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Abstract: Cognitive phenotypes characterize our memories, beliefs, skills, and 

preferences, and arise from our ancestral, developmental, and experiential histories. 

These histories are written into our brain structure through the building and modification 

of various brain circuits. Connectal coding, by way of analogy with neural coding, is the 

art, study, and practice of identifying the network structures that link cognitive phenomena 

to individual histories. We propose a formal statistical framework for connectal coding and 

demonstrate its utility in several applications spanning experimental modalities and 

phylogeny.  

 

Scientific explanations are characterized by modeling mechanisms of phenomena that describe 

(i) the constituent parts, (ii) the properties of those parts, and (iii) the interactions among them [1]. 

What we measure and model is often limited by technology. In brain sciences, 20th century 

innovations enabled studying the parts and their properties, while studying interactions was 

limited [2] and laborious [3]. For example, nanoscale electron microscopy (EM) enabled studies 

of ultrastructure [4], microscale light microscopy and physiology enabled studies of single cells 

[5], and macroscale magnetic resonance imaging (MRI) enabling studies of brain regions [6,7]. 

21st century innovations include serial EM for measuring subcellular interactions [8], improved LM 

[9–14], and MRI [15–18] to estimate interactions within and across brain regions. 

 These 21st technologies now enable modeling brain connectivity, in a complementary 

fashion to models of brain activity that were developed in the 20th century [19,20]. Models of brain 

activity, typically referred to as neural coding, link patterns of brain activity to past, ongoing, and 

future events. By contrast, models of brain connectivity, which we refer to as connectal coding, 

link patterns of brain connectivity to past, ongoing, and future events. The nature of the patterns, 

events, and links change by virtue of switching focus from activity to connectivity. Moreover, the 

statistical models one can leverage to learn those links from the data must also change.  

The goal of this manuscript is to introduce in clear terms, motivate from first principles, 

and formalize this emerging approach to studying the brain. While neural activity coding is well 

established and widely accepted as a (possibly the) legitimate framework for studying the brain, 

connectal coding remains in its infancy. Below we outline our rationale for why connectal codes 

are not just valuable, but required to unify 20th and 21st century mentalities to model the parts, 

their properties, and interactions among them together to infer improved scientific explanations of 

cognitive phenomena. 

 

Modeling Brains as Networks 
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The idea of the brain as a network dates back to the late 19th century, with Ramon y Cajal’s 

discovery of dendritic spines using Golgi’s stain. This marked the founding of the “neuron 

doctrine”, for the first time asserting that the brain is not, in fact, a syncytium [5]. In 1943, 

McCulloch and Pitts wrote down a mathematical model of the brain as a network, and proved that 

such networks could be “Turing-complete” (that is, they can solve any computational problem) 

[21], thereby founding the field of artificial intelligence [22]. Shortly thereafter, Hebb introduced 

“cell assemblies” as essentially networks of neurons that are jointly active [23]. A few decades 

later Little [24], and then Hopfield [25], introduced Little-Hopfield networks (which were the first 

recurrent neural networks and led to the founding of connectionism [26]). Little and Hopfield 

leveraged an idea from statistical physics known as the Ising model [27], positing that these 

assemblies could be used to store information. But in the entire 20th century, it was rare to use 

the tools of “graph theory” to study brain networks, even though graph theory was founded by 

Leonhard Euler in 1736 [28].  

 This all changed with the introduction of the term “connectome” by Sporns et al. and 

Hagmann in 2005 [15,16]. Since then, >3,600 papers have been published using the term. 

Because many of those papers define connectome differently, we provide our definition below:  

  

Definition: A connectome is an abstract mathematical model of brain structure, denoted G, and 

is a set of two kinds of objects:  

1. Vertices (or nodes), V: A vertex represents a biophysical entity of the brain. In a 

connectome, one defines a set of constraints, including the spatial extent (e.g., the left 

mushroom body, a cortical column, or the whole brain), spatial resolution (e.g., a cell, 

cellular compartment, or a cellular ensemble), type (e.g., a neural, glial, or perivascular 

cell), and developmental stage (e.g., postnatal day six). The nodes of a connectome are 

all the nodes satisfying those constraints. 

2. Edges (or links), E: An edge between any pair of nodes represents the presence (and lack 

of edge represents the absence) of a connection or communication between those nodes. 

In a connectome, that connection/communication must satisfy another set of constraints, 

including the kind of communication (e.g. transmission of electrical charges, 

neurotransmitters, physical opposition, or fiber bundles) and the temporal duration under 

which these communications may be present (e.g., during a particular developmental 

phase, or during a traumatic injury including brain compression, etc.). The edges of a 

connectome are all the edges satisfying these constraints between the above described 

set of nodes. Note that implicit in this definition is that the connections for which edges 

count in connectomes are direct. 

Under this simplest definition of what constitutes a connectome, it is common to represent the 

connectome via a two-dimensional (2D) array, A (Figure 1). In this representation, each 

row/column pair corresponds to a node, and edges between a pair of nodes u and v are depicted 

by a non-zero entry in the corresponding element of the array, i.e., A(u,v)=1. It is tempting to think 

of this as a matrix, and it certainly is from the computer science perspective. But it is decidedly 

not a matrix from the mathematics perspective, where matrices are linear operators, e.g. y = Ax. 

Whereas matrix algebra can be applied to study these representations of graphs, we often find it 

helpful to keep in mind that these “adjacency matrices” are special kinds of 2D arrays. The row 
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identities are inextricably linked to column identities, a property that is not generally true for 

arbitrary matrices, and changes the kinds of statistical procedures appropriate for these data.  

Moreover, in classical graph theory, the graph is simply the tuple G=(V,E), and lacks 

additional structure. For connectomes to serve as a model for brain structure that can link to past, 

ongoing, and future events, they often require some additional structure. The most common 

additional structure is edge weights, such that each binary edge is associated with a magnitude 

that can take any continuous value. More complicated and nuanced edge attributes abound in 

connectomics. For example, when edges correspond to synapses, they might be attributed with 

weights, locations, directions of transmission, neurotransmitters, etc. Similarly, for connectomes, 

it is natural for nodes to have attributes. The most common attribute of a node is a semantic label, 

such as the Mauthner neuron [29], or Purkinje cell, or primary visual cortex. Nodes in 

connectomics, like edges, can have other attributes as well, such as location, volume, and shape. 

Finally, when studying populations of connectomes, the entire graph may be endowed with 

attributes, such as a weight.  

The above definition clarifies what a connectome is for this manuscript, but not what it is 

not. It is not many things; we illustrate a few. The shape, size, or morphology of a set of brain 

regions or neurons does not comprise a connectome, nor does the set of all spike trains of a 

brain. These features can be attributes of nodes, but without also characterizing the edges, one 

has not modeled a connectome. Similarly, correlation between a pair of nodes cannot be defined 

as an edge (though it may be used to estimate the presence of an edge). This is because 

connectomes, as defined above, are models of brain structure and anatomy, and correlation is an 

emergent property of dynamics on that model, rather than a description of the model itself. While 

many connectomics papers disagree with this definition, we find it useful, and use it for the 

remainder of the manuscript.  

An implication of this definition is that one could simultaneously model a given brain with 

many different connectomes at different times, or at different resolutions, or of different types, etc. 

Moreover, the neuron-level model of brain structure does not have an elevated status over, say, 

compartments of neurons, glia, or brain regions; rather, each scale and type of node can serve 

as a perfectly adequate model of part of the brain, and those parts may turn out to be the most 

important parts to explain any particular past or future event.  

Given all this, one can measure parts of a brain to estimate a connectome from many 

different experimental modalities, each of which has its shortcomings. At cellular resolution, as 

early as 2001, several papers began characterizing how to estimate connectomes (without using 

the word connectome) from physiology data [30–33]. More recent developments in cellular 

resolution connectome estimation incorporated unobserved variables [34,35], called 

“confounders” in the causal inference field [36]. At the millimeter scale, diffusion magnetic 

resonance imaging data (dMRI) is known to exhibit both false positives and false negatives, as 

compared to gold standard methods [37]. By the same token, one can use functional MRI (fMRI) 

data to estimate edges. The most common approach by far is to simply use correlations [17]; 

these approaches are also known to yield problematic estimates for a number of reasons, 

including susceptibility to various exogenous variables, such as time of day, week, and month 

[38]. Methods for addressing confounders have also been proposed in the fMRI literature [39], 

and while widely cited, are still largely underappreciated. 
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Example Estimated Connectomes  

We show several different previously published estimated connectomes from different species 

spanning the phylogenetic tree, with widely disparate definitions of what constitutes nodes and 

edges (Fig. 1). There are many possible ways to visualize a connectome [40–42]; we choose a 

relatively simple way, adjacency matrices, as described above. We indicate the strength of 

connection as either the size or contrast of the corresponding matrix element. Showing an 

adjacency matrix requires first sorting all the nodes in some order; we choose to sort by region or 

type, and within that by degree (total weight of connections per node), but other sortings could be 

equally informative. For certain connectomes, experimentalists have measured multiple types of 

edges. We show these “multi-connectomes” with different colors for the different edge types.  

 

A. Caenorhabditis elegans (worm). C. elegans is the only animal for which we have 

estimated a complete connectome where the nodes represent neurons [3,43,44]. That is, 

every neuron in the animal is a node, and every edge has been estimated. This 

connectome has two types of edges corresponding to two types of neural activities: (1) 

chemical synapses for neurochemical release (Fig. 1A), and (2) gap junctions for electrical 

activity. Each edge’s strength (or weight) corresponds to the approximate total volume of 

synapses between its parent neurons. C. elegans has two sexes, male and 

hermaphrodite, with different numbers of neurons (hermaphrodite 302, male 385, with 290 

overlapping shown in Fig. 1A) [45,46]. These connectome estimates are derived by 

cumbersome manual tracing of axons and dendrites and identification of synapses, in 

nanoscale electron micrographs, updated by Varshney et al. [47], Bentley [48], and most 

recently by Cook et al. [49]. 

B. Drosophila melanogaster (fly). Eichler et al. [50] published an estimate larval Drosophila 

connectome of the left (Fig. 1B) and right mushroom body, also derived from serial 

electron microscopy, using only chemical synapses. These edges are weighted (based on 

counting the number of synapses between a pair of neurons), and directed (meaning 

connections can be from u to v and not vice versa) [51].  

C. Mus musculus (mouse). Calabrese et al. [52] generated a high-resolution connectivity 

estimate using ex vivo diffusion magnetic resonance imaging (dMRI). This network is 

undirected, as dMRI lacks directional information, and weights correspond to the number 

of tracts estimated to go between regions. Because we do not know the mapping from the 

absolute magnitude of connection weights to any physical connection, we rescale these 

weights to be between zero and one, and depict them on a log scale (Fig. 1C).  

D. Homo sapiens (human). The Consortium for Reliability and Reproducibility collects 

multiple measurements of functional resting-state, anatomical, and/or diffusion magnetic 

resonance imaging (MRI) per individual [53]. The functional estimated connectomes are 

Pearson correlation matrices, converted to ranks and then normalized between zero and 

one, because such a representation is more reliable than raw or thresholded correlations 

[54]. The diffusion estimated connectomes are normalized as described above for the 

mouse. This multi-connectome estimate is derived from averaging the entire dataset of 

3,067 diffusion and 1,760 functional MRI connectomes [53] (Fig. 1D).  
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Figure 1: Estimated connectomes spanning four levels of the phylogenetic tree, each estimated using 

different experimental modalities and spatial resolutions, ranging from nanoscale (electron microscopy) to 

macroscale (MRI regions). (A) C. elegans chemical multi-connectome estimated from male and 

hermaphrodite connectomes. Size of circles corresponds to the number of synapses between two neurons. 

Multiscale node labels: left (L) and right (R), which are bilateral pairs, as well as unpaired (U); and four 

types per side: endorgans (E), interneurons (I), motor neurons (M), and sensory neurons (S). (B) Left 

mushroom body connectome estimated from Drosophila melanogaster. Nodes represent neurons, and are 

assigned into kenyon cells (K), input neurons (I), output neurons (O), and projection neurons (P). Color 

intensity corresponds to the number of synapses between two neurons. (C) Mouse estimated connectomes 

obtained from dMRI scans. Nodes represent regions of the brain, and are assigned into right (R) and left 

(L) hemispheres and then further assigned into superstructures such as frontal (F), hindbrain (H), midbrain 

(M), and white matter (W). Color intensity corresponds to degree of connectivity between two regions. (D) 

Human multi-connectome estimated from averaging 3,067 dMRI and 1,760 fMRI human connectomes. 

Since both networks are undirected, only the upper triangle of fMRI connectome and lower triangle of dMRI 

connectome is shown. Nodes represent regions of the brain, and are assigned into right (R) and left (L) 

hemispheres and then further assigned into frontal (F), occipital (O), parietal (P), and temporal (T), as well 

as subcortical structures (S). Color intensity corresponds to degree of connectivity and correlation for dMRI 

and fMRI, respectively, between two regions. 
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The Purpose of Brain Codes 

A code is a (potentially stochastic) system of rules to convert information from one representation 

into another [55,56].1 For example, neural activity coding can be thought of as converting 

information from past and ongoing events (stimuli and behavior) to neural activity, and from neural 

activity to future events (predictions and behaviors). In other words, neural activity codes 

correspond to the brain’s representation of information. In contrast, connectal coding can be 

thought of as converting information from past and ongoing events (ancestral, developmental, 

and experiential) to brain connectivity, and from brain connectivity to future events (behavioral 

tendencies). In other words, connectal codes correspond to the brain’s storage of information. 

Therefore, brain activity and connectal codes serve complementary roles in understanding the 

relationship between genetics, body, world, and brain. 

An important aspect of both activity and connectal codes is that they are stochastic. In 

other words, a given ongoing stimuli/behavior can stochastically manifest in multiple different 

patterns of activity, and a given past event can stochastically manifest in multiple different patterns 

of connectivity. The inverse is also true: activity/connectivity can represent multiple different 

current/past/future events, respectively. This stochastic property of brain codes is actually 

required for operating in the world. Even human brains, given finite physical and energetic 

resources, are incapable of representing and storing the large amount of information impinging 

on our sensory faculties. In a similar fashion, the connectivity of a human brain is too complex to 

be explicitly prescribed by their genome. To be concrete, consider that a human brain contains 

approximately 1011 neurons [58] and 1015 connections between pairs of neurons, and yet we only 

have about 104 genes [59]. Thus, for the genome to encode every single synapse would require 

five to six variants per gene, and literally every variant of every gene would encode the brain’s 

synapses. More likely, the genome encodes the “blueprint”, that is, a number of statistical 

principles governing the probability of connections between nodes across development, as well 

as all the rules for learning new connections due to activity-dependent plasticity. Those rules are 

the principles of connectal coding. 

 

The Role of Connectomes in Connectal Coding 
 

The above definition of connectome sets the stage for understanding the relationship 

between connectomes and other aspects of an individual or population. By way of analogy, recall 

that a genome is the complete genetic sequence of an individual, whereas a genotype is the part 

of the genetic sequence of an individual that associated with a particular phenotype. In that sense, 

a connectotype is the collection of nodes and edges (and potentially their attributes) associated 

with a given phenotype. We consider two kinds of phenotypes here: individual histories and 

cognitive phenotypes. By individual histories, we mean ancestral, developmental, and experiential 

histories; we may desire to understand the relationship between connectome and genome, 

connectome and developmental stage, or connectome and experience. By cognitive phenotype 

                                                 
1 We acknowledge that it is common in the neuroscience community to ascribe other meanings to the word 

code, including representational and causal meanings [57]. We use “code” the way Shannon and 
information theory uses it, purely as a statistical relationship. 
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we mean a set of observable characteristics of an individual related to their cognition, including 

personality traits, memories, beliefs, skills, preferences, and psychiatric or learning disorders. We 

may desire to understand the relationship between connectome and these phenotypes as well. 

Regardless of which particular kind of phenotype, there may exist one (or many) connectotypes 

associated with it. Connectal coding is the study of brain structures that encode that information.  

Like genotypes, there is not a one-to-one mapping between connectotypes and 

phenotypes, rather, a given connectotype could stochastically encode in different cognitive 

phenotypes at different times, and a given cognitive phenotype could be associated with many 

different connectotypes. For example, the stomatogastric ganglion circuit of a crab can exhibit 

similar network activity from disparate circuit parameters [60].  

In light of this, our view on connectomics is that its primary value is in generating 

hypotheses about connectotypes. This is in contrast to the relatively low-throughput, more 

classical approach to studying neural circuits. For example, detailed physiological and anatomical 

characterization of the sound localization circuit of a barn owl [61] effectively confirmed models 

that explained a certain phenotype. However, the process of hypothesis generation was arduous, 

taking decades, including numerous models that, in retrospect, were not possible given the 

underlying neuroanatomy. If one could rapidly collect data about many interwoven neural circuits, 

and then use those data to screen and/or filter various circuits as implicated (or not) in a given 

behavior, then subsequent experiments could further refine those results. Thus, connectomes 

may not on their own provide data sufficient to test hypotheses about how certain genotypes are 

linked to certain connectotypes and/or how certain connectotypes are linked to certain 

phenotypes. Nonetheless, if these data can accelerate the hypothesis-generation process to hone 

in on a small set of plausible models, they will be extremely valuable. 

Of note, in connectal coding, the role of estimating connectomes is not about describing 

the basic anatomical properties of connectomes, or modeling connectomes as an end unto 

themselves. Rather, in connectal coding, connectomes are interesting insofar as they participate 

in the understanding of the relationship between brain structure and individual histories or 

cognitive phenotypes. Part of the rationale of this focus is that most current experimental 

approaches for estimating connectomes are so error prone, that estimates of the statistical 

properties of brain networks are difficult to interpret in terms of the underlying biology. In fact, 

even if the part of the network that is observed is largely correct, if it represents just a subsample 

of the network of interest, then the resulting network features can be quite different from those 

features of the entire network [62,63]. Regardless, building statistical model relating connectypes 

to phenotypes requires models of connectomes.  

Models of Connectomes 

 

Every connectomics study utilizes some mathematical and statistical approach to support the 

scientific claims. We organize those approaches into three categories, and demonstrate that only 

one of these frameworks is sufficient for connectal coding, although all three provide 

complementary insights and perspectives on the connectomes themselves. 
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 The most common approach, dubbed the “bag of edges” (or edgewise statistics) 

framework. [64,65], treats each edge independently, without taking into account interactions or 

relationships between them. Such univariate approaches allow researchers to identify easily 

interpretable relationships between phenotypes and edge weights. However, this approach 

requires performing many statistical tests, which must be corrected for multiple comparisons to 

adequately control for the number of false positives. Standard correction techniques such as false 

discovery rate [66] do not model the dependencies between edges, and therefore may result in 

overly liberal or conservative corrections [67]. Alternate correction techniques such as network-

based statistics [68] or group Benjamini-Hochberg corrections [69] leverage information about the 

group structure of connectomes to increase statistical power, while attempting to control false 

positives. Network-based statistics, however, lacks theoretical guarantees identifying the settings 

in which it successfully controls false positives. Without such an understanding, interpreting its 

results is problematic. Benjamini-Hochberg has strong theoretical guarantees, but in models that 

are inappropriate for connectomics data, in that their assumptions are often grossly violated (and 

rarely checked). Bonferroni corrections are widely believed to be overly conservative [70] and 

therefore lack the sensitivity desired for connectal coding. 

 A second popular approach we dub the “bag of features” framework. In this approach, 

multiple graph-wise or node-wise statistics are calculated [71] and compared. Possible features 

include degree distribution, degree sequence, clustering coefficient, number of triangles or other 

motifs, small worldness, efficiency, and modularity [72]. While computing these statistics can be 

informative about the properties of a given connectome, using them as features to explain 

differences between genotypes or phenotypes faces serious drawbacks. First, for any particular 

feature, vastly different networks can produce the same value [73]. Second, for a connectome 

with n nodes, there are 2n*n possible subgraphs, each of which could reasonably be considered a 

feature. Therefore, one cannot reasonably search all features (as 2n*n is larger than the number 

of atoms in the universe for n > sixteen!). It is therefore unclear (and somewhat arbitrary) how one 

should choose relevant features for a particular dataset. Third, and perhaps most problematic, is 

that the different features are not typically independent of one another. Therefore, if the question 

is whether a given phenotype depends on a particular feature being a specific value, it is 

impossible to determine whether that particular feature is responsible. Rather, the phenotype may 

be dependent upon a subset of the exponentially many features that correlate with both the 

feature of interest and the phenotype. No experiment could test whether a feature is uniquely 

informative with regard to the covariate of interest, even in theory. Thus, studying most network 

features will fail to yield the principles of connectal coding.  

 The third framework, which is much less popular in connectomics, but much more popular 

in network statistics, is statistical modeling of networks [74,75]. The key conceptual herdle 

associated with using statistical models of networks to model connectomes is that it is a model of 

the entire network, rather than just the edges or features, as a random variable. This network is 

a complex high-dimensional random variable, with built-in structure and relationships. The vast 

majority of work in network modeling focuses on modeling a single network, typically undirected, 

unweighted, and lacking in network-wise, node-wise, or edge-wise attributes [76]. However, 

connectomes are typically weighted, sometimes directed, and always include at a minimum node-

wise labels (e.g., which cell, cellular compartment, or cell ensemble corresponds to a given node). 

Moreover, understanding the relationship between connectypes and phenotypes typically 
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requires comparing multiple connectomes. Much of the existing work comparing multiple networks 

ignores the unique node labels that are often available in connectomics [77]. Therefore, a full 

accounting of connectotypes will require statistical models of populations of networks with 

complex attributes. Although a comprehensive theory remains absent, we build connectal coding 

on the foundational work of network modeling [78]. 

 

Statistical Models of Connectomes 
 

The simplest random network (graph) model is the Erdos-Renyi model, in which each edge is 

sampled identically and independently [79]. This binary model is the connectal coding homolog 

to the Poisson process in neural coding, which asserts that a neuron’s spikes are sampled 

identically and independently [20]. Although these models are too simple to explain much, they 

are excellent starting grounds to build more complex models, such as the inhomogeneous Erdos-

Renyi model, which assumes that each edge is an independent coin flip, but each edge can be 

sampled with a different probability [76]. The next simplest binary models are stochastic block 

models (SBM) [80–83]. In an SBM, there are K groups, and each node is in one group. Each edge 

is again sampled independently, but the probability of a connection between a pair of nodes is no 

longer equal everywhere; rather, it is determined by each node’s group (homologous to a 

heterogeneous Poisson process, where spiking has K different rates, dependent on which of K 

different states the brain is in). For example, a simple model of brain connectivity would be that 

contralateral connections have some probability, and ipsilateral connections have a different one. 

One can further generalize this to a hierarchical block model, where each node is in a given set 

of nested groups [84–87]. For example, a node might be in a lobe within a hemisphere.  

A further generalization asserts that each node is in its own group, and therefore has a 

“latent position” that characterizes its probability of connecting with other nodes (homologous to 

latent variable models in neural coding) [88]. A particularly popular version of these models 

assumes that the probability of connections between a pair of nodes is equal to the dot product 

between the nodes’ latent positions [89–91]. In these models, an extensive set of theoretical 

investigations have established the kinds of claims we desire when using a statistical model to 

make inferences about our data [92,93], as well as a number of extensions, including a 

generalized random dot product [94], a random dot product with node-wise covariates [95], and 

a latent structure model [96] (for review, see [97]). However, these models typically only operate 

on single, unweighted networks lacking attributes.  

Some of these single-network models have been generalized to population models. One 

of the first such models was a non-parametric Bayesian model of populations of networks [98]. 

This model is essentially a network generalization of mixed effects models popular in biostatistics 

[99], where the mean network is a fixed effect, and each individual has a unique low-rank distortion 

relative to the mean. Two extensions of this approach are essentially non-Bayesian variants that 

enable faster computation [100,101], which was generalized to a mixture of random dot product 

models [102]. Estimation in each of these models can be thought of as specific tensor 

factorizations [103]. Although these models still lack much neuroscientific insight or attributes, 

they establish the statistical foundation for learning connectal codes. 
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Statistical Model for Connectal Coding 

 

To formalize connectal coding, we introduce the connectal coding model, which is designed to 

enable investigation of the links among connectypes, individual histories and cognitive 

phenotypes. Like all models, the connectal coding model makes simplifying assumptions for 

tractability. Although statisticians like to remind practitioners of George Box’s quip, “all models are 

wrong; some are useful”, we find this aphorism to be misleading. Models are maps, designed to 

get us from one place to another. The question is not “is a given map right or wrong?” but rather, 

“is the map useful for getting us to our destination?” The connectome coding model is designed 

to get us to a deeper understanding of the relationship among connectotypes, individual histories, 

and cognitive phenotypes. Insofar as it does that, it is useful.  

In statistics, a code is a conditional distribution characterizing the probability of one 

random variable taking some value given another random variable taking some value. Let X and 

Y be random variables; their marginal distributions, P[X] and P[Y], characterize the probability of 

any particular x or y, and their joint distribution P[X,Y] characterizes the probability of observing x 

and y. The conditional distribution P[Y|X] characterizes the probability that Y takes a particular 

value, given that X is some value. In connectal coding, we have the following four random 

variables: 

● B = cognitive phenotypes of an individual, including and as measured by behaviors, 

● C = connectome of an individual, spanning spatial and temporal scales,  

● D = developmental history of an individual, including past experiences  

● E = the current environment acting on individuals, and 

● G = genome of an individual, including epigenetic factors. 

Connectal coding concerns estimating the statistical relationships among connectomes and 

genomes, developmental histories, cognitive phenotypes, and the current environment. More 

formally, in connectal coding, we may seek to estimate the probability of a connectotype, given a 

genotype and environment, P[C | D, E], and the probability of a cognitive phenotype, given a 

connectype and environment, P[B | C, E]. We are also interested in P[C | D], P[B | C], and other 

conditional and joint distributions. In all cases, there exists a random variable that models the 

connectome, which therefore warrants further study. One random variable which may appear 

missing to many neuroscientists is brain activity. Much like one does not require modeling a 

connectome to characterize the relationship between stimuli/behaviors and brain activity, one 

does not require modeling activity to characterize the relationship between cognitive 

phenotypes/developmental history/genomes and brain connectivity. Although joint modeling of 

brain activity and connectivity would be more comprehensive, connectal coding is sufficiently 

challenging and interesting to warrant its own investigations. 

This formalization of connectal coding, is, to our knowledge, novel. That said, this 

conceptual and formal model can be used to interpret previous connectomics studies, which often 

have similar conceptual frameworks [104]. More importantly, we hope it will help guide the 

development and ideation of new connectomic studies, by providing a paradigm within which to 

ask, formalize, and eventually answer questions about neural circuit mechanisms, how they work, 

how they fail, and how they can be improved. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/610501doi: bioRxiv preprint 

https://paperpile.com/c/vMMsj6/OwIp
https://doi.org/10.1101/610501
http://creativecommons.org/licenses/by/4.0/


 

Connectal Coding Theories 
 

Equipped with the statistical formalization of connectal coding, two questions we can ask are: (1) 

to what extent is a connectome statistically associated with “X” (e.g., genotype or cognitive 

phenotype), and (2) where in the connectome is that statistical association (that is, what is the 

connectotype associated with that genotype/phenotype)? An example of the first question is, “if 

the genomes of two individuals differ, to what extent are their connectomes different?” An example 

of the second question is: “where in the connectome are those differences?” Causal questions, 

such as which connectotype is part of the implementation-level causal mechanism of a given 

cognitive phenotype, are also possible, but beyond the scope of this article because they are 

much more difficult to answer convincingly (but see [104] for a wonderful article on this topic 

focused largely on fMRI based connectome estimates).  

Formally asking these questions requires assuming a statistical model. The first kind of 

question is essentially a hypothesis-testing question. The data required to answer it are two 

collections of estimated connectomes: C1,...Cn are estimated connectomes from individuals with 

one property (e.g., genotype or cognitive phenotype), and Cn+1,..., Cn+m are estimated 

connectomes from individuals with another property. Assume that C1,...Cn are all sampled 

independently and identically from some distribution P0 = P[C | X = 0], and Cn+1,...,Cn+m are 

sampled independently and identically from another distribution P1 = P[C | X = 1]. Then, the formal 

statement of the hypothesis is: 

 

H0: P0 = P1  vs.  HA: P0 ≠ P1 

 

Applying such a test requires defining a test statistic, which quantifies the effect size, and 

computing the distribution of the test statistic under the null. Such two-sample tests have been 

developed for random graphs [105–108]. The theoretical claims associated with each of these 

two-sample testing results depends on an underlying statistical model of random graphs, such as 

those described in the previous section. These tests are holistic: they tell the researchers that 

there are differences between these populations and the magnitude of those differences (the test 

statistic), but they do not indicate where those differences are. 

 To answer the second question, global graph features (such as modularity) are inadequate 

because they cannot indicate where the differences are. Moreover, edge-wise statistics are 

typically underpowered when suitably adjusted for multiple comparisons, given our small sample 

sizes. Instead, we can search for a “signal subgraph”, that is, a small set of nodes and edges 

among them that confer the majority of the signal (the signal subgraph is an estimate of the 

connectotype). Signal subgraph searches are akin to feature screening, where one seeks to 

determine which features are most informative about a specific covariate [109]. The main 

difference is that signal subgraph methods take advantage of the graph structure to improve their 

sensitivity and specificity [110]. The first signal subgraph method used a variant of a sparse 

inhomogeneous Erdos-Renyi random graph model [111]. These methods have been extended to 

operate under latent variable model assumptions [112], and also to deal with continuous (rather 

than categorical) covariates [113]. Formally, signal subgraph detection is an estimation, rather 
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than testing, problem: it seeks to estimate the smallest set of nodes such that the covariate is 

independent of the remaining nodes, and the signal subgraph is the set of edges among those 

nodes that carry information about the covariate.  

Applications 

 

Consider the connectome of the larval Drosophila mushroom body [50] (Figure 1B). Priebe et al. 

[51] conducted an extensive empirical investigation of this connectome, leveraging spectral 

modeling, which resulted in the development of the latent structure random graph model [96]. 

Specifically, they discovered that kenyon cells of the mushroom body form a one-dimensional 

submanifold in a six-dimensional latent space. Figure 2 shows the quality of fit of several of these 

models to a binary simplification of the left larval mushroom body Drosophila data. These models 

provide a foundation from which to formulate statistical tests to answer the connecal coding 

questions described above. 

Second, consider sex differences in the mouse brain estimated via diffusion magnetic 

resonance imaging (Fig. 1C). From scans of 55 mouse brains, 32 male and 23 female, 

connectomes were estimated on 332 nodes, 166 per hemisphere, using the Waxholm atlas [114]. 

The signal subgraph method of Wang et al. [112] reveals that 10 of the original 332 nodes contain 

more signal than noise about sex. The top-ranked nodes include a thalamic component and the 

periaqueductal gray, both of which are important in sexually dimorphic mouse brain development 

[115,116]. 

Third, we consider the COBRE data set [117], a collection of 123 functional MRI scans of 

schizophrenic and healthy human patients. Each scan yields an estimated connectome with 264 

nodes, corresponding to 264 brain regions of the Power parcellation [118], with edge weights 

given by correlations between BOLD signals measured in those regions. The data set contains 

scans for 54 schizophrenic patients and 69 healthy controls (like the one shown in Figure 1D). 

Levin at al. [119] apply their omnibus embedding to jointly estimate a random dot product graph 

for each connectome, resulting in an estimated three-dimensional latent position for each node of 

each connectome. For each node, Hotelling’s T2 test yields a p-value assessing whether or not 

the latent positions from healthy connectomes are drawn from the same (normal) distribution as 

the latent positions from the schizophrenic connectomes. Because the Power parcellation is 

hierarchical, the nodes can be further organized into 14 parcels. Visualization of the distribution 

of these p-values within each parcel suggests that the connectomes of schizophrenics differ from 

those of healthy controls in certain subnetworks but not others (Fig. 3). Specifically, nodes in the 

default mode network tend to have significantly smaller p-values than nodes in, for example, the 

visual subnetwork. Independent investigations also implicate the default mode in schizophrenia 

[120,121], suggesting that our framework can provide statistical rigor to support previous scientific 

claims. 
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Figure 2: Connectome model fitting and complexity. Left larval Drosophila mushroom body adjacency 

matrix, followed by random samples from four different statistical models of connectomes with decreasing 

complexity: inhomogeneous Erdos-Renyi (IER), random dot product graph (RDPG), degree-corrected 

stochastic block model (DCSBM), stochastic block model (SBM), and Erdos-Renyi (ER). The bottom left 

shows the number of parameters for each. All graphs are sorted by node degree within each block. 

Figure 3: Normalized histograms of the distribution of p-values obtained from applying Hotelling’s 

T2 test to the omnibus embeddings of brain regions from a few selected Power parcels. The red 

dashed lines indicate the uniform density, which would be expected to hold if there were no 

difference between healthy and schizophrenic patients. The default mode network clearly displays 

a non-uniform p-value distribution, suggesting that this parcel differs in schizophrenic patients 
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compared to their healthy counterparts. In contrast, p-values in the auditory, visual, and fronto-

parietal task control subnetworks appear approximately uniform, providing weak evidence that 

these systems are not implicated in schizophrenia. 

Discussion 

Here, we discuss a few additional applications of the connectal coding framework. First, one can 

use connectal coding to study cognitive disorders, such as schizophrenia, as described above. 

The consensus report of the American Psychiatry Association’s working group on neuroimaging 

markers of psychiatric disorders concluded that “there are currently no brain imaging biomarkers 

that are currently clinically useful for any diagnostic category in psychiatry.” [122]. This is despite 

nearly 30 years (at the time of that report) of brain imaging. A widely held belief is that psychiatric 

illnesses are disorders of neural circuitry, or connectopathies [123–128]. If true, our ability to 

develop clinically useful prognostic, diagnostic, and treatment protocols will depend on connectal 

coding. The same strategy could be applied to study healthy brains as well. For example, 

memories are believed to be stored in “engrams”, which are defined as biophysical or biochemical 

changes in the brain underlying memories [129]. While engrams for specific memories largely 

remain elusive [130], connectal coding could accelerate this search, by formulating the specific 

memory as a cognitive phenotype. In these settings, heterogeneity of connectomes may be a 

significant impediment which would require further methodological developments. Further, the 

methodologies developed to study contrasts within and across individuals within a species can 

also be applied across species [131,132], although such studies should also take into account 

differences in body plan and life cycle. 

  Second, in other fields of inquiry such as particle physics and geology, simulations play a 

key role in understanding nonlinear dynamical systems. In brain science, however, simulations 

remain in their infancy. That said, recently, several high-profile efforts have emerged to simulate 

the brain of various species, including humans [133–136]. While the precise detailed requirements 

for biofidelic and useful simulations of a brain remain fiercely debated [137], it is unambiguous 

that some assumptions about nodes, their properties, and connections are required for any such 

simulation. Therefore, connectal coding could be exploited to learn which connectotypes are 

required for the simulation to exhibit which cognitive phenotypes. 

 Third, as alluded to above, the idea that understanding biological intelligence can inform 

machine intelligence dates back to the early days of computer science and the so-called first wave 

of artificial intelligence (AI). The first serious artificial neural networks were simple one-layer 

networks, called perceptrons [138]. The second wave of AI began when a few people realized 

that artificial neural networks, like biological neural networks, could have multiple layers to 

increase their expressive capacity. More formally, while perceptrons (one-layer networks) can 

only represent linear functions [139], multi-layer perceptrons (with only one hidden layer) can 

represent arbitrarily complex functions [140,141]. The third wave artificial intelligence, brought 

about by deep learning [142], appreciated that real connectomes do not have huge unstructured 

single hidden layers, but rather, many relatively small hidden layers [143,144]. Perhaps 

incorporating more biological constraints in these searches could further improve their efficiency 

[145]. Indeed, there are some signs that the third wave of artificial neural networks might be 
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waning and/or asymptoting, and some posit that their main hope for continued rapid improvement 

is to incorporate more ideas from connectomics [146]. 

 Connectal coding is an approach to model brain structures as networks and apply the 

wealth of statistical pattern recognition techniques to relate individuals’ networks to their 

phenotypes. To facilitate using these ideas, we have developed an open source python toolbox 

for statistical analysis of populations of networks, available at https://neurodata.io/graspy/ [149]. 

 

Acknowledgements 

The authors from JHU acknowledge support from NSF 16-569 NeuroNex contract 1707298, and 

KL’s support comes from NSF grant DMS-1646108. The authors are grateful for helpful feedback 

from Konrad Koerding. The authors declare no conflicts of interest. 

References 

1.  Craver C, Tabery J. Mechanisms in Science [Internet]. Spring 2017. Zalta EN, editor. The 
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University; 
2017. Available: https://plato.stanford.edu/archives/spr2017/entries/science-mechanisms/ 

2.  Marder E, Bucher D. Central pattern generators and the control of rhythmic movements. 
Curr Biol. 2001;11: R986–96. Available: https://www.ncbi.nlm.nih.gov/pubmed/11728329 

3.  White JG. Neuronal connectivity in Caenorhabditis elegans. Trends Neurosci. 1985;8: 277–
283. doi:10.1016/0166-2236(85)90102-X 

4.  Gray EG. Electron microscopy of synaptic contacts on dendrite spines of the cerebral 
cortex. Nature. 1959;183: 1592–1593. Available: 
https://www.ncbi.nlm.nih.gov/pubmed/13666826 

5.  Shepherd GM. Foundations of the Neuron Doctrine (History of Neuroscience) [Internet]. 1 
edition. Oxford University Press; 1991. Available: https://www.amazon.com/Foundations-
Neuron-Doctrine-History-Neuroscience/dp/0195064917 

6.  Huettel SA, Song AW, McCarthy G. Functional Magnetic Resonance Imaging [Internet]. 3 
edition. Sinauer Associates is an imprint of Oxford University Press; 2014. Available: 
https://smile.amazon.com/Functional-Magnetic-Resonance-Imaging-
Huettel/dp/0878936270/ref=sr_1_21?keywords=brain+MRI&qid=1556416526&s=gateway&
sr=8-21 

7.  Vanderah T. Nolte’s The Human Brain in Photographs and Diagrams [Internet]. 5 edition. 
Elsevier; 2019. Available: https://smile.amazon.com/Noltes-Human-Brain-Photographs-
Diagrams/dp/0323598161/ref=sr_1_5?keywords=human+brain+atlas&qid=1556416638&s=
gateway&sr=8-5 

8.  Denk W, Horstmann H. Serial block-face scanning electron microscopy to reconstruct 
three-dimensional tissue nanostructure. PLoS Biol. 2004;2: e329. 
doi:10.1371/journal.pbio.0020329 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/610501doi: bioRxiv preprint 

https://paperpile.com/c/vMMsj6/lzO0
https://neurodata.io/graspy/
https://paperpile.com/c/vMMsj6/nZ4g
http://paperpile.com/b/vMMsj6/PQqc
http://paperpile.com/b/vMMsj6/PQqc
http://paperpile.com/b/vMMsj6/PQqc
https://plato.stanford.edu/archives/spr2017/entries/science-mechanisms/
http://paperpile.com/b/vMMsj6/f0SV
http://paperpile.com/b/vMMsj6/f0SV
https://www.ncbi.nlm.nih.gov/pubmed/11728329
http://paperpile.com/b/vMMsj6/cELI
http://paperpile.com/b/vMMsj6/cELI
http://dx.doi.org/10.1016/0166-2236(85)90102-X
http://paperpile.com/b/vMMsj6/tAQh
http://paperpile.com/b/vMMsj6/tAQh
https://www.ncbi.nlm.nih.gov/pubmed/13666826
http://paperpile.com/b/vMMsj6/C8U5
http://paperpile.com/b/vMMsj6/C8U5
https://www.amazon.com/Foundations-Neuron-Doctrine-History-Neuroscience/dp/0195064917
https://www.amazon.com/Foundations-Neuron-Doctrine-History-Neuroscience/dp/0195064917
http://paperpile.com/b/vMMsj6/XFD7
http://paperpile.com/b/vMMsj6/XFD7
https://smile.amazon.com/Functional-Magnetic-Resonance-Imaging-Huettel/dp/0878936270/ref=sr_1_21?keywords=brain+MRI&qid=1556416526&s=gateway&sr=8-21
https://smile.amazon.com/Functional-Magnetic-Resonance-Imaging-Huettel/dp/0878936270/ref=sr_1_21?keywords=brain+MRI&qid=1556416526&s=gateway&sr=8-21
https://smile.amazon.com/Functional-Magnetic-Resonance-Imaging-Huettel/dp/0878936270/ref=sr_1_21?keywords=brain+MRI&qid=1556416526&s=gateway&sr=8-21
http://paperpile.com/b/vMMsj6/xsA5
http://paperpile.com/b/vMMsj6/xsA5
https://smile.amazon.com/Noltes-Human-Brain-Photographs-Diagrams/dp/0323598161/ref=sr_1_5?keywords=human+brain+atlas&qid=1556416638&s=gateway&sr=8-5
https://smile.amazon.com/Noltes-Human-Brain-Photographs-Diagrams/dp/0323598161/ref=sr_1_5?keywords=human+brain+atlas&qid=1556416638&s=gateway&sr=8-5
https://smile.amazon.com/Noltes-Human-Brain-Photographs-Diagrams/dp/0323598161/ref=sr_1_5?keywords=human+brain+atlas&qid=1556416638&s=gateway&sr=8-5
http://paperpile.com/b/vMMsj6/qHiB
http://paperpile.com/b/vMMsj6/qHiB
http://paperpile.com/b/vMMsj6/qHiB
http://dx.doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.1101/610501
http://creativecommons.org/licenses/by/4.0/


9.  Chung K, Deisseroth K. CLARITY for mapping the nervous system. Nat Methods. Nature 
Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 
2013;10: 508–513. doi:10.1038/nmeth.2481 

10.  Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid 
method to immunolabel large tissue samples for volume imaging. Cell. 2014;159: 896–910. 
doi:10.1016/j.cell.2014.10.010 

11.  Griesbeck O. Fluorescent proteins as sensors for cellular functions. Curr Opin Neurobiol. 
2004;14: 636–641. doi:10.1016/j.conb.2004.08.002 

12.  Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive 
fluorescent proteins for imaging neuronal activity. Nature. Nature Publishing Group, a 
division of Macmillan Publishers Limited. All Rights Reserved.; 2013;499: 295–300. 
doi:10.1038/nature12354 

13.  Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK. Reconstruction of zebrafish early 
embryonic development by scanned light sheet microscopy. Science. 2008;322: 1065–
1069. doi:10.1126/science.1162493 

14.  Hillman EMC. Optical brain imaging in vivo: techniques and applications from animal to 
man. J Biomed Opt. 2007;12: 051402. doi:10.1117/1.2789693 

15.  Hagmann P. From diffusion MRI to brain connectomics. EPFL; 2005; Available: 
https://infoscience.epfl.ch/record/33696 

16.  Sporns O, Tononi G, Kötter R. The human connectome: A structural description of the 
human brain. PLoS Comput Biol. 2005;1: e42. doi:10.1371/journal.pcbi.0010042 

17.  Biswal BB, Mennes M, Zuo X-NN, Gohel S, Kelly AMC, Smith SM, et al. Toward discovery 
science of human brain function. Proceedings of the National Academy of Sciences. 
National Acad Sciences; 2010;107: 4734–4739. doi:10.1073/pnas.0911855107 

18.  Van Essen DC, Ugurbil K, Auerbach EJ, Barch D, Behrens TEJ, Bucholz R, et al. The 
Human Connectome Project: A data acquisition perspective. Neuroimage. 2012;62: 2222–
2231. doi:10.1016/j.neuroimage.2012.02.018 

19.  Johnson KO. Neural coding. Neuron. 2000;26: 563–566. Available: 
https://www.ncbi.nlm.nih.gov/pubmed/10896153 

20.  Rieke F. Spikes: Exploring the Neural Code [Internet]. Sejnowski TJ, Poggio TA, editors. 
Cambridge: MIT Press; 1997. p. xvi, 395 p. Available: 
https://market.android.com/details?id=book-CU6QQgAACAAJ 

21.  McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull 
Math Biophys. Kluwer Academic Publishers; 1943;5: 115–133. doi:10.1007/BF02478259 

22.  Russell SJ, Norvig P. Artificial intelligence: a modern approach. Malaysia; Pearson 
Education Limited,; 2016. 

23.  Hebb DO. The organization of behavior; a neuropsychological theory. Oxford, England: 
Wiley The organization of behavior; a neuropsychological theory.; 1949;335. Available: 
https://psycnet.apa.org/fulltext/1950-02200-000.pdf 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/610501doi: bioRxiv preprint 

http://paperpile.com/b/vMMsj6/mK6h
http://paperpile.com/b/vMMsj6/mK6h
http://paperpile.com/b/vMMsj6/mK6h
http://dx.doi.org/10.1038/nmeth.2481
http://paperpile.com/b/vMMsj6/Cwdl
http://paperpile.com/b/vMMsj6/Cwdl
http://paperpile.com/b/vMMsj6/Cwdl
http://dx.doi.org/10.1016/j.cell.2014.10.010
http://paperpile.com/b/vMMsj6/QxaV
http://paperpile.com/b/vMMsj6/QxaV
http://dx.doi.org/10.1016/j.conb.2004.08.002
http://paperpile.com/b/vMMsj6/8QRf
http://paperpile.com/b/vMMsj6/8QRf
http://paperpile.com/b/vMMsj6/8QRf
http://paperpile.com/b/vMMsj6/8QRf
http://dx.doi.org/10.1038/nature12354
http://paperpile.com/b/vMMsj6/qWg7
http://paperpile.com/b/vMMsj6/qWg7
http://paperpile.com/b/vMMsj6/qWg7
http://dx.doi.org/10.1126/science.1162493
http://paperpile.com/b/vMMsj6/2nLV
http://paperpile.com/b/vMMsj6/2nLV
http://dx.doi.org/10.1117/1.2789693
http://paperpile.com/b/vMMsj6/l9Ws
http://paperpile.com/b/vMMsj6/l9Ws
https://infoscience.epfl.ch/record/33696
http://paperpile.com/b/vMMsj6/vJyY
http://paperpile.com/b/vMMsj6/vJyY
http://dx.doi.org/10.1371/journal.pcbi.0010042
http://paperpile.com/b/vMMsj6/Oqzd
http://paperpile.com/b/vMMsj6/Oqzd
http://paperpile.com/b/vMMsj6/Oqzd
http://dx.doi.org/10.1073/pnas.0911855107
http://paperpile.com/b/vMMsj6/IxJt
http://paperpile.com/b/vMMsj6/IxJt
http://paperpile.com/b/vMMsj6/IxJt
http://dx.doi.org/10.1016/j.neuroimage.2012.02.018
http://paperpile.com/b/vMMsj6/l3UU
http://paperpile.com/b/vMMsj6/l3UU
https://www.ncbi.nlm.nih.gov/pubmed/10896153
http://paperpile.com/b/vMMsj6/Ajpt
http://paperpile.com/b/vMMsj6/Ajpt
https://market.android.com/details?id=book-CU6QQgAACAAJ
http://paperpile.com/b/vMMsj6/e3rF
http://paperpile.com/b/vMMsj6/e3rF
http://dx.doi.org/10.1007/BF02478259
http://paperpile.com/b/vMMsj6/UfWQ
http://paperpile.com/b/vMMsj6/UfWQ
http://paperpile.com/b/vMMsj6/50GR
http://paperpile.com/b/vMMsj6/50GR
https://psycnet.apa.org/fulltext/1950-02200-000.pdf
https://doi.org/10.1101/610501
http://creativecommons.org/licenses/by/4.0/


24.  Little WA. The existence of persistent states in the brain. Math Biosci. 1974;19: 101–120. 
doi:10.1016/0025-5564(74)90031-5 

25.  Hopfield JJ. Neural Networks and Physical Systems with Emergent Collective 
Computational Abilities. Proceedings of the National Academy of Sciences. 1982;79: 2554–
2558. doi:10.1073/pnas.79.8.2554 

26.  Hinton GE, Mcclelland JL, Rumelhart DE. Distributed representations, Parallel distributed 
processing: explorations in the microstructure of cognition, vol. 1: foundations. MIT Press, 
Cambridge, MA; 1986. 

27.  Onsager L. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder 
Transition. Phys Rev. American Physical Society; 1944;65: 117–149. 
doi:10.1103/PhysRev.65.117 

28.  Euler L. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae 
scientiarum Petropolitanae. 1741; 128–140. Available: 
https://scholarlycommons.pacific.edu/cgi/viewcontent.cgi?article=1052&context=euler-
works 

29.  Eaton RC, Lee RK, Foreman MB. The Mauthner cell and other identified neurons of the 
brainstem escape network of fish. Prog Neurobiol. 2001;63: 467–485. Available: 
https://www.ncbi.nlm.nih.gov/pubmed/11163687 

30.  Kamiński M, Ding M, Truccolo WA, Bressler SL. Evaluating causal relations in neural 
systems: granger causality, directed transfer function and statistical assessment of 
significance. Biol Cybern. 2001;85: 145–157. doi:10.1007/s004220000235 

31.  Truccolo WA, Eden UT, Fellows MR, Donoghue JP, Brown N, Brown EN. A point process 
framework for relating neural spiking activity to spiking history, neural ensemble, and 
extrinsic covariate effects. J Neurophysiol. 2005;93: 1074–1089. doi:10.1152/jn.00697.2004 

32.  Pillow J, Paninski L, Shlens J, Simoncelli E, Chichilnisky E. Modeling multi-neuronal 
responses in primate retinal ganglion cells. Comp Sys Neur. 2005;5. 

33.  Mishchenko Y, Vogelstein JT, Paninski L. A Bayesian approach for inferring neuronal 
connectivity from calcium fluorescent imaging data. Ann Appl Stat. 2011;5: 129–1261. 
doi:10.1214/09-AOAS303 

34.  Kulkarni JE, Paninski L. Common-input models for multiple neural spike-train data. 
Network. 2007;18: 375–407. doi:10.1080/09548980701625173 

35.  Yatsenko D, Josić K, Ecker AS, Froudarakis E, Cotton RJ, Tolias AS. Improved estimation 
and interpretation of correlations in neural circuits. PLoS Comput Biol. 2015;11: e1004083. 
doi:10.1371/journal.pcbi.1004083 

36.  Pearl J. Causality: Models, Reasoning, and Inference [Internet]. First Edition. Cambridge 
University Press; 2000. Available: https://www.amazon.com/Causality-Reasoning-
Inference-Judea-Pearl/dp/0521773628 

37.  Maier-Hein KH, Neher PF, Houde J-C, Côté M-A, Garyfallidis E, Zhong J, et al. The 
challenge of mapping the human connectome based on diffusion tractography. Nat 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/610501doi: bioRxiv preprint 

http://paperpile.com/b/vMMsj6/fGQu
http://paperpile.com/b/vMMsj6/fGQu
http://dx.doi.org/10.1016/0025-5564(74)90031-5
http://paperpile.com/b/vMMsj6/yzmk
http://paperpile.com/b/vMMsj6/yzmk
http://paperpile.com/b/vMMsj6/yzmk
http://dx.doi.org/10.1073/pnas.79.8.2554
http://paperpile.com/b/vMMsj6/mHwd
http://paperpile.com/b/vMMsj6/mHwd
http://paperpile.com/b/vMMsj6/mHwd
http://paperpile.com/b/vMMsj6/VntU
http://paperpile.com/b/vMMsj6/VntU
http://paperpile.com/b/vMMsj6/VntU
http://dx.doi.org/10.1103/PhysRev.65.117
http://paperpile.com/b/vMMsj6/EZDw
http://paperpile.com/b/vMMsj6/EZDw
https://scholarlycommons.pacific.edu/cgi/viewcontent.cgi?article=1052&context=euler-works
https://scholarlycommons.pacific.edu/cgi/viewcontent.cgi?article=1052&context=euler-works
http://paperpile.com/b/vMMsj6/zGhk
http://paperpile.com/b/vMMsj6/zGhk
https://www.ncbi.nlm.nih.gov/pubmed/11163687
http://paperpile.com/b/vMMsj6/l2ai
http://paperpile.com/b/vMMsj6/l2ai
http://paperpile.com/b/vMMsj6/l2ai
http://dx.doi.org/10.1007/s004220000235
http://paperpile.com/b/vMMsj6/MwZg
http://paperpile.com/b/vMMsj6/MwZg
http://paperpile.com/b/vMMsj6/MwZg
http://dx.doi.org/10.1152/jn.00697.2004
http://paperpile.com/b/vMMsj6/X2bk
http://paperpile.com/b/vMMsj6/X2bk
http://paperpile.com/b/vMMsj6/uf3y
http://paperpile.com/b/vMMsj6/uf3y
http://paperpile.com/b/vMMsj6/uf3y
http://dx.doi.org/10.1214/09-AOAS303
http://paperpile.com/b/vMMsj6/sLWK
http://paperpile.com/b/vMMsj6/sLWK
http://dx.doi.org/10.1080/09548980701625173
http://paperpile.com/b/vMMsj6/4H7A
http://paperpile.com/b/vMMsj6/4H7A
http://paperpile.com/b/vMMsj6/4H7A
http://dx.doi.org/10.1371/journal.pcbi.1004083
http://paperpile.com/b/vMMsj6/PE5w
http://paperpile.com/b/vMMsj6/PE5w
https://www.amazon.com/Causality-Reasoning-Inference-Judea-Pearl/dp/0521773628
https://www.amazon.com/Causality-Reasoning-Inference-Judea-Pearl/dp/0521773628
http://paperpile.com/b/vMMsj6/FMcO
http://paperpile.com/b/vMMsj6/FMcO
https://doi.org/10.1101/610501
http://creativecommons.org/licenses/by/4.0/


Commun. Nature Publishing Group; 2017;8: 1349. doi:10.1038/s41467-017-01285-x 

38.  Yan C-G, Craddock RC, Zuo X-N, Zang Y-F, Milham MP. Standardizing the intrinsic brain: 
towards robust measurement of inter-individual variation in 1000 functional connectomes. 
Neuroimage. 2013;80: 246–262. doi:10.1016/j.neuroimage.2013.04.081 

39.  Smith SM, Miller KL, Salimi-khorshidi G, Webster M, Beckmann CF, Nichols TE, et al. 
Network modelling methods for FMRI. Neuroimage. Elsevier Inc.; 2011;54: 875–891. 
doi:10.1016/j.neuroimage.2010.08.063 

40.  Xia M, Wang J, He Y. BrainNet Viewer: a network visualization tool for human brain 
connectomics. PLoS One. journals.plos.org; 2013;8: e68910. 
doi:10.1371/journal.pone.0068910 

41.  LaPlante RA, Douw L, Tang W, Stufflebeam SM. The Connectome Visualization Utility: 
Software for Visualization of Human Brain Networks. Marinazzo D, editor. PLoS One. 
Public Library of Science; 2014;9: e113838. doi:10.1371/journal.pone.0113838 

42.  Gerhard S, Daducci A, Lemkaddem A, Meuli R, Thiran J-P, Hagmann P. The Connectome 
Viewer Toolkit: An Open Source Framework to Manage, Analyze, and Visualize 
Connectomes. Front Neuroinform. 2011;5. doi:10.3389/fninf.2011.00003 

43.  White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of 
the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986;314: 1–
340. Available: https://www.ncbi.nlm.nih.gov/pubmed/22462104 

44.  White JG, Southgate E, Thomson JN, Brenner S. The structure of the ventral nerve cord of 
Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1976;275: 327–348. 
Available: https://www.ncbi.nlm.nih.gov/pubmed/8806 

45.  Jarrell TA, Wang Y, Bloniarz AE, Brittin CA, Xu M, Thomson JN, et al. The connectome of a 
decision-making neural network. Science. American Association for the Advancement of 
Science; 2012;337: 437–444. doi:10.1126/science.1221762 

46.  Emmons SW. Neural Circuits of Sexual Behavior in Caenorhabditis elegans. Annu Rev 
Neurosci. 2018;41: 349–369. doi:10.1146/annurev-neuro-070815-014056 

47.  Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB. Structural properties of the 
Caenorhabditis elegans neuronal network. PLoS Comput Biol. 2011;7: e1001066. 
doi:10.1371/journal.pcbi.1001066 

48.  Bentley B, Branicky R, Barnes CL, Chew YL, Yemini E, Bullmore ET, et al. The Multilayer 
Connectome of Caenorhabditis elegans. PLoS Comput Biol. 2016;12: e1005283. 
doi:10.1371/journal.pcbi.1005283 

49.  Cook, S. J., Jarrell, T. A., Brittin, C., Wang, Y., Bloniarz, A. E., Yakovlev, M. A., Nguyen, K. 
C. Q., Tang, L. T.-H., Bayer, E. A., Duerr, J. S., Buelow, H., Hobert, O., Hall, D. H., and 
Emmons, S. W. Whole-animal connectomes of both C. elegans sexes. Nature. 2019; 

50.  Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, et al. The 
complete connectome of a learning and memory centre in an insect brain. Nature. 
2017;548: 175–182. doi:10.1038/nature23455 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/610501doi: bioRxiv preprint 

http://paperpile.com/b/vMMsj6/FMcO
http://dx.doi.org/10.1038/s41467-017-01285-x
http://paperpile.com/b/vMMsj6/Ycsk
http://paperpile.com/b/vMMsj6/Ycsk
http://paperpile.com/b/vMMsj6/Ycsk
http://dx.doi.org/10.1016/j.neuroimage.2013.04.081
http://paperpile.com/b/vMMsj6/Rijc
http://paperpile.com/b/vMMsj6/Rijc
http://paperpile.com/b/vMMsj6/Rijc
http://dx.doi.org/10.1016/j.neuroimage.2010.08.063
http://paperpile.com/b/vMMsj6/kyJC
http://paperpile.com/b/vMMsj6/kyJC
http://paperpile.com/b/vMMsj6/kyJC
http://dx.doi.org/10.1371/journal.pone.0068910
http://paperpile.com/b/vMMsj6/9moj
http://paperpile.com/b/vMMsj6/9moj
http://paperpile.com/b/vMMsj6/9moj
http://dx.doi.org/10.1371/journal.pone.0113838
http://paperpile.com/b/vMMsj6/uyum
http://paperpile.com/b/vMMsj6/uyum
http://paperpile.com/b/vMMsj6/uyum
http://dx.doi.org/10.3389/fninf.2011.00003
http://paperpile.com/b/vMMsj6/6Jjc
http://paperpile.com/b/vMMsj6/6Jjc
http://paperpile.com/b/vMMsj6/6Jjc
https://www.ncbi.nlm.nih.gov/pubmed/22462104
http://paperpile.com/b/vMMsj6/kzhl
http://paperpile.com/b/vMMsj6/kzhl
http://paperpile.com/b/vMMsj6/kzhl
https://www.ncbi.nlm.nih.gov/pubmed/8806
http://paperpile.com/b/vMMsj6/VoIz
http://paperpile.com/b/vMMsj6/VoIz
http://paperpile.com/b/vMMsj6/VoIz
http://dx.doi.org/10.1126/science.1221762
http://paperpile.com/b/vMMsj6/9XpI
http://paperpile.com/b/vMMsj6/9XpI
http://dx.doi.org/10.1146/annurev-neuro-070815-014056
http://paperpile.com/b/vMMsj6/4tZZ
http://paperpile.com/b/vMMsj6/4tZZ
http://paperpile.com/b/vMMsj6/4tZZ
http://dx.doi.org/10.1371/journal.pcbi.1001066
http://paperpile.com/b/vMMsj6/GIMf
http://paperpile.com/b/vMMsj6/GIMf
http://paperpile.com/b/vMMsj6/GIMf
http://dx.doi.org/10.1371/journal.pcbi.1005283
http://paperpile.com/b/vMMsj6/o2AE
http://paperpile.com/b/vMMsj6/o2AE
http://paperpile.com/b/vMMsj6/o2AE
http://paperpile.com/b/vMMsj6/u2LZ
http://paperpile.com/b/vMMsj6/u2LZ
http://paperpile.com/b/vMMsj6/u2LZ
http://dx.doi.org/10.1038/nature23455
https://doi.org/10.1101/610501
http://creativecommons.org/licenses/by/4.0/


51.  Priebe CE, Park Y, Tang M, Athreya A, Lyzinski V, Vogelstein JT, et al. Semiparametric 
spectral modeling of the Drosophila connectome [Internet]. arXiv [stat.ML]. 2017. Available: 
http://arxiv.org/abs/1705.03297 

52.  Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA. A Diffusion MRI Tractography 
Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data. Cereb 
Cortex. 2015;25: 4628–4637. doi:10.1093/cercor/bhv121 

53.  Zuo X-N, Anderson JS, Bellec P, Birn RM, Biswal BB, Blautzik J, et al. An open science 
resource for establishing reliability and reproducibility in functional connectomics. Sci Data. 
2014;1: 140049. doi:10.1038/sdata.2014.49 

54.  Kiar G, Bridgeford E, Roncal WG, Consortium for Reliability and Reproducibliity (CoRR), 
Chandrashekhar V, Mhembere D, et al. A High-Throughput Pipeline Identifies Robust 
Connectomes But Troublesome Variability [Internet]. bioRxiv. bioRxiv; 2018. p. 188706. 
doi:10.1101/188706 

55.  Shannon CE. A Mathematical Theory of Communication. Bell System Technical Journal. 
1948;27: 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x 

56.  Cover TM, Thomas JA. Elements of Information Theory [Internet]. New York: John Wiley & 
Sons; 2012. Available: https://market.android.com/details?id=book-VWq5GG6ycxMC 

57.  Brette R. Is coding a relevant metaphor for the brain? Behav Brain Sci. 2019; 1–44. 
doi:10.1017/S0140525X19000049 

58.  Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front 
Hum Neurosci. 2009;3: 31. doi:10.3389/neuro.09.031.2009 

59.  Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, et al. Multiple 
evidence strands suggest that there may be as few as 19,000 human protein-coding genes. 
Hum Mol Genet. 2014;23: 5866–5878. doi:10.1093/hmg/ddu309 

60.  Prinz AA, Bucher D, Marder E. Similar network activity from disparate circuit parameters. 
Nat Neurosci. 2004;7: 1345–1352. doi:10.1038/nn1352 

61.  Carr CE, Konishi M. A circuit for detection of interaural time differences in the brain stem of 
the barn owl. J Neurosci. 1990;10: 3227–3246. Available: 
http://www.ncbi.nlm.nih.gov/pubmed/2213141 

62.  Lee SH, Kim P-J, Jeong H. Statistical properties of sampled networks. Physical review E. 
2006;73: 16102. 

63.  Olhede SC, Wolfe PJ. Degree-based network models [Internet]. arXiv [math.ST]. 2012. 
Available: http://arxiv.org/abs/1211.6537 

64.  Craddock RC, Jbabdi S, Yan C-G, Vogelstein JT, Castellanos FX, Di Martino A, et al. 
Imaging human connectomes at the macroscale. Nat Methods. 2013;10: 524–539. 
doi:10.1038/nmeth.2482 

65.  Varoquaux G, Craddock RC. Learning and comparing functional connectomes across 
subjects. Neuroimage. 2013;80: 405–415. doi:10.1016/j.neuroimage.2013.04.007 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/610501doi: bioRxiv preprint 

http://paperpile.com/b/vMMsj6/8u1I
http://paperpile.com/b/vMMsj6/8u1I
http://arxiv.org/abs/1705.03297
http://paperpile.com/b/vMMsj6/4Kti
http://paperpile.com/b/vMMsj6/4Kti
http://paperpile.com/b/vMMsj6/4Kti
http://dx.doi.org/10.1093/cercor/bhv121
http://paperpile.com/b/vMMsj6/P3yE
http://paperpile.com/b/vMMsj6/P3yE
http://paperpile.com/b/vMMsj6/P3yE
http://dx.doi.org/10.1038/sdata.2014.49
http://paperpile.com/b/vMMsj6/s15T
http://paperpile.com/b/vMMsj6/s15T
http://paperpile.com/b/vMMsj6/s15T
http://paperpile.com/b/vMMsj6/s15T
http://dx.doi.org/10.1101/188706
http://paperpile.com/b/vMMsj6/xrp5
http://paperpile.com/b/vMMsj6/xrp5
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://paperpile.com/b/vMMsj6/BwPc
http://paperpile.com/b/vMMsj6/BwPc
https://market.android.com/details?id=book-VWq5GG6ycxMC
http://paperpile.com/b/vMMsj6/6fsn
http://paperpile.com/b/vMMsj6/6fsn
http://dx.doi.org/10.1017/S0140525X19000049
http://paperpile.com/b/vMMsj6/6VMT
http://paperpile.com/b/vMMsj6/6VMT
http://dx.doi.org/10.3389/neuro.09.031.2009
http://paperpile.com/b/vMMsj6/SOit
http://paperpile.com/b/vMMsj6/SOit
http://paperpile.com/b/vMMsj6/SOit
http://dx.doi.org/10.1093/hmg/ddu309
http://paperpile.com/b/vMMsj6/o4jq
http://paperpile.com/b/vMMsj6/o4jq
http://dx.doi.org/10.1038/nn1352
http://paperpile.com/b/vMMsj6/DyqM
http://paperpile.com/b/vMMsj6/DyqM
http://www.ncbi.nlm.nih.gov/pubmed/2213141
http://paperpile.com/b/vMMsj6/TqDI
http://paperpile.com/b/vMMsj6/TqDI
http://paperpile.com/b/vMMsj6/jB3A
http://paperpile.com/b/vMMsj6/jB3A
http://arxiv.org/abs/1211.6537
http://paperpile.com/b/vMMsj6/aN2l
http://paperpile.com/b/vMMsj6/aN2l
http://paperpile.com/b/vMMsj6/aN2l
http://dx.doi.org/10.1038/nmeth.2482
http://paperpile.com/b/vMMsj6/j3hI
http://paperpile.com/b/vMMsj6/j3hI
http://dx.doi.org/10.1016/j.neuroimage.2013.04.007
https://doi.org/10.1101/610501
http://creativecommons.org/licenses/by/4.0/


66.  Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional 
neuroimaging using the false discovery rate. Neuroimage. 2002;15: 870–878. 
doi:10.1006/nimg.2001.1037 

67.  Efron B. Simultaneous inference: When should hypothesis testing problems be combined? 
Ann Appl Stat. Institute of Mathematical Statistics; 2008;2: 197–223. doi:10.1214/07-
AOAS141 

68.  Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain 
networks. Neuroimage. 2010;53: 1197–1207. doi:10.1016/j.neuroimage.2010.06.041 

69.  Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. Journal of the Royal Statistical Society Series B 
Methodological. JSTOR; 1995;57: 289–300. doi:10.2307/2346101 

70.  Simes RJ. An improved Bonferroni procedure for multiple tests of significance. Biometrika. 
Oxford University Press; 1986;73: 751–754. doi:10.1093/biomet/73.3.751 

71.  Mhembere D, Roncal WG, Sussman D, Priebe CE, Jung R, Ryman S, et al. Computing 
scalable multivariate glocal invariants of large (brain-) graphs. 2013 IEEE Global 
Conference on Signal and Information Processing. 2013. pp. 297–300. 
doi:10.1109/GlobalSIP.2013.6736874 

72.  Bullmore ET, Bassett DS. Brain Graphs: Graphical Models of the Human Brain 
Connectome. Annu Rev Clin Psychol. Annual Reviews; 2010;7: 113–140. 
doi:10.1146/annurev-clinpsy-040510-143934 

73.  Matejka J, Fitzmaurice G. Same Stats, Different Graphs: Generating Datasets with Varied 
Appearance and Identical Statistics Through Simulated Annealing. Proceedings of the 2017 
CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM; 
2017. pp. 1290–1294. doi:10.1145/3025453.3025912 

74.  Zheng AX, Fienberg SE, Airoldi EM, Goldenberg A. A Survey of Statistical Network Models. 
Foundations and Trends in Machine Learning. 2009;2: 129–233. doi:10.1561/2200000008 

75.  Kolaczyk ED. Statistical Analysis of Network Data [Internet]. Springer; 2014. 
doi:10.1007/978-0-387-88146-1 

76.  Bollobas B. Modern Graph Theory [Internet]. 1st ed. Springer-Verlag New York; 1998. 
doi:10.1007/978-1-4612-0619-4 

77.  Vishwanathan SVN, Schraudolph NN. Graph Kernels. J Mach Learn Res. 2010;11: 1201–
1242. 

78.  Crane H. Probabilistic foundations of statistical network analysis [Internet]. Chapman and 
Hall/CRC; 2018. Available: https://www.taylorfrancis.com/books/9781351807333 

79.  Erdős P, Rényi A. On random graphs, I. Publ Math Debrecen. 1959;6: 290–297. Available: 
http://www.renyi.hu/~p_erdos/Erdos.html#1959-11 

80.  Rohe K, Chatterjee S, Yu B. Spectral Clustering and the High-Dimensional Stochastic 
Blockmodel. Ann Stat. Institute of Mathematical Statistics; 2011;39: 1878–1915. 
doi:10.1214/11-AOS887 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/610501doi: bioRxiv preprint 

http://paperpile.com/b/vMMsj6/ppPP
http://paperpile.com/b/vMMsj6/ppPP
http://paperpile.com/b/vMMsj6/ppPP
http://dx.doi.org/10.1006/nimg.2001.1037
http://paperpile.com/b/vMMsj6/ogL6
http://paperpile.com/b/vMMsj6/ogL6
http://dx.doi.org/10.1214/07-AOAS141
http://dx.doi.org/10.1214/07-AOAS141
http://paperpile.com/b/vMMsj6/EWkg
http://paperpile.com/b/vMMsj6/EWkg
http://dx.doi.org/10.1016/j.neuroimage.2010.06.041
http://paperpile.com/b/vMMsj6/pGme
http://paperpile.com/b/vMMsj6/pGme
http://paperpile.com/b/vMMsj6/pGme
http://dx.doi.org/10.2307/2346101
http://paperpile.com/b/vMMsj6/zHS4
http://paperpile.com/b/vMMsj6/zHS4
http://dx.doi.org/10.1093/biomet/73.3.751
http://paperpile.com/b/vMMsj6/wsr2
http://paperpile.com/b/vMMsj6/wsr2
http://paperpile.com/b/vMMsj6/wsr2
http://paperpile.com/b/vMMsj6/wsr2
http://dx.doi.org/10.1109/GlobalSIP.2013.6736874
http://paperpile.com/b/vMMsj6/RoOo
http://paperpile.com/b/vMMsj6/RoOo
http://paperpile.com/b/vMMsj6/RoOo
http://dx.doi.org/10.1146/annurev-clinpsy-040510-143934
http://paperpile.com/b/vMMsj6/90RH
http://paperpile.com/b/vMMsj6/90RH
http://paperpile.com/b/vMMsj6/90RH
http://paperpile.com/b/vMMsj6/90RH
http://dx.doi.org/10.1145/3025453.3025912
http://paperpile.com/b/vMMsj6/nRAw
http://paperpile.com/b/vMMsj6/nRAw
http://dx.doi.org/10.1561/2200000008
http://paperpile.com/b/vMMsj6/jVH6
http://paperpile.com/b/vMMsj6/jVH6
http://dx.doi.org/10.1007/978-0-387-88146-1
http://paperpile.com/b/vMMsj6/4pjX
http://paperpile.com/b/vMMsj6/4pjX
http://dx.doi.org/10.1007/978-1-4612-0619-4
http://paperpile.com/b/vMMsj6/U930
http://paperpile.com/b/vMMsj6/U930
http://paperpile.com/b/vMMsj6/2Suq
http://paperpile.com/b/vMMsj6/2Suq
https://www.taylorfrancis.com/books/9781351807333
http://paperpile.com/b/vMMsj6/pDdf
http://paperpile.com/b/vMMsj6/pDdf
http://www.renyi.hu/~p_erdos/Erdos.html#1959-11
http://paperpile.com/b/vMMsj6/Zf1A
http://paperpile.com/b/vMMsj6/Zf1A
http://paperpile.com/b/vMMsj6/Zf1A
http://dx.doi.org/10.1214/11-AOS887
https://doi.org/10.1101/610501
http://creativecommons.org/licenses/by/4.0/


81.  Holland PW, Laskey KB, Leinhardt S. Stochastic blockmodels: First steps. Soc Networks. 
North-Holland; 1983;5: 109–137. doi:10.1016/0378-8733(83)90021-7 

82.  Sussman DL, Tang M, Fishkind DE, Priebe CE. A consistent adjacency spectral embedding 
for stochastic blockmodel graphs [Internet]. arXiv [stat.ML]. 2011. pp. 1119–1128. 
doi:10.1080/01621459.2012.699795 

83.  Wasserman S, Anderson C. Stochastic a posteriori blockmodels: Construction and 
assessment. Soc Networks. Elsevier; 1987;9: 1–36. doi:10.1016/0378-8733(87)90015-3 

84.  Peixoto TP. Hierarchical Block Structures and High-Resolution Model Selection in Large 
Networks. Phys Rev X. American Physical Society; 2014;4: 011047. 
doi:10.1103/PhysRevX.4.011047 

85.  Lyzinski V, Tang M, Athreya A, Park Y, Priebe CE. Community Detection and Classification 
in Hierarchical Stochastic Blockmodels. IEEE Transactions on Network Science and 
Engineering. 2017;4: 13–26. doi:10.1109/TNSE.2016.2634322 

86.  Betzel RF, Bassett DS. Multi-scale brain networks. Neuroimage. 2017;160: 73–83. 
doi:10.1016/j.neuroimage.2016.11.006 

87.  Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET. Hierarchical modularity in 
human brain functional networks. Front Neuroinform. Frontiers Research Foundation; 
2009;3: 1–12. doi:10.3389/neuro.11.037 

88.  Hoff PD, Raftery AE, Handcock MS. Latent Space Approaches to Social Network Analysis. 
J Am Stat Assoc. 2002;97: 1090–1098. doi:10.1198/016214502388618906 

89.  Young SJ, Scheinerman ER. Random Dot Product Graph Models for Social Networks. 
Algorithms and Models for the Web-Graph. Springer Berlin Heidelberg; 2007. pp. 138–149. 
doi:10.1007/978-3-540-77004-6_11 

90.  Scheinerman ER, Tucker K. Modeling graphs using dot product representations. Comput 
Stat. Springer; 2009;25: 1–16. doi:10.1007/s00180-009-0158-8 

91.  Sussman DL, Tang M, Priebe CE. Consistent latent position estimation and vertex 
classification for random dot product graphs. IEEE Trans Pattern Anal Mach Intell. 2014;36: 
48–57. doi:10.1109/TPAMI.2013.135 

92.  Athreya A, Lyzinski V, Marchette DJ, Priebe CE, Sussman DL, Tang M. A central limit 
theorem for scaled eigenvectors of random dot product graphs [Internet]. arXiv [math.ST]. 
2013. p. 1305.7388. Available: http://arxiv.org/abs/1305.7388 

93.  Tang M, Priebe CE. Limit theorems for eigenvectors of the normalized Laplacian for 
random graphs [Internet]. arXiv [stat.ML]. 2016. Available: http://arxiv.org/abs/1607.08601 

94.  Rubin-Delanchy P, Priebe CE, Tang M, Cape J. A statistical interpretation of spectral 
embedding: the generalised random dot product graph [Internet]. arXiv [stat.ML]. 2017. 
Available: http://arxiv.org/abs/1709.05506 

95.  Binkiewicz N, Vogelstein JT, Rohe K. Covariate-assisted spectral clustering. Biometrika. 
academic.oup.com; 2017;104: 361–377. doi:10.1093/biomet/asx008 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/610501doi: bioRxiv preprint 

http://paperpile.com/b/vMMsj6/EQOR
http://paperpile.com/b/vMMsj6/EQOR
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://paperpile.com/b/vMMsj6/aV14
http://paperpile.com/b/vMMsj6/aV14
http://paperpile.com/b/vMMsj6/aV14
http://dx.doi.org/10.1080/01621459.2012.699795
http://paperpile.com/b/vMMsj6/9DYa
http://paperpile.com/b/vMMsj6/9DYa
http://dx.doi.org/10.1016/0378-8733(87)90015-3
http://paperpile.com/b/vMMsj6/GwyX
http://paperpile.com/b/vMMsj6/GwyX
http://paperpile.com/b/vMMsj6/GwyX
http://dx.doi.org/10.1103/PhysRevX.4.011047
http://paperpile.com/b/vMMsj6/AUCn
http://paperpile.com/b/vMMsj6/AUCn
http://paperpile.com/b/vMMsj6/AUCn
http://dx.doi.org/10.1109/TNSE.2016.2634322
http://paperpile.com/b/vMMsj6/MYVS
http://paperpile.com/b/vMMsj6/MYVS
http://dx.doi.org/10.1016/j.neuroimage.2016.11.006
http://paperpile.com/b/vMMsj6/kcIo
http://paperpile.com/b/vMMsj6/kcIo
http://paperpile.com/b/vMMsj6/kcIo
http://dx.doi.org/10.3389/neuro.11.037
http://paperpile.com/b/vMMsj6/X1PX
http://paperpile.com/b/vMMsj6/X1PX
http://dx.doi.org/10.1198/016214502388618906
http://paperpile.com/b/vMMsj6/vQwN
http://paperpile.com/b/vMMsj6/vQwN
http://paperpile.com/b/vMMsj6/vQwN
http://dx.doi.org/10.1007/978-3-540-77004-6_11
http://paperpile.com/b/vMMsj6/sxhj
http://paperpile.com/b/vMMsj6/sxhj
http://dx.doi.org/10.1007/s00180-009-0158-8
http://paperpile.com/b/vMMsj6/1E7c
http://paperpile.com/b/vMMsj6/1E7c
http://paperpile.com/b/vMMsj6/1E7c
http://dx.doi.org/10.1109/TPAMI.2013.135
http://paperpile.com/b/vMMsj6/rWls
http://paperpile.com/b/vMMsj6/rWls
http://paperpile.com/b/vMMsj6/rWls
http://arxiv.org/abs/1305.7388
http://paperpile.com/b/vMMsj6/d0vQ
http://paperpile.com/b/vMMsj6/d0vQ
http://arxiv.org/abs/1607.08601
http://paperpile.com/b/vMMsj6/Rl9O
http://paperpile.com/b/vMMsj6/Rl9O
http://paperpile.com/b/vMMsj6/Rl9O
http://arxiv.org/abs/1709.05506
http://paperpile.com/b/vMMsj6/vbS2
http://paperpile.com/b/vMMsj6/vbS2
http://dx.doi.org/10.1093/biomet/asx008
https://doi.org/10.1101/610501
http://creativecommons.org/licenses/by/4.0/


96.  Athreya A, Tang M, Park Y, Priebe CE. On estimation and inference in latent structure 
random graphs [Internet]. arXiv [stat.ME]. 2018. Available: http://arxiv.org/abs/1806.01401 

97.  Athreya A, Fishkind DE, Tang M, Priebe CE, Park Y, Vogelstein JT, et al. Statistical 
Inference on Random Dot Product Graphs: a Survey. J Mach Learn Res. 2018;18: 1–92. 
Available: http://jmlr.org/papers/v18/17-448.html 

98.  Durante D, Dunson DB, Vogelstein JT. Nonparametric Bayes Modeling of Populations of 
Networks. J Am Stat Assoc. Taylor & Francis; 2017;112: 1516–1530. 
doi:10.1080/01621459.2016.1219260 

99.  Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models 
[Internet]. Cambridge University Press; 2006. Available: 
https://market.android.com/details?id=book-c9xLKzZWoZ4C 

100.  Wang S, Vogelstein JT, Priebe CE. Joint Embedding of Graphs [Internet]. arXiv 
[stat.AP]. 2017. Available: http://arxiv.org/abs/1703.03862 

101.  Wang L, Zhang Z, Dunson D. Common and Individual Structure of Brain Networks 
[Internet]. arXiv [stat.CO]. 2017. Available: http://arxiv.org/abs/1707.06360 

102.  Nielsen AM, Witten D. The Multiple Random Dot Product Graph Model [Internet]. arXiv 
[stat.ME]. 2018. Available: http://arxiv.org/abs/1811.12172 

103.  Zhang Z, Allen GI, Zhu H, Dunson D. Tensor network factorizations: Relationships 
between brain structural connectomes and traits [Internet]. arXiv [stat.AP]. 2018. Available: 
http://arxiv.org/abs/1806.02905 

104.  Mill RD, Ito T, Cole MW. From connectome to cognition: The search for mechanism in 
human functional brain networks. Neuroimage. Elsevier; 2017;160: 124–139. 
doi:10.1016/j.neuroimage.2017.01.060 

105.  Tang M, Athreya A, Sussman DL, Lyzinski V, Park Y, Priebe CE. A Semiparametric 
Two-Sample Hypothesis Testing Problem for Random Graphs. J Comput Graph Stat. 
Taylor & Francis; 2017;26: 344–354. doi:10.1080/10618600.2016.1193505 

106.  Tang M, Athreya A, Sussman DL, Lyzinski V, Priebe CE. A nonparametric two-sample 
hypothesis testing problem for random graphs. Bernoulli . Bernoulli Society for 
Mathematical Statistics and Probability; 2017;23: 1599–1630. doi:10.3150/15-BEJ789 

107.  Ghoshdastidar D, von Luxburg U. Practical methods for graph two-sample testing 
[Internet]. arXiv [stat.ML]. 2018. Available: http://arxiv.org/abs/1811.12752 

108.  Ginestet CE, Li J, Balachandran P, Rosenberg S, Kolaczyk ED. Hypothesis testing for 
network data in functional neuroimaging. Ann Appl Stat. Institute of Mathematical Statistics; 
2017;11: 725–750. doi:10.1214/16-AOAS1015 

109.  Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. J R 
Stat Soc Series B Stat Methodol. 2008;70: 849–911. doi:10.1111/j.1467-
9868.2008.00674.x 

110.  Arroyo-Relión JD, Kessler D, Levina E, Taylor SF. Network classification with 
applications to brain connectomics [Internet]. Annals of Applied Statistics. Available: 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/610501doi: bioRxiv preprint 

http://paperpile.com/b/vMMsj6/3xYE
http://paperpile.com/b/vMMsj6/3xYE
http://arxiv.org/abs/1806.01401
http://paperpile.com/b/vMMsj6/fqUc
http://paperpile.com/b/vMMsj6/fqUc
http://paperpile.com/b/vMMsj6/fqUc
http://jmlr.org/papers/v18/17-448.html
http://paperpile.com/b/vMMsj6/PNyZ
http://paperpile.com/b/vMMsj6/PNyZ
http://paperpile.com/b/vMMsj6/PNyZ
http://dx.doi.org/10.1080/01621459.2016.1219260
http://paperpile.com/b/vMMsj6/bpMl
http://paperpile.com/b/vMMsj6/bpMl
https://market.android.com/details?id=book-c9xLKzZWoZ4C
http://paperpile.com/b/vMMsj6/23Ku
http://paperpile.com/b/vMMsj6/23Ku
http://arxiv.org/abs/1703.03862
http://paperpile.com/b/vMMsj6/p2Bc
http://paperpile.com/b/vMMsj6/p2Bc
http://arxiv.org/abs/1707.06360
http://paperpile.com/b/vMMsj6/YAaB
http://paperpile.com/b/vMMsj6/YAaB
http://arxiv.org/abs/1811.12172
http://paperpile.com/b/vMMsj6/qb2h
http://paperpile.com/b/vMMsj6/qb2h
http://arxiv.org/abs/1806.02905
http://paperpile.com/b/vMMsj6/OwIp
http://paperpile.com/b/vMMsj6/OwIp
http://paperpile.com/b/vMMsj6/OwIp
http://dx.doi.org/10.1016/j.neuroimage.2017.01.060
http://paperpile.com/b/vMMsj6/VNoN
http://paperpile.com/b/vMMsj6/VNoN
http://paperpile.com/b/vMMsj6/VNoN
http://dx.doi.org/10.1080/10618600.2016.1193505
http://paperpile.com/b/vMMsj6/UtET
http://paperpile.com/b/vMMsj6/UtET
http://paperpile.com/b/vMMsj6/UtET
http://dx.doi.org/10.3150/15-BEJ789
http://paperpile.com/b/vMMsj6/LNB3
http://paperpile.com/b/vMMsj6/LNB3
http://arxiv.org/abs/1811.12752
http://paperpile.com/b/vMMsj6/VoIq
http://paperpile.com/b/vMMsj6/VoIq
http://paperpile.com/b/vMMsj6/VoIq
http://dx.doi.org/10.1214/16-AOAS1015
http://paperpile.com/b/vMMsj6/cjzm
http://paperpile.com/b/vMMsj6/cjzm
http://dx.doi.org/10.1111/j.1467-9868.2008.00674.x
http://dx.doi.org/10.1111/j.1467-9868.2008.00674.x
http://paperpile.com/b/vMMsj6/OBzZ
http://paperpile.com/b/vMMsj6/OBzZ
https://doi.org/10.1101/610501
http://creativecommons.org/licenses/by/4.0/


http://arxiv.org/abs/1701.08140 

111.  Vogelstein JT, Gray Roncal W, Vogelstein RJ, Priebe CE. Graph classification using 
signal-subgraphs: applications in statistical connectomics. IEEE Trans Pattern Anal Mach 
Intell. 2013;35: 1539–1551. doi:10.1109/TPAMI.2012.235 

112.  Wang S, Shen C, Badea A, Priebe CE, Vogelstein JT. Signal Subgraph Estimation Via 
Vertex Screening [Internet]. arXiv preprint arXiv. 2018. Available: 
https://scholar.google.ca/scholar?cluster=6440696796438427662&hl=en&as_sdt=0,5&scio
dt=0,5 

113.  Wang L, Zhang Z, Dunson D. Symmetric Bilinear Regression for Signal Subgraph 
Estimation [Internet]. arXiv [stat.ME]. 2018. Available: http://arxiv.org/abs/1804.09567 

114.  Johnson GA, Badea A, Brandenburg J, Cofer G, Fubara B, Liu S, et al. Waxholm space: 
an image-based reference for coordinating mouse brain research. Neuroimage. 2010;53: 
365–372. doi:10.1016/j.neuroimage.2010.06.067 

115.  Raznahan A, Probst F, Palmert MR, Giedd JN, Lerch JP. High resolution whole brain 
imaging of anatomical variation in XO, XX, and XY mice. Neuroimage. 2013;83: 962–968. 
doi:10.1016/j.neuroimage.2013.07.052 

116.  Spring S, Lerch JP, Henkelman RM. Sexual dimorphism revealed in the structure of the 
mouse brain using three-dimensional magnetic resonance imaging. Neuroimage. 2007;35: 
1424–1433. doi:10.1016/j.neuroimage.2007.02.023 

117.  Aine CJ, Bockholt HJ, Bustillo JR, Cañive JM, Caprihan A, Gasparovic C, et al. 
Multimodal Neuroimaging in Schizophrenia: Description and Dissemination. 
Neuroinformatics. 2017;15: 343–364. doi:10.1007/s12021-017-9338-9 

118.  Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church J a., et al. Functional 
network organization of the human brain. Neuron. Elsevier Inc.; 2011;72: 665–678. 
doi:10.1016/j.neuron.2011.09.006 

119.  Levin K, Athreya A, Tang M, Lyzinski V, Park Y, Priebe CE. A central limit theorem for 
an omnibus embedding of random dot product graphs [Internet]. arXiv [stat.ME]. 2017. 
Available: http://arxiv.org/abs/1705.09355 

120.  Hu M-L, Zong X-F, Mann JJ, Zheng J-J, Liao Y-H, Li Z-C, et al. A Review of the 
Functional and Anatomical Default Mode Network in Schizophrenia. Neurosci Bull. 2017;33: 
73–84. doi:10.1007/s12264-016-0090-1 

121.  Ongür D, Lundy M, Greenhouse I, Shinn AK, Menon V, Cohen BM, et al. Default mode 
network abnormalities in bipolar disorder and schizophrenia. Psychiatry Res. Elsevier; 
2010;183: 59–68. doi:10.1016/j.pscychresns.2010.04.008 

122.  Michael First, Kelly Botteron, Cameron Carter, Francisco Xavier Castellanos, Daniel P. 
Dickstein, Wayne Drevets, Kerri L. Kim, Matthew F. Pescosolido Scott Rausch, Karen E. 
Seymour, Yvette Sheline, Jon-Kar Zubieta. Consensus Report of the APA Work Group on 
Neuroimaging Markers of Psychiatric Disorders [Internet]. Available: 
https://www.psychiatry.org/File%20Library/Psychiatrists/Directories/Library-and-
Archive/resource_documents/rd2012_Neuroimaging.pdf 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/610501doi: bioRxiv preprint 

http://arxiv.org/abs/1701.08140
http://paperpile.com/b/vMMsj6/XVSV
http://paperpile.com/b/vMMsj6/XVSV
http://paperpile.com/b/vMMsj6/XVSV
http://dx.doi.org/10.1109/TPAMI.2012.235
http://paperpile.com/b/vMMsj6/uFJb
http://paperpile.com/b/vMMsj6/uFJb
https://scholar.google.ca/scholar?cluster=6440696796438427662&hl=en&as_sdt=0,5&sciodt=0,5
https://scholar.google.ca/scholar?cluster=6440696796438427662&hl=en&as_sdt=0,5&sciodt=0,5
http://paperpile.com/b/vMMsj6/OQm3
http://paperpile.com/b/vMMsj6/OQm3
http://arxiv.org/abs/1804.09567
http://paperpile.com/b/vMMsj6/e4gg
http://paperpile.com/b/vMMsj6/e4gg
http://paperpile.com/b/vMMsj6/e4gg
http://dx.doi.org/10.1016/j.neuroimage.2010.06.067
http://paperpile.com/b/vMMsj6/wpnl
http://paperpile.com/b/vMMsj6/wpnl
http://paperpile.com/b/vMMsj6/wpnl
http://dx.doi.org/10.1016/j.neuroimage.2013.07.052
http://paperpile.com/b/vMMsj6/DDxC
http://paperpile.com/b/vMMsj6/DDxC
http://paperpile.com/b/vMMsj6/DDxC
http://dx.doi.org/10.1016/j.neuroimage.2007.02.023
http://paperpile.com/b/vMMsj6/MaRU
http://paperpile.com/b/vMMsj6/MaRU
http://paperpile.com/b/vMMsj6/MaRU
http://dx.doi.org/10.1007/s12021-017-9338-9
http://paperpile.com/b/vMMsj6/dIuw
http://paperpile.com/b/vMMsj6/dIuw
http://paperpile.com/b/vMMsj6/dIuw
http://dx.doi.org/10.1016/j.neuron.2011.09.006
http://paperpile.com/b/vMMsj6/1bWT
http://paperpile.com/b/vMMsj6/1bWT
http://paperpile.com/b/vMMsj6/1bWT
http://arxiv.org/abs/1705.09355
http://paperpile.com/b/vMMsj6/2se8
http://paperpile.com/b/vMMsj6/2se8
http://paperpile.com/b/vMMsj6/2se8
http://dx.doi.org/10.1007/s12264-016-0090-1
http://paperpile.com/b/vMMsj6/UUzH
http://paperpile.com/b/vMMsj6/UUzH
http://paperpile.com/b/vMMsj6/UUzH
http://dx.doi.org/10.1016/j.pscychresns.2010.04.008
http://paperpile.com/b/vMMsj6/2XeX
http://paperpile.com/b/vMMsj6/2XeX
http://paperpile.com/b/vMMsj6/2XeX
http://paperpile.com/b/vMMsj6/2XeX
https://www.psychiatry.org/File%20Library/Psychiatrists/Directories/Library-and-Archive/resource_documents/rd2012_Neuroimaging.pdf
https://www.psychiatry.org/File%20Library/Psychiatrists/Directories/Library-and-Archive/resource_documents/rd2012_Neuroimaging.pdf
https://doi.org/10.1101/610501
http://creativecommons.org/licenses/by/4.0/


123.  Castellanos XF, Di Martino A, Craddock RC, Mehta AD, Milham MP. Clinical 
applications of the functional connectome. Neuroimage. Elsevier; 2013;null: 527–540. 
doi:10.1016/j.neuroimage.2013.04.083 

124.  Van Dam NT, O’Connor D, Marcelle ET, Ho EJ, Cameron Craddock R, Tobe RH, et al. 
Data-Driven Phenotypic Categorization for Neurobiological Analyses: Beyond DSM-5 
Labels. Biol Psychiatry. 2017;81: 484–494. doi:10.1016/j.biopsych.2016.06.027 

125.  Spronk M, Kulkarni K, Ji JL, Keane B, Anticevic A, Cole MW. A whole-brain and cross-
diagnostic perspective on functional brain network dysfunction [Internet]. bioRxiv. 2018. p. 
326728. doi:10.1101/326728 

126.  Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, Douaud G, et al. Genome-wide 
association studies of brain imaging phenotypes in UK Biobank. Nature. 2018;562: 210–
216. doi:10.1038/s41586-018-0571-7 

127.  Powell MA, Garcia JO, Yeh F-C, Vettel JM, Verstynen T. Local connectome phenotypes 
predict social, health, and cognitive factors. Netw Neurosci. 2018;2: 86–105. 
doi:10.1162/NETN_a_00031 

128.  Braun U, Schaefer A, Betzel RF, Tost H, Meyer-Lindenberg A, Bassett DS. From Maps 
to Multi-dimensional Network Mechanisms of Mental Disorders. Neuron. 2018;97: 14–31. 
doi:10.1016/j.neuron.2017.11.007 

129.  Lashley KS. In search of the engram. Symp Soc Exp Biol. 1950;4: 30. 

130.  Berlot E, Popp NJ, Diedrichsen J. In search of the engram, 2017. Current Opinion in 
Behavioral Sciences. 2018;20: 56–60. doi:10.1016/j.cobeha.2017.11.003 

131.  van den Heuvel MP, Bullmore ET, Sporns O. Comparative Connectomics. Trends Cogn 
Sci. 2016;20: 345–361. doi:10.1016/j.tics.2016.03.001 

132.  Rilling JK, van den Heuvel MP. Comparative Primate Connectomics. Brain Behav Evol. 
2018;91: 170–179. doi:10.1159/000488886 

133.  Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, et al. 
Reconstruction and Simulation of Neocortical Microcircuitry. Cell. 2015;163: 456–492. 
doi:10.1016/j.cell.2015.09.029 

134.  Sanz Leon P, Knock SA, Woodman MM, Domide L, Mersmann J, McIntosh AR, et al. 
The Virtual Brain: a simulator of primate brain network dynamics. Front Neuroinform. 
2013;7: 10. doi:10.3389/fninf.2013.00010 

135.  Niebur E, Erdös P. Theory of the locomotion of nematodes: control of the somatic motor 
neurons by interneurons. Math Biosci. 1993;118: 51–82. doi:10.1016/0025-5564(93)90033-
7 

136.  Arena P, Patané L, Termini PS. An insect brain computational model inspired by 
Drosophila melanogaster: Simulation results. The 2010 International Joint Conference on 
Neural Networks (IJCNN). ieeexplore.ieee.org; 2010. pp. 1–8. 
doi:10.1109/IJCNN.2010.5596513 

137.  Theil S. Why the Human Brain Project Went Wrong--and How to Fix It. Scientific 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/610501doi: bioRxiv preprint 

http://paperpile.com/b/vMMsj6/JY8x
http://paperpile.com/b/vMMsj6/JY8x
http://paperpile.com/b/vMMsj6/JY8x
http://dx.doi.org/10.1016/j.neuroimage.2013.04.083
http://paperpile.com/b/vMMsj6/PBjS
http://paperpile.com/b/vMMsj6/PBjS
http://paperpile.com/b/vMMsj6/PBjS
http://dx.doi.org/10.1016/j.biopsych.2016.06.027
http://paperpile.com/b/vMMsj6/SP55
http://paperpile.com/b/vMMsj6/SP55
http://paperpile.com/b/vMMsj6/SP55
http://dx.doi.org/10.1101/326728
http://paperpile.com/b/vMMsj6/hhcB
http://paperpile.com/b/vMMsj6/hhcB
http://paperpile.com/b/vMMsj6/hhcB
http://dx.doi.org/10.1038/s41586-018-0571-7
http://paperpile.com/b/vMMsj6/NWhv
http://paperpile.com/b/vMMsj6/NWhv
http://paperpile.com/b/vMMsj6/NWhv
http://dx.doi.org/10.1162/NETN_a_00031
http://paperpile.com/b/vMMsj6/9MSh
http://paperpile.com/b/vMMsj6/9MSh
http://paperpile.com/b/vMMsj6/9MSh
http://dx.doi.org/10.1016/j.neuron.2017.11.007
http://paperpile.com/b/vMMsj6/ZAig
http://paperpile.com/b/vMMsj6/DOQe
http://paperpile.com/b/vMMsj6/DOQe
http://dx.doi.org/10.1016/j.cobeha.2017.11.003
http://paperpile.com/b/vMMsj6/mfs6
http://paperpile.com/b/vMMsj6/mfs6
http://dx.doi.org/10.1016/j.tics.2016.03.001
http://paperpile.com/b/vMMsj6/3BgL
http://paperpile.com/b/vMMsj6/3BgL
http://dx.doi.org/10.1159/000488886
http://paperpile.com/b/vMMsj6/9QGX
http://paperpile.com/b/vMMsj6/9QGX
http://paperpile.com/b/vMMsj6/9QGX
http://dx.doi.org/10.1016/j.cell.2015.09.029
http://paperpile.com/b/vMMsj6/Kmog
http://paperpile.com/b/vMMsj6/Kmog
http://paperpile.com/b/vMMsj6/Kmog
http://dx.doi.org/10.3389/fninf.2013.00010
http://paperpile.com/b/vMMsj6/r0Cp
http://paperpile.com/b/vMMsj6/r0Cp
http://dx.doi.org/10.1016/0025-5564(93)90033-7
http://dx.doi.org/10.1016/0025-5564(93)90033-7
http://paperpile.com/b/vMMsj6/HMDS
http://paperpile.com/b/vMMsj6/HMDS
http://paperpile.com/b/vMMsj6/HMDS
http://paperpile.com/b/vMMsj6/HMDS
http://dx.doi.org/10.1109/IJCNN.2010.5596513
http://paperpile.com/b/vMMsj6/eVjv
https://doi.org/10.1101/610501
http://creativecommons.org/licenses/by/4.0/


American. 1 Oct 2015. doi:10.1038/scientificamerican1015-36 

138.  Rosenblatt F. The perceptron, a perceiving and recognizing automaton Project Para. 
Cornell Aeronautical Laboratory; 1957. 

139.  Minksy M, Papert S. Perceptrons: An Introduction to Computation Geometry. MIT press. 
1969;200: 355–368. 

140.  Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control 
Signals Systems. Springer; 1989;2: 303–314. 

141.  Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 
1991;4: 251–257. doi:10.1016/0893-6080(91)90009-T 

142.  Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning [Internet]. Bach F, editor. 
MIT press Cambridge; 2016. Available: https://www.amazon.com/dp/B01MRVFGX4/ref=dp-
kindle-redirect?_encoding=UTF8&btkr=1 

143.  Hassabis D, Kumaran D, Summerfield C, Botvinick M. Neuroscience-Inspired Artificial 
Intelligence. Neuron. 2017;95: 245–258. doi:10.1016/j.neuron.2017.06.011 

144.  Cepelewicz J. The U.S. Government Launches a $100-Million “Apollo Project of the 
Brain.” Scientific American. 8 Mar 2016. Available: 
https://www.scientificamerican.com/article/the-u-s-government-launches-a-100-million-
apollo-project-of-the-brain/. Accessed 16 Nov 2018. 

145.  Pham H, Guan MY, Zoph B, Le QV, Dean J. Efficient Neural Architecture Search via 
Parameter Sharing [Internet]. arXiv [cs.LG]. 2018. Available: 
http://arxiv.org/abs/1802.03268 

146.  Underwood E. Neuroscience. Barcoding the brain. Science. 2016;351: 799–800. 
doi:10.1126/science.351.6275.799 

147.  Seung S. Connectome: How the Brain’s Wiring Makes Us Who We Are [Internet]. None 
edition. Houghton Mifflin Harcourt; 2012. Available: https://www.amazon.com/Connectome-
How-Brains-Wiring-
Makes/dp/0547508182/ref=sr_1_1?keywords=9780547508177&linkCode=qs&qid=1554693
948&s=books&sr=1-1 

148.  Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77: 71–94. 
Available: https://www.ncbi.nlm.nih.gov/pubmed/4366476 

149.  Chung J, Pedigo BD, Bridgeford EW, Varjavand BK, Vogelstein JT. GraSPy: Graph 
Statistics in Python [Internet]. arXiv [cs.SI]. 2019. Available: http://arxiv.org/abs/1904.05329 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/610501doi: bioRxiv preprint 

http://paperpile.com/b/vMMsj6/eVjv
http://dx.doi.org/10.1038/scientificamerican1015-36
http://paperpile.com/b/vMMsj6/xvvA
http://paperpile.com/b/vMMsj6/xvvA
http://paperpile.com/b/vMMsj6/05V0
http://paperpile.com/b/vMMsj6/05V0
http://paperpile.com/b/vMMsj6/cZd2
http://paperpile.com/b/vMMsj6/cZd2
http://paperpile.com/b/vMMsj6/mzNd
http://paperpile.com/b/vMMsj6/mzNd
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://paperpile.com/b/vMMsj6/7jPB
http://paperpile.com/b/vMMsj6/7jPB
https://www.amazon.com/dp/B01MRVFGX4/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
https://www.amazon.com/dp/B01MRVFGX4/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
http://paperpile.com/b/vMMsj6/t1Dw
http://paperpile.com/b/vMMsj6/t1Dw
http://dx.doi.org/10.1016/j.neuron.2017.06.011
http://paperpile.com/b/vMMsj6/QAtA
http://paperpile.com/b/vMMsj6/QAtA
https://www.scientificamerican.com/article/the-u-s-government-launches-a-100-million-apollo-project-of-the-brain/
https://www.scientificamerican.com/article/the-u-s-government-launches-a-100-million-apollo-project-of-the-brain/
http://paperpile.com/b/vMMsj6/QAtA
http://paperpile.com/b/vMMsj6/NosY
http://paperpile.com/b/vMMsj6/NosY
http://arxiv.org/abs/1802.03268
http://paperpile.com/b/vMMsj6/lzO0
http://paperpile.com/b/vMMsj6/lzO0
http://dx.doi.org/10.1126/science.351.6275.799
http://paperpile.com/b/vMMsj6/60Ox
http://paperpile.com/b/vMMsj6/60Ox
https://www.amazon.com/Connectome-How-Brains-Wiring-Makes/dp/0547508182/ref=sr_1_1?keywords=9780547508177&linkCode=qs&qid=1554693948&s=books&sr=1-1
https://www.amazon.com/Connectome-How-Brains-Wiring-Makes/dp/0547508182/ref=sr_1_1?keywords=9780547508177&linkCode=qs&qid=1554693948&s=books&sr=1-1
https://www.amazon.com/Connectome-How-Brains-Wiring-Makes/dp/0547508182/ref=sr_1_1?keywords=9780547508177&linkCode=qs&qid=1554693948&s=books&sr=1-1
https://www.amazon.com/Connectome-How-Brains-Wiring-Makes/dp/0547508182/ref=sr_1_1?keywords=9780547508177&linkCode=qs&qid=1554693948&s=books&sr=1-1
http://paperpile.com/b/vMMsj6/q5w1
http://paperpile.com/b/vMMsj6/q5w1
https://www.ncbi.nlm.nih.gov/pubmed/4366476
http://paperpile.com/b/vMMsj6/nZ4g
http://paperpile.com/b/vMMsj6/nZ4g
http://arxiv.org/abs/1904.05329
https://doi.org/10.1101/610501
http://creativecommons.org/licenses/by/4.0/

	Modeling Brains as Networks
	Example Estimated Connectomes
	The Purpose of Brain Codes
	The Role of Connectomes in Connectal Coding
	Models of Connectomes
	Statistical Models of Connectomes

	Statistical Model for Connectal Coding
	Connectal Coding Theories

	Applications
	Discussion
	Acknowledgements

	References

