 
Bayesian Network; DBN, Deep Belief Network; ELM, extreme learning machine; H-ELM, hierarchical extreme learning machine; CNN, convolutional 
neural network
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Table 3. Test accuracies (and subject numbers) by sex, diagnosis and age groups 

 Adult (age>18) Child (age≤18) 

 Female Male Total Female Male Total 

Control  

Accuracy 

95% CI 

89.2% 

(78.7%, 99.7%) 

27.6% 

(10.3%, 44.9%) 

62.1% 

(50.1%, 74.1%) 

80.4% 

(9.6%, 91.1%) 

43.2% 

(31.7%, 54.8%) 

59.2% 

(50.7%, 67.8%) 

 Sample Size 37 29 66 56 74 130 

ADHD 

Accuracy 

95% CI 

15.4% 

(0.5%, 30.2%) 

84.9% 

(74.9%, 94.9%) 

62.0% 

(51.1%, 73.0%) 

20.0% 

(3.1%, 36.9%) 

73.3% 

(64.7%, 81.9%) 

63.1% 

(54.7%, 71.5%) 

 Sample Size 26 53 79 25 105 130 

Total 

Accuracy 

95% CI 

58.7% 

(46.2%, 71.2%) 

64.6% 

(54.1%, 75.2%) 

62.1% 

(54.1%, 70.1%) 

61.7% 

(50.9%, 72.5%) 

60.9% 

(53.7%, 68.1%) 

61.2% 

(55.2%, 67.1%) 

 Sample Size 63 82 145 81 179 260 
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Supplementary Table 1. Highest Validation Score (AUC) of The Individual Classifiers and 
the Ensemble Classifiers 

Training and Validation 
Datasets 

k_Nearest 
Neighbors 

Support 
Vector 

Random 
Forest 

Gradient 
Boosting Ensemble  

Both, Both 0.57 0.58 0.58 0.58 0.60 

Child, Child 0.59 0.66 0.63 0.64 0.68 

Adult, Adult 0.55 0.54 0.53 0.6 0.56 
 

Supplementary Table 2. Conditional Probability Cutoff Points. 

 Male Female 

Probability Cutoff  0.71 0.61 0.5 0.5 0.415 0.35 

Sensitivity 20.3% 58.2% 88.6% 3.92% 19.6% 56.9% 

Specificity 87.4% 58.3% 24.3% 96.8% 83.9% 57.0% 

Positive Predictive Power (PPP) 71.1% 68.1% 64.2% 40% 40% 42.0% 

Negative Predictive Power (NPP) 41.7% 47.6% 58.1% 64.8% 65.6% 70.7% 
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Figures 

Figure 1. Reported accuracies from previously published studies plotted against their training sample sizes  
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Figure 2. Test set performance of the ensemble models 
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Figure 3.  ROC Curves: Predicting ADHD in Children and Adults.  
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Figure 4. Feature Importance. 

A. 
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B. 
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Figure 5. Learning Curves for the best ensemble model for the adult model (Left) and child model (Right). 
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Supplementary Figure 1. Sensitivity and Specificity Analysis of Different Sex Groups 
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